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Pumping lemmas are stated and proved for the classes of regular
and context-free sets of terms. The lemmas are then applied to solve

decision prcblems concerning these classes of sets.
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0. Pumpfng Temmas have been produced in various versions for a number
of classes of languages (Bar-Hillel, Perles and Shamir; Moore; Hayashi;
Ogden). Their use is two-fold. On the one hand, they lead to algorithms

for deciding certain problems about Tanguages such as emptiness and finite-
ness. On the other hand, they provide an effective means of proving that some

language does not belong to a certain class.

In this paper, we provide pumping lemmas for reqular and context-
free term grammars (Thatcher and Wright; Brainerd; Rounds; Maibaum). (The
pumping lemma for regular sets is really implicit in Thatcher and Wright.)

As a consequence, we can derive the effective methods outlined above.
Algorithms do exist for deciding the emptiness/finiteneés of context free

sets of terms, but these are indirect (Rounds). They depend on algorithms

to solve the same problems for indexed languages (Aho). (Note added in
revision: It has been brought to my attention by A. Salomaa through K. Culik
that Aho's proof of the decidability of the emptiness problem for indexed
grammars is incorrect and no correct proof is known. The pumping lemma for
context free term grammars can now be used to provide a proof of this important

theorem.)

We begin in section 1 by introducing some algebraic concepts which
we will need. HWe also define and state some properties of regular and context
free term Qrammars, In section 2, the pumping lemmas are stated and proved.
In section 3, these temmas are applied in proofs of non-membership of some

sets in some classes of languages.

1. We begin by introducing some essential algebraic concepts. Let

N be the set of natural numbers. A ranked alphabet is a family of sets

indexed by N. We use the notation I = {Zn}neN for ranked alphabets. If
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f e Lo f is said to be of rank n. I is said to be finite if the (disjoint)

union of {Zn}neﬂ_1s finite.

A I-algebra is a pair consisting of a set A, called the carrier of
the algebra, and an indexed family of assignments a = {an}nsN such that
o :I. > (A" > A). (A" > A) is the set of n-ary functions from Mto A. Thus,
for f ¢ Zn, an(f) = fA is a function from A" to A. We denote the Z-algebra

with carrier A by AZ'

Let X be any set such that Xn(Un{EnIneﬂ}) = ¢ and consider the set W(X)
defined by:
(0) X g Wo(X);

(i) If f e DN and t. ¢ HZ(X) for 1 < i < n, then ft]...tn € NZ(X)'

wz(x) is called the set of expressions or terms generated by X.

-

We can make the set WZ(X) into the carrier of a z-algebra {alsc

) =

denoted by WZ(X)) by assigning to f e Z the operation fwz(x)(t1""’tn

ft]...tn. Let NE denote wz(¢),

A homomorphism is a structure preserving mapping y:A. - B, between

two I-algebras, i.e. w(fA(a],.,.,an)) = fB(w(aT),...,w(an)) for all

ai,o.s,an ¢ A and f ¢ Zn.

Unique Extension Lemma: Given a I-algebra AZ and an assignment y:X - A&,
there is exactly one extension of ¢ to a homomorphism iuwz (x) - AZ' In

particular, there is a unique homomorphism hA:wz + AZ' 0

We now define the binary operation of substitution {denoted by o)

on the sets wz(xn) and (NZ(Xm))n where X, = {xl,...,xk}. (See also

Thatcher (1970), (1972) and ADJ).
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Let t e Wy(X ), t; e Wp(X)) for 1 <§ <n. Then o:y(X ) x (Wy(X )"~ Wo (X )

j € Nglig/ TOr B =g =
is defined by °(t,<t],.,.,tn>) = [E;jfffff;](t) where [t;jfffj?h] is the
unique homomorphism obtained from the assignment [t],...,tn]:xn -+ wz(xm)
which assigns tj to Xj for 1 < j < n. (See the Unique Extension Lemma.)
Informally, o(t,<t],...,tn>) means: Substitute t, for each occurrence of
X3 int, 1 <1i<n. Fromnow on, we will adopt the infix notation t o<t],...,tn>
rather than the prefix notation above. We can extend substitution to a binary
operation °:WZ(Xn))p x (wz(Xm))n > (wz(Xm))p with the definition
<t],...,tp>o<t{,.,.,t6> = <t1°<ti"'"tﬂ>’“"’tp°<tf""’tﬁ>>' ‘

