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Abstract. Using modular arithmetic we obtain the following improved bounds
on the t1me and space complexities for nXn Boolean matrix multiplication:
O(n log2 7 log nlogloglog nloglogloglog n) bit operations and O (n 2loglogn) bits
of storage on a logarlthmlc cost RAM havmg no multiply or divide instruction;
O(n log27 (log ) #logy 7 (loglog n) #loga 7= ) bit operations and O(nzlogn)
bits of storage on a RAM which-can use indirect addressing for table lookups.
The ﬁrst algorithm can be realized as a Boolean circuit with
O(n 082 7 log nlogloglog nloglogloglogn) gates. Whenever an arithmetic
matrix multiplication can be performed in less than O(n log2 7 ) arithmetic
operations, our results have corresponding improvements.
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1. Introduction. Recall that Z, | is the ring of integers modulo n+ 1.
Fischer and Meyer, Furman, and Munro [3,4,8] have all observed that nXn
Boolean matrix multiplication can be implemented by embedding the nXn
Boolean matrices, which do not form a ring, within the ring of nXn arithmetic
matrices over Z,, , and then computing arithmetic products over Z, |,
ultimately recovering the true Boolean matrix products by changing all nonzero
entries to ones. Using Strassen’s algorithm for arithmetic matrix
multiplication [12] and the Schonhage-Strassen algorithm for integer
multiplication over Z,,; [l11] we produce an asymptotically efficient
algorithm.

Unless otherwise noted, all logarithms are to the base 2. The value of log 7
is approximately 2.81. If the model of computation is straight-line bitwise
computation a time complexity of O (n 108 719g n loglog n logloglog n) is achieved
using the methods mentioned above [1]. An equivalent Boolean circuit of fan-
in two can be constructed having the same number of gates. When the
algorithm is implemented on a logarithmic cost RAM the time complexity is
unchanged and the space complexity is O (n 2logn) bits, if we assume that the
RAM has the usual instruction set except for multiplication and division
instructions.

Section 2 formalizes the models of computation with which we will be
dealing and section 3 reviews some elementary number theory. In section 4 we
show how to improve the two upper bounds stated  earlier to
O (n'°8Tog nlogloglog n loglogloglog n)  for the time complexity and
O(n 2loglogn) for the space complexity, using modular arithmetic. If we also
use a table lookup scheme to compute integer products the time complexity
drops to O(n'°87logn) and the space complexity stays the same. Using a
more elaborate table-building technique attributed to Hopcroft in an exercise
[1, problem 6.16], we further reduce the time complexity on a RAM to
O (n'°27 (log n )2~ #1927 (loglog n) #1927 = 1y bit operations. In this last case
the storage requirement increases back to the previous bound of O (n 2logn)
bits. Section 5 discusses the application of our techniques to the problem of
arithmetic matrix multiplication.

A table lookup scheme is also central to the well-known Boolean matrix
multiplication algorithm of Arlazarov, et al. [2]. The equivalent Boolean
circuits for table lookup programs appear to require considerably more gates
than the RAM time complexity, at least for their algorithm and for ours. For
this reason we will draw a distinction between RAM programs which use
indirect addressing for table lookup and those which do not.

Most of our results have corresponding improvements whenever the
O (n'987) upper bound for arithmetic matrix multiplication can be improved.
We will thus state our results assuming that arithmetic matrix multiplication
can be performed in O (n?7%¢) arithmetic operations. The corresponding
results using Strassen’s upper bound will then be given as corollaries.



2. Models of Computation. We consider three models of computation:
straight-line bitwise computation, RAM’s having bitwise operations and
restricted addressing, and the same RAM’s with full addressing capability.
These are essentially the models used by Aho, Hopcroft, and Ullman in their
text [1). Straight-line bitwise computation is the usual notion of straight-line
code except that all variables are single bits and the only operations are the
unary and binary Boolean connectives. This model is equivalent to Boolean
circuits. The time complexity (number of operations) on a RAM is the same
as the gate complexity of the corresponding circuit. We will not be concerned
here with the depth of circuits, only with their number of gates.

