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DATA TYPES WITH SHARING AND CIRCULARITY

by
MICHAEL ROBERT LEVY

ABSTRACT

Initial algebraic techniques such as the algebraic specifi-
cations of data types have proved useful in characterizing data types.
In this thesis, we treat concepts of sharing and circularity in data
using an algebraic approach.

Firstly, it is shown how the idea of congruence can be used
to give the specification for a data type which has referencing. The
semantics of variable naming and a general assignment is also given by
the specification. A proof rule for this type is illustrated by
verifying a simple program. It is also shown how assignment and
variables can be treated for other types which are specified algebraically.

Secondly, the algebraic specification technique is extended
to continuous algebras, and it is shown how types with infinite objects
can be characterized as continuous types. Lists, including infinite
lists, are treated in this way. It is shown how sharing and circularity
can be placed in this framework, by characterizing data structures as a
set of regular equations, where the equations capture the sharing in the
structure. The value of the structure is viewed as the solution of the
equations. Data types with sharing and circularity are then defined in
terms of these structures, and it is shown how this can be done for a
type whose objects are abitrary list structures with the sharing and
circularity. This type is continuous, and hence the usual techniques
available for the treatment of continuous spaces may be used. The proof
of a simple recursive program which manipulates a list structure is
given.
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Chapter 1

Introduction



Much activity has revolved recently around the idea of data
types. The notion of types pre-dates computers (Church [10}, 1940),
but computing forces a particular perspective on anyone contemplating
ways of organizing or "typing" data. Several novél ways of organ-
izing data were seen to 6ffer substantial economies in performing
operations in this data (See Knuth [ 24]) and the search for new ways
to represent data is still being conducted with vigour. It has also
proven to be important to study the more conceptual aspects of data
types. Firstly, from a practical standpoint, the natural question of
how to implement newly conceived data types arises. It is also in-
teresting to ask if the design of a data type can aid in the develop-
ment of a programming project. The concept of data types provides a
natural way to extend the idea of modularity from routines to data.

From a theoretical point of view, a number of interesting
questions arise. The most fundamental of these is the question
"What is a data type?" The answer to this question can have an im-
portant impact on the ease of answering other questions about the
type. It has long been recognized that a data type is in some sense
independent of a particular representation. ({Earley [13], Hoare
[20 ], Standish [39 ]). Thus natural questions to ask are: "How can
a type be specified in a way that is independent of any representas

tion?" and "How can an implementation be shown to be correct?" The



first question is of much more than theoretical interest, for it is at
the heart of the concept of modularity. The issue is very similar to
that of application-independence in data bhse systems, where the
particular way that data is represented is considered to be "invisible"
to application programs. The second question (namely of correctness
of implementation) is important since correctness is essential for

all other aspects of an implementation to be meaningful.

The attempt to answer the questions posed above has proved
to be difficult. It has become clear that a data type is more than a
collection of structured objects: in fact the operators of a type
are, in many cases, of more interest than the objects themselves. The
reason for this is that any attempt to "examine" the data objects may
force us to choose some representation - something we are trying to
avoid. By considering only the "behavioural" aspects of a type, that
is, the effect of operations on objects, it is possible to achieve a
strong degree of representation independence. Data types can thus
be viewed profitably as a set of objects and a set of operations on
these objects » in other words, as an algebra.

There are several practical questions which any useful
theoretical approach should attempt to answer: How is a data type
characterized? How is it specified? Is the specification correct?

Is it possible to prove the correctness of an implementation of the
type? How can programs using the type be verified? Some of these

problems were tackled by Earley [13] and Standish [39]. More re-



cently, investigation of the "algebraic" approach has been done by
ADJ [ 1 ] and Guttag [18]. On a more practical level, several new
languages have been proposed which allow for a convenient way to
implement types as algebras. These in¢tude CLU (Liskov et al [281]),
Alphard (Wulf et al [ 411]), Euclid (Popek et al [ 34]) and Gypsy
(Ambler et at [ 4]). The idea of representation independence has
come to be known as "abstractness": a data type is abstract if it is
defined independently of any actual implementation. In the algebraic
approach the concept of isomorphism is used to capture this notion of
abstractness. A data type is defined by describing an abstract data
type (algebra), and an implementation is correct if, when it is
treated as an algebra, it can be shown to be isomorphic to the
abstract data type. Similarly, the abstract data type itself can be
verified by showing that it is isomorphic to an algebra which we
already believe to be an implementation of the type. The word “imple-
mentation" has been used very loosely here. We may regard any con-
crete description of an algebra as being an implementation of some
data type. In terms of actual machine implementations or implementa-
tions of one data type in terms of other types, there are difficulties
with this rather simple view of isomorphism. For a further discussion
of these problems, see ADJ [ 1] and Lehman and Smyth [26].

There is some consensus that the algebraic view of data
types is reasonable, at least for a large class of data types. Some

problems do arise, however. These include the probtems of dealing



with error conditions and the problem of verifying that implementations
are correct. Neither of these topics are discussed in this thesis,
but are covered in Goguen [16], ADJ [1], Guttag et al [17] and Lehman
and Smyth [ 26]. When data types are used in programming languages,
they are usually used with variables and assignment to the variables,
but the semantics of this assignment is often omitted from the formal
specification of the data type. Thus the implementor may decide, for
example, whether to impiement the type by allowing the functions to
have side effects or not, and must also in fact decide on the exact
format of assignment to variables. This is counter to the idea

of abstract data types since it makes the programs dependent on the
particular mechanism chosen for assignment. Guttag et al [17] dis-
cuss this problem and suggest a practical solution for overcoming it.
But when considering data types with sharing, the proper formal

treatment of assignment becomes ¢ritical.

We show in this thesis how variables and assignment can be
treated as part of the type, and hence be included in the specification.
The problem of data types with sharing has received very little attention,
either in the context of abstract data types or in a more general setting.
A notable exception to this is the pioneering paper by Burstall [9]
describing a method of proving correctness of programs which alter data
structures. This paper concentrated more on a proof system tﬁen on the
semantics of the type, whereas this thesis is mainlv concerned with the
semantics of sharina. The first part of the thesis (chaoter 3) shows how
sharing (and a special type of sharing called circularity) can be accom-
modated in the setting of abstract data types a 2a ADJ[1]. The second part
(chapter 4) discusses sharing and circularity in the setting of continuous

algebras rather than all algebras.



Sharing of data raises several problems, both in practise
and in theory. In an implementation of a type, two structures may
share part of the storage used in the representation of the structure.
If this is the case, then updates to one object may affect another
object. This creates difficulties, especially in terms of verification
of programs using types with shared variables. Is it possible to
formulate a proof rule when program variables may be affected in an
apparently undisciplined way? Examples of sharing arise most naturally
in the type 1ist, such as the underlying type of LISP (McCarthy et al
[ 32]1). Only a very primitive form of sharing was allowed in Pure
LISP, but general sharing was permitted in LISP 1.5 by use of the
operators REPLACA and REPLACD. Although these operators are easily
implemented, it was apparently not easy to include them in the LISP
formalism, and they were never defined formally. Several authors have
recognized the difficulties associated with sharing and some have
proposed that sharing be disallowed (Hoare [ 21 ], Kieburtz [23]).
A compromise proposal for treating references has been suggested by
the designers of Euclid [ 34 ], where references must be considered
part of the type being referenced. This propesal fits in easily with
the abstract moded .of linked 1ists developed in this thesis. We do
not propose here the undisciplined use of sharing, but do suggest that

sharing is a useful concept, and the problems associated with it

cannot be solved by ignoring them.



When considering sharing we must often also consider cir-
cularity - for example, we may imagine that an object of some type
shares a component with itself. Once again, lists provide the most
natural example of such sharing, as in for examplé circular lists.

What we attempt to show in this thesis is that the algebraic
approach to data types does lend itself to an elegant treatment of
types with sharing. In chapter 3 of this thesis, the type linked 1ist
is considered. This type has as objects arbitrary Tist structures
(binary graphs, although arbitrary graphs could be considered), and
its operators include the usmal list operators as well as assignment
to cells in the structures. (This generalized assignment corresponds
to REPLACA and REPLACD of LISP, but we have chosen the more represen-
tation independent notation of Burstall [ 9 ]). This type has the
property that it is easy to implement, and yet seemingly difficult to
formalize, There are "operational" formulations of the type, such as
the Scott-Strachey approach [38 ] with functions which, given a
"location", return a "value". The value itself may be complex, and
include other locations. This is the ussal definitional model used
for linked Tists, but i$ not very different from operational descrip-
tions of the type. In order to verify programs using the type with
this semantic model, it is necessary to use complex rules or notational
devices, or else to restrict attention to a subclass of all possible 1ist
structures. (Burstall follows the Tatter route [8]. Kowaltowski [23]

considers arbitrary 1ist structures, but must introduce fairly complex



notational devices for proofs. Oppen and Cook [ 31 ] base their
semantics on a graph theoretic model, which is also eperational, and
formulate extremely complex proof rules for the type.) With a nore
"abstract" treatment of the notion of "pointing" or referencing, it is
possible to develop the right insight in order to tackle the difficul-
ties presented by sharing.

ATthough we have considered in detail only the type linked
list, the general nature of the type alldws a simple extension of the
techniques used for any other type with referencing. We illustrate in
chapter 5 that an extremely simple proof rule (a backward-substitution
rule) can be used for the purposes of program verification. The ab-
stract specification of the type suggests a general formalism for
direct reasoning about the program. We believe that this formalism
is as expressive as any more operational language and because of its
abstract nature it is more natural to use for verification. The idea
of using congruences as a means of characterizing types abstractly
has, in previous works on algebraic specification techniques, been
used, more in order to tackle the questions of correctness of speci-
fications and implementations, than in actually considering the
nature of the types themselves. We show that the same considerations
about "abstractness" that led to the initial quotient characterization
of data types leads us to an elegant way to characterize the notion of
reference and hence to define the type Tinked 1list. Whereas initiality
was perhaps the crucial idea for general characterizations, it is the

idea of congruence and quotient which turns out to be essential for an



abstract treatment of linked lists.

A futrther advantage of the specification of Tinked list
given in chapter 3 is that we have used a standard technique of speci-
fication (namely algebraic specification), rather than inventing a new
descriptional method. Similarly it is straightforward to use the
proof rule for verification with any of the common verification tech-
niques, such as invariant assertions or intermittent assertions,
(Floyd [ 15], Hoare [ 19],Burstall [ 8 ],Manna and Waldinger [ 311]).

In chapter 4, sharing is considered in a somewhat more
general sense than chapter 3. In that chapter the setting is contin-
uous algebras rather than arbitrary algebras. It has been shown for
example how circular lists may be considered as being in fact infinite
elements of a continuous domain (Reynolds [ 35]). However, several
difficulties present themséives with this approach. Firstly, when
generalized assignment is added to the type, it becomes important to
know more about the structure of the 1list than is afforded by its
infinite "descriptions". If types with sharing are to be allowed, and
attention is not just restricted to non-shared structures, then this
problem becomes critical. A second problem is to try to find a char-
acterization for data types that are continuous which can be used to
answer the same questions as those posed for the non-continuous types
discussed above. Unfortunately, the results do not all fo'low through
directly, but they do hold in certain special cases. We snow in

chapter 4 firstly a condition which will allow the characterization
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of continuous types as quotients of the initial algebra in the
appropriate class of continuous algebras. Next, we present the axioms
of a general type called List, whose objects may be considered to be
finite or infinite lists of the Pure Lisp sort, and then show that the
type is in fact characterized in the usual way by a quotient algebra
which is initial in the class of all continuous algebras satisfying
the axioms. We believe that this treatment is more conceptually
pleasing than the "inverse 1imit" construction for the same objects
presented in Reynolds [ 35].

We view the type axioms as including some structure on the
initial continuous algebra by taking a quotient of this algebra. Thus
two expressions over the operators of the type denote the same element
of the type if and only if the terms are in the same class in the
congruence used to take the quotient. This then is the notion of
abstractness - an object of the type can be considered abstractly as
the collection of all well formed expressions which in some sense
yield that object. The utility of this view is not debated here,
since it may be found elsewhere. (See ADJ [ 1 ]). The next step is
to introduce shared lists and show how they may be treated. Firstly
we note that the sharing in some particular structure may be repre-
sented by a set of regular equations. For example, suppose we have
two lists named x and y which share theéir last elements. Suppose

also that this last element is circular. Pictorially, we may have
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To represent this structure with equations, we introduce a new variable

z (which names the shared sublist) and write

x = cons(a,z)
y = cons(c,cons(d,z))
z = cons(b,z).

Such .a set of equations is called a structure. The intention is that
there is a close correspondence between the set of equations and the
structure we have in mind. For example, the number of times the
operator "cons" appears on the right hand sides of the set of equations
must be the same as the number of boxes appearing in a diagram of the
type. Other properties of these equations are discussed in chapter 4.
Note that if the type axioms for Lists can be viewed as
inducing some structure on the set of expressions of the type, then a
particular structure represented as a set of equations (regular) can
be viewed as inducing additional structurd on the expressions. For
example, in the above set of equations we would expect that
tZ x = t& t& y. This effect is achieved technically by considering
the set of equations as if they were axioms defining the "constant"

or "nullary": symbols called program variables. e show that the
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conditions needed for the existence of an initial quotient will always
exist when regular equations are added to the type. In addition, we
show how the solution to the structure equations can be used to charac-
terize the equivalence induced by the structure. The final step is to
define an algebra that allows for the manipulation of these sets of
equations. We define such an algebra, and show that it is continuous.
In chapter 5 we show how a standard induction technique, the stepwise
computational induction of Scott and De Bakker, described in Manna

[ 30], can be used for purposes of verification of a recursive function
which manipulates a Tist. We use for the proof a language based on

the concept of sets of equations characterizing sharing.

The thesis is outlined below. In chapter 2, the mathe-
matical preliminaries are presented. We have used throughout the
thesis the notation of ADJ, and most of the results in chapter 2 are
from ADd [ 1 J or [ 2 ]J. We also propese a new definition of con-

gruences, called continuous congruences, and show that there is always

a least continuous congruence of a continuous algebra containing an
arbitrary binary relation. Further properties of these congruences
have not been investigated in this thesis. In chapter 3 we outline
some of the difficulties of abstract data types specification tech-
niques, and suggest how these difficulties may be overcome. We then
present, with motivation, the type Tinked list. We show how programs
using this type may be verified by presenting a proof rule for the
type. In practice, properties of types are often best proven using a

canonical term algebra which is a representative algebra of the type.
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We define such an algebra for linked list, and show that it is indeed
canonical. Finally, we present an operational model of the type, and
show that it satisfies the axioms. In chapter 4 the program of
generalizing the results of finite types to continuous types is carried
out. We also present the continuous type LIST as outlined above.
Finally in chapter five we illustrate the techniques of verification of
programs suggested by the models in chapters 3 and 4, and then make

suggestions for future study.



Chapter 2

Mathematical Preliminaries

14.
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1 Many-sorted algebras and initiality

A data type is viewed in this thesis as a many-sorted algebra.
(For a general discussion of algebras see Cohn [11]). Discussion of
data types as many-sorted algebras can be found in ADJ [1], Guttag [18]
and Levy [27]. An algebra of one sort is rough]y-speaking a set of
objects and a family of operators on the set. The set is called the
carrier of the algebra. Many-sorted algebras extend this notion by
allowing the carrier of the algebra to consist of many disjoint sets
called the members of the carrier. Each of these sets is said to have
a sort. The operators are sorted or typed, but must be closed with
respect to the carrier. For example, if A, B, C are three sets in the

carrier of an algebra, then
+ tAxB=+C

could be an operator of type <ab,c>, arity ab and sort c, where a,b

and ¢ are distinguished names (the sorts) of A, B and C respectively.

A data type is then a many-sorted algebra, and we define a data
structure to be an element of the carrier of a data type. The notation

and results are from ADJ [1,2].

Definition 1 Let g be a set whose elements are called sorts. An

§-sorted operator domain E is a family nf sets Ty s of symbols, for

seS and w e S* where S* is the free monoid on S. Zw s is the
9

set of operator symbols of type <w,s>, arity w and sort s.
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A I-algebra A consists of a family <As>S ¢ g Of sets called

the carrier of A, and for each <w,s> € S* xS and each 0 ¢ Zw S
9

a function

(where w = S51So - Sn) called the operation of A named by o. (If
_ W
W =818y vuu Sps then let A" denote AS]X ASZX e 8 Asn.) a

Here <x g denotes a family of objects X indexed by

>
ss €
s, such that there is exactly one object Xg for each s € S. The
subscript s € S will be omitted when the index set S can be deter-
mined from the context. For o € ZA s where A is the empty string,
]

Oy € AS (also written Oy i As)' These operators are called constants

of A ofsort s. If s e S, we usually denote the set AS by s.

Definition 2 If A and A' are both Z-algebras, then a I-homomorphism

h: A->A"' 1is a family of functions

<hS: AS > A'S>s c S

such that if o e L
WS

]

W
and <a],...,an> e AW then

hg(Op(ageeeag)) = Opulhg (@))seenshg (2,))- 0

Definition 3 A Z-algebra A 1in a class C of I-algebras is said to be

initial in C iff for every B in C there exists a unique homomorphism

h: A - B. O
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Theorem 1 The class of all I-algebras has an initial algebra called

TZ' a
(TZ is sometimes called the free Z-algebra.) This theorem, as well as
the others given in this section, is proven in ADJ [1]. . TZ can be

viewed intuitively as the algebra of well-formed expressions over X.

Variables can be included in terms in Tz in the following way.

Definition 4 Let

- 1,(n)
Xs {xs | n e N}
where N is the set of natural numbers. The elements
(i)
xS € XS

are symbols called variables of sort s. Suppose I is an S-sorted

operator domain. Let

X= U X
seS S

Then let z(X) be the s-sorted operator domain defined as follows:

Z(X)A,s =3 u X

"
™
-h
(=]
S

=
.
>

O

Z(X)\M’S WsS
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Thus variables are treated as nullaries (or constants).
Clearly TZ(X) is an initial £(X)-algebra. We define TZ(X) as the
algebra with the same carrier as TZ(X)’ but with operations . We

say that TZ(X) is the Z-algebra freely generated by X.

Definition 5 For any S-sorted r-algebra A and an S-indexed family X

of variables, if
g: X = A

denotes a family of functions
< es: XS > AS >

then 6 is called an interpretation or assignment of values of sort s

“in A to variables of sort s 1in X. O

Theorem 2 Let A be a r-algebra and a: X -~ A an assignient. Then

there exists a unique homomorphism
6: TZ(X) - A

that extends o in the sense that 5S(x) = es(x) for all s ¢ S and

x e X. |

The intuition for the above objects is that the initial

algebra in a class of algebras is the algebra consisting of “"syntactic"
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terms over the operators. It can be viewed as the set of trees denoting
possible well-formed expressions in the appropriate class of algebras.
Note that this analogy is perhaps too strong in the sense that the trees
mentioned above are abstract trees: their concrete representation could
be as diagrams, polish, infix or any other notation.

TZ(X) has as carrier trees similar to Ty , but the Teaves
can be constants or variables (elements of X). Theorem 2 says that if
we give variables some value in a Z-algebra, then there is a unique way
to evaluate any terms from TZ(X) in A,

For example, let S = {integer}, ZA,inte or © {0,1,...1},

Zinteger integer, integer = {+,x} and X = {xl’xz}' Also, let N

denote the usual algebra of non-negative integers. The initial Z-algebra

is the algebra consisting of "abstractly well-formed" expressions. Now

consider the following tree in TZ(X): ")

/+
X1 ////x\\\\
X5 2
Theorem 2 tells us that given any assignment to Xq X5 in N (for

example Xq = 3, X, = 6), there is only one possible value in N

corresponding to the tree (in the example it is 15).
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Definition 6 If < Xs >s6S is a family of variables, then each x ¢ XS

has arity A and sort s. Let X, = {x],...,xn} be a set of n

variables. Then t ¢ Tz(xn) is called a z-term in n variables or an

n-ary Z-term. 0

The motivation for this definition is that any term t e TZ(Xn) can
be viewed as a function of n arguments whose value is the value of the
tree after substituting each argument for its corresponding variable

in the tree. So for example the tree

defines a function tA: A2 -~ A for any =Z-algebra A.

Definition 7 Given a I-algebra A and t ¢ TZ(Xn) we define a cor-

responding derived operator on A

% AY As where w = $195p5. 4055y

and sort(t) = s, as follows:

W =
Suppose <as],asz ..,ssn> e AY, and also that sort(xi) S

Let a: Xn + A be defined by
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where a € AS » 1 <1 =n, Then by theorem 2 there exists a unique
i i
Z-homomorphism.

a: TZ(Xn) > A

extending a: Xn + A.

So given t ¢ TZ(Xn) define

tA(aS],...,aS ) = a(t) 0

n

Definition 8 A I-equation is a pair e = <L,R> where L,R ¢ Tz(x) S

(the carrier of TZ(X) of sort s). A Z-algebra A satisfies e if
8(L) = 8(R)

for all assignments 6: X > A, If ¢ is a set of I-equations, then A

satisfies ¢ iff A satisfies each e € ¢. : O

Thus a set of equations ¢ can be viewed as a set of axioms whose free
variables are implicitly universally quentified. The class of I-algebras

which satisfy € is denoted élg{’s.