Let B(A) be the set 6f all sdbsets of a set A. Given a Z-algebra
A, B(A) can easily be made into a I-algebra. For given f ¢ Zn and for 1 £ 1 <n,
n)lsi e S, for
nk. Let t e Wy(X)) and o = <oq,...,0> € (B(Wg(X,)))". Define

1
1<

S; = A (i.e. Si € B(A)), define fB(A)(Sl""’Sn) = {fA(S],...,S

iA

t o a = a(t) where a: WZ(Xn) > B(wz(Xk)) is the unique homomorphism extending
the assignment which assigns to X; the set a.. This is sometimes called non-
uniform substitution because different occurrences of x; in t can be assigned
different values from the i'th component of a. Suppose B e B(wz(xn)). Then
B oa ={tea|t ¢ B}. Substitution is then easily extended to the case where B
is a tuple of sets. If a ='<{t]},...,{tn}> is a tuple of singletons, then we
also write a = Stisensty >

Theorem Substitution is an associative operation. i.e. let

a e (B0 )NP, 8 e (BlHLX N, v (B, (X)N)". Then

a ° (Boy) = (acf) o y.

Proof: This theorem is a simple consequence of the Unique Extension

Lemma and a full proof can be found in ADJ. 0
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Let us write a(x],...,xn) to signify a « (B(wz(xn)))p for some p (where
p is determined by the context). For example, in the context
B(x],...,xk) ° a(x1,...,xn) we see p=k by the definition of substitution.
Let us write a(x],...,xil,...,xn) to denote o ¢ B(wz(xn)) with exactly one

. . . k
occurrence of x, in any t e a. Finally, givena « (B(WZ(Xn))7 s

B ¢ (B(wz(Xk)))p, let us write B(a(x1,...,xn)) for Roa.

A context-free term grammar (Rounds; Maibaum) G over the alphabet

% is a 4-tuple (N,Z,P,S) where:

(i) N is a finite ranked alphabet called the set of non-terminals of G;

(ii) = is a finite ranked alphabet called the set of terminals of G.

Let V= V3 = (N v z)

on ndi;
(iii) P is a finite set of Erqductions of the form A(x],...,xn) -~ t, where
A ¢ Nn and t ¢ WV(Xn);

(iv) S is called the start symbol or axiom of G and S « Ng-

Given s, s' ¢ wz(xn) and G = (N,Z,P,S), s is said to directly derive

s' (denoted by s &> s') if and only if s' is obtained from s by replacing

one sub-expression of s of the form At]..gtn by the expression t o <t1""’tn>
where A(xl,a.u,xn) ~ t is a production of G. Denote by §> the reflexive,
transitive closure of E>° Note that we will often drop the G from g> or

*

E> whenever it is clear from the context which grammar G is being referred

to.
A grammar G = (N,Z,P,S) is said to be regular if Nn = ¢ for all n > 0.

¥
The set L(G) = {t < W.|S => t} is called the (term) language generated

by G. The language generated by a context free (regular) grammar G = (N,Z,P,S)

is said to be a context free (regular) language (over I).



A direct derivation s =» s' in a grammar G is said to be leftmost
if the non-terminal A in the subexpression At]...tn of s which is to be
replaced is the leftmost non-terminal symbol in s (regarded as a string

*
of symbols). A derivation S => s is leftmost if each step is leftmost.

