bARTMENT
PARTMENT
PARTMENT

R
CE DE

Q000

36

WATERL
WATERLOO C

WATERE

LLLLLL LL

/8
Y
YO

SIT

Two Iteration Theorems
for the
LL(k) Languages

John C. Beatty

CS-78-24

July, 1978

Two Iteration Theorems
for the

LL(k) Languages

John C. Beatty

30 July 1978

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

ond

Graphics Group
Lawrence Livermore Laboratory
Livermore, California, USA 94550

TWO ITERATION THEOREMS FOR THE
LL(k) LANGUAGES"

John C. BEATTY
Dept. of Computer Science, University of Waterloo, Ontario N2L 3G1, CANADA &
Graphics Croup, Lawrence Livermore Laboratory, Livermore, California 94550, USA

Abstraot. The structure of derivation trees over an LL(k) grammar is explored
and a property of these trees obtained which is shown to characterize the LL(k)
grammars. This characterization, called the LL(k) Left Part Theorem, makes it
possible to establish a pair of iteration theorems for the LL(k) languages. These
theorems provide a general and powerful method of showing that a language is
not LI{k) when that is the case. They thus provide for the first time a flexible
tool with which to explore the structure of the LL{(k) languages and with which
to discriminate between the LL(k) and LR(k) language classes.

Examples are given of LR(k) languag_es which, for various reasons, fail to be
LL{k). Easy and rigorous proofs to this effect are given using our LL(k) iteration
theorems. In particular, it is proven that the dangling—ELSE construct allowed in
PL/I and Pascal cannot be generated by any LL(k) grammar. We also give a new
and straightforward proof based on the LL(k) Left Part Theorem that every LL(k)
grammar is LR(k).

1. Introduction

The classical pumping lemma [3] and Ogden’s lemma [19] are among
the most powerful tools we possess for proving that languages are not
context—free. Hence one goal of recent research has been to obtain
analogous theorems for subclasses of the context—free languages. Thus
Ogden [18] gives an iteration theorem for the deterministic context—free
languages, Harrison and Havel have established an iteration theorem for
the family of strict deterministic languages [11] which is also extendible
to the context—free languages, and Boasson has established an iteration

theorem for the one—counter languages [6]. More recently King has
* Research supported by the U. S. Earth Resources and Development Administration
under Contract No. W-7405-Eng—48 and by the National Research Council of Canada
under grant 126-6028.

J. C. Beatty 3

then the derivation is leftmost. By =" we mean a derivation of exactly n
steps, for any n2z 0, while Z)IL1 denotes a leftmost derivation of exactly n
steps. The relations =, :>; and é*, etc., are similarly defined. If we
use a Greek letter such as 7 (for example: =>7J) which is constrained to
belong to P* then m represents the sequence of rules (possibly null) by

which the derivation proceeds.

We will say that an occurrence of the symbol X € L is exposed at
the (n+1)st step of the leftmost derivation
S =>r: WAy =, wBy
if X appears somcwhere in By and there are no variables anywhere to
the left of X in B7.

The context—free language (cfl) £(G) generated by G is exactly the
set of terminal strings which can be derived from the start symbol S.
Similarly, if a € v* then f(a) is the set of terminal strings which can
be derived from o. The left sentential forms of G are exactly those
strings of terminals and nonterminals which can be generated from S by

a leftmost derivation.

G is said to be unambiguous if no string in £(G) has more than one

distinct leftmost derivation. Otherwise G is said to be ambiguous.

The null string is written A. The length of a string x is written |xI.
Thus |A] = 0.

A variable A of G is said to be reduced iff A derives at least one
terminal string and itself appears in some string of terminals and
nonterminals which can be derived from S. G is said to be reduced iff

either the variables of G are all reduced or P =f.

A variable A of G is said to be left recursive iff A:>+Aﬁ for some
string 8 € v*. G is left recursive iff some variable A of G is left

recursive.

If w is a string and k a non—negative integer then w/k is the first
k symbols of w if |w|>k and is w itself if |w|<k. More generally, for a
cfg G =(N,Z,P,3) we define
prt () = { wes
(lw} < k and B8 =>* w) or
(lw] = k and B8 =>* wy for some y € =h }

Two Iteration Theorems for the LL({k) Languages 4

* . .
for any f € V. fimsf, is extended to sets in the usual way.

Nexl we review pertinent facts about LL(k) grammars.

Definition 1.1. A cfg G = (N,Z,P,S) is LL(k) iff for any A € N; w, x, v €

* *
25 B8, 8, v € V; and any two derivations

3 *
S :>¥ wAy = why :})[;< WX
S = wAy =, Wy =, wy

for which x/k = y/k we necessarily have g = f’. A language is LL(k) iff it

is generated by an LL{(k) grammar.

The following results are well-known or easily proven [56]. They will

be used subsequently and are stated here for convenience.
Theorem 1.2. [21] No LL(k) grammar is ambiguous.
Theorem 1.8. [21] No LL(k) grammar is left recursive.

Theorem 1.4. Let G = (N,%,P,S) be a cfg. G is an Ll(k) grammar iff for
any A € N; w, x, y € 2*; g, B 7, ¥ € V*; and any two derivations
*
3 :>i WAy = wly =
S = wAy =S Wy = wy

wX

LA

for which x/k =y/k we necessarily have g = §".
M

Theorem 1.4 allows the right context » of A in the two derivations of
definition 1.1 to differ. Definition 1.1 is taken from Aho and Ullman [2];
theorem 1.4 is actually the LL(k) definition used by Rosenkrantz and
Stearns [21].

Theorem 1.5. [2] Let G = (N,Z,P,S) be a cfg. G is an LL(k) grammar iff
given any AEN, w EE*, and 7EV* such that S::;:WA'}/, we have
f”"ﬁtk(ﬁ7) N f‘.”‘“tk(lg/?’) =g

for every distinct pair of rules A~ g and A~ g8 in P.

Theorem 1.8. let G = (N,2,P,S) be a cfg. G is an LL(k) grammar iff
given
*
(1) w € /L-:atk(z)
(2y x € %
(3) A € N

then there exists at most one rule A - g in P such that

J. C. Beatty 5

(4) 8 =" xAw,

(5) A = 8 3w,

(6) (Wlwg)/k = w
for any w;, w, € Z*.

This was the definition of LL(k) grammars used by Lewis and Stearns
[15].
The following special version of the LL(k) definition will be useful in

section 3.

Theorem 1.7. Let G = (N,Z,P,3) be a reduced cfg. G is an LL(k) grammar
iff for any A € N; w, x, y € E*; g, B, v € V*; and any two derivations
S =>? wAy = wfy =>: WX
S S wAy =, W'y ;\: wy
for which x/k = y/k we necessarily have g = §°. (Notice that wAy is

derived in n steps in both derivations.)

Proof: A proof in the forward direction is trivial. To establish the
reverse direction, suppose that G is not LL(k), but that the existence of
two such derivations necessarily forces g = f°. Since G is not LL(k) it
follows from theorem 1.5 that there exist strings A € N; w, x, y € E*;
B, B, v € V*; such that S@:wAy and

st (By) N firsd (B7y) * £ (1)
for some distinct pair of rules A - g8 and A - g’
strings in £(By) and <£(B’y), respectively, such that x/k = y/k and
suppose that S derives wAy leftmost in n steps. Then

S = wAy =, wBy :>: WX

3 :53 wAy =, wf’y #: wy
where x/k = y/k. By hypothesis we must have g = g’, which is a

in P. Let x and y be

contradiction. Hence G must be LL(k). =

Theorem 1.8. let G = (N,L,P,S) be a reduced LL(k) grammar. Let
G, = (NJ£,P,A) be the grammar formed from G by changing the start
symbol from S to A, for any variable A of G. Then G, is also an LL(k)

grammar.

Proof: Suppose that G, were not LL(k). Then for some x, y,, y, € E*;

6, B, v € V*; B & N; there must exist two derivations

Two Iteration Theorems for the LI(k) Languages 6

*
L

. *

A= xBy = xfy =, xvy,
* *

A = xBy = xf7 =, Xy,

in G, with yl/k = yz/k and g # g°. But this is also a derivation in G.
Since G is reduced, there also exists in G a derivation sequence
SZ}t wAd for some w € ¥ and 6 € V'. We obtain the following
derivations in G:

* *
L L

S =, wAé = wxByd = wxfyd :>: WXy, 2
S :>t wAd =>: wxByd =, wxpf'yo =>: WXY o7

where z is any string derived from &. Recall that y,/k =y,/k. If ly,|<k
or |y,l <k then we must have y, =y, in which case (y;z)/k = (yzz)/k. If
both y, and y, are of length k or greater then again (y,z)/k = (ygz)/k.
Since G is LL(k), we must therefore have B = g°, which is a contradic-

tion. Therefore G, must also be LL(k). =

We also need to introduce LR(k) grammars. We use the definition

suggested by Geller and Harrison [10].