Definition 9 An equational specification is a triple <s,Z,e> where I

is an g-sorted operator domain and ¢ is a set of IZ-equations (called
the type axioms).
The class of algebras Alg. . does in fact have an initial
9

algebra, denoted TZ and it is this algebra (or one isomorphic to it)
H]

()
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which is usually regarded as the data type defined by a set of equations.
The concept of "abstract" is captured algebraically by isomorphism,
since different algebras (that is, algebras with different representa-
tions) may be isomorphic. In fact the structure of TZ,e can be
characterized as an algebraic quotient of TZ where intuitively two
elements of TZ are equivalent if and only if one can be derived from
the other by using the equations. That is Tz,e groups together all
equivalent terms.

An important concept in the theory of abstract data types is
the idea of quotients mentioned above. A quotient partitions the
carrier of an algebra, and when this quotient 1is over TZ’ it can be
interpreted as a way of equating syntactic terms over the alphabet of
the type. The importance of such "equations" is that they provide a
means for expressing the difficult concept of abstraction. Furthermore
quotients are defined in terms of equivalence relations which are
congruences; intuitively, terms that have been equated must behave in

the same way with respect to the operators of the type.

Definition 10 A Z-congruence = on a Z-algebra A is a family < 5%s ¢ S

of equivalence relations Es on AS such that if o ¢ Zw s where
. 9

] ) — ] 03
= .o . .= a. f <1i<n n
W= 8.8, S and a1,a1 € Asi and if a 5% or 1 , the

t

cA(a1,...,an)
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If A 1is a Z-algebra and = is a I-congruence on A, let (A/E)S = AS/ES

be the set of Es-equivalence classes of AS for each s € S. For
ae AS let [a]S denote the Es-class containing a. It is possible
to make A/= = <AS/ES>S ¢S into a Z-algebra by defining the operations

oA/E as follows:

(i) If o€ ZA,s then Op/z = [oA]S

(ii) If o e 251...5 s and [ai] € AS-/ES. for 1 <1 <n

n i i
then

GA/E([a]]""’[an]) = EOA(al"'°’an)]s

Then it can be shown that A/= 1is a I-algebra called the quotient of
A by =. (The property of = being a congruence ensures that Op/= is

well defined). 0

A set of I-equations € = {<L,R>|L,R ¢ TZ(X)} generates a binary
relation R < A x A. This relation is the set of all pairs
{<B(L), B(R)> | & is an assignment}.
Theorem 3 If A 1is a Z-algebra and R 1is a relation on A, then there
exists a least I-congruence relation on A containing R; it is called
the congruence relation generated by R on A. (The ordering on I-cong-

ruences is the subset ordering.) 0

Theorem 4 If € is a set of Z-equations generating a congruence g on Tz’
then Tz/q is initial in 5122’8.
The importance of the above theorems is that any set of

z-equations (axioms) "automatically" defines an algebra which can be
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regarded as the symbolic model of the object being defined. This model
can be used to answer such questions as "Do the axioms characterize
some particular model of the type?" and "Is a given implementation of
the type correct?" In chapters 3 we use the model to gain insight in-
to the abstract notion of references in structures with sharing.
Specifications can be "proven correct" by showing that for some
z-algebra M which is a model of the type, M = Tz/q. In practice we
may use a canonical algebra C where C = Tz/q and show that M = C.

C is a "term" algebra-that is, each ¢ ¢ C 1is in TZ'

Definition 11 A Z-algebra C 1is a canonical Z-term algebra if

(i) Cs g_TZ,S for each s ¢ 8
and (ii) if c(t] . tn)’e C then t,eC for each i,
1<1is<n, and oc(t1 . tn) = 0(t1... tn). a
Theorem 5 Let <s, I, €> be a specification and let C be a

canonical x-term algebra. Then

CgTz’e
iff
(i) € satisfies «
and (ii) for each o « Zs]...s sr tie c, 1=<is=n,

(O(t] .o tn), Oc(t] .o tn))_ € q

where q 1is the congruence relation on TZ generated by €. 0
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2 Continuows Algebras

There is a class of data types such as circular lists which
may be naturally regarded as being characterized by "infinite"
expressions. The definitions above about Tz can be extended to an
algebra CTz whose objects can be thought of as finite or infinite
expressions over . In order to carry out this extension we consider
partially ordered sets, with the interest here in data types. The idea
of using partially ordered sets as a data domain is in fact used in
Scott's work on semantics [37], but there the comgern is more with
procedures as elements of a data space than with the more usual data
types. However, Reynolds [35] has shown how complex data types such
as lists might be considered as partially ordered sets (in fact, as
complete lattices). Intuitively speaking, the order relation on the
set is an "information content" relation. If §, and S, are two

structures, we write

and read "S] is leas defined than or equal to 52.“
If P is a partially ordered set (poset), we let < (or [)

denote the order relation in P, and thus for P1sPy € P we write

P1 =P
to denote the fact that Py is less than or equal to Pps Or Py is

less defined than or equal to p,. u("cup") denotes binary or finite
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least upper bounds, and U("mug“) denotes least upper bounds of

arbitrary sets.

Definition 12 A partially ordered set (p,<) is a set P tegether with

a binary relation < which is reflexive, transitive and antisymmetric.
A11 posets are assumed to have a minimum element denoted i("bottom" or

undefined) such that

for any p ¢ P. A subset S of P is directed or a A-set iff every

finite subset of S has an upper bound in S. A function €: P - P'
from a poset P to a poset P' 1is monotonic iff for all Py <P in
P, f(p]) < f(pz) in P',
We say that a subset $§ of P is an w-set if S is an
w-chain, that is, a countable set such that Sy < Sp < S3 < ... .
Still following the notation of ADJ[2], we say that for

Z= wor Z=A,a function f: P -+ P is Z-continuous if f pre~

serves all least upper bounds of Z-sets that exist in P. That is,

f 1is Z-continuous iff
FlljerPe) = Ly 1 f(py)

where Pi%iel is a Z-set in P and UieIpi exists. A poset P s

Z-complete iff all Z-sets have least upper bounds in P. O



27.

In order to define infinite trees as the appropriate partially

ordered set we use the following definition:

Definition 13 For sets A, B let [A -o> B] be the poset of partial

functions from A to B. The order relation is set inclusion om the
graphs of the functions considered as subsets of A x B. The least

upper bound is set union. If
f: A-o>B
is a partial function, then
def(f) = {a | <a,b> ¢ fl

is the domain of definition of f. If x 4 def(f), we write f(x) = 1. O

The definition of trees (including infinite trees) as posets
is achieved by labelling the branches of each tree by integers on each
level of the tree. Then each node of the tree is in the target of a
partial function defined over strings of integers. These strings re-
present the path taken from the root to reach the node.

For example, consider the following tree

U

7
a if then else
0 [T \2
b c

I,
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This is the partial function t defined by
A >+
0~+a
1 » ifthenelse
10 >~ b
11+ ¢
12 ~ *

121 ~ d
(Note that t(120) is undefined).

Every tree is a partial function, but not every partial fun-
ction from strings of integers to operators is a tree. The formal de-
finition is given in definition 14 below. The sort of the tree is de-
fined as the sort of the operator at the root of the tree. If t(A)
is undefined, then the entire tree is undefined. The ordering on trees
is defined by set inclusion on partial functions with set union giving
upper bounds if they exist; that is if the union is a function satis-

fying definition 14.

Definition 14 Let g denote the set of natural numbers. We say that

a I-tree of sort s ¢ S 1is a partial function

t: w* - I

such that
(i) if A e def(t) then t(A) has sort s.
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(1) If wew*, 1ew and wi e def(t) then
a) w e def(t)
b) if t(w) has arity S1S9++ Sy then i <n and

t(wi) has sert Si41°

Condition (i) defines the sort of the tree, while condition
(ii) ensures that (a) a node is defined only if its father is defined

and (b) the "arguments" to each operator are of the correct sort and

if an operator is n-ary, n or fewer arguments are defined in the tree.

Definition 15 Let CTZ s denote the set of all IT-trees of sort s.

The Z-algebra CTz is defined as follows: The carrier of CTZ is

<CT for each s € S. The operators are defined as follows:

Z,s>SeS

(i) For o ¢ ZA‘S, O¢r = {<A,0>}

sW = SSp...S and ts. e CT , 1<iznm

(ii) For o € gﬂ n 1

sS zss.i

GCT(tS]""’tSn) = {<A,0>} v Ui<n{<iu,c'>|<u,o'> €
So if ts1”"’ts are I-trees, so is cCT(tS ,...,tS ) - it is the

n 1 n
tree with o as root.

Definition 16 A g-algebra is Z-continuous iff each member of fts

carrier is strict (has a minimum element ) and is Z-complete, and if

its operations are Z-continuous. A data type is said to be Z-contin-
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uous if it is Z-continuous as a many-sorted algebra. A function
f: A~>B is strict if f(LA) = 1p.
The following important result is proven in ADJ [2].

Theorem 6 CT. is initial in the cdass of w-continuous Z-algebras

X
with strict A-continuous Z-homomorphisms.

As before with TZ’ we let CTZ(Xn) denote the initial

Z(Xn)—a1gebra. An element x; e X, s called a variable.

Theorem 7 If A 1is a Z-continuous Z-algebra and

a: Xn -~ A

is an assignment, then

a: CTz(Xn) > A

is the unique Z-continuous homomorphism determined by making A into

a Z(Xn) algebra. 0

Again, if t e CTZ(Xn)’ sort(t) = s, arity(xi) = s for each i,

1 <43 £n, then

is defined by

ty(a) = a(t).
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[A->>B] is strict and A-complete, and in fact CTE is strict and
A-complete. Furthermore for any t e CTy, t = Unemt(n) such that
def(f(n)) is finite. This result is of fundamental importance since
it enables one to discuss properties of infinite objects by discussing
the properties for each finite object and then showing that the pro-
perties hold in the limit. So for example if f is a continuous

function
f: CTZ -+ CTZ
then f(t) = Uif(ti) by definition of continuity. The operations of

CTZ are A-continuous.

The notion of continuity is extended to congruences in the

following definition.

Definition 17 A I-congruence q on a Z-continuous Z-algebra A is

said to be Z-continuous for Z ¢ {A,w} if whenever <t1>ieI and

<E.>. are Z-sets in A such that
iTiel

(ti,fi) € q for each i e I
then

This ensures that the congruences under consideration are well behaved
in some sense. For example, suppose that there is an algebra with one sort
S and operators

+: §+S

13+ S

and with the equation +.1 = 1.
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If q 1is the least congruence generated by this axiom, then g 1is not

continuous and CTZ/q will not be continuous. To see this, consider the

chain

< +1 LL>.
Tew

and let t = Ui <+ 1>,

1

Now +[Ly <t'.15] = [#1+71] by definition of CT_/q°

i+1l]

= [Ui+ by continuity of CTZ

[U1+1.L]
But +(U;[+'.13) = +(U;[1]) = [+1] = [a].

Now since q 1is the Teast congruence generated by the equation, we have
L+ 1] =[]

and CTZ/q is thus not continuous.

We now generalize theorem 3 to A-continuous z-algebras.

Theorem 8 If A is a A-continuous Z-algebra and R 1is a relation on
A, then there exists a least A-continuous Z-congruence on A con-

taining R, called the A-continuous congruence relation generated by

R on A.

Proof Let K(R) be the class of all A-continuous Z-congruence relations

on A that contain R. K(R) ¥ ¢ since
U= <ug = A  x A | s €S>

is in K(R), and is A-continuous since (a],az) e U forany a;,a, e A.

Let =R = nK(R). That is

(ER)S = n{K, | K e K(R)} for each s ¢ S.
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It is shown in ADJ [1] that R is a I-congruence relation. We show

that =, is A-continuous. Suppose that <t;>;.; and <Ei>i€I are

directed sets in A with

Also, suppose that
<ai,51> € = for each i €I
Henge

<ai,51> € K for each i € I and each K € K(R).
by definition of ER'

But each K ¢ K(R) 1is A-continuous, so
<a,a> € K

for each K ¢ K(R), and thus <a,a> e =, as required. a -

Definition 18 A system of n (regular) eguations in CTZ is a function
cer Xy CT (X))

sugh that sort(xi) = sort(e(xi)).

For any A-continuoss g-algebra A, if w = si5,...5, and sort(xi) =S5

then

ep: AV A"

is the derived operator of e over A defined as

eA(<as1,a52,...,aSn>) = <e(x1)A(aS]),...,e(xn)A(aSn)>

<ES1(e(x1)), SSZ(e(xz))....,Esn(e(xn))>.
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That is, if a = <@ seeesdo > is an n-tuple in a Z-algebra A, then
1 n

regarding a as the assignment

X. P a 1=1i<n

we define eA(a) as the n-tuple obtained from the unique homomorphism

a extended from a and applied to e(x1), e(xz),...,e(xn). 0
Theorem 9 The system of equations ) .
e: AW > W

has a minimal fixed point solution denoted le,| « A" called tha
solution of e over A.
Furthermore

. _ k
(1) |eA| - Ukéw eA(l:---sl)

(i1) eA(IeAI) = IeAI

and (iii) For all a ¢ AV if e (a) = a then IeAI < a.
(Here eg(x....,L) denotes (L1,...,1)
ek(x) denotes e (ek'](x)) for k =1
A A‘\EA = a

Definition 19 Finally, we can define substitution of expressions for

variables by considering the case A = CTZ(Xm) above. Then let

- w -
t = <ts]""’tsp> € (CTZ(Xn)) be a p-tuple where w = s;5,...5

This can be considered as a mapping.

D’

t: X, > CTp(X)
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that is t(xi) = t5. Then if t' <ti,...,tﬁ> ijs an n-tuple of m-ary

terms in CTz(xm)’ we write t <« t' for the substitution of the n-tuple

of m-ary terms in CTZ(X in the p-tuple of n-ary terms in CTZ(Xn)'

m)
This is defined as follows
tet'=1t'ct

where o is function composition, and %' is the unique Z-homomorphism

extending

t': Xn > CTZ(Xm)'
Theorem 10 Substitution is A-continuous. 1i.e.

et (CTL(X ))Px (CTo(Xx N+ (€T (X )P

is a A-continuous function on the (A-complete) Cartesian product of

A-complete sets. 0



Chapter 3

Sharing and Circularity Using References
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1 Introduction

As outlined in the previous chapter, a data type may be re-
garded as a many-sorted algebra which is initial in some particular
class of algebras. The class of algebras is defined by a set of
equations called the specification. Usually, assignment is not treated
as an operator of the type, and variables are not treated in the for-

malism. For example, consider the specification of the type stack.

pop: stack -+ stack

push: D x stack - stack
top: stack - D

empty: stack -~ {true, false}

A: -+ stack
pop(push(d,s)) =5
top(push(d,s)) =d
empty(A) = true
empty(pash(d,s)) = false

(This definition should also define top(A) seé ADJ[ 1 ].)
In an actual programming language there are two possible
ways that stack can be implemented; either the operators are functional,

or they work by side effect. In the first case, for example, we may

write
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x <« push(a,push(b,push(c,d))))
y < pop(x) etc.

while in the second case we might write

push(a,x)
push(b,x)
push(a,x)
y < X

pop(y)

However, in spite of the so-called "specification" of the type aiven
above, some questions still remain unanswered.t  For example, what is

the semantics of
y « x?

Does pop(y) affect x? Is it possible to formulate proof rules for the
various statements?

We show in this chapter that a more complete specification of
a type can be given by including assignment as an operator of the type,

and by adding to the carrier of the type a set called struct which,

¥ The difficulty of treating errors is not discussed here, but is dis-

cussed in ADJ[ 1 ] and Goguen [16 ]. A more practical approach is
taken in Guttag et al [17] and Tompa [40].



intuitively, captures the interrelationships of variables of the type.
Alse, variables themselves are added, either as an extra set V 1in the
carrier, or, more elegantly, as operators of the type, either nullary

or unary. For example, we might say that the set of sorts for stack is
{struct, stack, D}

and the operators are (say)

push: D x stack-x struct -+ struct

X2 struct - stack for each x e V.

The intention that push works by "side effect" can be described axiom-

atically, since
push(d, x(o), o)

is regarded as yielding a new structure from a given structure o. It
becomes possible by including variables and the set struct to define
types which allow sharing or aliasing. This is illustrated through the
use of the general type linked-list, which includes operators similar
to REPLACD and REPLACA of "impure" LISP [ 32]. The principles are, how-
ever, easily applied to other types, such as stack.

The most important aspect of this formulation is that it
yields our abstract model of the type. The type is not modeled by any
particular operational device such as graphs or location-value func-

tions, but, in the spirit of abstract data types, only the abstract
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properties of the type are presented. It then becomes possible to use

a very simple proof rule for programs using the type. Use of this rule
is illustrated briefly in Chapter 5. Because of the abstract nature of
the axioms, we believe that it is easier to argue correctness. Existing
verification methods for this type are all based on operational models,

and hence need more detailed, but non-essential, reasoning in verifi-

cation,

2 Referencing and Verification

The difficulty with verifying programs which manipulate
structures with sharing arises mostly from the fact that a single
assignment statement can affect the values of several variables. For

example, consider the sequence of statements

1. x <« cons(a,cons(b,c))
2. y <« t€ x
3. thy«z

where « is the (usual) assignment operator, and t£ is a function which
returns the second component of a cell. (We say t£(cons(c1,c2)) = Cy3

an intuitive discussion of the type is presented below). t£ corres-
ponds to CDR in LISP (McCarthy et al[32]) and the assignment t£ y <+ z is
equivalent to REPLACD(y,z) in LISP. Intuitively, the second assignment
statement causes y to share the t£ of x. Hence the third assignment
statement will change the value of x as well as the value-of y. If

we write down an assertion as the post condition of statement 3, say



41.

cons(a,cons(b,cons(d,e))) & y = cons(b,cons(d,e)) &

Q: x

Zz

cons(d,e),
then the sharing between x, y and z is not explicitly expressed. For

example, the following assignments also satisfy the above assertion:

1. x < cons(a,cons(b,cons(d,e)))
2. y < cons(b,cons(d,e))
3. z <« cons(d,e)

but, in this case, there is no sharing.

In the above assertion we assumed that the values of the
variables x, y and z were the associated Tists cons(a,cons(b,cons
(d,e))), cons(b,cons(d,e)) and cons(d,g) respectively. This is con-

sistent with assertions about "simple" variables, where we may write
x=3&y>25

as an assertion. 3 is the value of x, and the value of y is
greater than 25. There are two difficulties in treating variables and
values of 1list structures in this way. Firstly, an assignment state-

ment of the form
tLx< 2
can introduce circularities into the 1ist structure. For example after

x <« cons(a,b)

tZ X « X
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the value of x would be recursive in x:
x = cons(a,x).

Is this value different from
x = cons(a,cons(a,x))?

The second difficulty is that the contents of a "cell" are not suf-
ficient to identify that cell uniquely: hence the two possible inter-
pretations of the assertion Q stated above. It is possible to for-
mulate proof rules for the assignment statement, assuming some sort of
operational model of Tlists. (See for example Oppen and Cook [ 311]).
These rules tend to be extremely complex, however, and hence difficult
to use in proofs. The approach taken here is based on the observation

that an assignment statement (such as
tLy«z

above) changes not only the value of y, but in fact the entire list
structure with which y is associated. Hence suppose that o is the

name of a data structure. We view an assignment of the form
p<e

where p s some expression denoting a component of o, as in fact

being the assignment

o' + u(o,p,e).
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Here Uy(o,p,e) 1is a function whose value is a structure identical to
o except p 1is changed to e. Hence the proof rule we need is

00
‘U(o,p,e){p < e} Q

(3] s R
where QU(o,p,e) is Q with each occurrence of o replaced by
U(o,p,e). This view is similar to the view that an array assignment
such as

A[i] < e

changes the entire array A. (See Hoare and Wirth [22]. Compare
this rule with the "simple" assignment rule in Hoare [ 19].)

For the sake of notation, we will write o' for U(o,p,e)
provided p and e can be determined from the context of the asser-

tion. Hence the proof rule will be written
o}
Qi lp < el Q

where o' depends on the particular assignment.

In order for this simple proof rule to work, it is necessary
to write assertions about some structure o rather than components of
the structure. Rather than bedng a drawback, it will be seen that this
is advantageous since, together with the treatment of referencing dis-
cussed below, it allows properties of a structure to be simply ex-
pressed. The remaining idea needed for the proof rule above to work

is to describe more precisely the concept of a cell and reference.
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A cell is identified by a reference and its contents are
denoted by a description. References must have the property that they
uniquely identify a cell, while two distinct cells may have the same
description. Note that the description of a cell may change after an
assignment, and hence the description of a particular cell depends on
the particular structure (or state) in which the cell occurs. The
process of describing a particular cell (that is, giving a description

of a cell) is called dereferencing. References correspond to the

L-values of Scott and Strachey [ 38 ] and descriptions to the R-values.
However a function could have a reference as a value, and we have thus

chosen the words reference and description in order not to overwork the
word value. In Algol 68, descriptions would be called values. (See

Barron [ 6 ].)

