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AUTOMATIC LOCAL REFINEMENT FOR IRREGULAR
RECTANGULAR MESHES

R. BRUCE SIMPSON

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
¢

SUMMARY

The use of local mesh refinements for the generation of meshes for the finite element or finite difference
methods is studied. A class of rectangular meshes which admit restricted local refinements, referred to as
irregular rectangular meshes, is introduced and its representation discussed. Properties of algorithms for
mesh refinements are discussed from the viewpoints of termination with a mesh in the specified class,
memory utilization, symmetry and fragmentation of the mesh.

INTRODUCTION

The generation of a suitable mesh of elements is well recognized as an important part of the finite
element method for continuum problems, as well as for the other numerical techniques using
piecewise defined functions. One aspect of this topic is the production of meshes for irregularly
shaped regions.l""s’12 However, in this paper we deal with another side of the question, i.e. the
generation of meshes which require different gradings in different parts of the region to
represent functions whose scales of local behaviour vary significantly. Functions with singulari-
ties or boundary layers are obvious examples. Our interest has been oriented towards a related
class of examples—boundary value problems posed for infinite domains which for numerical
purposes are replaced by approximating truncated domains and boundary conditions.”® The
significant solution behaviour is localized on a scale that puts the truncated boundaries far away,
and so one wants ‘small elements’ in this region of significant solution behaviour and large ones
near the truncated boundary.

A simple but flexible and, for many problems, convenient mesh generation technique uses as
input a crude mesh of rectangles or triangles and a subdivision factor f, a positive integer. The
algorithms of the method then subdivide each element into f ? congruent sub-elements to
generate the desired mesh.'®?' Another approach, which produces graded meshes of triangles,
is based on splitting the process into two stages. In the first stage, a distribution of mesh vertices
is generated and in the second stage these are connected up into triangles.”'® The mesh grading
can be controlled by specifying the distribution of vertices through a density function.

The technique discussed in this paper for rectangular meshes uses as input an initial
(presumably crude) mesh and a mesh concentration or density function, C(x, y). The algorithms
of the method then attempt, through local refinements, to produce a mesh of rectangles whose
areas are inversely proportional to the mesh concentration function (i.e. where the concen-
tration is- high, each rectangle’s area is small). Our discussion deals with algorithms for
implementing this technique independently of the particular choice of mesh concentration
function used. However, an.obvious application is the case in which C(x, y) is derived from a
(presumably crude) approximation to the solution of the problem being solved, based on the
initial mesh. So as not to preclude this approach, we assume that the concentration function is a
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mesh function, i.e. is only defined for the rectangles of the mesh by a list of values in a piecewise
constant manner. Hence, if a mesh refinement splits a rectangle into two sub-rectangles, new
function values must be obtained by interpolation. Clearly, if the concentration function were
provided explicitly and globally (as an arithmetic expression, say), such interpolation would be
unnecessary. In the case of the finite element method, smoother piecewise defined concen-
tration functions may be available with the help of the element shape functions.

On the other hand, if the concentration function is defined using higher derivatives of the
shape function, as in Reference 19, it may be only piecewise constant, as we have assumed.
Several discussions of the relation of mesh refinement to problem solution for finite element and
finite difference methods appear in the literature, e.g. References 2, 14 and 18. The ideas of this
paper were used adaptively in a finite difference solution of mixed diffusion—convection
transport problems, some results of which have been presented in Reference 13. A more general
approach has been described by Rheinboldt and Mesztenyi, in Reference 17 and in connection
with it an extensive analysis of relating the mesh concentration function, C(x, y), to error control
has been combined with experimental computations by Babuska (see references in Reference
2). Alternative choices for C(x, y) based on energy considerations are given in References 16
and 20.

We discuss, in the next section, the introduction of a class of rectangular meshes that allow
restricted local refinements and which form the basis of the technique. Then, we examine, in the
following section, algorithms for performing mesh refinements to achieve a desired contribution
of rectangle sizes, and in the final section we describe some experimental computations with
these algorithms.