Definition 1.9. A cfg G = (N,X,P,S) is LR(k) for some k20 iff SZ}ES is
impossible in G and for any w, w’, x € E*; a, o, B E V*; A, A € N;
and derivations

S :>: aAW = afw

S é’: AAX =y a’fx = afw’
if w/k=w"/k then (A-g,lafl) = (A= la"B’l).

2. Trees

Following Harrison and Havel [11] we semi-formally develop the
notion of trees, particularly derivation trees, and their properties. Our
presentation is a compromise between the demands of rigor and a
desire not to entirely sacrifice comprehensibility and intuition. To this

end we will occasionally make informal use of pictures.

For our purposes a (free T is an acyclic, connected graph defined by
a pair of sets (V,&), where ' is a set of nodes and & is a set of edges
(x,y) € UxV, in which all nodes save one (the root mode of T, writllen
#n(T)) have exactly onc entering edge; the root node has no entering

edges. For example, the tree in figure 1 is defined by

({xgxpxgxghs L (xpxp) (xgxXp)s (xgoxg) ¥)

J. C. Beatty 7

Fig. 1. Fig. 2.

The edges (x,y) in & define the immediate descendency relation M x is
a parent of y and y is a child of x. In figure 1 we have x, [x; but not
x; [x,. The reflexive transitive closure M of I is called the
descendancy relation. There is a path from node x to node y iff x M*y.
Thus in figure 1 there is a path from x; to x5 since x, I_*xa, but no
path from x5 to x,. If n(T) My then y is said to be at depth i in T.
The height of T is the length of a longest path in T; it is thus equal to
the depth of a deepest node.

A node x is internal iff there exists a node y such that xT y.

Otherwise x is a leaf, and has no children.

We will need a left to right ordering of the nodes in a tree. For this
reason we assume that & is actually a sequence of edges so that we
may define an additional relation ™ on the nodes of a tree in the
following way. If the r edges leaving an arbitrary node x are listed in &
in the order (xy,), ---, (x,y,) then y, m y, m.-- N y_and the edges
will be drawn left to right according to this ordering, as in figure 2.
Furthermore, if pl y and there does not exist any node x such that
x My then ply (y is a leftmost child of p). The relation [is defined
similarly. Finally, we write x L y iff (x,y) € ("H*m (), so that x Ly iff
there are no nodes between x and y. The reflexive transitive closure
L* of L then defines the notion of left to right order in T. (The
relations I and L are identical to the relations represented by these
symbols in Harrison and Havel [11].) If we list the leaves {;, -+, { of
T in left to right order, which is to say that

llLlZL--- L <
then we obtain the left to right sequence of nodes

loaves(T) = (4y, by -+)

Two Iteration Theorems for the LI(k) lLanguages 8

Let us adopt the convention that if we list the nodes in a subtree 7
of T then edges between those nodes in T are implicitly the edges of T~
(the induced subtree). Then for any internal node x of the tree T the
set { v | x=y or x[y } defines the elementary subiree of T with root
z. Also, if x is a node of T then we define T, to be the largest induced

subtree of T whose root is x. More precisely,

TX={ylyisanodeof?‘andxr*y}

Since our trees represent context—free derivations we will want each
node to represent a grammar symbol or, perhaps, A. Furthermore, it is
often desirable to distinguish between a node and the symbol it
represents since several nodes may represent the same grammar symbol.
Hence we define a labeled tree to be a tree T = (1},8) together with a
labeling function A from U into a finite set & of labels such that
VP N¥ =¢@. The labeling function A is then extended to sequences of
nodes in the obvious way. Our labels will always be drawn from some
set V, =V U {A}, where V is the vocabulary of some cfg. Of particular
interest are the root label and frontier of T:

#(T) = M #n(T))
[H(T) = A laves(T))

Let G =(N,Z,P,S) be a context—free grammar, and let T be a labeled
tree for which the labels are symbols from V, T is said to be a
grammatical tree iff fn(T) € =% and either

T is a trivial tree consisting of a single labeled node
or

for every internal node x in T, if y, ---, y. are all of x's

children in left to right order then A(x) - Ay,)---My,) is a rule

of G and A(y,)=A iff 1 =i=r.

Leaves which are labeled with terminals are referred to as terminal
nodes. Leaves which are labeled with A are called A—nodes. Observe that
a node x is internal iff A(x) € N. A grammatical tree T is said to be a
derivation tree iff +#(T) = S.

Figure 3, for example, displays a grammatical tree over the
context—free grammar S - aSbS | A. Occasionally we will omit the names
of nodes in a grammatical tree, leaving only the labels, in which case

the trce of figure 3 would appear as in figure 4.

J. C. Beatty 9

N,

A A
Fig. 3. A grammatical tree in which Fig. 4. A grammatical tree in which
we distinguish nodes and labels. nodes and labels are not distinguished.

The sentential forms which appear in a derivation are embedded in a
natural way in the grammatical tree representing that derivation. We
represent this embedding by means of cross sections (Cs’s) and
canonical cross sections, which we define inductively for a tree T by the
following:

(1) n = (xy), where x, =#n(T), is a cross section at level O.

(2) Let 1 = (x,-*.,%X},***,X) be a cross section of level { and let

X, be an internal node of T. If y,,---,y, are all the children

of x, in left to right order then

m = (X XY YK)

is a cross section of level {+1.
(x,) is also said to be a left canonical cross section (LCCSY of T. If n is
a LCCS of 7 and x,, the node which is replaced, is the leftmost internal
node of 7, then 7’ is also a left canonical cross secticn of T. Right
canonical cross sections (RCCS’s) are defined analogously. For readability

we may sometimes write (x; x5 --* X instead of (x,Xg %X

m) m)-
For example, in the grammatical tree of figure 3 (Xy Xg Xz X,) is
a LCCS, (x, x, Xg Xg) is a CS but not a LCCS and ((xy X5 Xy X4) I8

neither a LCCS nor a CS.

The following properties of cross sections are intuitive. Consequently
we state them without proof, though in an order convenient for rigorous

development. More detail may be found in (51

Faot 2.1. Let 7 = (x, ---,X,) be a cross section of some tree T. Then

€1 <
xiinH, 1<12<m.

Two Iteration Theorems for the LL(k) Languages 10

Fact 2.2. No node of any tree T appears more than once in any one

cross scction of T.

Facot 2.3. [11] No two distinct LCCS’s of a grammatical tree can be of

the same level.
Fact 2.4. The level associated with any cross section is unique.

Faot 2.6. Let T be a tree and let n be a node in T. Then n appears in
at least one LCCS (respectively CS) of T. Moreover, we may assume that
there are no internal nodes to the left (respectively to the left and

right) of n in this cross section.
Fact 2.8. Let T be a tree. Then feaves(T) is a LCCS of T.

Next we delineate the relationship between cross sections and
sentential forms. First we describe how to pass from cross sections to

derivations.

Fact 2.7. Let G = (N,2,P,S) be a cfg and let T be a grammatical tree
over G. If n is a cross section of T at level { then mﬂ(?)ff An).

We have a stronger result for canonical cross sections.

Faot 2.8. Let G = (N,2,P,3) be a cfg and let T be a grammatical tree
over G. If n and 7n° are LCCS’s of level { and {(+i, for any { and 1 > O,
then)\(n):}{)\(n’). If n and n° are instead RCCS’s then)\(n):%)\(n’).

This result does not hold for cross sections in general. In figure 5
the cross section
n = (Xy Xg X3 Xy Xg X3 X,)
is at level 3 and the cross section

’

n'= (X X5 Xg Xy Xyy Xg Xg X5 Xy X5)
is at level 6, but A(n) = aabSbS cannot possibly derive A(n") = aaSbbab,
the S in aaSbbab already having been erased in aabSbS.

Fact 2.9. [11] Let T be a derivation tree over some unambiguous cfg
and lel m and 6 be two LCCS’s (or RCCS’s) in T. If A(n) = A(f) then
n = 0.

J. C. Beatty 11

We pass from derivations to cross sections via the next two results.