Theorem: Let G be a context free term grammar. If t ¢ L(G), then t has
a leftmost derivation in G. g

Let CFZ ={L|L = L(G), G a CF grammar over g}, REGZ = {L[L = L(G),
G a regular grammar over 1}.

A context free grammar G = (N,z,P,S) is said to be in (Chomsky)

normal form if each production in P is in one of the following forms:

(i) A(x],...,xn) - B(C](x],...,xn),...,Cm(x],...,xn));

(ii) A(x],...,x ) - fx]...xn

n

(ii1) A(x],...,xn) > Xy

for A,C],...,Cm e N, B¢ Nm’ f e Zn’ and 1 <k <nand if G has no

n’
useless non-terminals. A non-terminal A ¢ N in a grammar G = {N,Z,P,S)
is said to be useless if either:

*

(i) {t ) =>tl = ¢

t e wz(xn) and A(x],...,xn

or (ii) A is never used in a derivation in G starting at S.

See Rounds for further details.

Theorem (Maibaum): Given a context free term grammar G, there (effectivély)

exists a grammar G' in normal form such that L(G) = L(G'). O



Theorem (Brainerd): Given a regular term grammar G, there (effectively)

exists a regular term grammar G' such that L(G) = L(G') and G' only has
productions of the form A » fB]...Bn or A > a for non-terminals A’Bl""’Bn
and terminals f (of rank n) and a (of rank 0). O

The depth of an expression t e WZ(X)’ denoted by |t|, is defined as

follows:
(i) [t =0 if t=x, x € X;

(i) Ift= ft]...tn, then [t| = 1+ max{ltil}'

If o e B(W (X)), then |a| = max{ [t]|t e al.

If a =<OL19---9OLn> € (B(WZ(Xm)))n’ then !OLI = maX{IOL-i”] < i < n}.

2. We use the preceding definitions to present pumping lemmas for regular

and context free term grammars.

Theorem: Given a regular set L over I, there exists a constant r > 0
(depending only on L) such that, if t e L and |[t] > r, then t can be written
as UjeuyoUs where:
(1) uy(xg!) € Ho0Xp)s
(i) u2(x]!) € WZ(X1) and 1 < luzl <r;
(iii) Uy € We.

Moreover, u]ou;ou3 e L for all i = 0, where u; is defined by:

(1) =
.. i+ 3
(i) u; 1. U%ouz
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Proof: Let L = L(G) where G = <N,Z,P,S> is a reqular grammar with productions

only of the form A ~ fB ..B_or A>a. (Recall N ¢ for k > 0.) Let

1° k
N, = {A1""’An} and r = n. Ifte L such that |t| > r, then we claim that

there exists Aj € NO and a derivation for t in G of the form:

*

S => u]°Aj

*.

=> U-I u2 Aj

*

"7 Uyetpeds
for UpslUysUs as in the statement of the theorem. If this were
not so (i.e. no such Aj existed), then for each A « N0 we would have the
following simple property: No derivation of the form A z, uoA exists for

*

any u(x]!) € WZ(X1)' That is, for all t' ¢ NZ such that A => t', we would
have |t'| <n. In particular, if t' ¢ L, then [t'| < n. This contradicts
our assumption that |t]| > n.

But, then the following derivation is also a derivation in G for

each i =2 0:

> u1oAj
=> U]OUZOAJ

=> u_louzouzoAj

=> u]ou2 e u2°Aj

L

i-occurences

=2 U]OU;°U3. 0
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Corollary: The emptiness and finiteness problems are solvable for reqgular
term grammars. (See also Thatcher and Wright).

Proof If there is t e L(G), then, by the pumping lemma above, there is
t' € L(G) such that |t'| < r. Thus to test if L(G) is empty, we need to
check for the existence of such a t'. That this can be done follows from the
following facts:

(i) The number of terms in Wy of depth less than or equal to r is

finite;

(ii) Given k = 0 and G, the length of derivations S => t for [t] = k
is bounded. (The length of a derivation is the number of rules
applied in the course of the derivation.)

