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ABSTRACT

An open queueing network model 1is wused to derive the
distribution of end-to-end delay in a message-switched network.
It is shown that under fixed routing, the end-to-end delay of
messages belonging to a particular source-destination node pair
Is given by a sum of independent and exporentially distributed
random variables. The generalization of this basic result to
random routing and to messages belonging to a group of source-
destination pairs is also considered. Numerical examples based

on a hypothetical network are presented.

Keywords: Message-Switched Networks, Queueing Network Models,

End-to-End Delays, Delay Distributions
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4. lntroduction

A message-switched network [1] is a collection of switching
nodes connected together by a set of communication channels. It
provides a message service to the users at the various nodes.
Messages in this network are routed from one node to another in a
store-and-forward manner until they reach their destinations. A
key performance measure of this network is the end-to-end delay
which is the elapsed time from the arrival of a message at its
source to the successful delivery of this message at Iits
destination, In 1964, Kleinrock [1] developed an open queueing
network model for message-switched networks and derived an
expression for the mean end-to-end delay. This expression has
been used extensively for performance analysis [3] and network
design [3].

Klginrock's result is a mean delay taken over all the
messages delivered by the network; no distinction is made on the
basis of source or destination. 1In this paper, we treat messages
with the same source-destination pair as belonging to a
particular message class, and derive the distribution of end-to-
end delay for each class. Both fixed and random routing are
considered, Our result is therefore a detailed characterization
of end-to-end delay in a message-switched network, It allows us
to determine statistics such as the mean, variance, and
90-percentile of end-to-end delay for a particular source-
destination pair,

Our derivation 1is based on Kleinrock's model [1] with
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emphasis given to classes of messages, A description of this
model is given in section 2. This model is also a special case
of the general queueing network mode | studied by
Baskett, et.al., [4]. Baskett's result will therefore be used as
the point of departure for our analysis. In section 3, our basic
result on the distribution of end-to-end delay for the case of
fixed routing is derived. This basic result is generalized to
random routing in section 4 and to messages belonging to a group
of source-destination pairs in section 5, Finally, sections 6
and 7 are devoted to numerical examples and application of

results,

2. Model Description

We first assume, as in [1], that the delay experienced by a
message in a message-switched network 1is approximated by the
queueing time and the data transfer time in the channels., The
processing time at the switching nodes and the propagation delays
are assumed to be negligible. Let M be the number of channels
and Ci be the capacity of channel i, i = 1,2,...,M. 1n our open
queyeing network model, each of the M channels is represented by
a single server queue. The queueing discipline at each channel
is first-come, first-served (FCFS), We assume that a]l channels
are error-free and all nodes have unlimited buffer space.

Messages are classified according to source-destination

paris. In particular, a message is said to belong to class (s,d)
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if its source node is s and its destination node is d. Let R be
the total number of message classes,. In a network with N
switching nodes, R = N(N-1), For convenience, we assume that
message classes are numbered from 1 to R, and we use r instead of
(s,d) to denote a message class. The arrival process of class r
messages from outside the network is assumed to be Poisson with
mean rate Y(r). Message lengths for all classes are assumed to
have the same exponential distribution, and we use 1/u to denote
the mean message length, It follows from this last assumption
that the data transfer time of all messages at channel i s
exponential with mean 1/uCi. For the mathematical analysis to be
tractable, Kleinrock's independence assumption [1] is used. This
assumption states that each time a message enters a switching
node, a new length is chosen from the exponential message length
distribution,

The message routing algorithm can be fixed or random, In
fixed vrouting, a unique path is defined for each message class,
and we use a(r) to denote the path for <class r, a(r) is
essentially an ordered set of channels over which «class r
messages are routed, In random routing, we allow the possibility
of alternate paths, and the routing algorithm selects one of
these paths according to a probability distribution, We will use
K. fo denote the number of alternate paths for class r, aj(r) to
represent the set of channels in the j-th path, and qj(r) the
probability that the j-th path is selected, j = 1,2,...,k .

y
The routing algorithms mentioned above are nath-oriented
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algorithms. When a message enters the network at its source
node, a path is immediately selected, and this message will be
routed through the selected path, There 1is no feedback of

messages to a previously visited node.

2. Distribution of End-fo-End Delay
We first consider the case of fixed routing, Let Aip

(i=1,2,...,M;3 r =1,2,...,R) be the mean arrival rate of

class r messages to channel i. With fixed routing, r. 1is given

ir
by:
y(r) if channel i € a(r)
Mg = ‘ (1)
0 otherwise

Let p;,. be the utilization of channel i by class r messages,
<= A, 2
Pip Anjuci _ (2)

The total utilization of channel i (denoted by p;) can then be

written as:
; (3)
Py ~ rZ]pir

We require that 0. <1 fori=1,2,...,M. This is equivalent to
the requirement that no channel is saturated, the condition for
existence of a stochastic equilibrium,