Faot 2.10. Let G = (N,Z,P,S) be a cfg and let A=t a=>*w, where A is a
variable, a € V' and w is a string of terminals. Then there exists a
grammatical tree T containing a cross section m of level i such that
H(T) = A, ﬁt(?‘) =w and A(n) = a. Moreover, if the derivation is leftmost
or rightmost then 7 1is respectively a left or right canonical cross

section of T.

If we are dealing with an unambiguous grammar then we can prove

a stronger result.

Faot 2.11. [et G = (N,I,P,S) be an unambiguous cfg and T a
grammatical tree over G. If rd(T)=>ia=>*oﬂn(‘T), where a € V*, then there
exists a cross section 7 at level 1 in T such that A(n) = a. Moreover, if
the derivation is leftmost or rightmost then 7 is respectively a left or

right canonical cross section of T.

In developing our arguments we will need to disassemble and
reassemble derivation trees and cross sections in a highly specialized
manner. Hence we next define the tree fragments about which we will

be speaking.

Definition 2.12. Let T be a grammatical tree such that Iﬁ(?‘)l =m. Let
Yyt ¥, be a complete left to right sequence of the terminal nodes of

T. If n lies in the range !<ns<m then

Two Iteration Theorems for the LL(k) Languages 12

[nlg

{x1]x L*f""yn *
flp = Il U {x 1 3b €T st daT)M*bTM*y_ and b x 3

o)y = {93 = (4,¢) and for n>m, [ly = by = ¢ [nly is called a left
[n]-part of ¥ and ("7 is called a left {n}—part of T. Thus if p is the
root~leaf path to the n'? terminal node (counting from the left), then
[nle consists of those nodes which are on or left of p, while
consists of those nodes of T which are left of p, or on p, or are right
of p and have a parent on p. For example, in figures 7 and 8 we see in
bold the left [4]-part and left {4}-part of the tree in figure 6. (Qur
left []-parts correspond to the left parts defined by Harrison and Havel

(11])

Next we establish those properties of left parts which will be needed

later.

Theorem 2.18. [11] Let 5 be a RCCS of the grammatical tree T and let
n be a positive integer. The restriction of n to [nle is a RCCS of [nlg.

Theorem 2.14. let 7 be a LCCS of the grammatical tree T at level (
and let n be a positive integer. If the restriction nn° of 7 to {npg
contains an internal node of T then 7" =7 and 7’ is a LCCS of level (
in (V. (Refer to figures 9 and 10.)

Proof: The proof proceeds by means of an induction on {.

Basis ({ = 0): Let x, = n(T). We must have 7 = (x,), since this is the
only LCCS of T having level 0. If the restriction of 7 to {n}7 contains an
internal node then it must contain x, in which case the restriction is

exactly 7m, which is by definition a LCCS of {nkg for every nz 1,

Induction Step: We assume that the theorem is true for LCCS’s having
level ¢ or less and extend the theorem to LCCS’s having level {(+1. Let 7
be a LCCS of level {(+1 and let 8 be the LCCS of level { from which it is
obtained. Let
6 = (z -z
n o= (2, - Ty Xy X Ty %)
so that Zg is the leftmost internal node of 0. The leftmost internal node
of 17 belongs to W7 since our hypothesis is that Lhe restriction of 7

contains at least onec internal node. It follows that if one of Xpsotey Xg is

J. C. Beatty 13

<exp>\
<next>\ <exp> - id <next>
<exp> | (<exp>)
\<next> <next> - + <exp>

<exp> <exp | * <6Xp>

| (<exp> , <exp>)
<next> <next> A
id * id (id y

Fig. 6. The derivation tree T for id*id(id,id), over the indicated grammar.

<exp>

t <next>

id + id (id A, id A)

ntf terminal node n'! terminal node

Fig. 9, illustrating theorem 2.14. The restriction 7" of 7 to
{0} contains an internal node of T. Consequently 7° =7 and
n is a LCCS of {nty.

Two Iteration Theorems for the LI{k} Languages 14

the n'® terminal node the n'® terminal node

Fig. 10. In this case the restriction of 7 to {nM does not
contain an internal node of T. Hence the restriction of 7 to
{0}y (encircled above right) need not be a LCCS of {n}g,

the leftmost internal node of 7n then its parent Zg belongs by definition
to {0} If the leftmost internal node of 7 is instead one of zgﬂ,---,zr
then since Zq is left of that node Zg again must belong to . In
cither case & is a LCCS of T at level { whose restriction to {™T contains
the internal node Zge It follows from the induction hypothesis that 8 is
a LCCS of {"'F at level L By definition, then, n is a LCCS of ("7 having
level {+1. In particular the restriction " of 7 to {0}g is in fact 7 itself.

Hence n” =7 and the theorem is established. =

If the restriction of 7 to {n}7 does not contain an internal node
then it need not be a LCCS of (™%, Such a situation is depicted in
figure 10.

Theorem 2.1B. [11] Let T be a grammatical tree over some cfg G, let
n be a positive integer, and let s = |fn(T)|. Let n = (x;---x,) be a RCCS
in [0)p and let Vg tots ¥y be all the leaves of T which are right of x.;
accordingly we assume x Ly L ---Ly,. Then the sequence

6 = (Xy X YotttV)
is a RCCS of 7.

Theorem 2.16. Let T be a grammatical tree and n a positive integer. If
n is a LCCS of ™7 then 7 is a LCCS of T as well.

Proof: The proof is by induction on the level { of 7.

Basis ({ = 0): It must be the case that 7 is the root node, which is a
LCCS of T by definition.

J. C. Beatty 15

Induction Step: Assume that the theorem holds for all LCCS’s of level {
or less. Let 6 be a LCCS of {0} at level (+1 and let n be the LCCS of
{n}7 at level { from which it is formed. By the induction hypothesis n is
a LCCS of T. By definition, then, 8 is a LCCS of 7.

We will need the following special case of theorem Z2.16.

Theorem 2.17. Let G = (N,I,P,S) be a cfg and T a derivation tree over
G. Let n be a positive integer. Then loaves(IMT) is a LCCS of 7.

Proof: According to fact 2.6 leaves(1MT) is a LCCS of {n}e. It then
follows from theorem 2.16 that lwum({“}?') is a LCCS of T as well. =

Finally, we will need to define what it means for trees, or parts of

trees, to be equal.

Definition 2.18. Two trees T and T are said to be structurally
isomorphic, written T ~ 77, iff there exists a bijection T - T°:x » x’
between the nodes of T and 77 such that

e x[y iff x'T y’

e x My iff x’ My’
(Note that we use the symbols [and ™ to represent the descendancy
and left-right relations in both trees.) Intuitively, T and T’ are
identical except for labeling. If the structural isomorphism preserves
labeling (A(x) = A(x’)) then we say that the trees are isomorphic and
write T =T". '

8. A Left Part Theorem

Our goal is to establish iteration theorems for the LL(k) languages.
Qur first such theorem will be founded on an argument about derivation
trees, and in particular on a characterization of derivation trees over
LL{(k) grammars, which is our immediate goal. Our starting point is the

following result, which is analogous to Geller’s Extended LR(k) Theorem

[9].

Theorem 8.1. (The FExtended LL(k) Theorem). Let G = (N,£,P,5) be an
LL(k) grammar. For any A € N; w, X, y € E*; and y € V*, if

Two Iteration Theorems for the li(k) Languages 16

(1) s =>7]T wAYy ﬁt WX

(2) S :>t wy

(3) x/k = y/k
then

(4) S :){r WAy ;3: wy
Proof: Assume for the sake of contradiction that (1), (2) and (3) hold,
but not (4). Since the leftmost derivations of wx and wy have the initial
left sentential form S in common, and (4) does not hold, derivations (1)
and (2) diverge before reaching wAy. Let uBé be the last left sentential
form they have in common (where u € E*, B € N, and § € V*). Then
for some ¢ € P* and v € s* such that w=uv we have

S @Z uBs =, uf6 :>t uvAy :>: uvx = WX

s =7 uBS =, uByd = uvy = wy
for distinct rules B~ g, and B~ g, of G. Since x/k = y/k, we must have
(vx)/k = (vy)/k. It follows that B, = f, since G is LL(k), contradicting the
assumption that uBd is the last common sentential form, so that (4)

must hold. =

This theorem describes a property of derivation trees as well as of
derivations. Let wx and wy be strings in the language generated by an
LL{k) grammar G. Then the portions of the derivation trees T%* and TVY
for wx and wy which have been filled in at the time the last symbol of
w is exposed in leftmost derivations of wx and wy will be the same. Our
left part theorem is a somewhat stronger formalization of this intuition.