As to the finiteness problem, it is clear that if there is t ¢ L(G)
such that v < |t| < 2r, then, by the pumping lemma above L(G) is infinite.
Conversely, if L(G) is infinite, then there is t e L(G) such that |t] > 2r.
(This follows from fact (i) above.) But then, applying the pumping lemma
above, we can produce t' e L(G) such that r< [t'| < 2r. Thus L(G) is in-
finite if and only if there is t ¢ L(G) such that r < |t| < 2r. Thus, based
on facts (i) and (ii) above, given L(G), we can test for the existence of

such at. [

The pumping Temma for context free term grammars reads as follows:
Theorem:  Given a context free language L over I, there exists constants
P,q > 0 such that, if t e L and |t]| > p, then t ¢ u](uz(us,u3(u4(u5)))) =
u1(u2(x1,...,xn,u3(u4(x],...,xn)))ou5) where:

(1) w0 e M)
(i1) uz(x],...,xn,xn+1!) e NZ(Xn+1);

(ii1) u3(x],...,x ) e NZ(Xn);
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(V) ug(xqsennsx) € (BUU(X )N
(V) ug e (B(HG)".

Moreover, if t' e uz(x],...,xn,u3(u4(x],,..,xn))), then |t'] < qsluy| + lu4i > 0

and, if we define

0

9 = u3(x],...,xn)

and

" .
o'l = uz(x],...,xn,e1(u4(x],...,xn))),

then we have ul(ei(u5)) < L for all i = 0. (Note that t ¢ u](el(u5)).)
Before we proceed with the proof, we give below an intuitive outline along
with some technical details formalising part of this intuition:

In the case of context free string grammars, we are able to prove the

usual pumping lemma because of the existence of derivations of the form
* * *
S => uAs => yvArs => uvwrs

for strings of terminals u,v,w,r,s and non-terminal symbols S {the axiom)
and A. That such derivations exist can be shown by studying derivations,
or more precisely, derivation trees larger than some specified size.

In the case of context free term grammars, we must look for derivations

of the form

s I, u(A(x1,...,xn)os)
*
=> u(v(x],...,xn,A(x],...,Xn)OP(X],---,Xn))°5)
*

=> u(v(x],...,xn,w(x],...,xn)or(x1,...,xn))os) =t

);

n-tuples of trees of terminal symbols s and r(x],...,xn); and non-terminals

for trees of terminal symbols u(x]!), v(x],...,xn,xn+]!), w(x],..,,xn

S and A. How can we guarantee the existence of such derivations?
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First of all, there is no readily available concept of a derivation tree for
a derivation in a context free term grammar. Thus the route followed in the
case of string grammars is not readily available to us.

Consider, however, the following "analysis". The first indicated
appearance of A in the above derivation appears "in place of" xy in u(x]).
That is, there is a path from the root of u1(x]) to x;, call it PyXqs SO
that any path in u](A(x],...,xn)°s) through A is pyAp for some p. Consider
the second appearance of A in the above derivation. This second occurrence

of A occurs "in place of" x in u(v(x],...,xn,x ')). That is, there is

n+l ntl’

a path through this term, call it P1PoX 415 SO that any path in
u(v(x],...,an(x],...,xn)or(x1,...,xn))os) through A 1is p]pZAp' for some p'.
)

or(x],...,xn))os). There must exist a path p]pzp" through this term so that

Now consider the result of the above derivation, u(v(x],...,x . w(x],...,x

n n

p" begins with the symbol labelling the root of (w(x],...,xn)or(xl,..,,xn))os.

Now, the two occurrences of A in the above derivation have made some
contribution to the nature of the string p]pzp“. Conversely, the properties
of paths through a term such as t «can aid us in finding derivations of the
appropriate kind in the term grammar. In the sequel, we make precise the
relationship between a context free term language and the string language
made up of all the paths through the terms in the term language. (This
analysis is based on the work of Rounds.)