Our RAM models use a logarithmic cost criterion and assume all of the
bitwise Boolean, arithmetic, and shift instructions except for multiply and
divide. These two operations are excluded because it is not known if they can
be implemented to run in time linear in the length of their operands, a
requirement if we want the logarithmic cost criterion to be a realistic
assumption.

In the RAM model we allow unrestricted indirect addressing or indexing.
This enables us to perform table lookup very easily. Our restricted RAM,
which we call an oblivious RAM following Paterson, et al. [10], also has
indirect addressing but is required to have its sequence of memory references a
function only of the size of the input, not the actual values in the input. This
assumption precludes the type of table lookup schemes employed later in this
paper because the indirect addressing used to access the tables generates
memory references which depend upon the input values.

Note that with an oblivious RAM we can always unroll loops to obtain
either straight-line code or an equivalent Boolean circuit of the same gate
complexity as the time complexity of the oblivious RAM. For a program
using table lookup schemes (more generally, for a non-oblivious program) the
number of gates in the equivalent Boolean circuit appears to be higher than the
time complexity of the original program because we cannot unroll loops in the
same way. Specifically, the algorithm of Arlazarov, et al. [2], which assumes a
RAM model with full addressing capability, seems to require O (n*/logn)
gates when implemented directly in circuitry. We thus consider algorithms for
Boolean matrix multiplication both on oblivious RAM’s and on unrestricted
RAM’s so as to offer a fair comparison with existing algorithms.

The reference machines defined by Tarjan [13] are unable to perform
generalized address calculations. However, our results for unrestricted RAM’s
carry over to reference machines if we assume a logarithmic cost criterion for
all operations involving the reference machine’s data registers. This is because
reference machines can simulate logarithmic cost RAM’s in real-time [13]. We
will not consider reference machines separately here, but will simply note that
the corresponding theorems are true.

3. Number-Theoretic Preliminaries. We recall a few facts from number theory.
They are easily found in most elementary texts [5]. Throughout we will let p



stand for a prime number and let p, stand for the k prime number. We
recall two functions

m(x) = [{p < x}

f(x) = Elnp

p<x

and

which can be bounded on both sides, for suitable positive constants and
sufficiently large x, as

al—x-— <rlx) €ay—
log x
and

bix <0(x) < byx.

For our purposes the significance of these two inequalities is that n is
appoximately equal to the product of the primes less than or equal to some
fixed constant times logn and there are only about logn/loglog n such primes.
We state this more formally as the first lemma, which follows readily from the
above facts.

Lemma I: There exist constants ¢y, ¢,, and c¢3 such that for all sufficiently
large n there exists an m, depending only upon #, such that

m < o, —logn
= "loglogn’

n
log(n+1) <E log p, <c,log n,
k=1

and
P < cilog(n+ 1), 1<k<m.
Proof:
_ In(n+1) . . .
If we choose m = =« 5 then the three inequalities are easily
1

verified if we let n be large enough. O

One consequence of lemma 1 is that we can immediately conclude, using the
property that the logarithm of a product is the sum of the logarithms of its
factors, that

s

n+1< Di-

k=1

i

This means that we can invoke the Chinese Remainder Theorem to reduce a



matrix multiplication over Z, , ; to a set of m matrix multiplications over the

Zpk ’s, each a ring of much smaller integers [1]. We state this as our second

number-theoretic fact.

Lemma 2: Let 0 < x < n. Then x = 0 (mod n+ 1) iff for all 1 <k <m,
x=0 (modp,).

With these facts from number theory we are ready to state our main results.
In the next section we present a series of algorithms which utilize these
properties in order to achieve better upper bounds on the time and space
complexities of Boolean matrix multiplication.