IRREGULAR RECTANGULAR MESHES
For simplicity, it will be assumed that the basic region on which a mesh is wanted is a rectangle
R={x, yasx<b csy<sd}

Extensions to regions which are unions of rectangles are obvious. The term ‘a regular
rectangular mesh’ on R will denote the set of rectangles formed from a set of intervals of the
x-axis defined by lines x =x,, for i=1,2,..., K, with those defined on the y-axis by y =y,
i=1,2,..., N, where {x;} and {y,} are monotone increasing with x; =a, xx = b, y1=¢, yn =4d.
To eliminate some unwanted special cases, we-assume K =4, N =4, and we will refer to the
rectangles of the mesh as mesh cells. The term ‘bisecting a cell in the x-direction’ will be used for
splitting a rectangle into two congruent sub-rectangles by a vertical line through its centre (and
similarly for the y-direction). Such bisections form a very simple local mesh refinement and we
could consider the class of all meshes obtained from a regular mesh by an arbitrary sequence of
bisections. However, such a general class of meshes seems considerably more flexible than
necessary for the discretization of continuously varying functions, and the flexibility is gained at
the price of complexity in its representation. Hence we postulate some restrictions on the
bisected mesh.

When two cells have a side, or part side, in common they will be referred to as neighbours. A
cell with four neighbours each having commensurate common sides will be called a regular cell
since locally, at that cell, the mesh appears regular. Other cells will be called irregular. Such
irregular cells usually involve some form of *overhead’ costs to the finite difference or finite
element methods. They may require special treatment in the forming or solving of linear
equations (as discussed in References 6, 7 and 8 for the finite element method) or they may
introduce anomalous errors.”” Hence it seems desirable to keep the proportion of such cells to a
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minimum. This proportion, the ratio of irregular cells to total number of ceils in a mesh, will be
referred to as the fragmentation of the mesh.

The first restriction to be placed on the meshes is that no cell should have more than two
neighbours on any side. This restriction results in simplifying the representation of the mesh
considerably. The second restriction is aimed at reducing the mesh fragmentation. It is that no
cell should have two neighbours on each of a pair of parallel sides—see Figure 1(a). This
restriction is extended to the case of boundary cells (i.e. cells with at least one side on the
boundary of R) to require that no cell shall have two neighbours on a side opposite a
boundary—see Figure 1(b).

(a) (b)

Figure 1. Inadmissible neighbour’s configuration for P

Bisecting the cell P of Figure 1(a) or 1(b), in either the x- or y-direction, will result in
configurations of cells meeting both restrictions. However, bisecting in the x-direction increases
the fragmentation of the mesh, whereas bisecting in the y-direction decreases it and is hence the
preferred way to meet the mesh requirements from these configurations.

An irregular rectangular mesh will be defined as a mesh obtained from a regular rectangular
mesh (called the basic mesh) by a series of cell bisections, and such that each cell satisfies the two
restrictions stated above. It is perhaps surprising that for such an elementary class of meshes
there are 192 configurations of neighbours which a cell may have (including the possibility of no
neighbours on one, or two, adjacent sides). In the following we will abbreviate ‘irregular
rectangular mesh’ to IRM.

In our implementation, an IRM is represented as an array of cell descriptions. Each cell is
numbered with its array index, and its cell description consists of the following fields: co-
ordinates of the cell centre; x- and y-dimensions of the cell; indices of the neighbouring cells
(encoded in four integers); application data for the cell.

Storage space for the array is set up to handle a maximum of M cells. The neighbour’s data for
each side is encoded into one integer word in the form

(sign) (fj X (M +1)+k)

where j = k = 0 implies no neighbours on this side; sign = +implies j = 0 and k is the index of the
single neighbour on this side; and sign = —implies there are two neighbours on this side, with
indices j and &.