Let A be a ranked alphabet and X any set. Let En= A X {1,...,n} and
write f; for <f,i> En. let & = AO u (U En). Let X be a symbol such that

n>0
N (UAn) U X. For each o ¢ Ag u X, define the set of o-paths through

t e WA(X) as follows:
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(¢ if t,o € AOUX and t # o
{o}ift=0 and o ¢ Aq
Po(t) = { {A}ift=0cand o e X
n
i 1'B]{fiwlw € Pc(ti)} ifts= fty...t .
For L s W, (X), let P(L) = U (UP (t)|o « AOUX})
tel o

Let G = <N,%,P,S> be a context free term grammar. We construct a

context free string grammar G = <N,Z,P,S> (which will have the property that

L(G) = P(L(G))) as follows:

and £ are defined as above;

(i) N

(i) ? =S € NO;

(iii) P is obtained from the productions A(x],...,xn) + t in P as follows:
(a) Ifwahe PX (t), let Ai + w be in P;

.i
(b) If A e PX (t), et Ai + e (where e is the empty string) be in P;
..i

(c) If wa ¢ Pa(t) for a « Ly let A1 > wa be in P.

Lemma (Rounds): If L = L(G) is a context free term language, then P(L) is a

context free set of strings and P(L) = L(G) with G as defined above. 0

Remark: If G above is in normal form, then all productions in G are in one
of the following forms:
(1) Ai - Bjck for some A € Nm (1 <i<m,Be Nn (1 <3 <n), and
CeNp(]SKSp);
(1) Ai - a for some A in N and a « ZO or a= fi for f ¢ Zm;

(iii) Ai + e for some A in N.
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Moreover, a given (leftmost) derivation d = S => t, t € Wy, in G induces
a corresponding set of (leftmost) derivations Dd = {s & wlw € P({t})} in é,
It is easily seen how this can be done: Suppose we have a derivation
S 2> s =>s' in G and we are given the set D=DS %> g+ Assume that s' is

obtained from s by replacing a subexpression At1...tn of s by t' ° <t1""’tn>

for some A(x1,...,xn) > t' in P, Llet v Ai v' be some path in s through this

non-terminal A. Depending on the form of t', we obtain D' = DS X, g1 @S follows:

(1) Ift' = Xy then we have two cases:

(a) Ifi =k, place S z v Ak v' => yv' (using Ak + e in ;) in

D' for S = v A v'oin D,

(b) If i # k, then S > v Ai v' in D is not replaced in D'.

(ii) Ift' = fx]...xn, place S z vAkv' => vfkv' (using Ak > fk in ;)
*
in D' for S => VALV' in D.

(111)  If t' = B(Cy(Xqys-aanX)sennsColXys.aisx )5 place the set

n m
*
S i> VA V' => vBSCy v [T < j <mt (using A Bjcj?k(1 <j<wm
*
in P) in D' for S => vA, v' in D, 0

k
Proof of the theorem:

Let L = L(G) where G = <N,Z,P,5> is a normal form grammar. Suppose there

m-1

are m non-terminals in N. Let p = 2 and q = 2" Let d =S z t be a

leftmost derivation in G such that t e L and |t] > p. Let w be a path of

2m'].) Thus there is a Teftmost

maximum length in t. (Then the length of w >
derivation S =*> w in Dd' Construct the derivation tree Tw corresponding to

this derivation in G. -
We will call a node of T Tlabelled by some non-terminal A; e N productive

1f: (1) A1° has as direct descendents the non-terminals Bj and Ck
(i.e. we have used the production Ai > BjCk);
and (i1) the two sets of terminal symbols labelling leaves which are de-

scendents of Bj and Ck, respectively, are non-empty.