The type to be described has essentially the same semantics
as the LISP type (See McCarthy et al [ 32]), but uses Algol 60 syntax
(as for example in Burstall [ 9 ]). Roughly speaking an element of
the type is called a 1ist structure (or structure) and it consists of
a finite set of cells or nodes. Each cell has two components called
the head and tail of the cell. The head and tail of a cell each
aré a reference to another cell or an element called an atom. For
example, we can represent a typical list using a "box and arrow"

diagram:
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a,c,e and A are all atoms, with A being a distinguished element called
null.

The operators of the type include the following three
operators: hd and t& which take as argument a cell and teturn the
head and tail of the cell respectively, and cons which takes two
arguments (atoms or cells) and returns as its value the description of
a cell containing in its head and tail its two arguments. There are
also two types of assignment operators in the type. Simple assignment,
written in the form x « ¢, associates a variable x with a cell
c. A more general assignment operator changes the head or tail of a
cell. This assignment is written in the form hd ¢y« G (or
tL Cq * c2) and the intended semantics is that the head (or tail) of
cell Cq is changed to refer to Co. hd and t£ correspond to CAR
and CDR in LISP, while « corresponds to CSET. hd C; <6 corresponds
to REPLACA(c],cz) and t£ c; * ¢, to REPLACD(c],cz). Note that
REPLACA and REPLACD were never formally defined in LISP because of the
difficulty of dealing with sharing in the LISP formalism.
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Consider the 1list structure:

(The boxes have been numbered arbitrarily.)

We could write the descriptions of boxes 2 and 4 as follows:

If no distinction is made between references and the content of a

cell, then it is not possible to distinguish between the above struc-

ture and the structure

However, these two structures are clearly different as can be seen by

considering the effect on the structures of the assignment

tLt x « z

which effects only cells accessible from x in the first case, but

affects cells accessible from either x or y 1in the second case.
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3 A Quotient Approach to Refereneces

The simplest form of a reference is denoted by the name of
a variable which refers in some structure to a cell. More complex re-
ferences can be built by examining the head or tail of a referenced

cell. Consider for example the structure

Box 1 is referenced by x, box 3 by y and box 2 by the tail of the
cell referenced by x, the tail of the cell referenced by y as well
as by the tail of itself. Letting x(o) and y(oc) denote the cells
referenced in o by x and y respectively, then box 2 is refer-
enced in o by t& (x(c))(c) and t& (y(c))(c). Note that the cell
referenced by x in o (say) may have different contents at different
"times". Hence the value of the function t& is itself a function of
the same structure. If we regard tf (r) as a function, which given
gome structure o, returns the tail of the cell referenced by r

in structure o, then we can associate with each cell in the above

diagrams the references:

cell 1. x(o)
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Cell 3. y(o)

Cell 2.  t&(x(0))(o)s te(y(o))(o); te(te(x(c))(o))(o)s
te(te(y(o))(o))(o)s ...

Suppose R 1is the set of all well-formed expressions of the above form

over hd, t€, x>y and o. Then the structure o partitions R

into classes such that the elements of a given class all reference the

same cell, (There is also a class of "undefined" references.)

Suppose that
GpsT7s-++s9

is a sequence of structures where o, 1is obtained from o, ;, i >0, bv

an update. Then references in cj can be related to references in

O j.k €{0...n}, by relating cells in the updated structure to cells

in the earlier structure. Conceptually, the new set of cells is

obtained from the old by changing the contents of one of the cells in

the old set of cells, or by associating a variable with a different cell.

We can thus identify particular cells in the old and the new structures.
For example, suppose the above structure is updated by the

assignment

tg X «y.

That is, the updated structure is
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o' a b }
1 2/
y ,ﬁ
C '
3

In o' the partition is

Cell1 1. x(¢')

cell 3. y(o"), t&(x(c'))(c")

Cell 2.  te(y(c"))(c'), te(te(x(c'))(c*))(c") ...

as well as a number of expressions which are regarded as being undefined.
We can thus relate references in o' to references in o: Let R' be the set
together with well-formed expressions in hd, t€, x, y and o!. Then
partition R' so that all elements in a cdass of the partition refer-
ence the same cell. For example, x(c) and x(c') will be in the

same class; t&(y(c'))(c') and t&(x(c))(c) will be in the same class.
It is also possible to "mix" structures. For example x(c') refers to
box 1 in o and o' , so we can consider t&(x(c'))(c) (which refers

to box 2) or te(x{c)){(c') (which refers to box 3). If o and o'

are unrelated, that is,neither is derived by applying zero or more up-
dates to the other or they are not obtained by updating the same
structure, then expressions involving both o and o' are considered
to be undefined.

Descriptions are denoted by expressions of the form

R
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cons(d],dz)

where d],d2 are atoms, references or descriptions. Descriptions do
not themsetves idenfity cells, but expressions involving descriptions

may. Consider for example the expression
hd(cons(ry,r,)) (o)

where 1 is a reference. The subexpression
cons(r],rz)

is the description of some cell with the reference r in its head.
Thus

hd(cons(r1,r2))(o) =r

is a reference and does identify a cell.

Finally we notice that references behave in the following
"algebraic" way: if g and ro reference the same cell, then
hd(r])(o) and hd(rzl(o) will either be equal as atoms or will
both reference the same cell. Similarly, tﬂ(r])(o) and tﬁ(rz)(o)
are equal as atoms or reference the same cell. In addition, if c
references the same cell as c, or Cq and c, are the same des-

criptions (we write cq = c2) and ci = cé, then
cons(c],ci) = cons(cz,cé)

These informal ideas can all be formalized by defining a congruence
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over well-formed expressions in the operators of the type. The con-
geuence captures both the notion of equivalence (of references that
refer to the same cell and of descriptions which are the same) and
the notion of the operators of the type preserving this equivalence.
The congruence is described by a set of equations of the type, called

type axioms.

4 The Type Linked List

The carrier of the type linked list will consist of three

sets: A set of sort V of variables called program variables, a set

of sort Cell and a set of sort Struct. The operator domain I is:

¢: > Struct (the empty structure)

hd,t2: Cell X Struct - Cell
cons: Cell x Cell » Cell
x: Struct - Cell for each x e V
x: >V for each x ¢ V
Error: - Cell

a: »> Cell for each a ¢ Atom

<1 Y x Cell x Struct - Struct

hd Cell x Cell x Struct - Struct

4 Cell x Cell x Struct » Struct

-«
“te
=: Cell x Cell -+ Bool
¢: Cell x Struct - Cell (dereferencing)

We also assume that the sort Bool with operators
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true, false: - Bool

if then else: Bool xt x t ~ t for each sort t

is implicitly part of the type. The axioms for these operators are

the usual "if then else" axioms, namely

if then else (true, t],tz) = t1
if then else (fa]se,t],tz) = t,.

An alternative approach is to include the sets reference and descrip-
tion in the carrier of the type, where elements of reference are re-
ferences and elements of description are descriptions. However to
simplify the specification of the type, the set of sort cell is con-
sidered to include both references and descriptions. A given element
of cell will either be a reference or a description. We define an
operator

isref: Cell - Bool

which returns true if and only if its argument is a reference.

This definition of I is sufficient to determine the
algebra TZ whose elements can be considered to be the well formed
expressions over I. If we denote the set in the carrier of TZ of
sort Ce1l by Cell, then cons(a,cons(b,cons(c,d))) e Cell, assuming
that a, b, ¢ and d e Atom, for some distinguished set of elements
called atoms. Similarly, if we denote the set in the carrier of TZ

of sort Struct by Struct, then
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«(x,cons(a,cons(b,cons(c,d))),$) e Struct.
Error is a constant of sort Cell which is used to denote an erroneous
reference.

The most significant aspect of the above definition of I is
in the treatment of references. If x 1is a variable x e V, then

x: Struct -~ Cell says that the cell referenced
by x depends on some particular structure. Hence the cell refer-
enced by x in two different structures is not necessarily the same.

Similarly, consider the functional description of hd, t€. Suppose

c ¢ Cell. Then hd(c) depends on some particular structure o. We write
hd(c)(a) and t1(c)(q) to denote hd(c,s) and t1(c,c) respectively. Thus
hd(tL(x(c))(c))(c) € List for some o e Struct. The elements of cell
which are of the form 51(62(...(Gn(x(on+]))(on)...)(01) where

61 e {hd,t£}, 1 < i

IA

n, o; ¢ Struct, 1 < i < n+l, will be called

references., If o© o for each i, 1 < i < n+1, the the element will

i
be called a reference in o, and we will write 6]6263...6n x(c). The

quotient defined by the set of axioms to be presented will have the
property that it groups together all references which have equal
value. Also note that intuitively, a structure carries with it its
"history". For example the structure pictured in the example above
(page 47) may have been derived from

o = «(tetl x,tlxx,«(y,cons(c,tl x) s« (x,cons(a,cons{b,1)),4))).

The "box and arrow" diagram in fact does not characterize a structuee

in the sense intended here, since there are different sequences of
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assignments that will "yield" the same diagram.

Remark on Notation

(i)

(i)

(ii1i)

Expressions involving the assignment operators “hd and 'y
will be written using the operator <« with hd or t£ to the
left of the first argument to the operator. Thus we will write
*_(6P'| st ,G)
to denote
<5 (P1sP550)

where S ¢ {hd,tZ}.
For example, we write <«(tz x(o),cons(a,b),0) to denote

“tr (x(o),cons(a,b),oq).

In an assignment of the form
<—(x,cz,o) or +(6c1,c2,o),
if all structures occurring in the expressions cq and Cy
are o, then ¢ is omitted from ¢, and Cy.
For example, we write
«(tL x, cons(tL y, z),0)
to denote
«(t2 x(o), cons(tl (y(o))(o), z(o)),o0).
As mentioned above, if every structure in a reference is the
same, the structure will only be written once. Hence for
te (hd(te(y(s)) (o)) (o)) (o)
we will simply write

te hd te y(o}.
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If the structures are different, we use a different notation.
For example, if
+"< >
G = <0750,504
we will write
hd t& x(3)
to denote

hd(tﬂ(X(G-l))(O'z))(O'B). O

presenting the type axioms, we discuss the intended semantics
three assignment operators <, “hd® and ‘e

«(x,c,0) updates o to a structue o' which is identical to
o except that x(¢') is a reference to a different cell. If
¢ is a reference, then x(o') references the cell referenced
by c. If c¢ is a description, then x(¢') references a "new"
cell which has a description equal to c. We call this type
of assignment simple assignment.

+(6C],C2,0) updates g to a new structure ' which is
jdentical to o except that the contents of cell c, are
changed. If & = hd, then the head of ¢ is changed to
reference Cy- If & = t&, then the tail of C is changed
to reference &,. We do not allow c, in this case to be a
description, but this type of assignment can always be achieved
at the expense of an extra variable since

+(6c], cons(cz,c3),o)



(which is not allowed) is equivalent to

+(6c1, Z, +(z,cons(c2,c3),o)).

Definition 1 The Type Axioms.

Let Path = {hd, t&}* - V (that is, expressions of the form ¢x where
q € {hd,te}*, x e V). Let cy,ch,c e ell, @sq € {hd,te}*,
PsPysPgsPy € Path, § ¢ {hd,t£} and o,c',01,01' ,cz,cé e Struct,

a e Atom, X, X, y € V.

1.  &(p(o))(¢) = Error
2. qla)(o) = Error
3. hd(cons(c],cz))(o) = ¢
4, tﬂ(cons(c1,c2))(c) = Cy
5. x(+(8p,c,0)) = x(o)
6. . qc(o) if x ==y and isref(qc(o))
qx(+(y,c,0)) = | gx(o) ifx#=y
7. (§(qx(c')) (o) if o' #=<«(y.c,0) and
Df(«(y,c,0), o),
§(gx(c"))(«(y,c,0)) = § Error if Df(o' ,«(y,c,0)) and
o'== «(x,cq,0 ) and
L isref@c1(5')).
where ( false if o ==
Df(o1,q2) = { true if oy == o,
\ Df(510,) otherwise,where o7 == «(p,c,5,)
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11.

a)

b)
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hd(p](ol))(+(tﬂp2,p3,c)) = hd(py(ay))(0)
tﬂ(P](U]))(+(th2,P3.0)) = t&(pq(07))(0)

} P3(O') if P] (0]) = Pz(o)
6§91(°]))(+(6p2’p3’0)) = 8(py(0;))(0) otherwise

true if oi == oé & isref(qc](o1)) &
iéref(écz(o?)) & gx == gx

=(qx(0})+qx(0})) .

false if oy == cé & isref(qc](o1)) &

T§P9f(5c2(02)) & gx # gx
where o7 = +(x?c1,c]),oé = +(§,c2,02).

false if ¢ == Error, ¢ ¢ Atom or

isref(c) = c== cons(c],cz)
true if ¢ == p(o). 0
We have used the symbol "==" to denote syntactic equality

between terms. This equality can be defined equationally

on terms in the obvious way.

These axioms may be read intuitively as follows:

3,4

5:

These references are erroneous.

The "usual" Tist axioms.

A variable references the same cell after an assignment that
is not a simple assignment.

If o is updated by a simple assignment to a variable, then
references involving that variable may be affected by the
assignment. If the assignment is say o' = «(x,c,0)

and ¢ is a description, then gx(c') will be equivalent to a
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10:

11:

reference in o if qc(o') is a reference.
Df(c],cz) is true if o is derived from g, by a sequence of
assignments, i.e.

07 = «(p1565<(PpsCpsee (P Cy505))) . L)
If gx(a') is a reference, then 6(qx(0'))(o1) is erroneous if
o' is derived from 0qs but in some sense ax(c') references a
cell created "after" o,. (That is, the cell is undefined in 01})
If oy is derived from o', then a simple assianment cannot
affect the reference &(gx(c'))(«(y,c,0)) unless o' = «(y,c,0).
Assignment to the head of a cell cannot affect the tail of
any cell, and vice-versa.
The head or tail of a cell referenced by p](o') is changed if
the head or tail of that cell is assigned a reference. No
other cell is changed.
~ is a predicate that tests for equality of two references.
This axiom implicitly uses the result that each reference has

a canonical form gx(«(x,c,c)) where ~isref(qc(o)). This

result is shown in the next section.
jsref tests whether an element ¢ ¢ Cell is a reference.
Note that by omission we have disallowed assignments of the
forms

a) +(cons(c1,c2),c,c) and

b) <«(8 p,cons(c],cz),o).
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13:
14:
15:
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Case (a) is omitted because cons(c],cz) does not identify a
cell. Case (b) is omitted because it severely complicates
the dereferencing mechanism.

We have not treated errors here, but following Goguen [ 16 ]
we might write the following error axioms:

hd(a) = Error, if a e Atom

tl(a) = Error, if a e Atom
+(cons(c],c2),c,c) = Errorg

«(6 p,cons(c1,c2),o) = Errors

where Error, and Errorg are distinguished elements of type |,

Cell and Struct respectively.

Note that although the type axioms are not in equational form, they

can easily be recast into equational form by using the operator if

then else on the right hand sides of the axioms, where this is

necessary. The symbol '=' is used to denote the congruence relation
defined by these axioms.

We illustrate the use of the type axioms with some simple

examples. We write

P1 %5 9
Pp < €25 9y

- -
Pn  Chs %

to denote the fact that o, = +(p],c1,¢) and o; = *(p1+1’ci+1’01-1)

for

1<1i<n.
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Example 1

1. Consider the assignments

x < cons{a,cons(b,c)); 9
z < tL x; 1

y « cons(a,z); o,

Pictorially, Ty would be represented by

X z
a] > b]c
N
y
a .—I—

Consider t£ y(oz). By axiom 6
te y(o,) = z(oy)
tL x(co) by axiom 6 again.

1

Similarly, t& x(oz) tL x(o]) by axiom 6

tL x(oo) by axiom 6.
2. x < cons(a,cons(b,c)); 9
tL X « X3 o1

Here o is represented by

‘e
b0 10t x(op) = t (t2(t(x(oy)) () o)) (o)

by notational convention.
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Now x(c]) = x(oo) by axiom 5
and tﬂ(X(GO))(01) z x(oo) by axiom 9, since
x(oo) ~ x(oo).
Hence (by symmetry)
tf tf tL x(01) = x(9g).
The above example illustrated the treatment of circularity.
Circularity may also be introduced indirectly.
x < cons(a,cons(b,c)); 9
y < cons(a,x); oy
tEL y « X3 O
g, may be represented by

, TV

a — a {

Consider tf£ t£ t£ x(oz).
x(oz)s x(01)5 x(co) by axiom 5 and 6.
tL x(oz)s tL (x(oz))(oz)z tL (x(co))(oz) by notation and

the above argument.

te (x(o4)) (o) = x(oy) by axiom 9 since
te y(oq) = x(ap) by axiom 6
and hence x(co) =« t y(o1).

Again by symmetry, therefore,
te te te x(cz)z x(oo).

The same variable may be used more than once.
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x <« cons(a,cons(b,c)); 9
x <« cons(a,cons(b,x)); oy
Diagramatically, o is

X

0 e L e B = R LN K

but

Then t£ x(cl) cannot be expressed in terms of O
te te x(c]) = x(co) by axiom 6.
These examples illustrate that references of the form
px(3)
can be reduced by applying the axioms to references of the form
qay(c')
such that o' is of the form
(y,¢,0")
and gc is not a reference.
Intuitively, every cell has a canonical reference, namely
the shortest "path" to the cell from the variable used when the cell
was created. It is possible to define a dereferencing operator

(discussed in section 2) as follows:

Definition 2 Dereferencing

¥: Cell x Struct + Cell
16: +(cons(c],c2),o) = cons(+(c],o), +(c2,0))
17: ¥(a,0) = a for all a ¢ Atom

18:  +(px(«(x,c,0)),0')=
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if atom (pc(c)) then
+(pc(o),at)
else

cons (+(hd px(c'),0'), +(tL px(c'),0')). O

Example 2
1. x < cons(a,cons(b,c)); %
y < cons(a,cons(d,e)); ay
t x«y; gy
hd x < y3 o3
+(X(03)903) = ~1¢()((0-0)90'3)
= cons(¥(hd x(04),05), +(t& x(03),93)) —(*)
Now
+(hd x(c3),c3k; +(y(o1),03) by reducing hd x(c3)

= cons( hd y(o5), t& y(03))

= cons(a,cons(d,e))

and similarly we can show that

+(t£x(c3),03)z cons(a,cons(d,e))

Hence by (*) = cons (cons(a,cons(d,e)),cons(a,cons(d,e))).

x <« cons(a,b); %

tl X « X3 01

‘lf(X(U])sG]) = ‘lr(x(O'o)sO"I)

cons (v(hd x(a1)s071), +(t& x(0q),97))
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1

cons (¥ (hd x(co),o1), +(x(00),61))

I

cons(a,+(x(gy)07))

cons(a,cons(a,¢(x(oo),c])) etc. 0

5 A Canonical Term Algebra for Linked Lists

We construct in this section a model C for linked list,

which is a canonical term algebra. This model has the property that

and is also a subalgebra of TZ‘ (That is, the elements of TZ are
terms). If an existing model g say is claimed to be equivalent to

TZ/q, this claim can be verified by showing that

g '-zTZ/q.

In practise, this is most easily accomplished by showing that

The canonical model also gives some insight into the "abstract" model
defined by the axioms. For example references in C turn out to be

expressions of the form
gx(+(x,¢,0))

where qC(g) is not a reference. Intuitively, this reference is the

path to some cell via x, where the cell was "created" by the assign-
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ment

«(x,c,0).

Because C is canonical, every reference can be represented by such a

canonical reference, in the sense that it can be shown to be

equivalent to the canonical reference.
Recall from Chapter 2 that a IZ-algebra C is a canonical

z-term algebra if
C.cT for each s € S
and o(t1...tn) e C =t € C and Oc(tl"“’tn) = c(t]...tn).

Furthermore, if C is a canonical Z-term algebra, and q is

the congruence on TZ generated by a set of equations €, then

C =~ Tz/q
iff 1) ¢ satisfies ¢
and 2) for each gex and t; e C.

S]Sz-ocsngs .‘

o(ty.eoty) = 0p(tyseresty)

Recall also that the type in question has operators

¢: + Struct
a: - Cell for each a ¢ Atom
x: Struct -+ Cell for each x ¢ V

hd, t&: Cell » (Struct - Cell)



cons: Cell x Cell + Cell
+<: V x Cell x Struct - Struct
<+, ,: Cell x Cell x Struct = Struct

<, .+ Cell x Cell x Struct - Struct

We construct a subalgebra of Ts by considering only terms
which are in some sense reduced. Descriptions are reduced by
"eliminating® hd and t€ where this is possible. Reduced refer-
ences are references expressed in terms of the structure in which the
referenced cell was created. Reduced structures are structures ex-

pressed in terms of reduced cells.