It is convenient to begin with the following preliminary result.

Lemma 3.2. Let G = (N,%,P,S) be a reduced LL(k) grammar and let
T and 7’ be two grammatical trees over G such that #(T)=#(T") =B,
where B is a variable, terminal or A. Let n be a non—negative integer. If
for some variable A and terminal strings u, v and v’ such that A:*UBV
and A = uBv we have [/%(T)V:]/(n+k) = %(T')\’/]/(I1+k) then
n+lrg = {n+1}qer

Proof: The proof proceeds by means of an induction on the height A of
the higher of the two trces T and T7. Let +#n(T) = x, and »n(T7) = x;.

Basis (A = 0): Both T and T° consist of a single node. Suppose that
AMxg) = AMx(). Trivially we have T =77, whence {ntlpp = {ntibqe

J. C. Beatty 17

Induction Step: Assume that the lemma is true for trees of height < 4,
and call this assumption hypothesis H. We shall extend H to trees of
height < (A+1).

Without loss of generality assume that 7 has height A+1. Then Xy 1s an
internal node of T so that B &€ N. Since A(xy) = A(xj) and /(T7) € 2

(7" is a grammatical tree) Xy must be an internal node of 7.

Let T be the tree

and let 77 be the tree

Our hypothesis is that
A 3* uBv
A @* uBv’
AMxg) = Mxp) = B
[P(3W)/(ntk) = [f(3)v')/(n+k)

. , *
for some variable A and some u, v, vV € I .

Claim A. The elementary subtrees rooted in x; and x; are isomorphic.

That is,
* s = g’
* Mx;) = A(x)), lgiss
Proof of Claim A: By definition (x,,---,x.) is a CS of T and (x{,:-, x{)

iIs a CS of T’. Hence by fact 2.7
Mxg) = B = A(x, - x,) =* Wy w
Mxp) = B 2 A(x|--x) S5 wiewl,
Since G, is LL(k) (theorem 1.8) and
(wy---wyv)/(n+k) = (w]---w,v')/(n+k)

Two lteration Theorems for the LL(k) Languages

it follows from theorem 1.6 that
Axyeeexg) = A(x] e+ %))

and the claim is established. ©

Claim B. If for some {<s we have
(a) T, =% Lsi<d
(b) lwyeeewy 4l = |wi---wji_| = m<n

then for n’ = n—-m we have {“’H}Tt:{nlﬂ}?‘[’.

Proof of Claim B: Observe that T, and T; have height < h. If we can

satisfy the conditions of hypothesis H then we will immediately obtain

the desired result. If {=s=1 and A(x;) = A then the claim follows

trivially. We may therefore assume that x, is not a A-node. From Claim

A we know that A(x) = A(x)). Let C = A(x). Since x, is not a A-node we

have C € V.

By assumption there exist derivations
A =>* uBv
A =>* uBv’

Since T and T’ are grammatical trees there exist derivations

*
B :>* Wyt Wy Cwgy g e W
B = e O
(facts 2.5 and 2.7) so that
*
A= uw, -ew,_Cwy oeewy
*
A= uwj--ew_ Cwyp oWy’
Since w, = w;, 1<i<{, we may write
7 =*W1"'Wt—1 = wieew,
A = uzlwy =WV

*
A = uZCWZ+1 swv

It follows from (b) that n” =n-m is a non—negative integer.

(wy - wyv)/(n+k) ={w]---wiv’)/(n+k)
and w, = w;, 1<i<{, we must have
(wy--owv) /(0 +k) = (wj--- wiv')/(n'+k)

or

(T)w,,, sew v]/(n+k) = [f(TPwy, - wiv]/ (n7+k)

(2)
(3)

(4)

J. C. Beatty 19

In view of (2), (3), (4), and the fact that T, and T have height at most
A we may invoke H to conclude that {n'“}?'l:{“/ﬂ}'fz, as desired. o

Claim C. If for some {<s no tree among T, ---, T, contains the (n+1)st
terminal node of T and no tree among T{,---, T; contains the (n+1)st

terminal node of T’ then T/.= T/.’, for each ; in the range 1</'$l.
Proof of Claim C: The argument is an induction on y2
Basis (; = 0): Vacuous.

Induction Step: (; > 1) Assume that the claim is true for indices
1,+--, {4=1). Then condition (a) of Claim B is satisfied for {(= /. Since
neither T/. nor ‘T‘/f contain the (n+1)3 terminal node of T and %,

respectively, we have

|W1"'W/~_1| = Iwi---vx;f_ll = m < n—Iw/.I
and, for n” = n-m,
n’ > |w, 5
v (5)
n’ 2 |w] 6
I/I . (6)

so that condition (b) of Claim B is satisfied and . may conclude that
{n+ihe = {0"*19 In fact from (5) and (6) it follows that {n'”}'s‘}.: T/. and
that 0 +1}9 = ¥ whence T, = T o

' 4 ' 4

Now let r be the least index such that at least one of T, and 77
contains the (n+1)t terminal node of T and T/, or (s+1) if no such
index exists. It follows from Claims B and C that there are
isomorphisms f; establishing T,=7T, lsi<r, and an isomorphism fr

establishing {”'H}Tr = {“'“}T;, where m = |w «oow (| = |wj-ew,

r_1I and

n’ =n-m. Now ("*% is the shaded portion of

W1 W2 w w

and 1177 is the shaded portion of

Two Iteration Theorems for the LL(k) Languages 20

T T T
) e () e (B
A T’z ® o o & e o o A
Wi Wa W Ws

If we define the mapping { by

-,

e f(xy) = xp
* f(x;) = xj, l<iss
* f(p)
* f(p)

then it follows easily from Claim A and the above argument that fis a

f.(p), Lsi<r, if p is a node of T,
f.(p) if p is a node of {“’“}?r and r<s

1l

label-preserving structural isomorphism between {n+i}g gng *lgr so
that {n*itg = {n+1}g and the proof is complete. =

Lemma 3.2 is actually the forward direction of the Left Part

Theorem, which we ar now prepared to prove.

Theorem 8.3. (The LL(k) Left Part Theorem) A reduced cfg G is LL(k) iff
the following condition holds for all n20: if T and T° are grammatical

trees over G such that
(1) ~(T) = ~4T")

(2) fr(T)/(n+k) = fo(3)/(n+K)
then ntltg = {n+lig-

Proof * lLemma 3.2 suffices to establish the forward direction. Suppose
that G = (N,2,P,S) is a reduced LL(k) grammar and that T and T’ are
any two grammatical trees over G such that
(1) ~8(T) = (")
() fr(T)/(n+k) = fr(T7)/(n+k)
let A =#(T)=+#3F)=B and u=v =v =A For the derivations A =% uBv
and A:>* uBv’ we use the trivial derivation A;‘*A. Since v =V = A,
[fr(TIv]/(n+k) = [f(T)v1/(n+k)
follows immediately from (2). We have now satisfied the hypothesis of

lemma 3.2, and may therefore conclude that {HH}T :{HH}T’, as desired.

J. C. Beatty 21

}‘—X_"‘_yl"' F—X_.'<—y2

Fig. 11, illustrating the Left Part Theorem for LL languages. The
left {Ix|+1}—parts of derivation trees for xy, and xy, are shown
shaded. These left parts are the portions of the respective trees
which have been filled in at the time all of x(y,/1) and x(yp/1)
have been exposed. If the grammar is LI{k) and y,/k = y,/k
then these left parts are necessarily identical.