Condition (ii) implies that both Bj and Ck "contribute" non-empty substrings
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to w. It is a simple exercise to prove that there is some path w n T
which contains at least m productive nodes. (Choose w so that the number
of productive nodes on w is maximised.) (This is possible since the length
of w is greater than 21 and so the depth of T is at least m.) But then
w must have at least mtl nodes labelled by non-terminals in N. (The last
non-terminal in any path in Tw must be non-productive.)

This then implies that there is some A in N such that:

A: (1) Two of the nodes in w are Tabelled by A, and Aj for some

1<i,j<n where AcN;
(i) A, appears in w before Aj;

(iii) Ai is productive and the number of productive nodes in w which

appear after Ai is at most m-1.
Condition A(i) can be met since there are only m non-terminals in N.
Conditions A(ii) and A(iii) can be met by choosing the least postfix of w
containing m productive nodes.

Since Ai appears in w, the leftmost derivation d can be expressed as

*
S => uj (A(x],...,x ) o u5) =5 t

n
for some uj e WV({X]!}) and ug = <ty,..t > e (wV)"
such that:

B: (i) A is the leftmost non-terminal in ui(A(X]""Xn)°u5)’

. ) * X . o
(ii) uy => uy for some u; « W (1x1.}).

(Because of condition B(i), the unique occurrence of Xy in ui does not

appear to the right of any non-terminal and so will not be copied or

dropped, fulfilling condition B(ii).)

Since Aj appears in ( after Ai’ the leftmost derivation d can be

expressed as:
*
S => u3 (A(x],...,xn)ous)

*

S A A ui(ué(x],...,xn,A(x],...,xn)oua(x],...,x ))oug)

U3

>t
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for some ué € WV({X],...,xn,xn+]i}), ua = <Sys.e.aSp> € (wV(Xn))n and ug =

<t1""’%n>‘€ (B(wv))” such that:

C: (i) A is the leftmost non-terminal in ué(x],...,xn, A(x],...,xn)ou&(x],...,xn)):

. , X ‘ Y.
(i) us => u, for some u, € wz({x],...,xn,xn+1.}),

"~ *
‘e . * C
(iii) Ifr ¢ tj, 1 <J<n, then tj => ¢ for tj inug = <ty,....t >

(Conditions C(i) and c(ii) can be explained as in the above paragraph. Condition
Ciii) is justified as follows: tj in ué can be substituted in a number of
different places for xj in ué. Each of these copies can lead to separate
derivations from tj.)

We can then write d as.

*
S => u](A(x],...,xn)ou5)
%*
=>t', t' ¢ ui (ué(x],...,xn,A(x1,...,xn)ou&(x],...,xn))°u§)
*
=> t, t ¢ u1(u2(x],...,xn),u3(x],.,.,xn)ou4(x],,..,xn)ou5)

for some uj e Wy (Xq)s uy = <§],...,§n> € (B(NZ(Xn)))n and
ug = <ti,...,€5> c (B(wz(xn)))n such that:

D: (i) Ifredy, 1< hen s, => r f in u!s
(1) v e s\j < j < n, then sj => p for sj in ugs

In

~ * ~ e
(ii) Ifr e tj, 1 <j<n, thenr' =>r for some r' « tj(tj in ug).

(The justification of conditions O(i) and D(ii) is similar to that for

condition C(iii) in the above paragraph.)

To summarise, we have Ups«--sUg, s in the statement of the theorem,

*
such that S =>r, r « u](A(x],...,xn)OUS)
})

*
A(x],...,xn) = pr',r' ¢ UZ(X]""’Xn’ A(x],...,xn)° u4(x],...,xn

and

*
A(x],.u.,xn) => 93(x1,...,xn).
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We now proceed to prove the other claims made in the statement of the
theorem. Since Ai was chosen to be productive, we can be sure that
|u2|+|u4| > 0. Because of the way w, » and Ai’Aj were chosen, we can
be sure that if t' ¢ uz(x],...,xn,u3(x],...,xn)ou4(x],...,xn)), then
[t'] < g. Moreover, it is clear that using the derivations

*
= i ! .
A(x1,...,xn) >t', t' e u2(x],...,xn, A(x],...,xn)°u4(x1,...,xn)),
* .
iteratively, we can produce the derivations A(x1,...,xn) = s', s' ¢ 6

for any i20. Thus we have the last condition of the theorem: If

t e u](ei(us)), then S => t.