As most operations involving mesh cells require knowledge of each cell’s neighbour’s
configuration, it has proved convenient to introduce a sub-program which, for a given cell,
makes this information readily available by returning four groups of three integers—one for
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each side of the cell. The first integer is a configuration code which can be used to drive CASE or
FORTRAN computed GO TO statements:

=1 if no neighbours are present on that side

=2 if one neighbour is present with larger side length
= 3 if one neighbour is present of the same side length
=4 if two neighbours are present.

The other two integers are the neighbour’s indices, as relevant. If no further encoding is done,
the IRM representation uses 4M floating point words, plus 4M integer words, plus space for
application data (in the case of our examples, one function value for the concentration function
per cell for an additional M floating point words). For the finite element method, the element
nodes would have to be generated and numbered and the element incidence list added to the
mesh representation.

Perhaps a comment on the simplicity of this representation is in order. The finite difference or
finite element methods require some knowledge of the neighbour’s configuraton for each cell.
For a regular mesh, i.e. one in which every cell has the same configuration of neighbours, this
information is either used implicitly (element compatibility) or can be summarized in a few
global parameters, e.g. the cell shape is triangular or rectangular. If local refinements introduce
irregular cells, then the neighbour’s configuration data varies from cell to cell. If the variation
is allowed to be quite large, then the information can be appropriately stored in a list with
variable length records. A data structure of wide flexibility for this purpose has been devised by
Rheinboldt and Mesztenyi."” The restrictions that we have placed on the mesh limit the
variability of the neighbours, so that the neighbour’s data can be accommodated in a record of
modest ‘maximal’ size. Qur viewpoint is, then, that the simplicity gained by using fixed length
records of this size probably justifies the inefficiency in the use of memory space that results even
without the encoding described above.

THE MESH REFINEMENT PROCESS

Mesh refinement is accomplished by repeated scans through the cell list, inspecting cells
according to a set of bisection criteria, and modifying the list when a cell bisection is made. The
mesh is initialized to a regular rectangular mesh. The process terminates when a scan of the list is
made which results in no bisections. The phrase ‘bisecting a cell’ refers to modifying the cell
description list; the index of the cell will pass to one of the two newly created cells (the children)
and the other will be added to the bottom of the list. It is straightforward to update the fields of
list items for the child cells {co-ordinates, neighbours, etc.), except possibly for the application
data when it is only known as discrete cell values. In general, this poses the non-trivial question
of the economical approximation of a function based on values known at a variable (albeit small)
number of data points irregularly spaced in the plane. For the examples in the next section, we
have used applications data given at the centres of cells, and have generated new cell data by an
ad hoc interpolation scheme, which is second order for regular cells and first order for irregular
cells. It is worth noting that this same approximation requirement occurs whenever the
applications data is wanted at points other than provided by the irregular mesh; in particular, at
output time when a table of values on some regular mesh is wanted either for printing or
graphing. Hence it is worthwhile not to restrict the interpolation method to apply only to cells
which allow imminent bisection in one direction or another.

Before discussing the mechanics of the mesh refinement process further, some comments on
the objectives for the process should be made. In order to form the basis of a mesh generation
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module which can interface reliably in a program package with discrete equation generation
modules, the mesh refinement process should be guaranteed to terminate with an admissible
mesh. A second objective is concerned with the fact that the number of cells in a mesh determine
the cost or even feasibility in terms of time and memory requirements of a finite element or finite
difference computation; hence it is important to be able to put an upper limit on this number of
cells. Two further objectives, of a more qualitative nature, are that the mesh should be
fragmented as little as possible and that it should reflect the symmetries of the concentration
function as much as possible. The fact that the irregular cells typically involve special overhead
to the discrete equation processes was remarked on above and is the motivation for the low
fragmentation objective. The motivation for the symmetry objective is more subjective. Initial
experiments were made with processes that generated meshes with noticeable lack of symmetry
from symmetrical concentration functions. Such a mesh is disconcerting to view. One could
argue that convergent discretization methods yield results which are independent of the
discretization mechanism. Hence, as long as the cell data distribution after refinement maintains
its symmetry, it is irrelevant whether the mesh itself does. However, the following counter-
argument seems more forceful in that it does not apply only in the convergence limit, and it
supports our sense of aesthetics in mesh generation. Consider two mesh refinement processes, A
and B, with A consistently generating IRM’s with more of the symmetries of the generating data
than B. Then we take this as evidence that A is more sensitive to data than is B, and hence we
prefer A.

