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ABSTRACT. Characterizations of recursively enumerable sets as mappings of equality and minimal sets are given.
An equality (minimal) set is the set of all (minimal) solutions of an instance of the Post correspondence problem
where the solutions are viewed as strings. The main result is that every recursively enumerable set can be
expressed (effectively) as a homomorphic image of a minimal set. From the algebraic point of view this seems to
be the simplest characterization of recursively enumerable languages. A corollary of the main result is the solution
of an open problem formulated by A. Salomaa. A purely homomorphic characterization of regular sets is derived.
How such a characterization can be obtained for various time and space complexity classes for languages is
outlined.
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In several recent proofs of decidability results (e.g. [2, 3]) it turned out to be of crucial
importance to effectively check whether two homomorphisms A, k2 on a free monoid X*,
generated by an alphabet Z, are equal on a certain subset of Z*, or alternatively, to find
the language of all w € =* for which hy(w) = he(w). Such languages were explicitly
introduced as equality sets in [5] and further studied. We introduce here another group of
' languages called minimal sets which are defined as minima of equality sets using the
terminology of [4], i.e. a minimal set is a subset of an equality set L containing all strings
which have no proper prefix from L. These sets were also implicitly considered in [3],
where it was noted that each equality set is a star language (star event in the sense of [1])
and where it was also shown that each minimal set is the minimal star root of an equality
set.

Alternatively we can say that an equality set is the set of all solutions of an instance of
the Post correspondence problem; a minimal set is the set of all its minimal solutions. Here
we consider an instance with lists 4, B of length n over alphabet % as homomorphisms 4,
B from {1, 2, ..., n}* to T*, and its solution as a string over {1, ..., n}. Each equality set
also contains ¢, the empty string.

We are looking for characterizations of all recursively enumerable languages by map-
pings of minimal or equality sets. Our main result is that every recursively enumerable
language can be expressed as a homomorphic image of a minimal set. As simple modifi-
cations of the proof of this main result we will obtain several other more complicated
characterizations of recursively enumerable sets, one of them already shown in [5]. We will
also solve an open problem from [5]. We show that the regular set is characterized by a

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage. the ACM copyright notice and the title of the publication and its
date appear. and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise. or to republish. requires a fee and/or specific permission.

This research was supported by the National Research Council of Canada under Grant No. A7403.

Author’s address: Department of Computer Science, University of Waterloo. Waterloo, Ontario N2L 3Gl,
Canada.

© 1979 ACM 0004-5411/79/0100-0345 $00.75

Journal of the Assaciation for C ing Machinery, Vol. 26, No. 2, April 1979,

P ]




346 K. CULIK 1I

restriction on the pair of homomorphisms defining a minimal set. Finally, we outline how
both time and space complexity classes for languages can be characterized by certain
restrictions on homomorphisms used in our formula defining a language.

Definition. For homomorphisms hy, hy : £* — A*,

E(hl, hz) = {W (S =* . hl(w) = hg(w)}
e(hy, he) = {w € X" : hy(w) = ho(w) and if w = uv where
u € X% v € X" then h(u) # ha(u)}.

Note that using the notation of [4]
e(h, hy) = min(E(h,, ho)) — {€}.

If a language can be expressed as E(h,, 42), then it is called an equality set [5]; if it can
be expressed as e(h, h2), then it is called a minimal set.

Now, we show that every recursively enumerable set can be expressed as a homomorphic
image of a minimal set.

THEOREM 1. For each recursively enumerable set L (represented by a grammar), there
effectively exist homomorphisms ho, hy, he such that L = ho(e(h1, h2)). The homomorphism ho
maps each symbol either to itself or to .

Proor. Let G = (N, T, P, §) be a phrase structure grammar (N are nonterminals, T
are terminals, P C N* X (N U T)* and S € N) such that L = L(G). Assume that
(S, S) € P to assure that each string in L(G) has a derivation of odd length. We will
construct homomorphisms g, ;, and hs such that L = hy(e(h;, h)) and outline the proof
of the correctness of this construction.

LetT={# UNUTU {a,8) : (e, )€ P}, T = {G:a€T}),and T= (4:a € T}. Let
S=TUluTuU{$%023}andA =TUTU({0 1,23, +,4}. Forx € T* let %
denote the string obtained from x by “hooding” each symbol.