Definition 3

1. A term t of sort cell is said to be a reduced cell if
i) t 1is an atom;
or ii) It is of the form cons(t1,t2) and t, and t, are
reduced;
or iii) It is of the form
px(<(x,t50))
where t is reduced, p ¢ {hd,t&}*, ¢ is a reduced
structure (defined below) and pt(c) is not a reference.
or iv) It is of the form p](pzx(o))(g) where
.+
O = <0(s07ae-+30,”s [p]l =n and 0,0, are unrelated.
That is, NDf(q,go) and NDf(gO,G) and there is no g'

such that Df(co,o'), Df(o,0").
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2. A term o of sort Struct is said to be a reduced structure if
i) o=4¢;

«{x,c,0') where ¢ 1is a reduced cell and ¢' is a

or ii) o

reduced structure

or iii) © +6(c1,c2,0') where C1sC, are reduced cells and o' is
a reduced structure,
No other terms are reduced. If the sort of the term can be determined

by context, then we will simply say that the term is reduced. O

The carrier of the canonical term algebra to be defined will consist
of the set of variables V and the sets of reduced terms of sort Struct

and Cell, augmented with the distinguished term Error,

Definition 4 Let I be as given above. We define a I-algebra C as

follows
1. The carrier is <V, CCe]]’ CStruct>

where Cooqy = {c|ce TZ,Ce11 and ¢ is reduced} v {Error}.

Cstpact = 1° | 0 ¢ Tz, Struct and ¢ is reduced}.
2. The operators are defined as follows:
i) 4 =
ii) ac = a; Errorc = Error
iii) Error if g = ¢
xc(c) ={x(c) if o = «(x,c,5) and ¢ is a description.

xCGE) if x # y where o = «(y,c,G), or
if o = «(8¢cq,¢,,0).
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iv)
dc(cons(c],cz))(o)

v)  Sp(a)(o)

vi)

8o(px(ay))(o,)

c] if & = hd
Cy if 6 = tL.
Error

.
Error if 0, = ¢ or if op is derived
from o
50(Px(91))(5,) if 07 = 0, = «(y,c,5,)
and x # y or if Oy # O
0y = +(y,c,52) and s, is derived

from Oqe

écpcc(o) if o =0, = «(x,c,0), and

= isref(épt(cg)).

SCpx(c) if 0y =0, = «(x,c,0), and
~isref(Spc(a)).

50(px(07))(0) 1 0, = <(8'p,,03,9),
and (8' # 8 or px(oy) # p,(0)).

py(0) if o, = «(8p,,p4,0) and

")O-IX(O'-]) = }92(0') .

) g c,) if 0,,0, are unrelated.
| 8(px(09))(0,) 1292 r

vit) 840y (pyx(07))(8))(05)= 6(pq(ppx(a*))(B)) (o) if

viii) consc(c],cz)
ix)
=o(cysc))

X) "_C(Xscso')

-> N
o = <00,c],...,on> is not empty.

= cons(c1,cz)

true if c1 = Gy
false otherwise

= «(X,C,0)
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Xi) “C(GP] spz ,U) = *'(5101 spz '0) . 0

Note that if p e {hd,te}*, say p = 81650060 then pc(c)(o)
denotes (62 (...(6n (c)(a))(e))...)(o).
c ~C C

The intention of these operators is, in-each case, that
given reduced terms, they return reduced terms. It is easily seen
that this model € does satisfy the type axioms because of the close
correspondence between the axioms and the definitions of the operators.

The only equation which is not easily seen to satisfy the axioms is

50(px(0))(0) = 6gpoc(d)

where o = «(g,c,0) and isref(spc(o)).

However note that the axioms represent a schema of axioms, and in
particular axiom 6 represents a schema of axioms, one for each

q « {hd,te}*. From axiom 6 we get that if isref(Spc) then
gx(+(x,¢,0)) = gc(o) where q = 8p.
Hence we must show that for every x,c,o

qexol«(x,¢50)) = qplc) (o).

But this is exactly the definition of §, in this case, and hence the

C
result follows.

We now show that C is canonical.

Lemma 1 C 1is a canonical term Z-algebra.
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Proof We must show that for each o ¢ I, if o(t1,...,tn) e C then

1

i)
i1)

ii1)

iv)

vi)

vii)

t. e C for 1 <1i<n and cc(t],...,t ) = c(t1,...,tn).

n

¢ = ¢ from definition (i) of C
for each a < Atom, a; = a. by definition (ii) of C
If x(c) € C then o = «(x,c,0) and ¢ is a description. Hence
xc(o) = x(o) by definition of x,, as required.
Suppose that Spx(c) € C. Then o = «(x,c,5) and ~isref(8pe(a)).
Hence ~isref(pc(c)), so px(a) € C. Furthermore
8o(px(c)) (o) = dpx(a) by definition of &,
If cons(c],cz) e C by definition CysCy € C. Also,
by definition of cons .,

nensc(c],cz) = cons(c],cz).
If «(x,c,0) ¢ C, then o0 € C, ¢ € C by definition. Also,
by definition of “0s

+c(x,c,o) = «(x,C,0).

Similarly, if «(Sc],cz,c) e C then C15Cps0 € C and

+C(6c],cz,o) = +(6c],c2,o).

If d(pl(pzx(o]))(g))(o) e C, then 9y and g are unrelated, where

g = <0gs0yse-sTy>s N 2 0, or Py = A and 01,0 are unrelated.

n
Then p,x{o;) e C, and py(p,x(c;))(3) ¢ C. Finally, by definition
2X197 1\P2X197

of ac

5501 (pyx(01))(3))(0) = 6(py (ppx(57)) (BN (0. 0
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We now show that C characterizes the type defined by the
Tist axioms by showing that each term in Tz of the form c(t],...,tn)

such that ti,...,t e C is equivalent to oc(t1,..,,tn).

Lemma 2 For each o ¢ I, ti e C

c(t],...,tn) = cc(t1,...,t ).

n

Proof The operators to consider are ¢,a,x,hd,t£,cons,+,+hd and “tp

—
&
1}
©
1]
©-

2.1 If X =y, c 1is a reference, then

xe(o') = ¢ = x(o') by axiom 6.
2.2 If x =Y, ¢ 1is a description, then

xc(o' = x(c") and there is nothing to prove.
2.3 If X#ty

xc(0') = x(o) = x(a') by axiom 6.

Let o' = +(6c1,c2,0). Then
xc(o') = x(o) = x(¢") by axiom 5.

Finally, xc(¢)
3. Let 6§ ¢ {hd,tﬁ}.
3.1 ac(cons(c],cz))(o) = c; where i = 1 ff 8§ = hd,i=2 if §=tL.

Error, = x(¢) by axiom 1.

6(cons(c],c2)) by axiom 3 or 4.



3.2 Gc(a)(c) Errorc

s(a) (o) by axiom 2.

3.3 Let px(c') ¢ C, then we show by induction on ¢ that
§o(px(c')) (o) = 8(px(c')) (o)
i) Let o = ¢. Then

§(px(c'))(¢) by axiom 1.

ii) Suppose the result is true for o. That is,
§olpx(a')) (o) = 8(px(c')) (o)

for any px(c') e C.

Gc(px(c'))(o) = Error

a) Leto" =o0' =<«(y,c, ), ¥y # x.
Then

8o(px(a'))(c")

8c(px(a')) (o)
8(px(c'))}(c) by induction

8(px(c'))(c") by axiom 6.
b) Suppose o',0" € C, o' # o",0" = «(y,c,0).
Then if o' is a subexpression of o,

so(px(c")) (o)

Gc(px(o'))(o) by definition.

8(px(c'))(c) by induction.

8{px(c'))(c") by axiom 7.
If " is a subexpression of ¢', then
Gc(px(o'))(c") = Error

= 8{px(c))(c") by axiom 7, since
px(c) 1s reduced.

If o',0" are unrelated, then
Gc(px(o'))(cf) = 6(px(c'))(c") by definition of 4.
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c) Let o' = o" = «(x,c,0). Then

8o(px(a*)) (")

acpcc(c)

GCﬁCE(o) for some p such that

p=pp since isref(spc(o)).

spc(c) by induction applied k times
where |p] = k - 1.
Spc(c) by applying axioms 3 and 4

k times.
d) Let o" = +(6c],c2,c).
If c1(o) = px(c'), then
8o(px(a'))(c")

c,(o)

§(px(c*))(c") by axiom 9, since

c1(0) = px(c') implies =(c1(o), x{(c')).
If cqlo) # px(c'), then since C1(G),px(6') e C,

=(c](c), px(c'))= false. Thus
§(px(c'))(c")

§(px(c'))(c) by axiom 9
8o(px(a'))(a").

If8¢#56
§o(px(a'))(c")

8o(px(c')) (o)
S(px{c'))(c") by axiom 8.

4, If £11Cp € C, then
consc(c],cz) = cons(c],cz).

5. = o(eqs6y) = =(£75C5) follows directly from axiom 10.
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6. +c(x’C,0) +(X9c’o_)

*'C(sc'l sczso) = *-(5C-I,C2,O')
7. If p1(p2x(o))(3) e C, then
8Py (Px())(8)) (57) = 6(py(p,x(0)1(5)}(0y)

and the result is immediate. 0
Hence C does characterize the axioms, and in fact we can show
Theorem 3 C = Tz/q.

Proof Directly from lemmas 1 and 2 and Theorem 2.5. a

6 An Operational Model for Linked Lists

The Canonical Model C described in the previous section
gives some aid in understanding the abstract model defined by the type
axioms. C can also be used to establish the "correctness" of the

axioms by finding an appropriate definitional model D and establishing
D~ C.

However, in programming with the type Tinked 1ist, we normally use a
less general type. In this less general type a structure does not
contain its "history" and hence two identical structures may arise
by a different sequence of assignments. Assignments are restricted
to be of the form <«(x,c,0) where o is the only structure

appearing in ¢, or of the form +6(c],c2,o)
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where o is the only structure appearing in ¢4 and Cye We define a
model with these restrictions by presenting an algebra M whose
semantics are the more usual semantics of linked lists. We then show

that M satisfies the type axioms. (But note that M is not initial).

Definition 5 Let N be the set of natural numbers,

D =N+ Atom

where + is a disjoint union. Let V be a set of objects called pro-

gram variables. Then a simple structure is a pair of partial func-

tions <€,v>

£: N->D» D u{Error}
v: V>N

such that there is some m > 0 for which

£(i) e D xD if ism
£(i)

Error if 1>m.

Let Card(2)

m by definition. We also require that ¥f

£(1) = <J.k>

then j,k <m, and if v(x) is defined, then v(x) < m. The elements

of N are called addresses. v is said to associate an address with

each variable.
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Example 4 Consider the structure with diagram

A4

c | /

1 2

b ___+>” d

3 4

This diagram represents the simple structure defined by

2(1) = <a,2>
L(2) = <c,2>
£(3) = <b,4>
£(4) = <2,d>
v(x) =1
viy) =3

The operators I can be defined on simple structures.

Definition 6 Let st DxD~-D i=1,2 be defined by

ﬂ1(<d],d2>)

ﬂ2(<d]’d2>)

dy

d2.

let s = <£,v> be a simple structure. Then we define

(1) ¢m = <Error,v¢> where V¢ is the undefined function
and Error is a constant function
returning error.

(i1) a_ = a for each a ¢ M.
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(ii1) xy(s) = v(x)
(iv) hdy(1)(s) = m (€(i)); hdy(a)(s) = Error
(v) thy(1)(s) = my(&(i)); thy(a)(s) = Error
(vi) consM(d],dz) = <d],d2>
(vii) true if i =]
zM(i’j) i false otherwise. 0

Before defining the effect on structures, we need some auxiliary

definitions.

Definition 7 Let D = Atom + N. Then a description in M is

1. i) An element d e D
ii) A pair <CqsCp> such that ¢ and c, are descriptions in

M.
The set of descriptions will be denoted De. (Note that D < De).

2. We define a function
no: De » N
as follows:

no(d) =0 for deD

no(<c],c2>) 1+ no(c]) + no(cz)

3. Let <CysCo> be a description, m,i € N, i > 0. Then define
allocate: N xDe xN-+D x D

as follows
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a]1ocate(m,<d1,d2>,0) = <d],d2> dy,d, € D.
a11ocate(m,<c],d2>,0) = <mt1,d,> c1 ¢ D,d, ¢ D.
a]]ocate(m,<d],c2>,0) = <d;,m+1> € D,c, ¢ D.

allocate(m,<cy,c,> >,0) = <m+1,m+no(c1)+1> c],c2 ¢ D.

a]]ocate(m,<c1,c2>,i) if i< no(c]) then a]]ocate(m+1,c],i-1)

else allocate(mno(cy)+1,c,,1-(no(c,)+1)) .0

The purpose of "allocate" is to assign new "storage" to each internal

node in a tree. For example
= (cons(a,cons(cons(],c),d)))M = <a,<<1,c>,d>>

which can be represented diagramatically as

\

c

—t

Allocate assumes that the internal nodes of the tree are numbered in
preorder (root, left son, right son) starting at m for the root.
For example

allocate(m,c,0) = <a,m+1>

allocate(m+1,<<1,c>,d>,0)

allocate(m,c,1)
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<mt+2,d>

and allocate(m,c,2) = allocate(m+1,<<1,c>,d>,1)

allocate(m+2,<1,c>,0)

<1,c>.

We establish the correctness of allocate by showing that the value of
every symbolic traversal of an expression ¢ is the same as the value
obtained by succesive "allocations" and projections.

For example
hd hd t&(cons(&,cons(cons(1,c),d)))(c) = 1

and we require that if

ﬂz(allocate(m,<a,<<1,c>,d>>,0))
ay = n1(a1locate(m,<a,<<1,c>,d>>,a0-m))

and ay = n1(a110cate(m,<a,<<1,c>,d>>,a1-m))
then a, = 1.

In general, m, corresponds to t£ (since tEM(i)(s) = w2(£(1))) and m,
corresponds to hd (since hdM(i)(s) = ﬂ1(£(i))).

Lemma 4 Let c be a description ¢ = <CqsCy> and suppose that

ms (allocate(m,c,0))
0

ﬂi.(allocate(m,c,aj_]-m)) 1<j<n.
J
and 3sd7s..05d, are defined, where 1j € {1,2}. Then

3

3



1, then aj 1M < no(c]) 1<3j<n, and

2, then a, ;-m > no(c,).

-

—h

. —
o

1]

Proof By induction on n. If n = 0 there is nothing to prove. If

n =1, then

m (allocate(m,c,0))
0
a; = ni](a11ocate(m,c,a0-m))
Now if ¢ = <d1,d2> d],d2 e D, then ay is not defined. If

3

c=<c,d> deD, c¢D (or symmetrically, <d,c>).then

ag = T, (<m+1,d>) (or s (<d,m+1>)). If ig =2 (= 1) then a; is not
0 0
1 (1 =2). Then

defined (in both cases). Hence suppose 10

ag = m+1  (in both cases).

Thus a;_q = a; =mtl, and ag - m=1 < no(c]) since c, ¢ D

0).

(1 > no(d), since d € D and no(d)
Suppose that the result is true for <Apayseersdp s and suppose that

a =m, (allocate(m,c,a_-m)).
nt+1 n+1 n

If 10 = 1, then by induction a,-m < no(c1), o)

CI nin+](a110cate(m+1,c],an-(m+1)).

But note that

max{ﬂi(a11ocate(m',c,i)} =m'+no(c)-1

for any i. Hence a < m+1+no(c1)-1

n+1



and so ap,q-M < no(c1) as required.
If to = 2, then by induction
a,-m > no(c])

SO A =My (a110cate(m+no(c])+1,cz,an-(m+no(c])+1)).

n+1
But clearly min{ni(a11ocate(m,c,j))} = m+l, so

a4 2 m+no(c1)+1
SO a,q-Mm2 no(c1)+1

and hence e =M> no(c]) as required.

Lemma 5 Let p = Gnan_1...60 where 51 e {hd,t£}, 0 < i <n, and
1 if Gj = hd

let i; = 0 < 45 <ns
t J .

d 2 if § =t

Let ¢ be a description in M with a subterm d in ¢ such that

py(c)(s) = d

where d ¢ D, and let <a0,a],...,an> be a sequence, a; € D for

0 <i<n where

3y = Ty (allocate(m,c,0))
o
ay = ﬂi](allocate(m,c,ao-m))
n =" (a]]ocate(m,c,an_1-m)).

n

81.
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Proof

(i)

(i)

Then

We establish this result by induction on the structure of c.
If ¢-= <d],d2>, d],d2 e D, then the only possible strings p

for which pM(c) is a subterm of «c, pM(c) eD are hd or

tL . Then
GMc(s) = d; where i =1 if S8 = hd, i = 2 otherwise.
ag = ﬂi(a11ocate(m,<d],d2>,0))

= “i(<d]’d2>) by definition of allocate

= di'
Suppose the result is true for descriptions ¢y and Cye
a) let ¢ =<c,d> or c=<dyc;>, deD, and let
p = Gn...G]SO, where 60 =hd if ¢ = <c],d>, 60 = tL
otherwise. (If this is not the case, then p = §,
8 ¢ {hd,tf} and the result follows as in (i)). We

assume that c¢ = <c],d>, 60 = hd. The reverse case

follows by symmetry.

a, ﬂ](a110cate(m,<c],d>,0)

= ﬂ](<m+],d>) = mt+]
ay = ﬂi](a11ocate(m,<c1,d>,a0-m))

= m (a]]ocate(m+1,c1,0)) by definition of

1
allocate and since ag = m+1

a; = ﬂij(allocate(m,<c],d>,aj_]-m))
= ni.(a11ocate(m+1,c1,aﬂ_1-(m+1)) for 1 < j<n

J
by definition of allocate.



Now suppose that

(Gn...SO)M(fc],d>))(s) =d'.

Then (Gn...G])M(c])(s) d' since 3 hd.

Letting m' = m+1, we must then have
= 1
a, d

by induction on Cq-

i
(o]
B

.6]60.

b) Let ¢ <CysCy> and let p

If 6 hd, then

0
(6n...6]60)M<C1aC2>(5) = (6n"'6])M(C1)(S)

= (' say.
Also a = n](a11ocate(m,c,0))= m+1
and ay = nij(allocate(m,c,aj_]—m)) 1<j<n.
Now by lemma 4, since iy =1, a;_q-m = no(cq), 1 <J <n, so
3 = “i_(a]]ocate(m+],c],aj_]-(m+1))

J
and in particular
a; = M, (allocate (m+1,c1,m+1-(m+1))
1

= 7, (allocate(m+1,c,0)).
1

Hence, letting m' = mtl,

a, = d' by induction.

If 50 = t&, then

(8- -818g)y<cyscp>(s)

(8- 872y, ) (5)
d' say.
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Also 2y = ﬂz(allocate(m,c,o)) = m+no(c])+1

V]
—
H

m. (allocate(m,c,no(cq)+1))
1

. (a]]ocate(m+no(c])+1,c2,no(c1)+1-(n0(c1)+1))

1

7, (allocate(m+no(c,)+1,c,,0).
1 1 2

and in general

3 ﬂij(a11ocate(m,c,aj_]-m))

ﬂij(a11ocate(m+no(c])+],cz,aj_1-m—(no(c])+1))

since lemma 4 applies, 2 < 1j <n.

Hence, letting m' = m+no(c])+1, we can apply induction, so

a = d' as required

We now define the assignment operators as follows:

Definition 8

1. Let s = <f,v> be a structure. Then
s' = +M(x,c,s) = <g',v'>

is defined as follows: Let m = Card(f)

a) If c¢ is a description, then

L(i) if 1 < m.
2'(i) = ;
allocate(m+1,c,i-m) if i > m.
m+1 ifx=y
v (y) 3
v(y) otherwise.

Note that Card(£') = m+no(c).



b) If ¢ ¢ N, then
L' (i) = L(i).
o if x=y

vi(y) =
v(y) otherwise.

Let s' = +M(6c],c2,s) = <',v'>.
We define a function
Update: D x D x {hd,t£} x D~ D x D
as follows:
Update(<d],d2>,hd,d3) = <dq,d,>
Update(<d1,d2>,t£,d3) = <d],d3>.

Then v' =y
and
[update(Z(i),G,cz) ifi=c

L'(i) =
£2(4) otherwise.

As an algebra, M has carrier <V,Ce11M,StructM> where V is a set of

set of all structures as defined in definition 5.
this simple model M satisfies the type axioms for linked lists.
Before establishing the main theorem of this section we need the

following auxiliary results.

Lemma 6 Suppose s' = +M(x,c,s) where s 1is a description in M,

m' = Card(£'), m = €ard(m). Then"

We can show that

85.

variables called program variables, Ce]]M =D x D and StructM is the
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(1)
(1)

(ii1)

Proof
(i)
(i)
(i)

IA
3

Sy(i)(s') = Sy(i)(s) if i
For any p e {hd,te}*
pyid(s') = py(i)(s)  if i sm

If m<i<m', then there is no ¢ e {hd,te}* y ¢ V,
y ¥ x such that quyy(s') = i, and there is a unique
p € {hd,t&}* such that prM(s') =1,

Follows directly from the definition of GM.
Follows by succesive applications of (i).

Consider nyM(s'), y = X.
Yyyys’)

ay(v'(¥))(s")
= qy(v(y))(s') by definition, since x t y

qu(v(y))(s) by (i1) since v(y) <m.

Finally, it is a property of binary trees that there is a unique

traversal to a given node. So suppose

noooao

is such a traversal. Then ¢ = Gn...éa.

Theorem 7 M satisfies the Tinked 1list axioms of definition 2.