The mesh refinement process can be conveniently divided into two sub-topics: (a) the cell
bisection decision algorithm, and (b) the process of scanning the mesh. These will be discussed in
the two following subsections.

The cell bisection decision

One source of criteria for bisecting a cell is the restrictions placed on the cell neighbour’s
configuration mentioned in the last section and repeated here for reference:

" No cell can have more than two neighbours on one side 1
No interior cell can have a pair of neighbours on each of two parallel sides 2)

No cell adjacent to the region’s boundary (i.e. a-boundary cell) may
have two neighbours on the side opposite the boundary 3

The other source of criteria for cell bisection comes from the mesh concentration function.
Using the area, A(P) of a cell P, and its concentration, C(P) >0, a cell content can be defined as

cont (P)= C(P)A(P) 4)

A maximum permissible cell content is specified for the refinement process, ¢, and the criterion
for accommodating the mesh to the function can be written

cont(P)<¢g (5)

It will be seen that there is the possibility of contention between criteria (5) and (1), since (5)
may require a cell to be bisected whereas (1) does not permit it; a contention that the bisection
decision algorithm must resolve. If (5) does require a cell to be bisected, there is the question of
in which direction. For the direction of bisection, there are (at least) three possible contending
criteria: the configuration of mesh neighbours, the accommodation of the mesh to the function,
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and the shape (i.e. height to width ratio) of the resulting cells. A short discussion of the
algorithm’s approach to the latter two criteria follows.

If a cell P is to be bisected into P; and P,, then there may be no constraint from the
neighbour’s configuration on the direction of bisection, as for example with a regular cell. To
make the choice, the algorithm performs a computation to see which direction will produce the
bigger concentration difference, and hence content difference, between the two new cells. If, for
example, bisection in the x-direction would produce a concentration difference between P, and
P, that is significantly greater than bisection in the y-direction, then the x-direction would be
preferred on the basis of trying to isolate regions of high concentration. If the choice of direction
does not affect the concentration difference between P; and P, significantly, then the direction
(if any) which produces the lesser elongation of the cells is chosen. The measure of significance is
a gradient tolerance preset in the decision algorithm. Specifically, the process can be described
as follows:

1. Compute concentration gradients through differencing in the x- and y-directions, D.C, D,C.
2. Compare their difference to the gradient tolerance, g..; and if not s1gmﬁcant1y different,
replace by 1, i.e.

it ([D:C|=IDyCl[< geo)
then (D,C=1,D,C=1)
3. Compute concentration differentials
| C=|D.Clhy; A,C=ID,Clh,

4. If (A,.C > A,C), then concentration differential is bigger in x-direction, otherwise concen-
tration differential is bigger in the y-direction.

Using this, then, the cell bisection decision algorithm may be described as follows:

comment—check restrictions (2) and (3)
1. if (cell has two neighbours on both north and south boundaries) then bisect in x-dlrectlon
end
if (cell has two neighbours on both east and west boundaries) then bisect in y-direction, end
3. if (cell is a boundary cell, with two neighbours on side opposite region boundary)
then bisect in direction consistent with neighbours, end
comment—check criterion (5)
4. if (content of cell< &)
then do not bisect, end
else
determine { as one of the following four cases
case 1—cell has oversized neighbours on vertical boundary only
case 2—cell has oversized neighbours on horizontal boundary only
case 3—cell has oversized neighbours on both horizontal and vertical boundaries
case 4—cell has no oversized neighbours
perform case (i) of
1. bisect in x-direction, end
2. bisection in y-direction, end
3. do not bisect, end
4. if (concentration differential is bigger in x-direction)
then bisect in x-direction, end
else bisect in y-direction, end