Homomorphisms hy, ke from Z* to A* are defined by the following table:

¢ F X X (B @B $ a4 0 2 3
hi(£) F X X a a # a 10 4 123
ha(%) FS# X X B B 41 01 € 2 3

foral Xe NUTU {#},(a,B)€ P,anda & T. Let P = {py, p2. ... , pn}. Consider a
derivation of grammar G

S=w=w= .. =w,

where w, € T*, nis odd and w;_, = w; is obtained using production p:, = (a;, B;) from
P={py,..,pm} fori=0, .. ,n— 1 Then there are u;, v; such that w; = wa;v for i = Q,
w.,i— band w; = wi1Bi1viey for i = 1, ..., n. Consider the string y in Z* of the form

F (S, Bo) #ily( ay, Br) Fi#uslas, Bo) vitit(as, Bs) Ve -
e #unv1<an71, ﬂn—l)vn-1$“}n2 (0)|w,,| 3’ (*)

where |w,| is the length of w,. We have
hi(uilen, Biyvi) = wawvi,  ho(ui(ou, Biyvi) = wB:v; for i=0,2,..,n—1
I, Bi)9i) = v, oo, Bi)¥) = wifv; for i=1,3,..,n—2.
Therefore
(S, Bo)#) = ho(t) = FS#,
hy(ui(ei, Biyvi) = ho(@ir(@ir, Bi)) i) = wi for i=2,4,..,n~1,
hy(@d i, B V) = Rg(ti1{@ioy, Bici)Vier) = W; for i=1,3,..,n—2,

hl(wn) = hz(unﬁl(anfly Brﬁl)vnfl) = Wna
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and finally
hi(20 1" 3) = hy($%,20 ! 3y = 4 1(01) 1l 23,

When combining the above 'with the images of markers #, # we get hi(y) = hy(y) as shown
in Figure 1, we also see that Ai(y") # ha(y’) for each proper prefix y' of y. R
Now, we define homomorphism A by ho(d) = a for a € T and hy(b) = e for b€ X — T
Clearly, we have shown that L(G) C ho(e(h, hs)).
Consider now any string w in Z* for which hi(w) = ho(w) and hi(u) % hy(u) for each
proper prefix of w. We will analyze the form of w and its images. We start from the right
end. ‘

(0) First, we note that neither the first nor the last symbol of w is “0” since “1”” cannot
begin hy(w) and “0” cannot end hy(w).

(1) The only symbol { € 3 — {0} for which k(&) is a suffix of hsx(£) or vice versa is “3”.
which thus must be the last symbol of w. Since “3” in both homomorphisms cannot be
obtained from any other symbol, the occurrences of “3” produced from the same “3” must
match. Since w is a minimal solution we conclude that it has exactly one occurrence of 3
as its last symbol.

(2) By (1) m(w) has a suffix 123. With each occurrence of “0” in h,(w) there must be a
left-adjacent occurrence of “1” and in hs(w) with each occurrence of “0” there must be a
right-adjacent occurrence of “1”. Since there is exactly one occurrence of “1” in hy(w) not
paired with “0” coming from 3 we conclude that 4,(w) has the form #01)*123 for some
k=0, and r € A*,

Now, it is easy to deduce more information step by step about the form of w and
hi(w). We get

(3) w has a suffix 20*3 for some k = 0.

(4) hy(w) has a suffix 4 (10)*123 for some & = 0.

(5) w has a suffix $220*3 for some x € T*, |x| = k.

(6) hi(w) has a suffix #x 4 (10)*123 for some x € T*, |x| = k.

Now, we will analyze the form of w and h,(w) from the left end:

(7) The only symbol £ € £ — {0} for which h,(£) is a prefix of Ax(§), or vice versa, is F.
Therefore the first symbol of w must be F. Thus Ay(w) has a prefix + S#.

(8) By (7) we must have either prefix b (S, Bo)# or prefix b S# or prefix F §$. In the
first two cases hy(w) has a prefix + S#jl# where § =* y; and in the third case hy(w) has
a prefix + S#y, 4 where § =G>* - ¢

'(9) In the two first cases of (8), the next symbols after # will be from I’ ending with #
and after that symbols from I" U {8} ending with # or $. This reasoning is repeated until
§ appears.