Proof

1) We must show that
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Sylay(s))(¢) = Error
for § ¢ {hd,tL}.
But by definition GM(i)(¢) = Error for any i, & ¢ {hd,te}.
2) Follows since GM(a)(s) = Error
3,4) consM(c],cz) = <CqsCy>
6M(<c],c2>)(s) = ¢y where i =1 if 8§ =hd, i =2 if s =tL
5) Follows since if
s' = +y(8cqyscy,8)
then xM(s‘) = v'(x) = v(x) = xM(s).
6) We must show that for any ¢ ¢ {hd,t&}* if s' = M(x,c,s) and
gy = S, then guc(s) if isref(qc(o)) and y = x
& ay¥y(s') = M
quM(s') if x $y.
(i) If x § y, then
| quM(s') = qM(v'(x))(s') (notation)

qM(v(x))(s') since x $ y

qy(v(x))(s) by lemma 6
= qyxy(s).
(ii) If x = y and isref(gc) then
au(s') = ayv'(x))(s")

QM(m"'])(S') .

Now since isref(qc) there is a sequence ¢ = §,+++8y such that

“—
q = qq
(dn_]...GO)M(c)(s) is a non-atomic description

and (Gn...GO)M(e)(s) =d ford ¢ N, d ¢ range(£).
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Hence, by lemma 5

ay(m1)(s") = (a@)y(m1)(s")
= EM(d)(S')
= EM(d)(S) since d < m, as required.

7) We must show that

GM(quM(s'))(s") SM(quM(s'))(s) if s" is derived from
s' and s" = +M(y.C,S)
= Error if s' is derived from s",

s' = +M(x,c,s), and ~isref(qc(s)).

Suppose that s" is derived from s' by some sequence of
assignments. Also, suppose that quM(s') = j. Now since s" is

derived from s', Ksu(j) is defined. Furthermore, since

1

s" = +y(y,i,s),

Esu(j) = Ks(j) follows by definition of «,.
If s' is derived from s", then s' = +M(x,c,s) and

~isref(qc(s)) => quM(s') > Card(ﬂs). Hence Ksulj) = Error.

8) Follows trivially.
9) We must show that
6M(P]M(Sl ))(*M(6P2M9p3M 95))
= if pyy(s') =y Pou(s) then pqy(s)

else SM(p]M(s'))(S)-
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Now

p]M(S') = pZM(S) => p]M(SI) = pZM(S) = i (say).
Then GM(i)(s") nj(Update(K(i),G,p3M(s))
pay(s) as required.

Finally, we need to show that
Pu(s) # poy(s) => pqy(s) £ pyy(s). But this follows by
definition of ~. Hence the result follows.

We must show that

M(quM(Si)’ ‘-ZM)-EM(Sé))
if s = sé & isref(qMc]) & ~isref(qMc2) then
qx = qx
else =y(quxy(sq), qyEy(ss)).
Suppose that
si = sé =3 & ~1sref(qMc]) & ~isref(qM¢2).
Then
~‘M(quM(s)’ fiMiM(Sé)) = qMXM(S) = aM)-(M(S)
by definition. If qx = gx, the result follows. We need to show
that if quM(s) = 5M§M(s) = i, then gx = gx. This follows since

i > m, and hence there is a unique path in s to i, by lemma 6. [

Finally, we show that with respect to references, D and Tz/q are

isomorphic.
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Theorem 8

If h(p]x](c])) = h(pzxz(oz)) and h(o]) = h(oz), then P1Xy == PoXs.

Proof: Let h(p]x](o])) = (p]x])Ms; then h(pzxz(oz)) = (p2x2)M(s).
So suppose that

(Pyxdy(s) = (pox,)y(s) = 1.

Now p]x1(0), p2x2(o) € CCe]]’ hence o is of the form

«(x,c,0), and X] = X, = x. Thus
(pyx7)y(s) = (py)yve(x)(s)
and  (pyxy)y(s) = (py)yvs(x)(s)

Furthermore, since p]x(c) is canonical and p2x(o) is canonical,

T >mg where s =<« (x,cy,5). Hence by Temma 6 (iii), p; = P, =p. O

7 Conclusions

The general type linked list has been defined as an abstract
data type. In order to do this, it was necessary to treat the concept
of referencing very carefully. Although the type axioms are fairly
easy to read, they are complicated by the necessity to treat error
conditions. However these axioms are straightforward to use in carry-
ing out the kinds of reductions that occur in proving properties of
programs, using the proof rule . discussed in the first section of this
chapter. In chapter 5 we prove the correctness of a simple linked Tlist
program, using the techniques presented in this chapter. We illustrate
how the language of the type can be used to express properties of

linked 1ist structures. The type presented here is more general than
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the type usually implemented as linked list, and one might expect that
this generality complicates the type axioms and the use of the axioms.
We feel that the reverse is the case. That is, both the axioms and the
use of them is simplified by using this type rather than a more restric-
ted type. It is interesting to ask whether the specification can be
found for the more restricted type. That is, given I as above, is there

a set of equations € which generate a congruence q such that

M gTZ/q ?
Although it is possible that such a specification may exist, we
believe the specification in this chapter to be much more useful, at

least from the point of view of verification. In the next chapter,

the problem of sharing in a more general setting is studied.



Chapter 4
Sharing and Circularity With Continuous

Data Types

92.



93.

1. Data Structures with Sharing

Central to this thesis is the idea that data types are
algebras of some form. In this chapter we consider data types to be
continuous algebras and extend the results needed to characterize data
types to continuous algebras. A data structure is viewed as being some
element of a data type. Suppose for example that A is an algebra
(data type) with some element a which will be named x. Suppose also
that A 1is a continuous z-algebra. Then, since CTz is initial in
the class of continuous z-algebras, we can characterize the value of

aeA withany t e CT, such that h(t) = a. We write

to denote the fact that the value of x in A is h(t). Suppose now
that Xn = {xl,...,xn} is a set of n distinct elements called
variables. In some computation, at some particular time, each variable
will have associated with it a particular value. (This association is
often called the state of the computation, although the state will in
general include additional information such as the association of
variables of other types and some kind of program counter,)

We indicate the correct state of the variables of some

particular type by a set of equations of the form
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X1 =Y
x2 = t2
xn = tn

where ti e CT_, 1 <1 <n. This association can also be denoted by a

function

e:Xn > CTZ
such that

e (Xi) =t .

We call such a function e a structure. A structure has sharing if
the value associated with same variable X; is itself dependent on

the value of some other variable, say xj. Then if some component of
Xx. 1is changed, we would 1ike this change to be reflected in the value

J

of xi . To achieve this, consider a structure to be a function

e:Xn > CTZ(Xn)

so that e(xi) = ti’ and ti may contain variables. For example,

consider the simple circular Tist structure

N

a ]
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This can be represented by the simple equation
X = cons(a,x).

However, there is no unique homomorphism
h: CTZ(Xn) + A

since the value of h is affected by assignment to Xn . It is known

that any set of equations

e: Xn > CTZ(Xn)

has a "solution" in CT, . This solution is an n-tuple, t = <El,...,tn>

with the property (among others) that if ei(f) denotes the element

of CTz obtained from e(xi) by replacing each occurrence of xj in

e(xi) by tj, then ei(t) = t; . Now since t; ¢ CTZ, there is a
corresponding tuple a = @paeeedp>y 3 e A such that h(fi) = a
where h 1is the unique homomorphism

.i’

h: CTZ + A .

We can thus characterize the "value" of any t ¢ CTE(Xn) in A as the

image of the homomorphism extending the assignment
Xy as .

Hence, t, = a(t) where a 1is the unique homomorphism
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a: CTZ(Xn) - A

extending the assignment. Then the value of a structure e in A is
<5(El), 5(%2), cens E(En)> which can be shown to be equal to

<5(x1), 5(x2), cees 5(xn)> . Thus a structure e completely
determines the value in A associated with each variable X; € Xn

(This is called the solution of e in A, often denoted leal-)

Suppose for example that the type in question is N, the
type integers, and that we want two variables Xq and Xo to share

their value. For example, let e be

X] = X,
Xy = 9 x 3.

Then the solution to this set of equations in N is
<27,27>

so that, for example, if
t= X; ¥ Xy - 20

then hA(t) = 27 +N 27 "N 20 = 34 .

Note that the solution of e in CTZ is

<9 x 3, 9 x 3> .
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(It is possible to have a more "elaborate" sharing between Xy and

Xo - For example, the structure

Xq Xy + 3

Xo 9 x 3

indicates that the value of X1 is 3 larger than Xo - If the value
of Xy is changed, then the value of Xq is also changed. This type

of "sharing" is not usually used for primitive data types, although it

is used for more complex types.)

The important point to note about the above example is that
the solution of e has "lost" the shared information. That is, it is
not possible to determine from the solution of e in N that x; s
necessarily related to Xo - This is the reason why we regard e as

the data structure, rather than an association

a: Xn > A

which is more usual. (For example, in the state vector approach of
Scott and Strachey [ 38, each variable has an associated value in the
type of values V.) If there is no sharing, then e and a can be
used interchangably: e contains no information that cannot be derived
from a.

Having settled on the notion of a data structure with sharing,

a number of questions must still be answered: for example, how is the



type (algebra) A to be characterized? In chapter 2, it was shown
that types could be characterized as quotients on Tz' However, in

order for the function e to have solutions in general, (even if
e: Xn - Tz(xn)’ that is the right hand sides are finite)

it is necessary to restrict attention to the class of continuous
algebras rather than considering the class of all z-algebras. For

example, consider the equation
x = cons(a,x)

which was viewed above as the structure of a circular list. This
equation has no solution in Tz’ and so the mechanism of computing the
value of x in some algebra A in terms of extended homomorphisms
cannot be applied to Tz . However, there is a solution in CTZ:

this solution can be viewed intuitively as evaluating to the "infinite"

Tist

a | —P| a | —P| a —y ..

It has been shown (for example, Reynolds [35]) that the data
type lists can be regarded as a continuous algebra. (In fact as a
complete partial order with continuous operators.) Is it possible to

characterize such continuous data types as quotients on CT the

Z L]
initial z-algebra in the class of all continuous =z-algebras? A
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final question that must be treated is the question of updates. How

can the semantics of updates be defined in terms of these continuous
data types? We have suggested that the solution (or value) of a

complex data structure does not contain sufficient information to define
updating correctly. The nature of the sharing must somehow be retained.

Is it possible for this to be done?

It has been suggested (Ashcroft [5 1), that the equations e
can be regarded as the data structure and that updating can be defined
in terms of transformations to the equations. This is the basic idea
that has been used for the treatment of shared types described in this

chapter.

In the next section, we generalize some of the results of
quotients and data types to continuous algebras. In particular we
show that if e is a set of :-equations generating a congruence gq,
and if there exists a function that selects "normal forms" of classes
in q, then CTz/q is initial in the class of all continuous z~-
algebras which satisfy e . We then present the axioms (E) for a type
List of Tist structures which may include infinite lists (obtained
from circularities). We show that there is a normal form function for
this type, and hence CTz/qE is initial. We then show that any
particular structure e imposes an algebraic structure on CTz/qE’
and that this algebraic structure may be characterized by a congruence

qe ON CTz/qE' We prove that the quotient of CTE/qE by 9e 1S
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initial in the class of all continuous z-algebras satisfying E and

e together, and in fact characterizé equivalence in 9% in terms of
equivalence in 9 - We then regard the initial algebra in the class

of all continuous :-algebras satisfying E and e together as a

data structure, and define a data type LIST whose objects are these
data structures (with sharing). The operators of LIST include a
generalized update operator R which updates data structures. (R can
be viewed as a generalization of CSET, REPLACA and REPLACD). Finally
we show that R 1is continuous with respect to the carrier of LIST, and

hence that LIST 1is continuous.

2. An Initial Algebra for Continuous Data Types

2.1 Introduction

It is very tempting to try to generalize the work in non-
continuous data types and establish the same results for continuous
algebras. Thus one might hope that if ¢ is a set of equations
generating a congruence q, then CTZ/q is initial in the appropriate
class of =Z-algebras satisfying e. Unfortunately this result is not

always true. The reason for this is that CTZ/q is not always complete.

For example, consider an algebra with a single sort S and operators

i: §-»> 8§ for each i e w

a,l: + S
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and suppose that q 1is the least w-continuous congruence defined by

the equations

j.,a=i+1 .1 for each i € w.
Now suppose that a partial order L[ on CTZ/q is defined as follows:

[t]] C [t2] <> 1€ [t]] or
.ae[t;] and u.j.ace [t,]1,

-—le

u.

Uew* and i<J .

L is clearly a partial order. Furthermore, it is consistent with the

ordering on CTZ since all chains in CTZ/q are of the form
[u.i.a] C [u.j.a]
where j =i and if j > i, then there always exists a finite chain

[u.i.a] = [u.i+1..]C [u.i+1.a] = [u.i+t2.1] C
ee. [u.j-1.1] = [u.j.a].

But note that the chain < [u.1‘.a]>1.€(u has a least upper bound in CTZ/q
if and only if < i>i€w has a least upper bound in w. Since no such

upper bound exists, CTz/q cannot be complete.

However, most data types are probably well behaved, and so we show a

weaker result which should be useful for a large class of data types.
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2.2 Normal Forms

For practical reasons, it is often useful to try to
characterize a class of values which are equivalent in some equivalence
relation by a single representative of the class. We call such a
representative a normal form of the class. This practical consideration
in fact leads to a sufficient condition for guaranteeing the initiality

of CTZ/q . !

Definition 1 Suppose there exists a function

nf: CTz > CTZ
such that for ¢, tl, t2 € CTZ, and a congruencek q,
1. [tl] = [t2] => nf(tl) = nf(tz);

2. [nf(t)1 = [t];

3. nf 4is a-continuous (in the usual ordering on CTZ).

[t] = o(t) where o 1is the natural homomorphism induced by the

congruence q. nf 1is called a normalizer function for CTZ/q.

We define, for [ty]s [ty] e CTZ/q

[t;] [ty <=> nf(tl) <cr nf(tz)

C
_q
where SeT is the partial order on CTZ .

(Where no ambiguity can arise, the subscript CT of SeT and the



103.

subscript q of gq will be dropped). a
Note that nf need not be unique, and so the order relation Eq also

depends on nf.

Berry and Courcelle [ 7] have independently described a
similar mapping ¢ called a c-projection. The intent of a c-projection
is also to find a normal form of the free algebra in question, but it is
assumed by them that an order relation is defined in the target algebra.

However, the normalizer here is used to define the order relation on
derine

CTz/q. In ADJ [1], a "Canonical Term Algebra" is defined. It is an
algebra whose carrier corresponds more or less to the sets of normal
forms defined by the range of nf. In fact it is shown in ADJ [1] that at
least for Tz’ every data type described by a set of equational axioms
has a canonical term algebra.

Note that in this and subsequent sections, we are assuming only
a single sort for CTX. This is simply for notational convenience:
the results all still hold for the many sorted case. Thus for example
we should say that nf 1is a family of functions <nfS>S€S, one for

each sort s e S.

Lemma 1 i) nf(nf(t)) = nf(t). That is nf is idempotent.
ii) nf(tl) = nf(tz) => [t]] = [t2].
That is, two normal forms are equal only if the corresponding terms are

equivalent.
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Proof i) From property 2 we get [nf(t)] = [t]
so nf(nf(t)) = nf(t) from property 1.

ii) Suppose nf(tl) = nf(tz). Then

[ty = [nf(t))] = [nf(t,)] = [t,] -

Lemma 2 Qq is a partial order on CTZ/q.

Proof Since < s a partial order on CTZ. 0

The subscript q in gq will be dropped when there is no possible

ambiguity.

Lemma 3  Let <t.>, be a set directed in CTy. Then  <[t,]> fis

e I
directed in CTZ/q and it has a least upper bound denoted Ui[ti]

such that ui[ti] = [Uiti]'

Proof Let t = Uiti’ which exists since CTZ is A-complete. By
monotonicity of nf and definition of C, <[ti]> is directed. Now
for all i eI, ti <t since t is the least upper bound of

<ti>i e I

Hence i nf(ti) < nf(t)

so Vi [t.1 C [t] by definition of [ .

So [t] is an upper bound of <[ti]>i c I Now suppose that for some
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t, forall i eI, [t;] C [t]. Then for all i e I, nf(ti) < nf(%).
But since nf 1is A-continuous and <ti>ieL is directed,

<nf(t1.)>1.€I is directed and

U, nf(ti) < nf(t)

"f(uiti) nf(t) by continuity of nf

IA

[Usts1 O[] by definition of [ .
Hence [Uiti] is the least upper bound of <[ti]>i c I That is

ui[ti] = [uiti]' 0

Lemma 4 If B 1is a a-continuous =z-algebra satisfying e, q is

the congruence generated by e, tl,t2 € CTz and (tl,tz) e q and

h .

B CTZ > B

is the unique homomorphism gauranteed to exist by the initiality of

CT;» then  hg(;) = hg(t,) -

Proof Let Ker(hB) = {<t),t,> € CTZ x CTZ|hB(t1) = hB(tZ)} be

the kernel of h Clearly this is an equivalence relation on CTZ

B”
and in fact it is a congruence:

e CT

]
€ CTZ’ tl’ e tn ,

FOY‘ g € Zn, tlgn.. ,tn
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such that (ti’tli) € Ker(hB), 1<1i<n, we have

hB(o(tl, cees tn)) = o(hB(tl), coes hB(tn)) since hB is

a homorphism

c(hB(tl), cens hB(t')) by definition
of the kernel

hB(o(t', cees tn)) and hence

(c(tl, cees tn), G(ti, cees tﬁ)) € Ker(hB).

Furthermore, Ker(hB) is continuous since if (ti,t%) € Ker(hB), iel,

then o
hB(Uiti) = uihB(ti) by continuity of hg

= UihB(ti) definition of Ker(hB)

= hB(Uiti) once again by continuity.

Thus (uiti’ u%t%) € Ker(hB). Finally, since B satisfies e,

e(B) E_Ker(hB), where ¢(B) is the relation on B generated by the

set of equations e. This follows because for each assignment
0: X > B

and each <L,R> ¢ e, 8(L) = o(R). Now 0 = hg by uniqueness of hy.

Hence hB(L) = hB(R).

But q 1is the least continuous z-congruence containing «(B).

Hence q S_Ker(hB), and so (tl’tz) € Ker(hB) and hence

hp(t;) = hg(t,) as required. 0
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2.3 Initiality

Much of the power of considering abstract data types as
many-sorted algebras centres around the property of isomorphism.
Different implementations of the same data type can be considered
members of a class of isomorphic algebras. In order to characterize
this class precisely, the concept of initial algebra is used. The
initial algebra in a class of algebras contains in some sense the least
amount of information needed to specify a member of the class. Thus we
would Tike to say that a particular abstract data type is the initial
algebra in a class of algebras satisfying the specifications.
Initiality ensure that the operators do no more than required by the
specification. ADJ [ 1] shows that Tz/q is initial in the class of
algebras satisfying the equations which generate the congruence q. It
is natural to ask whether or not CTz/q is initial, and we show that

if the normalizer nf exists, then indeed CT:/q is initial.

Definition 2 The class of all z-algebras that are w-continuous with

A-continuous :z-homomorphisms and that satisfy e will be denoted

AAlg u
I,e

Theorem 5 If a normalizer nf exists for q, then CTz/q is

initial in AAlg e
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Proof We must find a unique

hB:CTz/q > B

for any B ¢ aAlg e By Theorem 2.6, hy: CT, + B exists. and

is unique. Now define

hg(1t1) = hy (nf(t)).

i) hB is a z-homomorphism. We must show that

hg (Lo (tys- -+t )] = olhg([t;1),... hg([t, 1))
for any o e Z,-

))) by definition of

hB([c(t],...,t )]) = h](nf(c(t],...,t

hg.

n n

= h1(c(t],...,tn)) by lemma 4 and
property 2 of nf

= c(h](t]),...,h](tn)) since h1 is a
homomorphism

= o(h](nf(t])),...,h](nf(tn))) again by
lemma 4 and property 2 of nf.

= U(hB([t]])s---,hB([tn])) by

definition of hB’

ii) hB is unique. Suppose there .is a gB:CTZ/q +~ B such that 95

is a homomorphism. Now consider the following diagram:



where © is the natural homomorphism induced by q. If 98 exists,

then we must have © & hB =0 o gB = h]

since 0 o hB and 0 o 9% are both homomorphisms into B. But ©
is onto, hence hB =g -
iii) CTz/q is A-complete. Let <[ti]>ieI be directed in CTz/q.

Then by definition of [, <m°(1;)>1.€I is directed in CT,- Applying

lemma 3 and since [t] = [nf(t)] for any t e CT we get

z’

0051 = 00nf ()] = [uynf(t)]
= [t]
where t = uinf(ti) exists since CTz is A-complete.

iv) CTz/q is A-continuous. By (iii) CTz/q is complete. [1] 1is the
minimum element of CTZ/q since nf is continuous and hence nf(L) = 1.