Corollary: The emptiness and finiteness problems are solvable for context

free term grammars.

Proof: It is clear from the theorem that if t e L(G) and [t] > p
(p as in the theorem), then we can produce another t'e L(G) such that
t' ¢ L(G) and |t'| = p. (We may need many applications of the theorem.)
Thus to check whether L(G) is empty, it is sufficient to check whether
there is some t, |t| < p, in L(G). That this can be done is clear from
the following facts:
(1) The number of terms in Wy of depth less than or equal to p is finite;
(ii) Given k ¥ 0 and G, the lengths of derivations S =5 t for t] = k
is bounded.

As to the finiteness problem, it is clear that if there is a t ¢ L(G) such
that p < |t} < p + q, then, by the pumping lemma above, L(G) is infinite. Con-
versely if L(G) is infinite, then there is t ¢ L(G) such that |t| > p + q.

(This follows from fact (i) above.) But then, by applying the pumping lemma
above several times, we can produce t' e L(G) such that p < |t'| = p + g. Thus

L(G) is infinite if and only if there exists t e L(G) such that p < |t| < p + q.
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Thus, based on facts (i) and (ii) above, given L(G), we can test for the

existence of such a t.

(Note that p and q, above depend on the number of non-terminals in G.)
Corollary: The emptiness problem is solvable for indexed grammars.

Proof: This is a simple consequence of the relationship between indexed
languages and context free languages. For the definition of indexed
languages and grammars, see Aho. For the connection between indexed

languages and context free term langugges, see Rounds or Maibaum. a
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3. Let Iy = {al, Ly = {t} and L, = ¢ for n#0,2. Consider the

set L = {+aa,++aa+aa,++aataat+taa+aa,...} over L. L is the set of balanced
binary "trees" over a and + with interior nodes labelled by + and leaves

(or exterior nodes) labelled by a.
Lemma The set L described above is not regular.

E[égﬁ Suppose L is regular. Then, by the pumping lemma, there exists
a constant r > 0 such that, if t ¢ L and [t] > r, then t can be written as
Upouyous With 1 < luzl < r. Moreover, ulou;ou3 e L for all i>0. Note
that t' ¢ L has the property that all paths from the root of t' to any
leaf of t' are of equal lgngth. This is certainly not true of u1°ugou3.
This is a contradiction. Thus, L is not regular. (In fact, it is context

free.) 0O

Let L' = {+aa,++taataa,++++aa+aat+aataat++aataa++aataa,...}.
L' is a language over I and L' is the set of balanced binary trees (over

+ and a) of depths 2™+1 for n0.
Lemma The set L' described above is not context free.

Proof: Suppose L' is context free. Then, by the pumping lemma, there

exist constants p,q > 0 such that, if t « L and [t| > p, then t « u](uz(xig

...,xn,u3(u4(x1,...,xn)))ous) with |u2(x],...,xn, u3(u4(x],...,xn)))| < q
and |u21+|u4[ > 0. Moreover, u](61(u5)) c L' for all i20. Let
lupl+luy| = k. Then [u;(87(ug))|<[t] + (i-1)k for i>0. That is, the
depths of these terms in L' are bounded by an arithmetic progression
[t], [t|+k, |t|+2k,... . The depths of terms in L', on the other hand,
My, 2%,

.

form a gecmetric progression 2,3,5,17,..., |t]| = 2341, 2
the two series, starting from |t]|, must differ at some point. This is a

contradiction. Thus, L' is not context free. (In fact, it is an indexed

Thus
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term language (Maibaum and Opatrng).) 0O
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