When continuing the analysis of w and its images in the way outlined we can verify that
hi(w) (=hy(w)) must have the form F y#p#y#j# .- #y, 4 (10)71 123 where r = 1,

wo w, w5 L
e e N N — — Py
i—’ S LT AT gy v, # o Fuy, LA Voot #W,—1010---10123
I R L o B R R Y%
L Lol i . 2 [ vy A
<SS, By>#u<a, ,B,>v, # u,<a Bo>vy # - # < ! o
' Po I1° @1 B2V T Uy<a;, By > v,y Unop < @n B>V, $w, 20003
NN Pl | NS
[N — i i - 2 - L T A SN
S #Bo  #y By v #uy By vy ¥ #u B, v, 110101 "G123
—— e —— — e [N N )
wo W, w, ws W,
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yo = S and yi1 —-g* y; fori= 1,2, ..., r. Hence, w must be of the form

b 287201713 (**)

for some zin (I' U T)* and y in T* such that § ?* y. Since each w in e(hi, h2) has the form

(**) we conclude that hy(e(hy, h)) C L(G).

By interchanging the roles of T and T in our construction we can assure that the
homomorphism ko satisfies the condition of mapping each symbol either to itself or to e
We have not done it in order to simplify the notation. [

COROLLARY 1. A language over alphabet T is recursively enumerable iff there exist an
alphabet A and twe homomorphisms hy, hy on (Z U A)* so that L = h(e(h,, hy)), where h is
the homomorphism mapping each symbol of X to itself and each symbol of A to €.

Proor. We can suitably rename the symbols and extend the homomorphisms 4, h,
from the proof of Theorem | to a common alphabet so that we do not get any additional
strings on which h; and h, are equal. It is, of course, obvious that each langrage expressed
in this way is recursively enumerable. ]

From Theorem 1 immediately follows the solution of an open problem from [5}):

COROLLARY 2. For every recursively enumerable language L, there effectively exist
homomorphisms ho, hy, hs, where hy maps each symbol (o itself or to €, so that L* =
ho(E(hy, hy)).

By modifying the above construction we can show that every recursively enumerable
language can be expressed as a gsm (generalized sequential machine) mapping of an
equality set. This result has been shown in [5].

If we would like to use E(h,, hy) instead of e(h;, h2) in the above construction, then we
have to modify the mapping ho to erase everything after the first occurrence of the
“endmarker” 3 since, clearly, E(h.. h2) = (e(hy, h2))*. This cannot be done anymore by any
homomorphism but can be done easily by a deterministic gsm mapping.

Tueorem 2. For each recursively enumerable set L, there effectively exist homomor-
phisms hi, hy and a deterministic gsm mapping g so that L = g(E(hy, ha)).

Proor. Consider ko, iy, he and G from the proof of Theorem 1. Using the notation of
[4], let gsm mapping g be defined by gsm machine M = ({qo, 4/}, Z, A, &, go, {g}), where
8(go, X) = (qo, ho(x)) for x € Z — {3}, 8(q0, 3) = (¢, €), and &gy x) = (g5 €) for each x €
2. Clearly, g(E(h;, h2)) = L(G). O

We can further exploit the construction from the proof of Theorem | to show that each
recursively enumerable set can be obtained from a minimal set by operations of left and
right quotient with regular sets (see {4]) or from an equality set using the same operations
plus intersection with a regular set.

THEOREM 3. For each recursively enumerable set L there exist homomorphisms hi, hz
and regular sets Ry, Ro, Ry so that

(a) L = R\e(h, ha)/Ro,
(b) L = (R\E(h1, h2)/Rz) N R,

Proor. Consider L, hy, h; from the proof of Theorem 1, where the role of 7 and Tis
interchanged. Let R; = *{$}, R = {2}2*, and R; = T*. Clearly, (a) and (b) are satisfied
for this choice. [J

We conclude with a purely homomorphic characterization of regular sets. For that
purpose we need the notion of balance originally introduced in [2].

Definition. Consider two fixed homomorphisms h, and k2 from Z* to A* and a word w
in £*. The balance of w is defined by

B(w) = [l(w)| — |ha(w)].

We say that the pair (hy, h) has k-bounded balance on a given language L for some k =
0 if | B(u)| < k holds for each prefix u of every word in L. We say that the pair (hy, h2) has
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bounded balance on L if it has k-bounded balance on L for some k = 0.

For k = 0, we denote by Ex(h1, hs), ex(hs, he) the largest subsets of E(hs, h2), e(hi, h2) such
that the pair (h, h2) has k-bounded balance on Ex(hi, h2), ex(h, h2), respectively. In [6], and
essentially already in [2], it was shown that Eu(hy, k) is regular. Using almost the same
argument we have the following:

LemMMma 1. For homomorphisms hy, hs, and k = 0, ex(hy, hy) is regular.