Let tr(X) be the probability density function (pdf) of the

*
end-to-end delay of class r messages, and Tr(S) be its Laplace
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Transform, i.e.,
* -
Tf(S) = jm; Sxtr(x)dx (4)
0 )

The main result of this paper can be stated as follows:

Iheorem: For our model of a message-switched network with fixed
routing,

uCi“-p])
s + Uci(]“p-i)

T(s)= T
rls) jea(r)

(5)

A proof of this theorem is given in the Apnendix,

Let |a(r)| be the number of channels in a(r). Our theorem
indicates that the end-to-end delay of class r messages is given
by the sum of la(r)| independent random variables, The i-th
variable in this sum is exponential with mean (”Ci(l-pi))_]; it
can be interpreted as the delay (queueing time + data transfer
time) at the i-th channel of a(r). It is of interest to note
that the mean of this i-th random variable is a function of Py
and not Pin implying that all messages routed through a
particular channel have the same delay distribution at this
channel,

Reich [7,8] has considered the special case of a tandem queue
with one class of customers. He proved that the output process
of each server is Poisson and the delays at the individual

servers are mutually independent, The product form for the

Laplace Transform of end-to-end delay is therefore obvious, In
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this paper, we have not attempted to prove similar properties for
our network model although our theorem indicates that the
distribution of end-to-end delay is the same as if the delays at
the individual channels are mutually independent,

T:(s) can easily be inverted, by using partial fractions [2],

to give tr(x). The mean T} and yariance o2 of class r delay can

r
also be obtained from T:(s). They are given by:

= _ 1
st T ®

-

and

2 L |
% ° iggr)[uciﬂ-pi)]z (7)
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4. Geperalization to Random Routing

With random routing, a class r message can be routed through
one of kr alternate paths, and the j-th path is selected with
probability qj(r). Our analyslis in the last section Is
applicable if\we treat each alternate path as a separate message

class., We thus replace class r by kr artificial classes. Let

these classes be r], r2, o sy rk , then
r
Y(‘”j) = Y(r‘)qj(r) (8)
Y(r.) if channel i ¢ a.(r)
= J J
X1'r (9)
J 0 otherwise
and
i
p: = A, /uC,
o le ir 7 (10)
Applying our theorem in the last section, we get:
* uC.(1-p.)
Tr.(s) <. S T ;c (13 ) (1)
J 1€aj(r) iv'hy

T:(s) can then be obtained by removing the artificial class from

our model, i.e.,

T"(s) kzr -

s) = 9;(r)T_ (s)

ORS 12)
J:] J r.j (

Similar to the case of fixed routing, this Laplace Transform

can also be inverted to give tr(X)‘ As to the mean and variance
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of class r delay, we have:
k
r
T o_ 1
e T jgl (r) i€ % uC;(T-p;] (13)

- aj(r)

and

2 T 1 1 21 -
7 Lol X R s il AT

1‘€aj(r) [uC, (1-p,)] ieaj(r)

3. Generalization to Message Groups

It is often useful to consider the end-to-end delay of
messages belonging to a group of source-destination pairs. For
example, we can study the delay characteristics of (a) messages
sent among a subset of the nodes, (b) messages sent from a
particular source node, or (c) messages sent to a particular
destination. We thus define a group G to contain a number of
message classes, and a message is said to belong to group G if
its class membership is in G, It is easy to see that our result
for random routing is directly applicable to message groups. We
thus have the following result for Tg(s), the Laplace Transform

of the pdf of group G delay:
* Y(r) &
Tels) = L—— 1 (s) (15)

where T:(s) is given by Eq.(5) or (12), and Yg = Zy(r),
reG
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In the special case that all classes of messages belong to a
single group, we have the Laplace Transform of the pdf of the

overall end-to-end delay:

* R
- (r) .*
ORI LT (16)
R
where y = 2 v(r).
r=1

6. Numerical Examples

Jur numerical examples are based on the hypothetical network
shown in Figure 1. This network has 5 nodes and 10 channels.
The external arrival rate of messages belonging to each source-
destination pair is given by the traffic matrix in Figure 2, All
channels are assumed to have the same capacity, and the mean
message length is chosen such that the mean data transfer time at
each channel (i.e,, 1/uci) has a value of 0.1,

We first consider the case of fixed routing and assume that
_the routing algorithm is based on the shortest path. In our
example network, there 1is a unique shortest path between each
pair of nodes., Suppose we are interested in the end-to-end delay
from node 1 to node 2, Denoting this source-destination pair by

class 1, we apply Eaq.(5) and get:

T;(S) = [533] [532} [534]
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This Laplace Transform can be inverted to give:
ty(x) = -24 ¥ 12 e 4 12

A plot of t](x) is shown in Figure 3. The mean, variance, and
90~-percentile of class 1 delay are also shown,
We next consider the case of random routing and assume that
25% of class 1 messages are shifted to the path {1,3,8,9}, This
implies that the remaining 75% are sent over the shortest path
*

{1,5,9}. Applying Eq.(12), and inverting the resulting T](s), we

get:

ty(x) = -25.2 e™3 4 30 e72:-5% 4 g9 45X _ 19 g o"5-5% _ g4 -4

A plot of this pdf, together with its mean, variance, and
90-percentile, are shown in Ficure &4, A comparison between
Figures 3 and 4 indicates that the mean class 1 delay under
random routing is smaller, This 1is due to the fact that a
fraction of traffic has been directed from a more heavily
utilized channel (channel 5) to a couple of less heavily utilized
channels (channels 3 and 8).