4. Algorithms. Given any algorithm for nXnr matrix multiplication which runs
in M (n) arithmetic steps over an arbitrary ring, it is well-known that we can
construct an algorithm for Boolean matrix multiplication by simply forming
the arithmetic product of the two matrices of zeros and ones and then changing
all nonzero entries in the product matrix to ones. Furthermore, it is sufficient
to perform all of the calculations over Z, , [, the ring of integers modulo
n+ 1, because the entries in the arithmetic product are bounded above by
n+ 1. The details of this construction are well known [1,3,4,8].

Let M (n) be the number of arithmetic operations used in nXn matrix
multiplication over a ring and let B (n) be the number of bit operations used in
nXn Boolean matrix multiplication. Performing all arithmetic over Z,, | and
using the Schonhage-Strassen integer multiplication algorithm [11] yields the
well-known fact [1] that B(n) = O (M (n)lognloglog nlogloglogn). This is
true in all of our models since the algorithm can be implemented on an
oblivious RAM. It is easy to see that only O (n2logn) bits of storage need to
be used by this method. We can do better than this, however, both in time and
space.

Theorem 1: For an oblivious RAM (and hence for all of the other models)
B(n) = O (M (n)lognlogloglog nloglogloglogn) using only O(n oglog n)
bits of storage.

Proof:

It is easy to compute a list of the primes p, for the first m primes using
any number of techniques, such as the well-known sieve of Eratosthenes, in
o(n) bit operations [7]. The Boolean circuits will not, of course, perform such
a computation, but will have the primes encoded within the circuit as a function
of n. In any event, we assume that a list of the primes is available and we
analyze only the remaining work performed by the algorithm.

If we perform each of the computations over Zpk’ for 1 < k< m, lemma 2

says that computing the inclusive OR of all of the bits in the (ij)-entry of all
of the m matrix products will give the correct value for the (ij)-entry in the



Boolean product. Assuming again that the Schonhage-Strassen algorithm is

used for computing the integer products in Zpk’ for some constant ¢ we can

bound the number of bit operations by
m
B(n) < ¢ ), M(n)log p;loglog p;logloglog p,
k=1

since the time to obtain the inclusive OR of the various bits is dominated by
the other costs and is negligible. Using the bounds given in lemma 1, we can
conclude that

B(n) = O(M (n)lognlogloglog nloglogloglogn)

which is the desired upper bound for the time complexity.

The space complexity is also easy to analyze. On a RAM or straight-line
model we can accumulate the partial result in an nX#n matrix of singie bits as
the products over Zpk are computed, performing the inclusive OR as we go

along. Thus we only need O(log p; ) bits per entry during the & th computation
and this storage can be reused for each k. The bound on p, ensures that at
most O{(n 2loglogn) bits of storage are necessary during the entire
computation. O

Corollary 1: For oblivious RAM’s, and hence for all of the other models

B(n) = 0 (n'°¢"log nlogloglog n loglogloglog n).
Proof:
The best known upper bound for M (n) is provided by Strassen’s algorithm

for multiplying nXn matrices using only O(n'°87) arithmetic operations [12].
O

Corollary 2: There exist circuits for Boolean matrix multiplication which have
only O (n'°8 log n logloglog n loglogloglog n) gates.

We can reduce the time complexity of our algorithms even further if we
allow our RAM’s to perform table lookup. This permits us to generate
multiplication tables from which we can obtain the product of two integers x
and y in O (log x + log y) operations under the logarithmic cost criterion.

Theorem 2: For unrestricted (non-oblivious) RAM’s, B(n) = O(M (n)logn)
using only O (n ’loglog n) bits of storage.