Now we must show that for each o ¢ zn’ and each 1 < j < n,

TR RT3 IO 3  IETR( 33 ORI A R LN )3
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O'([t'l]s--- ’Ui[t;]’.“ s[tn])

- o([t]],...,[uit.;],...,[tn]) by Temma 3

= [ui(o(t],...,t},...,tn))] by definition and
continuity of o

_ i

= Ui[o(t],...,tj,.:.,tn)] by lemma 3

= I_Ii(c([t]],...,[t;.],...,[tn])) by definition of o

v) hB is A-continuous. We must show that if [t] 1is the least

upper bound of a directed set <[t1.]>1.€I in CTZ/q, then
hg ([t1) = Ushg ([t.1).

By Temma 3 and part iii above we know that if <[t1]>1 is directed,

and if t = uinf(ti), then

0[] = U Inf(E)] = [8] = [ugtg] = [upnf(e)]

Now hB([t]) h1(nf(t)) by definition of hB

1l

h](nf(uinf(ti))) by definition of t

= h](uinf(ti)) since nf 1is continuous and
idempotent

= uih](nf(ti)) since h1 is continuous

= uihB([ti]) by definition of hB as required.

0

The particular normalizer chosen will not affect the ordering on
CTz/q, because any two initial algebras must be isomorphic and have

the same structure.



In practice, an algebra of normal forms is useful for
establishing properties about an abstract data type and we make the

following definition.

Definition 3 A A-continuous :-algebra LZ is called a

normal term algebra for q if

111.

i) The carrier of Lz is a subset of the carrier of CTZ,

and ii) LZ o CTZ/q'

If a normalizer exists, then it is possible to construct a

normal term algebra.

Theorem 6 Let
nf:CTZ > CTE

be a normalizer, and define a ZI-algebra Lz as follows

i) The carrier is L,
L = {nf(t)|t e CT;}

ii) For each o ¢ =

oL(nf(t]),...,nf(tn)) = nf(o(t1,...,tn)).
Then Lz is a normal term algebra.
Proof Let giL, > CT./q be defined as the restriction of the

natural homomorphism © to Lz’

i) g is a homomorphism, since © is.

O
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ii) g is surjective since if [t] « CTZ/q, then

[t] = [nf(t)] since nf 1is a normalizer

and so g(nf(t)) = [t] by definition of g.

iii) g is injective, since if

g(nf(t])) = g(nf(tz)) then
[nf(t])] = [nf(tz)] by definition of g, and so
nf(t]) = nf(t,) since nf 1is a normalizer.

We now demonstrate the converse of this theorem.

Theorem 7 If a normal term algebra Lz exists, then there is a

normalizer function for q.

Proof By initiality of CTy, h:CT, ~» L. exists. Let nf(t) = h(t).
We must show that

i) [t]] = [t2] => nf(t]) = nf(tz)
This follows by lemma 4 since LZ satisfies ¢ .

ii) [nf(t)] = [t].
That is, we must show that [h(t)] = [t].

Since LZ c CTZ, heh = h. Also, since

Ly o CTZ/q, Ker(h) = q. Now since

heh(t) = h(t), (h(t),t) e Ker(h)

SO (h(t)’t) € q

and hence [h(t)] = [t] as required.
iii) Continuity of nf is immediate since h is continuous.

0

g



3. The Data Type List
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We would now like to apply these ideas to characterize an

important class of structures:

the so-called arbitrary list structures.

We present the usual axioms of the type and show that there is an

initial algebra in the class of algebras satisfying these axioms.

Definition 4

The class of algebras to be considered has a single sort

called List with operators

a: » List

cons: List x List » List

hd,tl: List » List

r: - List

for each a ¢ Atom where Atom is

an arbitrary set.’

for each x € X, a countable set of

elements-called variables.

a constant called undefined.

The axioms e are: (Assume 21,22 are variables of sort List and

a e Atom.)

1)
2)
3)
4)
5)
6)

hd(cons (£,,£,))
te(cons (£;5£,))
hd(a)
te(a)
hd(x)
te(L)

for each a ¢ Atom

for each a e Atom
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Definition 5 A term t ¢ CTz is said to be reduced if it is of one

of the forms

i) L
ii) a for any a e Atom
iii) cons(ﬁ],ﬂz) and £;,¢, are reduced
iv)  px where p e {hd, t2}*
or v) t= st for a directed set <t.,> in CTs

where each ti’ ie I, is reduced. O

Definition 6 LZ for lists is defined as follows:

i) The carrier of L, 1is the set of reduced terms of CT,.

i1) The operations are defined as follows:

a) a, = a for each a ¢ Atom
X = X for each x ¢ X
c) consL(t],tz) = cons(t],tz)
d) hdL(cons(t],tZ)) =t

hd, (px) = hdpx for any p < {hd, t£}*
hdL(a) =1
hdL(L) = 1

e) tLL(cons(t],tz)) =1,

tﬂL(px) = tLpx for any p e {hd, te}*
tﬂL(a) =]
tEL(L) =1

f) o, =1 0
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Note the following points about Lz:

i) The carrier of Lz is a subset of the carrier of CTZ;

ii) The order relation < .on Lz is defined to be the

restriction of SCT to Lz;

ii1) Ly satisfies the axioms of definiton 4.

jv) By condition (v) of definition 5, Ly is A-complete,

and by continuity of CTE, L. 1is easily seen to be

T
A-continuous.

Definition 7 Define a function

as follows

r':Tz > Tz

r(px) = px
r(p 8 cons(t],tz)) = r(pti) where &, = hd, &, = te .
r(cons(t],tz)) = cons(r(t]), r(tz))

r(pr) = L
r(a) = a
r(pa) = 1

where p e {hd, te}" . r is said to reduce any term t ¢ T,

If te Tz’ with r defined as above, then

i) r(t) ds reduced and (t,r(t)) e g
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and ii) r is monotonic - that is, for any t' e TZ such that

t'< t, r(t') =< r(t).
Proof By induction on the depth of t, which will be denoted I t]] -

a) Let t e {a,x,1}. Then r(t) =t soclearly i) and i)
are true.

b) Suppose the result is true for any tree t of depth n or less.

That is, if || t]l <n, then

i) r(t) is reduced and (t,r(t)) € gq

and i) If ty < tos ][tzlls n, then r(t1) < r(tz).

Now consider

Since t 1is reduced, it is of the form px or cons(tl,to)

where t],t are reduced, or it is x or a or i .

2
The last 3 cases have been shown. If t = px, then r(st)

st

and i) and {i) follow. If t = cons(t],tz), then r(st) = tos

I}
—

but by axioms 1 or 2 st =1, so0 i) follows, where i

if §=hd, 1 =2 1if & = tL.

Suppose that t' < st. Then t' =. or t' = 6t" where t" < t.

Hence t" =1 or t"-= cons(t”,tg) with

t{ < t], tg < t2.
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Now
r(t') = 1 in which case 1ii) follows;
or r(t') = r(t;).
Also, r(t) = r(ti) and hence, by induction
r(t{) < r(ti).
Hence r(t') < r(t) as required.

2) Consider cons(t1,t2) where ||cons(t],t2)|| =n+1.

r(cons(t],tz)) = cons(r(t1), r(tz)) so i) follows by
induction.

Suppose

t' < cons(t1,t2)
for some t' ¢ Tz'
If t' =1, there is nothing to prove, so let

t' = cons(t],té)

Then by definition of < , ti < t]; t2 < tz.

Now r(t') = cons(r(ti), r(té))
r(t) = cons(r(tl), r(tz)) so by induction
r(t') < r(t) ]
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Lemma 9 Let £ and e be defined as above, and suppose that gq is

the congruence generated on CTZ by € . Then for any t e CTE,

there is a term t ¢ CT, such that t is reduced and (t,%) ¢ q .

Proof i) If t is finite, let t = r(t). By lemma 7, t s
reduced and (t,t) e q.

ii) If t 1is infinite, then there is a directed set

<t.>. such that t = W.t. where each t. is finite.
iTiel 171 i

Let t = uir(ti), which exists since by lemma 8 r s
monotonic and hence <r(t1.)>1.€I is directed. But for
each i e I, (ti’r(ti)) e q, so by continuity of q
(t,t) € q. Also by definition Uir(ti) is reduced when

each r(ti) js. Hence t is reduced. O

We can now show that LZ is indeed a normal term algebra

for lists.
Theorem 10 LZ is a normal term algebra for lists.
Proof By construction the carrier of LZ is a subset of the

carrier of CTZ. Furthermore it can be checked that LZ satisfies ¢
and is A-continuous. We must show that Lz is isomorphic to CTZ/q

for q as defined in the previous lemma.

Let g:LZ > CTZ/q
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be defined as the restriction of the canonical mapping e:CTz > CTz/q
to LZ . Since Lz is a subalgebra of CTZ, g is a homomorphism.
By lemma 8, given any t e [t'] for [t'] e CTz/q we can
reduce t to T so that T e [t'] and T e L. Thus g(t) = [t']
and g 1is a surjection.
Assume g(tl) = g(tz). Then [t,] = [t,] and since Lz
satisfies e, we must have that t1 = t2 (by lemma 4). Thus g is

an injection. g 1is thus the required isomorphism. 0

We can now prove that CTz/q is indeed initial in the class

of A-continuous t-algebras satisfying e.

Theorem 11 CTz/q is initial in the class of A-continuous z-algebras

satisfying «.

Proof Follows directly from theorem 10 and theorem 7. O

4. Shared Structures

A data structure can be viewed as a set of recursive equations
in the program variables and some auxiliary variables. Sharing within

the structure is reflected by the variables.

Definition 8 A z-data structure is a function

e:X ~ CTZ(X)
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where X 1is a countable set whose elements are called variables. O

It was shown in chapter 2 that every such set of equations has

a solution in (T, denoted le|, which is a tuple

<le] le] e
x]’ xz’

where |elX denotes the component of the solution corresponding to
i
X;. We then have that

yx; € X le]. = e(x;) o |e]

where t o <t],t2,... > denotes the expression in CTZ obtained by

simultaneously substituting each ti for the corresponding X; in t.

Definition 9 The 1ist axioms of definition 4 are called the universal

list axioms and are denoted E. 00

The set of equations e defining a structure can be viewed
as axioms on some nullaries of the 1list structures. Adding these
equations to the universal axioms yields an algebra which may be viewed
itself as the data structure. It includes as before, al}]
equivalences induced by the universal axioms, but also includes those
equivalences induced by the particular structure.

Our development depends heavily on the fact that CTZ(X) is

isomorphic to CT ) where, in the latter case, x 1in X 1is considered

z(X
as a nullary or constant function of the algebra. Thus the equations
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in e can be said to characterise the "operations" x in X in
exactly the same way that the equations in E characterise the elements
of & . Thus, given CTz(X)/qE the equations e create equivalences
between some distinct congruence classes in CTZ(X)/qE’

Intuitively, a data type is characterized by the algebra
whose elements are congruence classes of terms which are equivalent

because of the type axioms. Hence, for example, in type List,
hd(cons(te x,b)) = te x,

regardless of the value of x. In addition, however, a particular
structure will impose additional equivalences on terms if the structure

involves sharing. Thus for example, if
x = cons(a,cons(y,b))

then
hd(hd(cons (te x,b)) = y,

a conclusion which can only be drawn with the knowledge of some par-
ticular structure. Note that these equivalences will change as the
underlying structure is updated. The universal type axioms themselves
must be true in any structure.

Given a congruence q, [t] is the set of all terms congruent
to t in q. We will write [t]E to denote classes in CTZ(X)/qE

where g is the congruence on CTZ(X) generated by E, and [t]e to
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denote classes in CTZ(X)/qe‘ Here qe s the congruence on CTz(X)/qE
generated by e, or equivalently, e is the congruence on CTZ(X)
generated by e and E together.

The next theorem characterizes the auotient CTT(X)/qe' If

two terms t,,t, are equivalent in q_ then the terms t; o le] and

t2 o |e| are equivalent in CTZ(X)/qE' For example, 1let e be given

by
x = cons(a,x).
Then we can show that
[x], = [te'x],
for any i ¢ w, since
[cons(a,cons(a,... ))], = ﬁzi(cons(a,cons(a,... )¢
for any i e w.
Theorem 12 Let e be a list structure and let q, be the congruence

on CTZ(X) generated by e together with E, and e be the

congruence on CTZ(X) generated by E.
Then

[ty1g = [tyly => [ty © |e|lp = [ty o [e]lg.
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Proof Let Se:CTz(X)/qE > CTZ(X)/qE be defined as
Se([t1p) = [t o Je|lL.
Clearly Se is a function, where
ker(se) = {<Ity1gs [t,1p> l Se([tl]E) = Se([tz]E)}

Furthermore, ker(se) is an equivalence relation. We show that S

is also a continuous congruence.

i) Let <[t; 1> [t{]E> € Ker(se) 1<is<n (*)
We must show that
<0([t]]Es [tZ]E’ cee [tn]E)’ 0([ti]Es ese [tﬁlE)k>€ ker(se)
for each o ¢ =.
Now
se(c([t]]E, . ,[tn]E))= Se([°t1’ ...,tn]E) since qg is a
congruence.
= [(otq, et ) o |e|]E by definition of
Se-
= [o(ty. e lef, ... ot ° IeI)]E by a

property of ¢ if o is not a nullary.
= o([t] 0 Ie]]E, cee slto o Iel]E) by
definition of o in CTz(X)/qE'
= U(Se([t]]E): ce 9Se([tn]E)) by

definition of Se'
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= a(sgItqIp)s - ns (Itg1g) by (*) .
= [o(t) » lel, ...t o [e])] by definition

= [c(ti, ...,tﬁ) ° |e|]E by a property
of o
= s, (loty, ... ’tﬁjE) as required.

If o 1is a nullary, the result is immediate.

ii) Suppose that <t1>ieI and <ti>1eI are directed sets, and

<It;1ps [Ei]E> € ker(se) for each i ¢ I.
We must show that
<UL [t5 16> ui[E11E> € ker(se) .

Now

Se(ui[ti]E) Se([uitilE) by lemma 3.

= [Ui(ti o |e|)]E by definition of s, and continuity of °

= Uty o |e|]E by lTemma 3.

= Us (s (1t:1E)) by definition of s_.

= Ui([E1 > le]lg) by the hypothesis and by definition - °
of Sa-

= [(uifi) o lellg by lemma 3 and continuity of o .
= s (Ut 1p)

= Se(ui[ti]E) as required.
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iii) ker(se) contains e since

sg(lxlg) = [x o |e|l; = [Ielx]E since |e| is the solution to e,

and se([e(x)]E) [e(x) » Iel]E =[|e|x]E since |e| 1is the solution to

e, as required.
Now by definition, 9% is the least continuous congruence on CTz(X)/qE

containing e, and so
9 E_ker(se).

Thus 1if
[t.l ]e = [tz]e then < [t]]E’[t2]E> € qe
so that <[t]]E,[t2]E> € ker(se)

and hence [ty o le]lg = [t, = lel]g by definition of s,. [

Lemma 13 Let e, E, e and qE be as in Theorem 12. Then if

tyst, e CT, (i.e. t] and t, do not contain variables) then
[ty = Ttple = [ty]g = L1 -
Proof By Theorem 12

[t,1, = [t,], = [tyelel]p = [tyole|Tg.

But if t e CT,, then tele| = t, and hence

[t1]E = [tz]E as required. 0
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The main result of this section can now be presented: each data
structure e generates an algebra that is initial in the class of all

continuous algebras satisfying both E and e.

Theorem 14 Let e be a list structure and e be the congruence on
CTZ(X) generated by e and E. Then CTE(X)/qe’ denoted by Ly
is initial in the class of all continuous x(X)-algebras satisfying E
and e, together with continuous =(X)-homomorphisms between them.

We denote this class by Aélgi,E,e'

Proof We must show that

nfe:CT )-+ CT

(X z(X)
exists and is a normalizer. Let

nf:CT + CT

2(X) z(X)
be the normalizer for CTZ(X)/qE‘ Now define

nf (t) = nf(te|e|), t e CTZ(X) .

i) Assume [t,1, = [t,],
o) [t]olel]e = [t20|e|]e by a simple property of congruences.

Then, by Temma 13



[tioleldg = [tyelellg
and so
nf(t]o[el) = nf(t2°|e|)
Hence by definition of nfe,

nfe(t]) = nfe(tz)

i) [nf (t)], [nf(1;°|e|)]e

But
[nf(tele])]g = [telell;

Furthermore Qe < G

Thus [nf(to]el)]e [t°|e|]e

[t],

Therefore [nfe(t)]e = [t]e
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since nf is a normalizer for qg.

as required.

by definition of nfe.

since nf is a normatizer for A«

by minimality of Qg

by a simple property of congruences.

as required.

iii) nfe is clearly continuous since nf and o are. O

If L. is the canonical term r-algebra for E, we can view Le as

z
being the algebra obtained from Lz

by "evaluating" the terms

t e L, by solving for e and then taking t o |e|. However, e

itself must be retained when defining updates to a data structure, for
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the reasons discussed previously.

5. Updating List Structures

We must now indicate how updating list structures can be
formalized in an algebraic setting. Clearly, if we modify some list
structure e, we will also modify the algebra Le by transforming
it to some new algebra Lé!. We do this via a transformation to be
defined below.

For a set of equations to reflect properly the sharing of
some structure, we require that:

(1) Any shared sublist be identified by a variable;

(2) A1l references to a shared sublist must be through a

variable naming that sublist.

Consider the following 1list structure:

x = cons(a,cons(z,cons(b,c)))

(e) z

y =1 (i.e. y 1is undefined)

cons (d,cons (e, f))

which may be represented diagramatically by:

X

Lal—>. b | ¢

d ] —> e | f
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Suppose that the updated structure is:

a | ——| —4— b |c

d —_— e f

If we call the transformation rule R and use the convention

R(usv,e) to indicate the replacement of u by v in e, then we may
express this transformation by R(y,t€tf x,e). That is, we change the
definition of y from whatever it was (in the above case it was
undefined) to now be whatever expression is referenced by tZtZ x

(which is cons(b,c)), and change the definition of x so that t&tf x =y.

Thus the new 1ist structure is

x = cons(a,cons(z,y))
(e") z = cons(d,cons(e,f))
y = cons(b,c)

Thus it is not enough simply to reset the value of y (by changing the
third equation). The fact that t£t£ x (in the original 1ist structure
e) 1s now shared by x and y must be indicated in the equations.

Suppose that now we update e' to obtain:
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I

d [ —> | e f

This can be specified as R(tf ystf z,e') (or in fact by

R(tetLte x .t z,e'), etc.), which may be expressed as: Replace the
structure pointed to by t& y in e' (i.e. c¢) by the structure pointed
to by te z (i.e. the structure cons(e,f)). In order to satisfy the

two criteria above (1 and 2) we must introduce a new variable z' to

indicate the fact that cons(e,f) 1s now shared by y and z. Thus

we get
x = cons(a,cons(z,y))
y = cons(b,z')
z = cons(d,z"')

z'= cons(e,f)

Note that a special role is played in the above examples by expressions

of the form px for p ¢ {hd,t£}* and x a variable. Such expressions
are called paths because they can be evaluated in a given list structure
e (and reference some substructure). Thus they can be used to indicate

the substructure to be replaced as in the above two examples.

The data type LIST 1is the many-sorted algebra with carrier



<Path, L L> sorted by P,L,A where:

Z 3
i) Path = {hd,te}*-X;
it) L, = CTZ(X)/qE

iii) L ={ele 1is a list structure}.

The set of operators in LIST 1is denoted by & and contains two
operators:
i) o is of type <\,A>and @ (o7 =€, where
e = {x = t|xeX}. That is, ¢ ;o7 1is the uninitialised

1ist structure;

ii) R 1is of type <PLA,A> and so

R :Path x LZ xL~>1L-

LIST

R 1is defined by describing its effects on a set of equations e.

Recall that elements t « CTZ(X) are partial functions
tiw* —o I(X) .

Elements of «* for which t is defined are called paths. Thus,

for example, the tree

131.
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a cons

b cons

could be represented by the partial function

t(x) = t(1) = t(11) & cons
t(0) » a; T(10) » b; t(110) »c; t(111) » d.

We could, instead of labeling the edges of the tree with O's and 1's,

label them with hd and t& . Then we could define trees in terms of

partial functions
t:{hd,tl}* —> z(X).

This we do by associating hd with 0 and t£& with 1. To be
consistent with list notation, we will reverse the string used to denote

a path in the tree. Thus in the above example, we will have
t(x) = t(te) = t(tetL) » cons
t(hd) = a; t(hdtl) » b; t(hdteteL) » c;
t(tetete) v d.
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Formally then
t:{hd,t}* —o» Z(X)
is defined in terms of
£:{0,11 —> 2(X)
as follows: If p e {hd,te}*, we (0,1}, then

t(p) = o <=> t(w)

"
q

where, if p = 6]62;..6n, W= 1112"'1n and

0 if &; =hd

. J
J if s,
1 i j

8

Definition 10 Let e be a function

e:X » CTZ(X) .
If pe {hd,t2}*, x ¢ X and e(x) is denoted tos then

<P, x> if tx(p) is defined
reflvy)  if .,y ¢ (hd,t2}*, v # 1 ,
ref(px) =
vu = p and tx(u) =y

L otherwise .
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Intuitively, px represents a way of “traversing” the structure e.
If ref(px) = <q,y>, then px references a subexpression of e(y)

specified by ¢ . For example, if

x = cons(a,cons(b,y))

y = cons(a,cons(c,d))

then ref(tetltl x) = <tl,y>. The path tetltf x references the
subtree at the t£ of the value of y.