N
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Scanning the mesh

Two basic approaches to scanning the mesh are apparent. The first involves inspecting a cell: if
the inspection results in a decision to bisect, then bisecting it, and then selecting a next cell for
inspection. The second approach involves separating the scan into an inspection phase, followed
by a bisection phase. In the inspection phase, the current mesh is scanned passively, and a list of
cells to be bisected is built up (the bisection list). Subsequently, the cells in the bisection list are
subdivided to form the new mesh. Using an analogy to pointwise iterative methods for solving
linear equations, we shall refer to the first approach as a successive scanning process and the
second approach as a simultaneous scanning process.

As with pointwise iterative methods, the successive processes seem more natural from a
programming point of view, since no storage of the bisection list is necessary. However,
simultaneous scanning offers two significant advantages—one in the area of symmetry and the
other in the case of mesh cell list overflow. Successive scanning processes require an order for
selecting cells for inspection and bisection and the resulting mesh refinements depend on the
order used. On the other hand, simultaneous scanning can be organized (see below) so that the
resulting mesh refinement is independent of the order in which cells are inspected and
subdivided. This latter order only influences the order in which cells appear in the bisection list.
Hence, simultaneous processes can be expected to produce highly symmetric meshes from
symmetric data. Despite a considerable effort in trying to devise effective cell orderings for
successive processes by stacking or queueing neighbours of cells to be subdivided, we were
unable to produce a strategy which gave results comparable in their symmetry properties to the
corresponding simultaneous scans.

It may happen that the cell content tolerance has been set so low that the mesh scan will
produce more cells than the maximum allowed by the cell list storage space. A successive
scanning process will discover this in the middle of a scan, where there is little it can do to
gracefully continue. However, after the inspection phase, a simultaneous process can determine
how many cells will be produced if the bisections are carried out, while the current mesh is still
intact. If this number will result in a list overflow, then remedial action can be taken. For
example, in the algorithm given below, the tolerance level is raised by a factor, and the
inspection phase repeated. The mesh refinement process has been described as consisting of
repeated scans of the mesh, until one is completed in which no bisections were required. If care is
taken to see that the mesh resulting from the bisections of each scan is an irregular rectangular
mesh in the sense of the last section, then one can ensure that the mesh resulting from a
simultaneous scanning process will be an irregular rectangular mesh despite the need to modify
the strategy of mesu refinement to avoid list overflow.

In the next section, an example of results obtained with both successive and simultaneous
scanning processes is given. High level descriptions of the processes are given here, both of
which refer to the cell bisection decision algorithm of the previous subsection. The successive
scan can be simply described as follows:

while (the current scan is not complete and the cell list is not full)
1. get the next cell in the scanning order
2. submit it to the cell bisection decision algorithm
3. if (bisection is called for)
then
3.1. interpolate application data to get values for the child cells
3.2. perform the bisection (i.e. update the cell list)
The inspection phase of our simultaneous scan maintains a count of the number of cells to be
bisected—to be referred to as the bisection count. As long as the number of cells in the current
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mesh plus the bisection count is less than the cell list capacity, the inspection phase maintains the
bisection list of cells to be subdivided during the bisection phase. This list consists of the indices
of such cells, and of the values of data for the cells to be created by bisection, obtained by
interpolation of the data in the current mesh. A convenient place to store this list is in the unused
part of the array of cell descriptions that forms the IRM representation. The bisection list will fit
there if and only if the subsequent bisection phase can be carried out without cell list overfiow. If
the bisection count does exceed the space available, building of the bisection list is suspended,
but the inspection scan continues, and maintains the bisection count, so as to be able to print out
a useful monitoring message.