Proof:

When we build a multiplication table for Zpk there are only p,:(2 ordered
pairs of numbers which we may have to multiply. Our tables can be built using



only additions since we are computing all possible products, and thus we
require only O(pkzlogpk ) bit operations. The total time for constructing all of
the tables is then o(n), which can be ignored since M (n) is clearly at least n 2

Given the precomputed tables each multiplication requires O (log p,) bit
operations for products in Zﬂk’ since we can simply lookup the product using

the two factors as indices into the multiplication table. Thus
m
B(n) < 2, M(n)logp,.
k=1

and again using lemma | we obtain our result that B(n)= O (M (n)logn).
Clearly the storage requirement is only increased by o(n) over the previous
algorithm, so the bound given in theorem | still applies. O

Corollary 3. for unrestricted RAM’s B(n)=0(n log7)og n) using only
O (n%loglog n) bits of storage.

In a supplement to his second volume [6], Knuth credits Schonhage and
Strassen with a table lookup integer multiplication algorithm which is similar
to the one proposed in the proof of theorem 2. Using this faster method would
lead to an O (M (n)log nloglogn) algorithm for Boolean matrix multiplication.
Incorporating modular arithmetic would give a further improvement. Because
of the table lookup, these algorithms are not oblivious.

Our final algorithm reduces the number of bit operations on a RAM even
further than in theorem 2 at the expense of increasing the storage requirement
back to O(n2logn) bits. The speedup may be viewed as modifying the basic
Strassen matrix multiplication algorithm so that the recursion stops when the
submatrices are sufficiently small, allowing the algorithm to finish up with an
efficient table lookup scheme for multiplying the small submatrices. The cutoff
size for the submatrices is a function of both n and p,, so that the various
calculations do not all have the same depth of recursion.

As before, we compute matrix products over the rings Zpk’ for 1 <k<m,
but for each k we choose an appropriate way of viewing the problem. Thus for
the k't prime we consider each matrix to be an
(n/ (logpk n) %)X (n/ (logpk n)”) matrix whose elements are themselves

3 % . .
(logpk n)”X (logpk n)” submatrices over the ring Zpk .

Applying Strassen’s algorithm to the partitioned submatrices produces the
same result as before. The trick is to find a fast way of multiplying the
smaller matrices. We do this by a table lookup technique using a precomputed
list of all possible products of such submatrices. This generalizes a technique
attributed to Hopcroft [I, problem 6.16] for multiplying matrices over GF(2).
Note that in our algorithm we have different matrix multiplication tables for
each p, .



Theorem 3: Let M (n) = O(n**t¢) for ¢>0. For unrestricted RAM’s
B(n) = 0(n2+‘(10gn)1_‘/z(loglogn)‘/z) using only O(n3ogn) bits of
storage.

Proof:

We first verify that the time to precompute the multiplication tables is
2log,, n
negligible.  Note that there are only py Pk distinct  pairs of

(logpk n)”x (logpkn) " matrices over Zpk' This is precisely n %, independent
of k, hence the time to build the tables is 0(n2+6), even if we use a crude
algorithm to compute the products of submatrices (we assumed > 0). The
table-building cost will be dominated by the remaining work, and thus it can be
safely ignored.

The actual number of bit operations is then given by

By < | D
P=

(log,, n)”

M{————n——}logpknlog Pr |+ O (nZogn)
1

where the logpk nlog p, factor is the cost of performing the table lookup for

the submatrix products using indirect addressing or indexing to select the
appropriate elements, each of which has that many bits. The low-order terms
cover the computation of the Boolean product from the various arithmetic
products over the rings ZPk when forming the inclusive OR of the bits.

2

Because M(n) is at least n~ we obtain the following, noting that

logpk nlogp, =logn:

Bny=0 3 L 2T |
n)= - og,, nlogp,
=1 (logpkn)/’} Pk

1ng 1+¢/2
=0 n2+flognE k
=1 logn

n
=0 n2+e(10gn)—é/2k2 (logpk)l+e/2 ]
=1

We can transform the summation in the previous line as

n m
kzlaogpk)”f/2 = kE log p; (logpy)</?
= =1

m
< d (loglogn)‘/zz log py
k=1



< dy logn(loglogn) ¢/2

by lemma 1, for suitable constants d; and d,.