Proot ¢: Let G = (N,L,P,3) be a reduced cfg with the property that if
T and T7 are any two grammatical trees over G such that

(1) ~t(T) = ~8(T")

(2) f(T)/(n+K) = fr(T")/(n+K)
then ("*1g = {0+l We intend to show that G must necessarily be an
LL(k) grammar. For suppose that G is not LL{k). In view of theorem 1.7
there must exist a pair of derivations

S :)éL uAf =, uaf ;“:: uv

S =>[L uAf =, ua’f :>=: uv’
such that v/k =v'/k and o * a’. Let T and 7’ be derivation trees over
G for uv and uv’, respectively, and let n = |ul so that
(uv)/(n+k) = (uv’)/(n+k). Since #(T) = S = #(T"), [(T) = uv, and
[{T’) = uv’ there exists by assumption an isomorphism f establishing

{ntifg = {ntlhpr pet

n = (Zl-uzg ez,)
n = (legzr)

be the unique LCCS’s at level { in T and 7 (fact 2.3) having the label
uAf, in which Zg and zé, are the leftmost internal nodes (so that they
are labeled with A). Since n = |u|l and u = Mz, ---, zg_l) the (n+1)st

terminal node of T 1is either one of the nodes Z. . Oor 1is

Zg+1’-“’ r

Iwo lteration Theorems for the LI(k) Languages 22

descended from one of the nodes 2z z.. Similarly the (n+1)t

g,...’

terminal node of T° is either one of the nodes z’g,H,-'-,z;, or is

Accordingly the restrictions

’

descended from one of the nodes v ., .-+, 7.
of » and n” to {n+1rq and {139 each contain an internal node - Zg
and Z’g,, respectively. According to theorem 2.14 it follows that n and 7’
are LOCS’s of {*1kg and {0+lig at level (. Since [preserves labeling it
must be the case that f(n) is a LCCS of {"*U3” at level { having label
uAB. But ©” is also a LCCS of {nt1yqe having level {. Since there can be
at most one such LCCS (fact 2.3) we must have f(n) =n". It follows that

g =g, f(zg) =z, and that the elementary subtrees rooted in z, and z,

g
are isomorphic. That is to say, if xy,---, X, are the children of Zg and
X{, 0, Xy are the children of Z’g, then s =s” and

NS SEEED &) = A xlxs)
But

M oxpoexg) = «a

A oxjeeexy) =

so that « = «’, which we assumed was not the case. Consequently G
must be LL(k). =

4. Iteration Theorems

Armed with the Left Part Theorem our intent is to establish some
pumping properties of the LL(k) languages. Roughly speaking, we will
develop the argument used in establishing Ogden’s lemma to obtain the
usual decomposition of the derivation tree for a string w belonging to
#(G) in which we have distinguished a sufficient number of positions.
This induces the usual factorization of w as w,wowsw,ws. By looking at
derivation trees for w and for any other string w wyu in #(G) such that
(w3w4w5)/k = u/k, and applying the Left Part Theorem appropriately, we
will obtain our first iteration theorem. We will need the following

definitions.

Definition 4.1. [et w E o W wowaw,wy = W then the sequence

(wl,wz,w3,w4,w5) is said to be a factorization of w.

*
Definition 4.2. let w € £ . Suppose that w=aa,---a where each a.

n’ 1
€ ¥. Any index 1, 1 <1is<|w], is called a position in w. For example, the

J. C. Beatty 23

symbol occupying position 3 of the string aacbda is c. Next let X be

any set of positions in a terminal string w. Any factorization

¢ = (W ,Wy,wg,w,,ws) of w induces a natural "partition" KX/¢ of X into:
K/p=A Kp Xz’ Ks’ sz Ks ¥

where

X,

1

k € X such that the k' symbol is part of w,
p 1
{k e .7{‘ IWI"'W‘L—ll < k$|W1"'Wi| I

Thus X, selects out of X those positions which appear in w,. We call the
elements of X distinguished positions (or dp’s). The following notation

will also be convenient.

Detinition 4.3. Let u, € E*, 1<i<r, for some alphabet E. Then
r
[1(u) = wpuyeeeu_ju,
=1

We are now ready to proceed.

Theorem 4.4. (The 13t LL Iteration Theorem) Let L be an LL(k)
language. There exists an integer p such that given a string w in L and
p or more distinguished positions X in w we may write
¢ = (W Wa W, W, W5)
X/ ={ X, Ko Ky X,, X5 >
where
(1) wy#+A
(2) a: Either w,, w, & wg each contain dp’s (K, K, Kj#* 2,
or wy, w, & wy each contain dp’s (K5, X,, K5 #* 4),
b: and wywgw, contains at most p dp’s (IK,UK UX,|<p).
(3) a: Let n =|w,wy| and suppose that w’ is any string in L such
that w’/(n+k) = w/(n+k). Then there is a factorization

(wy.wo,wi,wy,wi) of w' such that
r
(i) W WEWg H (u;ywy
=1
T
(ii) W WEWa I (u,)we
1=1
r
(iii) wywow, E(ui)wé
1=

r
(iv) w,whwy 111(u1.)wé
1=

Two Iteration Theorems for the LL(K} Languages 24

r
are in L for all n2 0 and for all strings H(ui) in which

, . =1
- s €£1€r.
U”L W4 or Lll W4, lgigr

r
b: Furthermore, if H(ﬁi) is a catenation of words 1_11. < {w4,w;‘}
such that =1

then uizﬁi, 1<isr.

Proof: Let G = (N,£,P,S) be an arbitrary reduced LL(k) grammar
generating L. The methods used by Ogden [19] (or see Harrison and
Havel [11]) suffice to establish the existence of an integer p such that
for any string w in L in which p or more positions X are distinguished
there is a factorization ¢ = (w,,w,,wg,w,w5) such that (2) holds and for
some variable A € N
s =3 W AW =* W WoAW Wy =3 W, WE AW, W =* W WoWaWWe

for all non—negative integers n. Since no LL(k) grammar is left recursive
(1) holds. To complete our proof we must show that ¢ satisfies (3) as

well.

Let n = |w,w,] and consider any string wo in L such that
w’/(n+k) = w/(n+k). Let T and T’ be the derivation trees for w and w7,
respectively. Since w/(n+k) = w’/(n+k) we may invoke the Left Part
Theorem to obtain "+itg = (0*1}37 (Refer to figure 12.)

Consider T. Let X and x, be the internal nodes of T corresponding to
the A’s in wAwg and w WoAw,ws. We know that wg # A since Ka + 0.
Therefore the subtree rooted in x, has a terminal node among its
leaves. The leftmost such terminal node n is labeled with (wgqw,wg)/1 and
is contained in ™t it is, in fact, the (n+1)5t terminal node of T.
Since the nodes x; and x, defined above lie on the root-leaf path to =
they also belong to {n+i}g (They appear in figure 12a labeled by A). Let
I be the isomorphism of the Left Part Theorem. It follows that

A= () = ()

A AMx,) = AE(x,))
Let n and 8 now be the unique LCCS’s of T in which the leftmost

Il

1l

internal nodes are X, and x,, respectively (fact 2.5). We may write

Jd. C. Beatty 25

S

A
./ r od

L Il
Wy Wp Wy W, Wy Wi Wp W3 W, Wy
S e SR m
w w’
Fig. 12a: 7. Fig. 12b: 7.

Fig. 12. Derivation trees for w and w’, in which the left
{lw,wyl+1}-parts are shaded. As a result of the fact that G is
LL(k) and (w wywaw,wg)/(lw wyl+k) = (wywawawiwi)/(Iw wol+k) the
left {lw,wyl+1}—parts are isomorphic. In particular, the two nodes
labeled A in {"*!}¥ must appear in the same position in {n*ig,

n (al-..aE Xj Zl...Zz) (7)

8 = (al"'ag bl"'bg X) yl'“yX Zl...zE) (8)
Since X and x, are both internal nodes of T which belong to {n+i}q, 7
and 6 are also LCCS’s of ™1}¥ (theorem 2.14). Since tllg = {n+i}q
f(n) and f(8) are LCCS’s of M*1}g* and hence of T (theorem 2.16).
Again because {M*1ry = {n*l}e- we may conclude that A(n) = AMf(n)) and
A@) = A(f(9)). In particular,

wy = M ag-ra,)
.<+b

i

A(E(ajera,)
A(£(bi"'bg))

b)
and for some a, f € V*
a =AM ypryy) = MCygeeeyy)
B = Az -z,) MEC zyooez,)

Now by invoking theo;'em 2.8 we obtai; from T the derivations

*

S =, Ma, - a?_)A(xj))\(z1 ZE) =w,AB (9)
A=Ax) = Ab, b AN, cy,) = Waha (10)
A=A(x) S owg -) (11)
a :>t W, (12)
8 = g (13)

and from T’ the derivations

Two Iteration Theorems for the LL{k) Languages 28

S =5 N(Ea, - a IMEGDAE(z, -+ 2,)) = w AR (11)
A= M) S (D, =+ BAEC N 0 5,)) = woha (15)
A= A(E(x,) = wh N (16)
a = w, (17)
8 = W (18)

for some Llerminal strings wj, wj and wi such that wiw,wg = u. By
suitably combining these derivations we can obtain any of the strings

specified in (3a). For example, to obtain strings of the form

r

(i) wywowy Ijl(ui)w5

begin with (9), followed by r applications of (10), followed by (77),
followed by a suitable mixture of (72) & (77), and finish with (73).