It is significant, in helping to maintain the symmetries of the refined meshes from scan to scan,
that the interpolation of application data be done during the inspection phase, since during the
bisection phase the current mesh may lose some of its symmetry ‘temporarily’ while in transition
from one level of local refinement to the next. Hence, this interpolation data must be stored in
the bisection list, along with the indices of cells to be bisected. The inspection scan can be
described as:
for each cell of the current mesh

1. submit it to the cell bisection decision algorithm

2. if bisection is called for and the cell is not already in the bisection list

then
2.1. set bisection count increment to 1
2.2. if neighbours at ends of proposed bisection line must
be bisected to meet restrictions (2) or (3) of the last subsection
then
2.2.1. if neighbours are not already in bisection list then increment bisection count
increment and
temporarily store neighbour’s indices
2.3. if bisection count+increment <M
then
2.3.1. interpolate applications data to get values for child cells
2.3.2. enter indices and data into bisection list

The purpose of 2.2 is to ensure that; after each scan, the mesh qualifies as an irregular
rectangular mesh. The bisection phase can then be described as:

if the bisection count plus the number of cells in the current mesh does not exceed the cell list
capacity
then
1. for each cell in the bisection list perform the bisection
(i.e. update the cell list)
else
2. multiply the cell content tolerance by 4
3. repeat the inspection phase

The use of the factor 4 in 2. is a simple, if rather arbitrary, form of remedial action to avoid cell
list overflow. It seems effective in the tests we have performed.

SOME EXAMPLES

In the examples of this section, the mesh refinement process has been used to produce a zone of
refined regular cells in the part of the domain where the function to which the mesh is being
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tailored is ‘interesting’, separated by a transition zone of irregular cells from the remaining part
of the domain where the coarse mesh is regarded as adequate. The functions used, f(x, y), take
on positive values, vary significantly in magnitude over the domain, and are interesting in their
regions of high values. To obtain a zone of regular cells in these regions, we define f, to be the
lower limit of what is considered as a high value, and define the concentration for generating the
mesh to be

C(x, y) = minimum (f(x, y), f)
Figure 2 shows the Gaussian lump
f(x, y) =100 exp (—(x —4-5)*/7-2— (y —3)*/5-8) (6)

in the rectangle 0<x <9, 0 <y <6, and Figure 3 shows the concentration obtained by cutting it
off at f. =20. Two meshes were generated from this concentration, starting with the regular

RV e I WY
——ees

Figure 3. Gaussian lump of Figure 2 cut off at height 20

rectangular mesh of 25 cells shown in Figure 4, and using the cell bisection algorithm of the first
part of the last section with maximum cell content of ¢ = 10. Figure 5 shows the mesh resulting
from the simultaneous scanning algorithm of the second part of the last section and Figure 6
shows the result of using the successive scanning algorithm. All the interior cells have been
bisected at least once in each direction (as a result, they are commensurate with the boundary
strip of cells). However, in the centre a core of cells has been bisected once more in each
direction resulting in 124 cells in Figure 5 and 120 in Figure 6.

The lack of symmetry in Figure 6 is quite obvious. Although the mesh has only a small number
of cells in this example, it is typical of the difference between the two scanning techniques. The
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Figure 4. Basic regular rectangular mesh of 25 cells

Figure 5. Irregular rectangular mesh generated by simultaneous scan and concentration of Figure 3

Figure 6. Irregular rectangular mesh generated by successive scan and concentration of Figure 3
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number of bisections undergone by a cell of the basic mesh which lies in the refined core is
determined by its original area A, the cut-off value, f,, and the cell content maximum ¢ as

L= [log; (Afc/e)] Nt

This formula is helpful in determining ¢ to obtain a desired value of L, typically 2 or 4. Since, for
these examples, the interior cells of the basic mesh all have the same area, L is a property of the
mesh refinement process parameters and it will be referred to as the bisection level of the mesh.