Thus B(n) = O(n**<(logn)' ~</2(loglogn)¢/? as claimed. The storage
bound is O (n 2logn) because each multiplication table requires that many bits
and only one table is needed at a time. Every table has n? matrices with
logpk n entries, each having logp, bits. The remaining storage requirements

are as in theorem 2. 01

Corollary 4: B(n) = O (n'87 (log n)2~ 987 (loglog n)#'987 ~ 1y using only
O(n 2logn) bits of storage on an unrestricted RAM.

5. Fast Arithmetic Products. The results in theorem 3 can be extended to the
case in which we want to compute the arithmetic product of two nXn matrices
having small entries or for which we are only interested in a modular product
of two matrices, for small moduli.

Theorem 4. Let M(n) = 0(n2+‘) for ¢>0. For RAM’s the arithmetic
product of two nXn matrices over Z,,, can be computed in
O(n?t<(logn)! —€/2 (loglogn)f/z)bit operations using only O (n 2log n) bits of
storage.

Proof:

The time bound follows from the proof of theorem 3 and the observation
that a table of residues of the numbers in Z, , |, modulo all of the primes p,,
can be built in O(nlogn) bit operations. Each entry has a field of bits
representing a number in Z, ., followed by fields representing each of the
number’s residues modulo the primes p, p,, ... , p,,. By lemma | the total
length of an entry is O(logn) bits. The table is easily built in O (nlogn) bit
operations starting with the string of all zeros and successively adding ones in
every field (modulo the appropriate p;) to obtain the next entry.

We could sort the residues table using the residue fields as keys in
O (nlogn) bit operations with a bucket sort but we don’t actually need a sort
because the residues can be placed directly into the table using indexing. We
then use the (ij)-entries in the m modular matrix products as indices into the
table to look up the corresponding (i,j)-entry of the matrix product over
Zn +1-

The storage bound follows immediately from theorem 3 and the fact that
for each modulus p;, we produce and store a matrix of n 2 entries each with log
py bits, for a total of

m
nzz logp, < cznzlogn
k=1



bits of storage. The residues table is also of this size, so the total space
requirement is only O (n?logn) bits of storage. O

Corollary 5: For RAM’s the arithmetic product of two nXn matrices over
Z,,, can be computed in O(nl°g7(logn)2_%]°g7(loglogn)'/”°g7—‘) bit
operations using only O (nZlogn) bits of storage.

6. Concluding Remarks. We have shown improved time and space bounds for
Boolean matrix multiplication using straight-line bitwise computation and
logarithmic cost RAM’s without multiplication or division. Our table lookup
techniques can be used to provide an 0(n2+f(loglogn)5/2/ (1ogn)‘/2) upper
bound for Boolean matrix multiplication on RAM’s with the uniform cost
criterion. This is o(n21€) but is superseded by the O (n %log ) bound implied
by Weicker [14]. It should be pointed out that Weicker makes a somewhat
unfair application of the uniform cost by using very large integers (order of
nlog n bits) whereas our algorithm uses much smaller integers (order of logn
bits), a situation in which the uniform cost criterion seems more justifiable.

Recently the O(n'°87) upper bound for matrix multiplication over an
arbitrary ring has been improved. Pan [9] has announced that the product of
two 64X 64 matrices can be computed using 111,872 multiplications. This leads
to a Strassen-like al%Ofithm for nXn matrix multiplcation with an asymptotic
running time of O (n 0g64111’872) arithmetic operations, where the value of the
exponent is approximately 2.795, improving upon the 2.81 of Strassen. This
and any subsequent improvements will further reduce the bounds cited in
corollaries 1-5. In fact, any improved upper bound for the complexity of
multiplying matrices whose elements are themselves matrices of integers can be
applied to our results.

The results for oblivious RAM’s apply equally well to oblivious k-tape
Turing machines for k>2, because the algorithms can be implemented within
the same time and space bounds on a multitape Turing machine, as pointed out
by Knuth [6]. With a little additional care, they can be implemented
obliviously on a 2-tape Turing machine.
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