(Season to taste.)

Next we establish (3b). If w, = wj then (3b) follows trivially. Therefore
assume that w, * wj. so that (12) and (77) are distinct leftmost
derivations. For the sake of simplicity we restrict our attention now to
strings of type (i). Let R be the set

{9 {10 {11y {12+ 7)F" {13)}
Notice that a string in R uniquely specifies the leftmost derivation of a

type (i) word in L. In particular, let p, 1<is<r, be defined by

p, = (12) if u; = wy
p, = (17) if uy = wy

Then given a string of type (i), which determines the sequence g,

r
{9} o) {(17); HI{P,} {(13)}
1=
is a leftmost derivation of the word. If there exist two catenations
r r
[l and [l
1=1 =1
and corresponding sequences p; and p, such that

r r
[Ty = 11@)
=1 =1
and for which u, # 1, for some i in the range 1<isr, so that p *p,

then there are two distinet strings in R, representing two distinct

leftmost derivations of the same string in L. But then G is an

J. C. Beatty 27

ambiguous grammar, which cannot be the case since G is LL(k). Hence

(3b) follows for a string of type (i).

We can extend (3b) to strings of type (ii), (iii} and (iv) by analogous

arguments — the details are omitted. =

Before proceding with a formal development of a second pumping
lemma for the LL(k) languages, we sketch the intuition underlying our
argument. (Refer to figure 13.) Suppose that uv and uvy, |v| = k, are
strings in some language L generated by a A-free LL(k) grammar G.
Leftmost derivations of uv and uvy must proceed identically at least
until all of u has been exposed; that is the meaning of the Extended
LL(k) Theorem. After exposing the rightmost terminal of u in a leftmost
derivation of either uv or uvy there can be no more than k variables
remaining in the left sentential form since G is A-free and Iv| = k.
Judicious use of this fact, together with the Left Part Theorem and the

argument of the 18t lteration Theorem, is sufficient for our purposes.

We will need the following result, which is due to Rosenkrantz and

Stearns.

Theorem 4.5. Given an LL{k) grammar G = (N,Z,P,S) we can construct an
LL(k+1) grammar G” = (N,Z,P’,S’) such that £(G’) =£(G) and G" is A—free
unless A € £(G), in which case G’ contains the single A-rule S’ > A and

S’ does not appear in the right hand side of any rule in P’.

Proof. Using the arguments found in Rosenkrantz and Stearns [21],
pages 236-241 (or see Aho and Ullman [2], pages 674-681), we may
obtain a A-free grammar G" = (N",Z,P",S") generating £(G) — {A}. If A &
£(G) then set G" =G".

Suppose, however, that L contains A. Then we form a new grammar G’
whose start symbol is S and whose rules are the rules of G'" together
with S” - S”" | A, where S8 is a new variable not in V". It is trivial to

prove that G’ is also LL(k+!) and generates exactly £(G). =

Theorem 4.8. (The 224 L[Iteration Theorem) Let L be an LL(k—1)
language, k 2 1. There exists an integer p such that for any two distinct
strings x and xy in L, if |x|2k and p or more positions in y are
distinguished, then there is a factorization ¢ = (wl’WZ’WB’W4’W5) of xy
such that (1) — (3) of the 15t LL Iteration Theorem hold and [wil> x| - k.

Two lteration Theorems for the LL(k) languages 28

Fig. 13a. T.

Fig. 13. The solidly shaded areas indicate the leaves descended
from a particular internal node of T° which is a leaf of the
left {|Jul+1}-part of . The dashed lines mark the frontier of
the left {Juj+1}—~parts for each tree. This is the left sentential
form obtained at the time u(v/1) is exposed.

Proof. [n view of theorem 4.5 we may assume that L is generated by
some LL(k) grammar G = (N,Z,P,S) which is A—free, except possibly for an

S - A rule, in which case S does not appear in any right part.

For any variable A let G, = (N,Z,P,A) be the cfg obtained from G by
changing the start symbol to A, let p, be the constant obtained from
the 15t [teration Theorem for the language £(G,) (which is also LL(k) -
see theorem 1.8), and let

p’ = max{ p, | A € N }

p = kp'+1
Suppose that x and xy are strings belonging to L, where |x|2k and p or
more positions are distinguished in y. Let us write x as uv, where

jul =n and |v| =k, and let T and T’ be derivation trees for uv and uvy.

(See figure 13.) Let 7 = laves(("*1IT) and 7" = kaves(10+1137).

Since x/(n+k) = (xy)/(n+k) = x, it follows from the Left Part Theorem
that {2+ = {0+l whence n and 7’ are isomorphic and A(n) = A(n’). It
follows from theorem 2.17 that 7 and 7 are LCCS’s of T and T

]

respectively. Consequently we may write

* *
S =, uy =An) =, uv
*

S =, uy =An’) =, uvy

*

J. C. Beatty 29

for some vy in v* (fact 2.8). Since |v| = k21 these derivations involve no

*
A-rules. It follows that |y|<k since |v|] =k and 7:>L v.

Now write y as X;Xg-+-X (s<k). Let (z,25+++,2z,) be the factorization of
vy such that X, ZS:Zi, l €i<s. Suppose that there are p’ or fewer dp’s in
cach z,. Then there are at most sp’<kp’<p dp’s in vy, which is not the
case. Hence some particular z, contains more than p’apxi dp’s. Now the
string z, belongs to the language ;f(GXI.), which (as we noted above) is
an LL language. Also, we have distinguished pXi or more positions in this
string. It follows from the 18t I[teration Theorem that there is a
factorization (0,0,.04,0,,05) of z, such that (1) —(2) of theorem 4.4 hold
with respect to :f(GXi) and for some variable B we have the derivation

X, :>* o,Bog =t 0,0,B0,04 =* o,05Ba}o, =t 0,05050,05
in G,. From this it follows that the factorization

(uzy ++02; 101,05,05,04,05%;, 1 =+ 2)= (W[, Wp,Wa,Wy,Wg)
satisfies (1) ~ (2) with respect to L. Since u is necessarily a prefix of W,
it is clear that |w1|>|x| — k. If we let

n = |uz, +-2z,_,0,0,
and consider any other string w” in L such that w’/(n+k) = w/(n+k), the
argument used to deduce (3) in theorem 4.4 may be used to deduce

property (3) here, and the proof is complete. =

6. Applications

We begin by showing that every LIL(k) grammar is LR(k). This is not a
new result; Brosgol [8] obtained a rigorous proof wvia LR(k) grammar
theory by embedding A-rules in the grammar. It is more often argued
intuitively from a consideration of LI(k) and LR(k) derivation trees that
this result is obvious (see Aho and Ullman [2], for example). Using the

LI{k) Left Part Theorem we can now make the tree argument rigorous.

Theorem B.1. Every LL(k) grammar is LR(k), k2 0.

Proof: Let G be an arbitrary LL(k) grammar. If k =0 then £(G) is # or
a singleton set, both of which are trivially LR(0). We therefore assume in
the remainder of this proof that k> 1. Also, S:);S is impossible since G
is unambiguous. Hence if G is not LR{k) then for some w, w’, x E E*;
a, o, B, g7 € V*; A, A € N, there exist derivations

Two Iteration Theorems for the LL(k) Languages 30

S :>: aAwW = afw
S :>: aA'x = af'x = afw’

such that w/k = w’/k and (A-BlaBl) * (A>g%,Ja’g’]). Without loss of
generality we may assume that G is reduced. Let z & Lap), let T be
the derivation tree for zw, let T° be the derivation tree for zw’, and let
n = |z|. Since G is LL(k) and (zw)/(n+k) = (zw’)/(n+k), we may apply the
Left Part Theorem to obtain "*1}g = {n+l}¢/ let f be the mapping which
effects the isomorphism. Let 7 = (ul,---,us) be the unique RCCS of
T having the label aAw (theorems 1.2 and 2.9). Let u, be the node of 7
labeled by the A explicitly shown in aAw, and let