We now define the following suhstitution function: Let x,y,me V,

pya,u,w e (hd,te}", te Ly

1) tx[y/m] = t! where

m if tx(u) =y

t'x(u) =
tx(u) otherwise.

Each occurrence of y is replaced by m.

For example,

cons{a,cons(x,cons (x,y)))[x/z] = cons(a,cons(z,cons(z,y))).

2) tx[p/m] = t! where
tx(u) if p is not a suffix of u
t'(u) ={m if u=p

i otherwise.
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The subtree referenced by p is replaced by the variable m.
For example

cons (a,cons (x,cons(x,y)))[te/z] = cons(a,z).

3) tx[p/t] t' where

tx(u) if p 1s not a suffix of wu.

t'(u) t(w) if u =uwp

L if u=uwp, t=1

The subtree referenced by p 1is replaced with subtree t.
For example

cons (a,cons (x,cons(x,y)))[t&/cons(a,b)] = cons(a,cons(a,b)).

4) Let  ref(py) = <q,z> » p e {hd,te}" .

then tX if x# 2z
t [py/t] = )
tx[q/t] if x=2

If ref(py) = 1, then tx[py/t] =1 .
If py references a subtree of t, replace this subtree with t.

Note that this substitution depends on e.

For example, if

x = cons(a,cons(b,c))

y = cons{c,x)

then
cons(a,cons(b,c))[tete y/b] = cons(a,b).
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A reference may also be evaluated (dereferenced) to yield a subtree.

t! where ref(px) =<.q,y> and

tX(Qu). ]

e(px)

t' (u)

The substitution rule R is now defined in terms of these substitutions.

R(px,t.e) can be thought of as corresponding to the Algol-Tike statement
px < t .

Definition 11

R:Path x LZ xL~>1L
is defined by specifying

R(pstae) = @'

in terms of e'.

Then R(x,yse) = e' where e' 1is defined as follows:

1) y if z = x

tz[x/y] if z # x .

2) R(x,cons(t1,t2),e) = ¢! where

cons(t],tz) if y=x.
e'(y) = ty[x/m] if y#x,y#m and m .is new.

tx[x/m] if y

m.
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The chosen semantic effect of this assignemnt is to “"move" the variable
X to refer to a new list. Any old reference to x must still

reference the old list, and this is why the variable m is introduced.

3) R(x,py.e) = e' where
e(py)[x/m] z=x, m 1is new.
e'(z) = {t [x/mllpy/x] z # x, z#m.
t [x/mllpy/x] z =m.

The variable x 1is moved to the tree referenced by py. Al1 occurences
of x in e must be changed to m in e', since the 1ist referred to
by x or through x in e 1is not changed. Secondly, the subtree re-
ferenced by py must be replaced by x in accordance with the require-
ment that sublists be named. Note that this reference may appear in tx

or any other r{ght hand side.in e.

4) R(Px,cons(t1,t2),e) = e' where

e'(y) = ty[pX/cons(t] 't5)]

5) R(px,qy.e) = €' where

t_Lqy/m][px/m] Z#m, newm
e'(z) = z

e(qy)lpx/m] z = m.

A sublist e(qy) is now referenced from px, so it must be named by

m.
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6) R(px,y,'e) = e where

e'(z) =t [px/y] .

7) R(-Lsts E)

1]
1]

8) R(psls e) =

)
1]

Example We illustrate each case of the above rule.
1) Let e=¢ . (that is, e(x) = r for each x e X).
i) R(x,cons(a,cons(b,c)), e) yields e' where

x = cons(a,cons(b,c))

by rule 2.

ii) R(y,cons(a,cons(b,c)), e]) yields e 3 where
x = cons(a,cons(b,c))
y = cons(a,cons(b,c))

iii) R(te x,y, e) yields
x = cons(a,y)
y = cons(a,cons(b,c))

iv) R(z,y,ep) = eg where
x = cons(a,y)

cons(a,cons(b,c))

<
I



v) R(y,cons(a,b), e;) = ¢, where

y = cons(a,b)
x = cons(a,m)
z=m
m = cons(a,cons(h,c))

vi) R(tL z,z, e5) = eg where
y = cons(a,b)
x = cons(a,m)
z=m
m = cons(a,z)

vii) R(tL z,tf x, e6) = ey

Note that ref(tl z) = <tL,m>

ref(tl x) = <te,x>

cons(a,b)

<
]

x = cons(a,m')
z=m
m = cons(a,m')

m=m

139.
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Whenever equations of the form
X =m (or m= x)

appear, m new, then every occurence of m can be replaced by x,

and the equation

can be replaced by

X=t. (In the second case, the equation in m

can be eliminated.)

Hence in the above example we would have

y = cons(a,b)

X = cons(a,z)

z = cons(a,z).
2) Let e be

x = cons{a,cons(b,cons(c,d)))

Then R(tL x,ttl x, e) = e where e' is
x = cons{a,m)
m = cons(c,d)

since (cons(a,cons(b,cons{c,d)))[tZ x/m])[tetl x/m]
= (cons(a,m))[tetl x/m] = cons(a,m)
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With the same e,

x = cons{a,cons(b,cons(c,d)))

consider

R(tLtL x,tf x, e):

x = cons{a,m)

m = cons(b,m)
since (cons(a,cons(b,cons(c,d)))[tetl x/m])[t2 x/m]

(cons(a,cons(b,m)))[te x/m]

cons(a,m)

and cons (b,cons(c,d))[tete x/m] = cons(b,m). 0

A set of equations e can be visualized as a "box and arrow" diagram
where each box corresponds to the operator cons, and each arrow
corresponds either to a nested expression or a variable.

For example, the set of equations

cons(a,cons(b,cons(c,d)))

x
n

cons(e,cons(f,x))

«
"

has corresponding diagram

X

jo )}
J
o
(@]
o
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The operator R may be defined in terms of these diagrams in an

obvious way. For example, consider the expression
R(x,te x, €) .

In terms of diagrams, R(x,py,e) changes the diagram so that x
becomes associated with the box py. In addition, we give the old box

associated with x a new name, m say.

m ' X ‘ ’
a —1> L b —f->l c |d
T

y )

e > | f l'

The corresponding effect on equations is given by the rule

R(x,py, e) = ¢ where

e(py)[x/m] z=x
e'(z) = {1t [x/mllpy/x] Z#Xx, z#m
t [x/m][py/x] z

I
3

which can be explained in terms of diagrams as follows:
i) e'(x) = e(py)[x/m].

x 1is "moved" to the box pointed to by py. In terms of equations,
any occurence of x 1in the old equations must be changed, because arrows
to the old box labelled by x still point to the same box, which is now

given the new name m.
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ii) e'(m) = t [x/m]lpy/x]

m Tlabels the box that was labelled by x. In terms of equations,
if py 1is a sublist of tx’ then this sublist must be replaced by x ,

so that the property that sublists be named is preserved.
1i1) e'(z) = tz[x/m][py/x] for all other variables z.

The reasons for the two substitutions here are the same as those

discussed above.

It is possible to check informally the definition of each case of R in
a similar way to that given above. In addition it is fairly easy to see
that R preserves the criteria 1) and 2) above that shared sublists be
identified and that references to shared sublists are through a variable
naming the sublist.

It can be shown that LIST is a continuous algebra. To do this
we must show that the carriers of LIST are complete partial orders and
that R 1is continuous with respect to this order.

Path can be made into a (flat) cpo by adding L and defining
p < Lp' if and only if p=1._ or p=p'. As for LZ, it is

P
already a cpo. We can order L as follows:

e< e, if and only if e s. e'. That is, if for all

x e X, e(x) <cT e'(x).
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Lemma 15 <L is a partial order on L and is complete.

Proof

i)

ii)

i1i)

a) < is a partial order

¥x e(x) <cT e(x)

e <, e by definition of <

L
Suppose that
& = & and e </
Then by definition of <
Vx. el(x) et e2(x) and

o) VX e](x) <cT e3(x)

hence

42
—

SL e3

Suppose € <, €& and &

then

e2(x) <cT e3(x)

since <. is a partial order

VX e](x) <cT e2(x), e2(x) et e1(x)

SO ¥x e1(x) = e2(x) since <. fis a partial order

hence e =



< is complete.

Let < €:> 1 be a directed set in L.
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Then by definition of SL’<eT(X)>ieI is directed for every x e X.

Let <e> denote the tuple which contains the least upper bound
in CTZ(X) of each directed set <ef(x)> . <e> exists by
completeness of CTE(X)'

Now let

e:X -» CTX(X)

be defined by
e(x) = <e>,

Then for all e and for all x,
ei(x) <cT e(x) .

Thus e is an upper bound of < e;> .

Suppose however that e' was another upper bound.

Then for all i and for all x,
ei(x) <cT e'(x)
hence for all x,

e(x) < e'(x) since <e> is the least upper

bound of <ei(x)> .
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Thus € 1is the least upper bound of < ;> . N

Lemma 16 If <e1.(z)>1..GI are directed for each z ¢ X, and

e(z) = ui{ei(z)}, then
<ei(z)[x/y]> is directed for each Xx,y,z ¢ X, and

e(z)[x/y] = Ly<e (2)[x/y]> .

Proof Let <ei(z)> be a directed set with z ¢ X. Now

let u e o*

if ei(z)(u) = X

(e (z)[x/y1)(u) =

e{(z)(u) otherwise.

But if ej(z)(u) = x for some Jj then by definition of directes sets
ek(z)(u) = x for all k = j. Furthermore, since e(z) = ui{ei(z)},

e(z)(u) = x.

Hence <ei(z)(x/y)> is directed with e(z)(x/y) as upper bound. 0
Lemma 17 If <ei(x)> is a directed set for each x ¢ X, where

e(x) = ui{ei(x)}

then
<e; (x)[py/t]>
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is directed for each x, and
e(x)[py/t] = ui{ei(X)[py/t]}.

Proof Let <e1(x)> be a directes set. Then consider ref(py)
for each €ss which we denote refi(py).

Suppose that for some j,

ref;(py) = <q¢,2z>

is defined. Then

]
Q

ej(Z)(q)
say must be defined from some o . But then for any k = j
e (z){(q) = o .

Also, there must be some sequence

refj(voxo) = refj(v]x] = refj(vzxz) = ... = refj(vnxn)
= <Qq,2>
by definition of z, where VoXp T PYs VX, T gz and
Vg = Vqups Vq F VolpseensVp 3 = VpUp
and such that ej(xi)(ui) = o for some o, € I . If this were

not the case, ref(py) would be undefined. Now since <ei(x)> is
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directed, ej(x) =g =>ek(x) =g forall k=1i.

Hence <ref{(py)> is a chain of the form
<q,z>
I
and Y'Ef(Py) = Ui{rEf] (py)} .
Now if refj(py) =1, then

ej(X)[PY/t] =1L
If ui{refi(py)} =1, then
e(x)[py/t] = 1

and the result follows.

Otherwise, let <g¢,z> = ref(py) = ui{refj(PY)} .

Then
ei(x) if x#z
e, (x)[py/t] =
ei(x)[q/t] if x = z.
Then <ei(z)[q/t]> is clearly directed since if ei(z)(q)

is defined, then ek(z)(q) = ei(z)(q) for all k = i. Also
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<ei(x)[py/t]> = <ei(x)> for all xe X, x# 2z
is directed by supposition,
S0 <ei(y)[py/t]> - Xx ¢ X 1is directed as required.

Also, for each x e X, X # Z

ui{ef(x)[py/t]} ui{ei(x)} = e(x) as required

1

and Ui{ei(z)[py/t]} ui{ei(z)[q/t]}

e(z)[q/t] since <ei(z)> is directed

and Ui{ei(z)} = e(z)

e(z)[py/t] since ref(py) = <q,z> .
Hence for all x e X

e(x)[py/t] = ui{ei(x)[Py/t]} as required. [
Lemma_18 If <t.> is directed and t = Uiti’ then

<e(z)[px/ti]> is directed and

u;te(z)[px/t 1} = e(z)lpx/t] .

Proof tet ref(px) = <q,z> . (If ref(px) = L there is nothing to

prove). Then
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e(x) X #z
e(x)[px/ti] =

e(x)[q/ti] if x = z.
Hence to establish the result, we need only show that for any t e Le s
i {Ee/t, 1 = e/t

If £(¢) =r, then t[q/t] =r for any t, and the result follows.
If t(q) is defined, then f[q/ti] is the tree obtained from t by

replacing the subtree at ¢ by ti’ and so the result clearly follows.

a

Lemma 19 RLIST is continuous

i) First argument:

R(U;{t;1st, e) = UiR(ti,t, e)
Continuity follows from case 7 to definition 10.

ii) Second argument

~{a) If the second arqument is a path, then continuity follows from

case 8 of definition 10.

(b) We must show that

where '{ti} is directed.



Firstly, suppose that
ui{tf} = X

Then for each 1, ti

for all k=>J .

But by case 8 of definition 10
R(t,L,e) = e

1

But el <€ for any e, so
‘{R(tQtiQe)}

forms a chain with upper bound

Secondly, suppose that
ui{ti} = px

for some p e {hd,tﬂ}* .

form

and by case 8 of definition

R(t,r,e) = e

10,
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=L or ti = x, and if tj = x then tk = X

for any e.

R(t,x,e) as required.

Then {ti} must be a chain of the

PX
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for any e, so

{R(t,ti,e)}
forms a chain with upper bound R(t,px,e) as required.
Finally, suppose that ui{ti} = cons(t],tz)

Then if t = x,

er(y) = e;(yx/m] vy eX, y#x, y#m
and by lemma 16 Usfes(y)} = e(y)[x/m] .

But e' (obtained from R(t,cons(t],tz),L )) yields from case 4

e

e'(y) = e(y)[x/m]

as required. Also

e'(m) = e(x)[x/m] = ui{ei(x)[x/m]} by lemma 16.
and e'(x) = cons(t],tz) = Uiti by the supposition.
Hence R(x,cons(t],tzl.e) = UTR(X’ti'e)‘

If t=px, p# 2 and U;{t,} = cons(t],tz), then for each i
e'(y) = e(y)lpx/t,]
and by lemma 18 L{e'(y) = e'(y) = e(y)[px/t] as required.

iii) Third argument: We must show that
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R(pst’LH {ei}) = uiR(p’t’ ei) .

Consider each case of definition 10.

1) Note that if <e,> is directed, then <e1(z)> is directed for

each z ¢ X.
Now
y if z=x
e'i(Z) = T
e;(2)[x/yl 1f z#x
But (y if z=x
e'(z) =
e(z)[x/y] = Ui{ei(z)[x/y]} by lemma 16

and the result thus follows.

2) R(x,cons(t],tz),Le)

|
x

cons(t],tz) if z-=
e%(z) = ei(y)[x/m] if z#x,z#m.
ei(x)[x/m] if z

[}
3
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cons(t],tz) if z=x
e'(z) = Se(z)[x/m] = ui{ei(z)[x/m]} by lemma 14
e(x)[x/m] = ui{ei(x)[x/m]} by Temma 14

and hence the result follows.

3) - 6) All follow similarly by application of lemmas 16 or 17.

7) R(L,t,e) = e, for any e.

Hence contunity follows trivially
8) Follows trivially as well. a

We thus have establish that R 1is continuous. Since ¢ is a nullary

it is also continuous, and hence

Theorem 20 LIST is a A-continuous Q-algebra. 0

6. Conclusions

The idea of regarding data types as many-sorted algebras
characterized by an initial quotient algebra has been extended to in-
clude types with possibly infinite values. It has been shown that the
concepts of data sharing and circularity can be treated in this frame-
work, using the general type LIST which allows arbitrary assignments
rather than just the restricted assignment of say Pure LISP [32]. The

characterization of types as initial quotient algebras has been to form
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congruence classes containing all expressions which, in accordance with
some type axioms, evaluate equally. We have shown in this chapter that

a data structure with possible sharing can be characterized as the
initial quotient where terms may be congruent because of the type axioms,
but they may also be equivalent because of the additional structure
induced by the data structure. The type itself is then viewed as the

collection of all such structures.

In chapter 5 it is shown how the formulation of 1ists with

sharing in this chapter can be used in a simple program proof.



Chapter 5

Some Applications and Implications
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1 Introduction

Two approaches to formalizing data types with sharing have
been defined in chapters 3 and 4. We call the model in chapter 3 the
reference model and the one in chapter 4 the continuous model.

The reference model is concerned primarily with describing
the semantics of references, rather than general properties of sharing.
The continuous model for lists, for example, could be implemented in the
reference model. The continuous model, although illustrated mainly for
lists, can be used to describe many types with sharing, and is easily
used to prove properties of recursive programs using shared types. The
reference model describes particular "lower level" concepts (such as in
place) but it can be used for the verification of while programs using the
type 1ist. The programs most amenable to verification with the reference
model are programs concerned more with references than sharing, such as
"in place" reversal or marking programs.

The continuous model provides a setting for treating structures
with sharing as a continuous algebra and thus the usual induction rules
for continuous functions can be used to prove correctness of prcgrams
using the type. This is illustrated in section 3 of this chapter.

The reference model was motivated in part by a desire to verify
programs using the invariant assertion method (Floyd [15], Hoare [19]),
and we illustrate how the proof rule presented in chapter 3 can

be used together with the type axioms for verification. Both models

do provide a language for expressing properties of data structures;
certain properties, namely these particular to concepts of referencing
(such as in place, equality of references) are naturally more easily

expressed in a language based on the reference model. For both models
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it would be interesting to study formal systems to be used in proving

theorems about programs using the types.

2 Reasoning with the Reference Model

Hoare's[19] original proof rule for "simple" assignment is
X
Qg {x «e}Q

where Q 1is an assertion and QZ is Q with each free occurence
of x vreplaced by e.

As discussed in chapter 3, generalized assignment in the
reference model is viewed as assignment of an entirely new structure.

That is, an assignment
p<c

is viewed as
o' « U(o,p,c)

where U is a function that returns a new structure, the structure

which is identical to o except that p 1is changed to c. In fact
U(o,p,c) is just the structure <«(p,c,o).

Thus the proof rule is

"

Q(p,c,0) {p<c}Q

We will write o' to denote <«(p,c,o) provided that p
and ¢ can be determined from the context of the assertion.

The type defined in chapter 3 is more general than the
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type "usually" called Tinked 1ist. In the “usual” semantics of
Algol-like languages (Scott-Strachey[38], Reynotds [35]), statements

are viewed as mappings from one state to another
s: §S~+>3S

Statement composition is then viewed as function composition:
Slisy35,1(6) ¢ SOs,1(sIs,1(0))

We view an element o e Struct as being part of a state, say
S = Struct + S' (+ is disjoint union). Then the semantics of an

assignment statement of the form
p<l
can be defined as
Slp « £)(o + o) = «(p,L,0) + o

Clearly then

f

Sy « 445 pp < £,1(0 + p)
S'Ipz h 1’—21](5“}01 Al Z]B(O + p))
Slpz « '82]!(*‘()9] s'e] ,0) + p)

= +(pyslys <(pys8y,0)) + o

1]

Thus a program segment of the form
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P] “213
PZ *‘ZZE

“p o
Pn Kn’
can be viewed as the expression

+(pn,£n, +(pn_],£n_], (... +(p],£],0))...)
where o 1is the "initial structure" of the segment.
To state assertions about 1ist structures we use a language which describes
terms in TZ’ and which has the usual Togical symbols, as well as
equality (=). The interpretation of a term t « TZ is the class [t] ¢ TZ/q

where q 1is the last congruence defined by the type axioms given in

Chapter 3. We will typically quantify over terws t e ye tnis is— -

illustrated below with some examples of the use of the proof rule.
Example 1 Consider the statement
tLy «z
and suppose the postcondition is
Q: tete y(o) = x(o) & z(o) = y(o)
Then
Qg-: tete y(o') = x(o') & z(o') = y(o')

Now, applying axiom 9 we have

tete y(o') = te(te(y(a'))(c"))(c") (Notation)
te(y(c'))(o") = te(y(o))(c") by axiom 5

Now z(c') = z(c) and x(¢') = x(o) by axiom 5
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te(y(o))(c') = z(o)

161.

by axiom 9

where p](o) is y(oc) and Po is y and hence p](G) = pz(c).

Hence

te(te(y(c'))(c"))(c")

o
Hence QO. reduces to

te(z(c))(c")
te z(o) since z(o) = y(o)

and by notation.

t z(o) = x(c) & z(o) = y(o)
Pictorially, we have
I I S O N S N
y 2 LN
o VT3 I}
tLy <~z
‘CTr— T T+ T 1}
o YT T )

If the post-condition includes

z(o) = x(o)
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(the top diagram), then the precondition would include the
same clause (by axiom 5), again implying the top diagram of the
precondition.

In general an assertion about a structure can be satisfied
by a number of different structures; in a proof the assertion must
restrict the number of possible structures sufficiently to deduce the

required assertions. For example, if the clause
z(o) = y(o)
was omitted from the post-condition, then we would have as pre-condition

tL z(o) = x(o) or z(o) = x(o).