As a third example, we consider the end-to-end delay of all
messages originated from node 1 under fixed, shortest-path
routing. Applying our results for message groups (Eq.(15)), we
get the nlot shown in Figure 5.

Finally, in Figure 6, we show the pdf of the end-to-end delay

over all messages under fixed, shortest-path routing,
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L. Application of Results

The results of this paper provide a detailed characterization
of end-to-end delay 1In a message-switched network, They are
potentially useful for performance analysis and network design.
They can also find application in the analysis or simulation of a
user-resource network [3] (or a subscriber network [6]) where
terminals communicate with remote computers via a message-
switched network. The message-switched network can be treated as
a "black-box" with delay distribution given by the inverted
Laplace Transform of Eq.(5) or (12) depending on whether fixed or
random routing is used. This would reduce (a) the complexity of

analysis and (b) the cost of simulation.
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Appendix: Proof of the Main Theorem

We first prove two lemmas,

Lemma 1:
Let Nr(z) be the generating function of the total number of

class r messages in the network at equilibrium,

1-p.
N(z) = I ? Al
r iea(r) ]'pi+pir‘(]"zy (A1)
Proof:
Let (ST'SZ"°"SM) be the state of our network model where
S, =(n__,n_,...,n__) is the state of channel | and n,_  is the
i il i2 iR L

number of class r messages (in queue or in transmission) at
channel i, Since our model is a special case of the ganeral
queueing network model analysed by Baskett, et.al. [4], we apply
Baskett's vresult and get the foflowing expression for the

equilibrium state probabilities:

P(S]’SZ""’SM) = P](S])pE(SZ)"'PM<SM) (A2)
vhere
R R n.
Pis) = (o) [ Tn |oom =1, Mir
= ) | rgln”"]‘ rgi Nl Pir )

and Pip and p_ are defined in Eqs.(2) and (3) resneét?vely.
i

Pi(Si) is also the marginal probability that channel 1 is in

state Siw Let Nir(Z) be the generating function of the number of
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class r messages at channel i. N, (z) can be written as:
r

N;p(2) = égg :E:: Pi(sp) 2" (A4)

all states Si
such that nir=k

Using Eq.(A3) in Eq.(Ak), and after simplification, we get:

l-pi
]-pi+pir‘(]-z)

N;.(2) = (A5)

From Eqs.(A2) and (A5), it 1is easy to see that Nr(Z) has the
product form in Eq. (A1) because the equilibrium state
probabilities are the same as if the state variable of the M

channels are mutually independent.

Lemma 2:
Let pn(r) be the equilibrium probability that the number of
class r messages in the network is n, and
dn(r) the probability that a class r departure left behind n
class r messages,
Then
0,1,2,... (A6)

pn(r) = dn(r) n

Proof:

Let an(r)l be the probability that a class r arrival see n
class r messages in the network., Since the number of class r
messages in the network <changes by unit step values only, it
foltows from [5] that:

an(r) = dn(r) n=20,1,2,... (A7)
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Since the arrival process of class r messages is Poisson, we also
have [2]:
a (r) =p (r) n=20,1,2,... - (A8)
n n
Combining Eqs.(A7) and (A8), we get Eq.(A6).

We now prove our main theorem. Let Dr(Z) be the generating
function of the number of class r messages left behind by a

class r departure., Eq.(A6) implies that:

N.(z) = D (2) (A9)

Since we have assumed fixed routing and a FCFS discipline at each
channel, the number of class r messages left behind by a class r
departure must equal to the number of class r arrivals during the
stay of the departing message in the network. Since we have also

assumed a Poisson arrival process, Dr(Z) is given by [2]:

. 4

D.(2) = T (v(r) - y(r)z) (A10)
Substituting s for vy(r)=-v(r)z, Eq.(A10) is reduced to:

* ——

To(s) = D.(1 - s/¥(r)) (A11)
Finally, using Eqs.(Al) and (A9) in Eq.(All), we get:

uCi(l—pi)
jea(r) S ¥ uC;(T-p;)

T (s) =

QED
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Figure 3. End-to-End Delay from Nede 1 to Node 2 (Fixed Routing)
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Figure 5. End-to-End Delay of Messages Originated from Node 1 (Fixed Routing)
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MEAN =0.48
VARIANCE = 0.27

— 90- PERCENTILE =1.08

| l |

0.5 1.0 1.5 2.0
OVERALL END-TO-END DELAY

Figure 6. QOverall End-to-End Delay (Fixed Routing)



	