6 = (uptug g VitttV Uggygteiug)
be the RCCS formed from 7 by expanding u; so that >\(V1"'Vh) =f and
A(8) = afw. (Refer to figure 14a.) Let a =w/1 (a € I,). Since w/k =w/k
and k2 1, we also have a = w’/1. Consider [a+1]g, A[@n([“H]T) = za. Let
x = (u, «++, u) be the restriction of 1 to [n+1d3 and recall that
An) = aAw. If a € I then i<r and u; belongs to [ntlly §f a=A
(because w = A) then [n+ily = ¢ so that r =s, x =7, and
Ax) = aha = aAw = aA. In either case A(x) = aha (i<rT < s), so that u;
appears in x. Next let

Y= (upterug g Vit vy Uy teeug)
be the restriction of 8 to [P*1l% so that A(¥) = aBa. x and ¥ are RCCS’s
of [P*lly (theorem 2.13), ¥ being obtained in one step from x by
rewriting u,. Since {ntt}q = {n+l}gr ynder f we must also have
[n+1lg = [n+1Jg” ynder f. If we let x’ = f(x) and ¥" = f(y) then

Ax) = Mx) = ada

My) = My) = apa
and in view of the isomorphism yx° and %° must be RCCS’s of [“H]T’, 1728
being obtained in one step from x° by rewriting f(u;). Now extend x° to
form a RCCS ¢ in T by appending to yx° (in left—to—right order) all of
the leaves of T’ which are right of f(u.) (theorem 2.15), so that
A#) = aAw’. Similarly extend ¥%° to obtain a RCCS ¢ in T7 such that
A(¢) = afw’. Since there are no internal nodes to the right of u; in 7,
there can be no internal nodes to the right of u, in x, and no internal
nodes to the right of f(u;) in x’. Since ¢ is obtained from x" by
appending leaves, f(u;) is also the rightmost internal node of ¢. Hence ¢
is a RCCS of 3 which can be obtained from the RCCS ¢ of T7 in one

J. C. Beatty 31

Figure 14a, illustrating the proof of theorem 5.1. In T we show
n and 6, the unique RCCS’s of T labeled aAw and afw’. In T
we show RCCS’s ¢ and ¢, the extensions of y° and V¥ (see
figure 14b below) to T from [nttly~ The isomorphism f maps
[n+1lg onto [n+ile-.

N N\
——N T — S N — N — e —
Z w Z w’

Figure 14b, illustrating the proof of theorem 5.1. In T we show
the restrictions x and ¥ of and 8 to [nt1ly In 7 we show
the isomorphic images x° and % of x and ¥ under f. Since
[ntily = [n+1l3 we have A(x) = AMx") = aha and A(y) = A(¥’) = aBa.

step by rewriting f(u,). We must have
*
(T) = ME) =, M)
(fact 2.8). That is,
*
S =, aAw’ =, afw
Since we also know that
*
S =y AX S X = afw
and that G is unambiguous (theorem 1.2) it must be the case that
a=qa, B=F, and A=A" so that (A-B.laB]l) = (A>F",|a’g’|]) which is a

contradiction. Hence G is, in fact, an LR(k) grammar. =

Two Iteration Theorems for the LL(k) lLanguages 32

We nexl consider a number of results which follow easily from our
iteration thcorems. Theorems 5.2, 5.3, 5.4, 5.5 and 5.6 each illustrate a
different way in which possessing the LL(k) property restricts the form
of strings in a language; each of the proofs illustrates a different way
in which the iteration thecrems may be used. We consider only
languages which are LR(k) since every LL(k) language is LR(k); if a
language is not even LR(k) then other tools already exist for
demonstrating this which incidently demonstrate that the language also
fails to be LL.

Theorem 5.2. The LR language L, ={ a"b", a"c” | nz!l } is not LL.

Proof: (Figure 15.) Assume that L, is LL(k) and let p be the constant
obtained for L, from the 18t [Iteration Theorem. Consider the string
w = aPakbP*® in which the first block of p a’s are distinguished. From
theorem 4.4 we obtain the usual factorization ¢ = (W ,W,,wg,w,,Ws) of Ww.
Since ¢ satisfies theorem 4.4 we must have w, € at and w, € b*, and
wy must begin with at least k a’s since w, cannot contain any
distinguished positions. Now consider aP*cP*K which we can write as
w,wyu for some u € aka’ct. Note that u/k = (wyw,wg)/k = ak. It follows
that for some wj, w, and wg we have u = wawiwg and wlwgwéw;w4w’5 =
L

containing both b’s and ¢’s in L;. =

;- But w, € b" and wiywiwg € a*tc*, and there are no strings

Theorem B.8. The LR language L, ={ a"0b" a”1b® | n>1 } is not LL.

Proof: (Figure 16.) Assume that L, is LL(k) and let p be the constant
obtained for L, from the 13t [teration Theorem. Consider the string
w = aPak1b2P*K) in which the first block of p a’s are distinguished. From
theorem 4.4 we obtain a factorization ¢ = (w,,wy,wq,w,ws) of w. Since ¢
satisfies theorem 4.4 we must have w, € a* and w, € b",
2 < 2lwyl = |w,l <2p, and wy must begin with at least k a’s. Now consider
aPTKObP*X which may be written as w,w,u for some u €& aka*ob*. Note
that u/k = (wqw,w;)/k. It follows from theorem 4.4 that for some wy, W)
and wj we have u = wiw,wg, [wo| = |w;l and wlwgwéw3w4w’5 € L, Let #a
and #b be the number of a’s and b’s in this string. Then
ptktlw,| = #, < ptk+Rlwy| = #y, < 2(p+ktlwyl) = %#,, so that this string

contains an illegal number of b’s and cannot belong to L,. =

J. C. Beatty 33

k symbols
A~
| aP ak | bRtk |
R M3 [Wa | ¥s |

= P
AT G]

+
Wy w4Eb

Fig.15. An application of Theorem 4.4 to the language a"b™ + aPc”.

k symbols
I aP ak I 1] p2(p+k) I
[¥: (Wl V3 [wel w5 |
[ap Jaklo were |

Lw1 ‘w2| w5 ‘w"1

Fig. 16. An application of Theorem 4.4 to the language a0b™ + aPib",

WS—I

Theorem &.4. The LR language Ly ={ a"da"e, a"fa"g | nx1 } is not LL.

Proof: (Figure 17.) Assume that L, is LL(k) and let p be the constant
oblained for Ly from the 18t Iteration Theorem. Consider the string
w = aPakdaP**e in which the first block of p a’s are distinguished. From
theorem 4.4 we obtain a factorization ¢ = (wl,wz,wa,w4,w5) of w such that
W Wawawiwg is in Lg for every n20. In view of this we must have wy, €
a*, w, € a* and wy € a'da’. As usual we also have (waw,ws)/k = ak. Now
consider ap+kfap+kg, which we may write as w,wou for some u. It is
necessarily the case that u/k = (wgw,wg)/k. It follows from theorem 4.4
thut for some wj, w, and wy we have u = wiw,wg, wi € a’ta®, wg ends in
g and wlwgwawf;w’5 is in L3 for every n 2> 0. But these strings have the

form a*da*g, and therefore cannot belong to Lg. =

Two Iteration Theorems for the LL{(k} lLanguages 34

k symbols
[[+ =+ T
IEEES hike! EAEES
| aP a [t aP*k &
[v Twe 3 [wil ws |

Fig. 17. An application of Theorem 4.4 to the language
aPdae + afa”g. If this language is LL then it must con—
tain the strings wlwgw3w2wé € a'tda‘tg, which it does
not.

Theorem b.8. The LR language L, =< a®b™™ | mz1, O<n<m } is not
LL.