2. Consider the statement

y <« tete x
with post-condition

Q: y(o} = x(o).
Pictorially the post-condition is

X
T
Then Qg,: y(c') = x(c")

but x(o') = x(o) axiom 6



y(o') = tete x(o).
Thus the precondition is
t2tl x(o) = x(o)

which is pictorially

x, V¥ x

)
1 or

Intuitively, if the assignment statement causes y and x

163.

to refer

to the same cell, after it is executed, then t&€tL x must have

refered to the same cell as x before the assignment.

3. Consider the statement

y < cons{a,cons(b,x))
with post-condition

tete y(o) = z(o).
Then the precondition is

c

Qo': tetl y(o') = z(c')

where

tetl y(o') = x(o) Axiom 6

z(c') = z(o) Axiom 6
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so the precondition reduces to
x(o) = z(0). 0

The generality of the type definition allows for the
expression of more powerful conditions than were illustrated in the
above examples. It is possible to relate values in a structure to the
values held in the structure after the structure has been updated.

For example, suppose % is a structure represented

diagramatically as follows:

o [T T =P —[

1 2 n-1 n

Suppose that at some stage in the execution of a program, 9 has been

updated to o, which is represented as:

X y z
0 Lo , ———.)q-;-.e
\/r \/
1 2 m m+1 n

We have associated an index with each cell because the diagram is

insufficient to capture certain aspects of the structure. For
~example, in o we wish to imply that z and y are in some sense

adjacent. That is, the cell referred to by z in o was referred by

the t& in 9 of the cell y refers to in o. That is

te(y(o))(og) = z(o).
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With a less abstract underlying semantics, it would be necessary to
identify the cells (as we have in the diagram) and argue that if

id(y) = X1 id(z) = Xo in o, then in 9
tﬂ(x]) = Xy

The necessity for this type of identification, we believe, leads to a
more notationally complex statement of assertions as wéll as more
complex proof rules.

The generality of the type 1inked-1ist defined in chapter
3, together with the treatment of references, allows for a fairly
direct way to state assertions of programs manipulating the type.
This is illustrated with a simple program (from Burstall [ 9]) which

reverses a list in place.

reverse(k,j); { Qp}

J o« nil; (0}
while k = nil  do {Q,}
i« te ks {Qg)
te ok« §; {Qy)

J + ks {Qg}
k « i3 {Qg}
end { Q;}

Let TL ={tf£}. Then TL* 1is the free monoid on TL, that is,

expressions of arbitrary finite length composed of t£. Let X denote
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the empty string, and define LY = TLx - (). I p e TL*, then
the Tength of p, |p| is defined by |A| =0, |t&p| =1+ [p|. We
write t£" to denote the element p e TL* such that |[p| = n. Hence
tﬂo = A. Now the requirement for the program reverse is that the Tist
referenced by k be reversed "in place" and the resultant list be
referenced by j. It is possible to state this assertion in terms
of the elements in the head of each cell of the Tist, as is done for
example in Burstall, but this in itself does not express the fact
that the reversal is in place. Instead, we define for o
Reverse(k,j) = 3myn <m - th'n_1j(c) = tznk(oo) to denote the fact
that the 1ist referenced by j in o 1is the in place reverse‘of
the 1ist referenced by k in 9 (nym € N+ the set of non-negative
integers). This is not quite sufficient for the post-condition,
however, since j might not be at the "end" of the 1ist. Hence
we need also tﬂmk(co) = nil. Thus we have

0y: I <m-tf" " 5(0) = tek(0g) & t£K(oy) = nil.

The following predicates are also needed for the proof:

Unchanged(k): vp e TL* - p(k(o))(og) = pk{o)
Distinct(j,k): Vpyspy € TL* - p]j(c) # pzk(o)
Noncircular(k): vp e TL* - pk(o) = k(o).

Unchanged(k) expresses the fact that the tails of each cell in the
list refered to by k in o are not changed from their original

values. Distinct(j,k) says that there is no sharing between j and
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k. Finally Noncircular(k) says that the list k is not circular.

The assertions are

Qp° Noncircular(K)

Q]: Unchanged(k) & Noncircular(k) & j(o) = nil

Qp: (The invariant) Unchanged(k) & Noncircular(k) & Distinct(j,k)
& Reverse(k,j) & j(o') = nil => tﬁ(j(c))(co) = k(o)

Q3: Q & i(o) = t& k(o)

Qp: Unchanged(i) & Noncircular(i) & Distinct(k,i) & Reverse(k,k)
& te(k(o))(og) = i(o)

Q: Qy & jlo) = k(o)

06: Q) (the invariant)

Q7: as given above

Pictorally, the invariant 02 is
j k

A

v’ ....\_/I
The expression tﬂ(j(c))(oo) = k(o) illustrates the flavour of the
assertion: it asserts that the tail of the cell referred to in o
by J originally contained a reference to the cell now referred to

by k. The proof of this program is straightforward, and (usually)
proceeds by showing that Q; => Qi+1(o') where Q(c') denotes

le'

1. Note that Q0 can be expressed in terms of 0y
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Noncircular(k): vp « Lt . pk(oo) 2 k(co).
Q] is Unchanged(k) & Noncircular(k) & j(o) = nil.

Thus we get

Q') ¥p e TL* plk(s'))(og) = pk(c")
& Vp e " pk(c') = k(c")

& jlo') = nil

Now by axiom6, j(o') = nil, k(c') = k(oo) % pk(c') = pk(on). Hence

Q](o') = ¥Yp e TL* pk(oo) = pk(oo)
& Vp e TL* pk(oo) # k(oo)
& j(oo) = nil

which clearly reduces to Noncircular(k).

2. We must show that Q] & k(o) = nil => Q- Distinct(j,k) holds
vacuously, and Reverse(k,j) holds vacuously with m = 0. Also,

jlo) = nil, so j(o') = nil => tﬁ(j(o))(oo) = k(o) holds vacuously.

3. Q, » Q3(0')-
But Q3(0') = 02(0') & i(c') = t£ k(o')

Applying axiom 4 and since i does not appear in Q2, we have
Qz(o') = QZ’ while i(o') = t& k{o) and t& k(c') = t€ k(o). Hence

Q3(c') = Q, as required.
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4. We must show that
03 => Q4(0')s

where o' = «(tL k,j,o).

(i) Unchanged(i). We must show that

Q3 =>Vp e TL* -p(i(0'))(o4) = pi(c")
From Q35 Vp e TL* -p(k(c))(oo) = pk(o) & i(c) = t€ k(o)
=> Yp e TL* -p(tL k(0))(o4) = pte k(o)
since tﬂ(k(o))(oo) = t2 k(o)
=> VYp e TL*. p(i(o))(co) = pi(c}) since (o) = t& k(o)

Y pk(o) = k(o)

=> VYp e TL* pte k(o) = k(o)

Now from 03, Vp e TL

=> Vp e TL* pi(o) = k(o) (*)

Hence Yp e TL* - pi(c') = pi(o) axiom 9 (**)
Thus

Yp e TL* -p(i(o'))(oo) = pi(oc') from axiom 5 and the
above derivation.

Hence Unchanged(i).
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(i§) Noncircular(i). From (*) we have
¥p ¢ TL* + pi(c) = k(o)
=> VYp e Tt . pi(c) = t& k(o) applying t£ to both sides
=> ¥pe TLY « pio') = i(c’) since i(o) = t& k(o)
and by axiom 5 and (**).

Hence Noncircular(i).

(iii) Distinct(k,i). We must show that

VP] sPp € TL* - P}k(c) z Pz'i (o)
From Q3, Vp],pz e TL* - p]j(c) 2 pzk(c) & t& k(o) = i(o)

Vp.l 2Py € TL* - P1j(0) # )021(0)
=>  Ypapy € TL* * prilo) = pyilat) by (**)

But Yp ¢ TL*, pte k(c') = pj(c) by axiom 9 and Distinct(J,k)
=> VYp,py ¢ TL¥ + prtL k(o') = p,ilc’)
Now Noncircular(k) gives us
+
Yp e TL' + pk(o} = k(o)

Hence in particular pte k(o) # k(o)
=> pi(o) = k(o) since t& k(o) = i(o)

=> pi(c') # k(c') by(**) and axiom 9.

Thus Vp],pz e TL* p]k(o') z pzi(c') which is Distinct(k,i).
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(iv) Reverse(k,k). We must show that
amvn <m - 2" k(o) = tek(o,)

Now te™ " T(te k(6'))(0') = 8" " V(i (6)) (') by axiom 9
tzm'n'](j(c))(c) by axiom 9

since Distinct(j,k)(***)

Now from Q3, Reverse(j,k) is

Im¥n <m - tﬂm-n—]j(o) = tﬂnk(co) (Frkx)
=> Imvn <m - 8" (te k(s'))(0") = tKnk(oo) by (***)
=> 3nn <m - t€""k(o") = (o)
Also, tﬂ(j(c))(co) = k(o) from 03 if jo) = nil

=>  te(tf™ k(o)) (op) = klo)  from (¥¥)

=> tﬂmk(oo) = k{(c') notation and axiom 5.

Hence CIm'Yn <m' - tﬂm"n']k(o') = tznk(oo) where m'=m+1.
This is Reverse(k,k). If j(o) = nil, then the result hodds

vacaously with m = 0.

v) Finally, it must be shown that

Q3 => tﬂ(k(U'))(OO) = 1(0')
Now tL(k(o))(oO) = t€ k(o) from Unchanged (k)
=> tK(k(o'))(cO) = t& k(o) by axiom5

=> tﬂ(k(c'))(ﬁo) = i(c') since i(c) = t& k(o) and i(c) = i(c').
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5. We must show that Q, =>Q,(c") & jlo') = k(c').
where o' = «(j,k,o).
Note that j does not occur in Q4, S0 Q4 => Q4(o') by axiom 6

successively applied. Furthermore

jlc') = k(o) by axiom 6.
and k(o")

k(c) by axiom 6.

6. We must show that Q5 => Qz(o')

where o' = «(k,i,0).

That is, that Unchanged(i) & Noncircular(i) & Distinct(k,1i)
& Reverse(k,k) & j(o) = tK(k(o))(on) = i(o)

& j(o) = k(o) =>Q,(c").

Now Unchanged(i) => VYp e TL* * p(k(o'))(oo) = pk(c') by axiom 6.
Noncircular(i) => VYp € LY . pk(c') = k(o) by axiom 6.
Distinct(k,i) => Ypy.p, « . pia') = pokio")

since k{o} = j(o) => k(o) = jlo")
and by axiom 6.
Reverse(k,k) => Reverse(k,j) by similar reasoning
Finally tﬁ(k(o))(oo) = i{o)
=> tﬂ(j(o'))(co) = k(o') by the same reasoning.
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7. We must show that Q2 & k = nil => Qy
where 0, s 3mm <m - t£"" (o) = te"k(o,) & te"(oy) = nil.

The first part follows from Reverse(k,j).

The second part follows $ince

t(j (o)) (oy) = k(o)
=> t2(j(0)) ()

=> tﬂ(tﬁm'1k(oo))(co) = nil since Reverse(k,j)

nil  since k(o) = nil.

=> t@mk(oo) = nil. 0

This proof is fairly tedious, since we have been very
thorough. When some confidence in the use of the axioms has been
gained the proof could be shertened. The development of a notational
aid such as the one developed by Reynolds for Arrays (Reynolds [36])
would also help shorten the proof. Nevertheless, we beljeve that
the abstract nature of the model used has made it fairly straight-
forward to reason about programs using linked Tists and that these
arguments are direct. We have illustrated the ease with which the

proof rule can be applied.
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3 Reasoning with the Continuous Model

In the continuous model, a program is viewed as a mapping
p: L->1L

taking one structure to another. We can thus write the same in place

reverse program as a recursive program, namely

F(f) = xe if x{ e) = null then e
else f(R(e))

where Q is the derived operation
R(e) = R(x,1,R(J,x,R(tL x,3,R(i,tL x,e))))

(We use an informal A-notation to denote the argument 1ist structure
to a function).

Now recall that LZ is the canonical z-term algebra for
lists. The elements of L_ maybe thought of as finite or infinite

z
1ists. Then suppose that we have the two functions

append: LZ X LZ > LZ

: L L
reverse: L. > L.

which are the usual functions of LISP, except that append(t],tz) = t]

if t] is infinite. That is

append(x,y) = if x = null then vy
élse cons(hd x, append(tf x,y))
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reverse(x) = if x = null then x

else append(reverse(tf x),hd x)

We assume that x is either null or is a list terminating in
null (or is an infinite "linear" list).

The function f defines a function
]f[j: L Ly
which is the solution of x in f{(L) (i.e. lxlf(L\).
The partial correctness of f 1is dbtained by showing that

b lflJ < e - append(reverse(IX|e )’Ijle) (*)

That is, the solution of j in f(e) must be the reverse of the
solution of x 1in e, appended to the solution of j in .
(This is slightly more general than we actually require: the intent
of the program is to reverse a given list x, and return to solution
as j. If j dis null in e, then we get the required assertion.
The more general form is needed for the correctness proof).

Any induction method could be used to establish the
above relationship. We use the stepwise computational induction of
de Bakker and Scott, which is described in detail, for example, in

Manna [30]. Briefly, the method may be described as follows:

If F <« Ax * 1(F) 1is a recursive program
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and ¢(F) 1is an admissable predicate on F, then if

(i) ¢(Q) 1is true where @ 1is the undefined function

and (i1) vflo(f) =>¢(x(f))]

then ¢(fp) holds, where fp is the least fixed point of the
recursive program F.

In the particular case of (*) it is easily verified that
(*) is admissable. Let append(t],tz) be denoted t] . t2. We

establish that ¢(fp) is true as follows:

(i) o¢(Q) is trivially true
(ii) Suppose that for any f, ¢(f) is true. We must
show that ¢(t(f)) is true. That is, that

|F(f)|j < Ae . append(reverse(|x|s »|ils) -

Now F(f) = xe - if x(e) = null then e
else f(ﬁ(e)).

Hence

-n
—
-
~—
il
>
D
—
-+

x(e) = null then [j[e
else |f[R(e))],

IA
>
(4]
—
-4
x
—
[0
~

= null then [j[e

else append(reverse(lxlﬁ(e)),Ijlﬁ(e))

by induction.
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We claim that this is append(reverse(|x|.).|i],) since

(i) If x{e) = null, then

append(reverse(|x|g)s|ily) = append(nult, [j],)

= |j|e as required.

(ii) If x(e) = null, say e is
x=a -t (cons(a,t1))
j=t,
where t],t2 € CTZ(x), then

append(reverse(lxle),ljle) = reverse(a-ltlle)°ljle

reverse(a-|t1|e)"t2|e

reverse(lt]le)-a-ltzle

Now suppose that t] and t2 do not contain any variables. Then
reverse(|t1|e) -a - |t2|e = reverse(t]) tat,.

Also, if x(e) = null, and if e' = ﬁ(e) , then e' 1is given by

by a simple "simulation" of ﬁ. Then

append(reverse(lee.),ljle.)

reverse(|t;[4.) - [l

reverse(f]) .a - t2 as required.
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The condition that t],t2 contain no variables may be
viewed as the "input" condition. In fact a weaker condition could

have been used, namely that

It

It]le ]Iel

and |t

]
s

Zle Zlel
which would be satisfied for example if the variables 1i,j and x
did not appear in t] and t2.

We have thus shown that

[F(f)]. < re - append(reverse(lxle),]j]e)
and hence that

lfplj < append(reverse(]xle),lj]e).

by induction.

We have in fact only established partial correctness of F.
We would also have to establish that F was defined whenever
ALg - append(reverse(]xle),|j|e) was to establish equality. There
are also different possible choices for the partial order < used.
The most appropriate choice for the particular function used here is

that
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iff t] = t2 or t] = 3. If we use the usual ordering on lists,
then we have only established that the list returned by f is "less
than or equal to" append(reverse(lxle),Ijle) , and some additional
work would be required to establish equality.

Because we have shown that the Q-algebra LIST is continuous,

we can view programs as being continoous mappings
f: L > L

and hence use any induction technique defined for continaous functions.
An interesting topic for further study is the development of such

proof techniques for list structures with sharing. In the case of

the "in place" reverse program presented above, the proof of
correctness using the continuous model was much shorter than the
invariant assertion proof using linked lists. To what extent can
induction rules be used to prove correctness of hore complex programs
with sharing? Is it possible to prove equivalence of programs not

in the strong sense, but in the sense that for any input structure

some particular components-of the output have the same solution

in L ?
in L1
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4 Relation to Other Work

We have shown how the two semantic models developed in this
thesis may be used to prove correctness 6f programs that manipulate
data types with sharing and circularity. We believe that the
reference model has the same expressive power as the graph - theoretic
model of Oppen and Cook [31] but with a much simplified proof rule,
and hence allowing for simpler proofs. The reference model is not
restricted to any subclass of linked 1lists and in fact can be used
to describe arbitrary graphs with two outedges. It can also be
simply extended to cells with n parts by defining a family of

cons functions
c,: cel1” > cell
and projection functions

a?: Cell x Struct ~ Cell

in a way similar for example to Elgot [14]. The purpose of the work on
the reference model was not to present a proof method, but rather to
describe the abstract semantics of references. These semantics could be
used as the basis for proof systems, or could be used directly with the
proof rule, as discussed in section 2 of this chapter. The proof system
thus obtained can be used for arbitrary programs using the type,
including the programs presented by Burstall in [9]. We believe that

such proofs will be easier than "ad hoc" proofs based on a more
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operational semantics, although perhaps not as concise as the proofs
in Burstall [9]. However, it seems possible that a general proof
system with the same power as Kowaltowski's [25] system, but with
simpler notation, could be developed. The proof rule for the type is
in some sense standard since it is a generalized back substitution

rule, and there may be no need to derive a more complex rule.

The difficulty with all the models based on the Scott-
Strachey or graph theoretic models seems to arise because of the
non-abstract nature of the underlying model. This situation seems
analogous to the difference arising from operational versus
denotational models of program semantics. The operational or non-abstract
models have the disadvantage of needing non-essential details for
proofs. The abstract models are easier to work with because of the
absence of these details and because the correct high Tevel concepts
have been captured.

Very Tittle work on treating shared data types in a
continuous setting has been done. Reynolds in [35] has
illustrated the inverse T1imit approach to defining a domain which
may be regarded as containing infinite lists but no attempt has been
made in that work to discuss sharing. As far as we are aware, no

other author has defined shared structures as a continuous algebra

or continuous lattice.
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The problem of finding the initial algebra in an equationally
defined class of continuous algebras has been investigated by ADJ[3]
and Courcelle and Nivat [12]. In [3] ADJ investigate rational algebraic
theories rather than the less general continuous algebras and obtain a
characterization of the initial theory in the class of all rational
theories satisfying a set of equations. This characterization is similar
to the quotient characterization described in chapter 3, but 1is stated
in terms of theories and is therefore intuitively further from the
characterization of non-continuous data types as a quotient of TZ
than the result using normal forms given in this thesis. Courcelle and
Nivat [12] follow the route of "completions" by completing chains and
hence obtaining initiality. The interest is, however, the equivalence

of programs rather than the characterization of data types.

5 Future Research

We believe that the reference model can be used as the basis
of a language for the verification of much more complex programs
than the one presented in chapter 5. For example, it would be
interesting to attempt a proof of the marking algorithm (Knuth
[24]) or other linked 1ist programs. Possibly a more graphic
language for list structures could be developed, similar to Reyno]d%
language for arrays [36]. It was indicated in chapter 3
that the technique for including variables and their bindings in
the specification of 1inked 1ists could also be used for other
types, such as stacks. To what extent would this allow the formation

of a proof rule for the types?
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The continuous model could be a fruitful starting point

for a more general analysis of sharing, for example as in functions

of "higher level" (Maibaum and Lucena L29]). The important topic of
sharing in parallel processing may also be amenable to treatment with
an approach similar to that used for defining continuous types. Some
more specific question include the foliowing:
+Is it possible to find necessary and sufficient conditions
for a class of algebras satisfying a set of equations to
have an initial algebra?
‘Is it possible to find a sufficient condition which is
weaker than the existence of a normal form function?
‘Can the results of characterizing the congruence g for
a regular set of equations e be generalized for a set
of recursive equations (which may not be regular)? Is
there anything to be gained by extending the results in this
way to functions that may be regarded as non-nullary
operators?
.Can the continuous model be used for the non-recursive
verification methods such as invariant assertions or
intermittent assertions?
‘Is it possible to establish correctness 6f the type LIST,

for example by comparing it to a more operational type?

We believe that these and other questions could provide
some valuable insight into the verification of programs which use

data types; the study of data types with sharing; and the study of
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continuous data types, such as "control" data types. ‘Goguen [ 16]
has suggested that it is possible to treat procedures and control
structures in a way that is uniform with the treatment of data types.
Thus we could view a program as being a derived operator over an
algebra with a continuous domain, and whose operators are the control
structures. The results in chapter 4 could be a starting point for
investigation of such "control types".

We believe it would be a worthwhile exercise to extend the
characterization theorem (theorem 4.12) to recursive equations (from
regular equations), since such an extension might allow control

structures such as while to be written as "recursive" axioms.
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