As a second example, we look at meshes generated from the solution of the constant
coefficient diffusion convection equation L

£(x, y) =200 . exp (x/80)Ko(5¥(x*/1600 +y2/400)) )

that represents a two-dimensional steady-state plume of effluent spreading into an infinite
half-plane; Ko(z) is the K-type Bessel function of order zero. The surface representation of this
function is shown in Figures 7 and 8 for the rectangle 50 < x <2050; —80 =<y =< 80. We have

Figure 7. Effluent plume profile used for generating meshes of Table I (end view)

generated a series of increasingly refined meshes from this function by decreasing the cell
content maximum, and tabulated some summary data on them in Table I. The basic mesh used
for this example had 10 cells along the horizontal side of the region and 8 cells along the vertical.
The boundary cells had half the size of the interior cells in the dimension perpendicular to the
boundary as in Figure 4; hence the dimensions of the interior cells of this basic mesh are
222 x 30. The function cut-off level was chosen to be f, = 30, and at this value the content of cells
in the basic mesh is 200,000. Columns A and B of Table I contain the cell content maximum and
the maximum length of the cell list; these are parameters to the mesh refinement process. For the
entries in the lower three rows of the table, they had values for which the mesh refinement
process attempted to generate more cells than the cell list could accommodate, i.e. cell list

T [x] denotes the smallest integer = x.
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Figure 8. Effluent plume profile used for generating meshes of Table I (side view)

Table 1. Summary of mesh refinement statistics for the second
example (plume profile)

A B C - D E

No cell list overflow

60,000 400 136 0-71 2
30,000 400 248 0-69 3
15,000 800 447 - .0-69 . 4
12,000 800 567 073 5
10,000 800 659 - 0-72 5
8,000 - 800 -~ 787 . - 071 5 -
Cell list overflowt A
15,000 400 . 242 ~.0-68 T
12,000 400 - - 244 0-68 -1
10,000 600 546 075 %

t & was raised to 4¢ during mesh refinement.
A, cell content maximum (g).

B, maximum number of cells allowed.

C, number of cells generated.

D, ratio of numbers of regular cells to total.
E, bisection level.

overflow. In this case, when the cell content maximum was replaced by four times its original
value the resulting mesh could fit into the cell list and is reported in the table. It is of interest to
note that the proportion of regular cells in the resulting meshes, virtually all of which lie in the
refined zone, is fairly constant at about 70 per cent, with a transition zone comprised of about 30
per cent of the cells. These figures are quite typical of other tests done with similar strategies,
although concentrations can be defined which give rise to sharper transition zones. In particular,
for a bisection level of two, meshes with transition zone of 10-15 per cent of the cells are not
difficult to generate from concentrations with sharp fronts or drops between a region of high
concentration and a region of low concentration. 7
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CONCLUSIONS

In this paper a well-defined class of meshes (the irregular rectangular meshes) admitting local
refinements has been posed and algorithms given which refine the mesh according to the
features of prescribed mesh functions. The algorithms have the firm properties of terminating
with an allowable mesh, and requiring no more memory than needs to be allocated to store the
list of cells for the mesh of maximum size. They have the less firm property of producing meshes
with a high degree of the symmetries of the generating function. Our tests suggest that while it is
possible to generate refined zones of regular cells, a significant proportion of the cells of an
irregular mesh will be irregular cells.

The irregular rectangular meshes are particularly simple, in that any cell is determined by four
parameters; we have used the cell centre co-ordinates and its dimensions. However, there does
not appear to be any fundamental reason why these ideas cannot be directly extended to meshes
of triangles in the plane or bricks in three dimensions, and other basic mesh cell shapes. In such
cases, restrictions on the configuration of neighbours which may be used to define the class of
meshes will pose the same difficulties for the properties of mesh refinement algorithms as
discussed here.
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Abstract

A class of rectangular meshes which admit local refinement
of mesh cells is defined. Some objectives for algorithms to perform
local refinements in this class to resolve features of a given mesh
function are discussed, i.e. properties of termination with a mesh in
the specified class, memory utilization, symmetry and fragmentation of

the meshes generated. Some algorithms and examples are given.
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