Proof: Assume that L, is LL(k) and let p be the constant obtained for
L, from the 15t lteration Theorem. Without loss of generality assume
that p 2 k. Consider the string aPbP? in which the a’s are distinguished.
From theorem 4.4 we obtain a factorization ¢ = (w ,wy,wg,w,,wg) of aPbP
such that wlwgw3w2w5 is in L, for every n20. It follows that w, and w,
cannot both consist entirely of a’s, for then we could obtain strings
having more a’s than b’s. Also, w, and w, cannot consist entirely of b’s
for then we could obtain strings with too many b’s. Clearly neither w,
nor w, can contain both a’s and b’s. Hence w, must consist entirely of
a’s and w, entirely of b’s. Furthermore, |w2|s|w4|, for otherwise we could
again obtain strings with more a’s than b’s for a suitably large value of
n. In particular, w,wawg is in L,. Let i= Iw2|; we know that iz 1. If w,

contains more than ¢ b’s then w,wawg will contain more a’s than b’s,

which is not allowed. Therefore |W2| = |w4|; we have w, = a! and w, = b,

Now consider the string aPb®P. Since w W, € at

and p2k it must be the
case that aPbP/(lw wyl+k) = aprP/(|w1w2|+k). Hence there is a
factorization (w ,wy,wj,wj,wi) of aPb®P such that wowowow Bwg is in L, for
every nz0, so that w, & b*. In particular w,wgwg belongs to L,. Let }}’a
be the number of a’s in w wiwg. Define #, similarly, and let ;= |w)|.
Since we must have f, <2# we must have (2p—j)<2(p—i). It follows that
> 2i>14. Hence w, £ w,. Bul w,w, = w,w, = b*%, which is a violation of
s 4 4 44 474

condition (3b) of theorem 4.4. Hence L, cannot be LL. =

J. C. Beatty 35

/'\/x__’/\/\/y_/\
u v
T —— e T TN
[aPtk bk]
— S
| ab™™ IEAEAEALR
we oWy

Fig. 18. An application of Theorem 4.6 to the language
a™b®, m 2 n > 0. Because aP'®bP*K is sufficiently longer
than aPkpk a pumping must occur among the b’s.

Theorem B.8. The LR language Ly={ a™" | m>n20 } is not LL.

Proof: (Figure 18.) Suppose that Lg is LL(k-1) for some k and let p be
the constant obtained by applying the 20d Jteration Theorem to Lg.

p+kbk p+kbp+k

Consider the two strings a and a

and distinguish the final p
b’s In the latter string. According to the 20d Jteration Theorem aPtkpP*k
has a factorization (ap+kw1,w2,w3,w4,w5) such that

¢ Wy F A

. ap+kwlwgw3w2w5 € 1, for every n>0
From this we can deduce that wyw, € b* so that for a sufficiently large
vialue of n we can obtain a string with more b’s than a’s - a string

which cannot belong to Lg. =

Nole that it is possible to prove theorem 5.6 using the 15t Iteration
Theorem and the technique applied in theorem 5.5.

Using L; we easily obtain the following result.
Theorem b.7. The LL languages are not closed under right quotient with
a4 regular set.

Proof: It is easy to see that the language a™™ is an LL language, and
b® is obviously a regular set. However
a"” /b" = {a™" | mznz0 }

is not an LL language, as we have just seen. =

The 282 Iteration Theorem is by its very nature not applicable to LL

languages which are prefix—free. Thus theorem 4.6 could not be used to

Two lteration Theorems for the LL(k) Languages 36

prove any of theorems 5.2, 5.3 and 5.4. It is not known, however,
whether there are languages which satisfy the 18t [teration Theorem but
which the 2" Ilteration Theorem can show are not LL, nor is it known
whether one can always establish that a language fails to be LL wvia

theorem 4.4 when that is the case.

L, and L are from Rosenkrantz and Stearns [R1]. L, is taken from
van Leeuwen [14]. Lg is taken from Bordier and Saya [7]. L; abstracts
the fatal difficulty, insofar as LL{(k) grammars are concerned, with the
infamous dangling—ELSE introduced by the original Algol report [16] (and
eliminated in the revised report [17]). Constructs such as

IF <bexp> THEN IF <bexp> THEN <stmt> ELSE <stmt>
in which the ELSE-clause might plausibly belong to either IF-THEN are
allowed in PL/lI [20] and Pascal [12]. The ambiguity is customarily
resolved by associating an ELSE with the last previous unmatched THEN.
It is claimed without proof by Ahe, Johnson and Ullman [1] that such
constructs are not LL; applying the argument of theorem 5.6 allows us
to establish this rigorously. A direct proof such as ours is necessary
since the family of LL languages 1s not closed under homomorphisms or

gsm mappings [21].

Theorem B5.8. The dangling IF-THEN-ELSE construct does not appear in
any LL language.

Since this construct is, however, easily handled by a recursive descent
compiler operating without backup, it follows that the LL(k) languages
are only a subset of the family of languages which can be compiled by

this technique, and are therefore not a perfect model of this family.

Conclusions

Theorems 4.4 and 4.6 provide a powerful and reasonably general
technique for establishing that languages are not LL(k) when that is the
case. Previous results of this kind ([7], [14] and [21]) have generally

been based on more complicated and less satisfying ad hoc arguments.

We leave open the question of whether satisfying the conditions of
thcorem 4.4 is sufficient to ensure that a language is LL(k), although we

do not believe that to be the case. The task of characterizing a family

J. C. Peatty 37

of languages by means of an iteration theorem appears, in general, to
be a difficult one. Although a number of iteration theorems have been
established for several language classes, in only one case is the result

known to be sufficient as well as necessary.[22]

Finally, our arguments illustrate the advantages to be obtained from
the careful analysis of derivation trees, various properties of which we

have presented.

Acknowledgements

A stronger version of theorem 4.4 is presented here than was
reported in [4], and the author is indebted to Bill Ogden, who also
suggested the proof of theorem 5.5, for the improvement. Theorem 4.6
wus inspired by an observation of Jan van Leeuwen’s [14]. The
suggestions and observations of Kellogg Booth, Kimberly King and

especially Professor Michael Harrison are also keenly appreciated.

References

{11 A.V. Aho, S.C. Johnson and J.D. Ullman, Deterministic parsing of ambiguous grammars,
C. ACM 18 (1975) 441-452.

[2] A.V. Aho and J. D. Ullman, The Theory of Parsing, Translating, and Compiling, Vols. 1
and I (Prentice—Hall, Englewood Cliffs, NJ, 1972 and 1973).

{4] Y. Bar—Hillel, M. Perles and E. Shamir, On formal properties of simple phrase structure
grammars, Zeitschrift fur Phonetik, Sprachwissenschaft und Kommunikationsforschung
t4 (1961) 143-172. Also available in Language and Information by Y. Bar—Hillel
(Addison—Wesley 1964).

[1] J.C. Beatty, Iteration theorems for LL(k) languages, Proceedings of the Ninth Annual
Symposium on Theory of Computing, Boulder, Colorado (1977) 122-131.

[b] J. C. Beatty, Iteration theorems for the LL(k) languages, Ph.D. Thesis, University of
California, Berkeley, Calfornia (1977). Available as UCRL-52379 from the Technical
Information Department, Lawrence Livermore Laboratory, Livermore, California.

[6] 1. Boasson, Two iteration theorems for some families of languages, J. Comput. Systems
Set. 7 (1973) 583-5986.
7] J. Bordier and H. Saya, A necessary and sufficient condition for a power language to

be LL(k), Computer Journal 16 (1973) 351-356.

[8] B. M. Brosgol, Deterministic translation grammars, Ph. D. Thesis, Harvard University
(1974).

[9] M. M. Geller, Compact parsers for deterministic languages, Ph. D. Thesis, University of
Culifornia, Berkeley, California (1974).

[10] M.M. Geller and M. A. Harrison, On LR(k) grammars and languages, Theoretical Computer
Scvience 4 (1977) 245-276.

[e]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

Two Iteration Theorems for the LL(k) Languages 38

M. A. Harrison and 1. M. Havel, On the parsing of deterministic languages, J. ACM 21
(1974) 525-548.

K. Jensen and N. Wirth, PASCAL User Manual and Report, Lecture mnotes in computer
science 18 (Springer—Verlag 1974).

K. N. King, Iteration Theorems for Families of Strict Deterministic Languages, Technical
Report UCB-CS—KK~-78-0!, University of California, Berkeley, California (1978).

J. van Leeuwen, An elementary proof that a certain context—free language is not LL(k),
and a generalization, notes (1972).

P. M. Lewis and R.E. Stearns, Syntax—directed transduction, J. ACM 15 (1968) 464-488.
P. Naur (ed.), Report on the algorithmic language Algol 60, C. ACM 3 (1960) 299-314.
P. Naur (ed.), Revised report on the algorithmic language Algol 60, C. ACM 6 (1963)
1-17.

W. F. Ogden, Intercalation theorems for pushdown store and stack languages, Ph.D.
Thesis, Stanford University, Palo Alto, California (1968).

W. Ogden, A helpful result for proving inherent ambiguity, Mathematical Systems Theory
2 (1968) 191—194.

PL/I language specifications, IBM document GY33-6003-2 (1970).

D. J. Rosenkrantz and R. E. Stearns, Properties of deterministic top—down grammars,
Information and Control 17 (1970) 226-256.

D. S. Wise, A strong pumping lemma for context—free languages, Theoretical Computer
Science 3 (1976) 359-369.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