THEOREM 4. A language L is regular iff there are homomorphisms hy, hy, hy such that
L = ho(e(hy, hg)) and the pair (hy, hy) has bounded balance on e(h,, h,).

PROOF. Assume that L = ho(e(hy, h2)) and the pair (b1, h2) has k-bounded balance for
some k > 0. Then e(h;, h2) = ex(h1, hz) and by Lemma 1 e(h, h2) is regular. Thus also its
homomorphic image ho(e(hi, h2)) is regular.

Assume that L is regular. Then there is a (nondeterministic) finite automaton with only
one final state g, (possibly o = gp. A = (K, Z, 8, qo, {gs}) such that L = L(4). Let 7 =
{{g.a,p) :pE g, a),q,p €K, a € Z}, mis a finite alphabet. Let 7 = {& : « € 7} and
P=qaunU {438}

Let homomorphisms ko, ki1, b be given by the table

¢ F (g, a,p) (¢, a, ) 4 $
ho(§) € a a € €
hi(é) 2 q q g g
he(§) kgo P P 4 4

forall a € X, p, ¢ € K such that p € 8(g, a). It is easy to verify that L = ho(e(h,, ho)). This
fact is illustrated in Figure 2 where n is even. For computations of odd length the
endmarker $ would be used instead of 4. O

The condition of bounded balance in Theorem 4 is noneffective. However, we can give
the following stronger and effective conditions on the homomorphisms.

THEOREM 5. A language L is regular iff there are homomorphisms hy, hy, hy such that
L = ho(e(hy, hg)) where ho is 1-limited on e(hy, h2) (cf. [4]) and the pair (hy, ho) has 1--bounded
balance on e(h, hs). If € is not in L, then hy can be chosen to be a letter-to-letter
homomorphism.

Proor. The if part follows by Theorem 4. Also the first statement of the only-if-part
has been proved in the proof of Theorem 4 since h; erases only the first and the last of
each string in e(h,, h2) and, clearly, B(w) = 1 for all proper prefixes of strings in e(h, hs).
It is easy to see that if ¢ € L we can modify the construction of automaton 4 by merging
b with (qo, @, ¢) and 4 or $ with (g, a, gy) for each a € 2 and ¢ € K. We get larger but still
a finite alphabet. The homomorphism ko is then defined only on triples (g, a, p) and
therefore letter-to-letter. [

We outline some further results which will be studied in detail in a separate paper. They
show that certain restrictions on A, and the pair (h, h;) in the formula
ho(e(hy, he)) give a characterization of time and space complexity classes for the languages.

The time complexity characterization was suggested by one of the referees of this paper.
The notion of k-limited erasing (see [4]) is generalized as follows. For a monotone function
fon integers we say that erasing h is f-bounded on a language L if for each w in L at most
f(|wl) consecutive symbols of w may be erased. We get the following result which comes
from the proof of Theorem | and known results.

h, (w) l~‘ ag 9 Aot 9
| Vs
| { L
| | ‘ \/'
" F1\ €850 9109201 9,:9,> <qn_l,an,°r)T{
i\ 1 [ 1
halw)  — qq 9, a, a, -1
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Let % be a class of functions closed under squaring and composition and let .£5 be the
class of languages accepted by nondeterministic Turing machines that operate with time
bounds in & . Then L is in £ iff there exist homomorphisms Ao, /1, h, such that ho(e(/,
hs)) = L and h is f~bounded erasing on e(hi, ko) for some of f € %

As special cases we have, for example, the following. A language L is in NP (is primitive
recursive, recursive) iff there exist homomorphisms hy, h;, hs such that ho(e(hy, b)) = L and
he is polynomial- (primitive recursive-, recursive-) bounded erasing on e(hi, h2).

Our Theorem 4 shows that a constant bound on the balance of the pair (h,, k) on
e(hy, hy) characterizes the regular sets. In a similar way as we generalized the notion of k-
limited (k-bounded) erasing, we also can generalize the notion of k-bounded balance.
Given a monotone function f on integers, a language L C Z*, and an erasing & on X*, we
say that a pair of homomorphisms (y, k) has f~bounded balance on L with respect to 4 if
for each x in L and each prefix w of x we have | B(w)| < 7(|A(x)]). It can be shown for
certain classes of functions .# that a language L is of space complexity # iff there exist an
erasing ho and homomorphisms A, h; such that L = ho(e(h,, hy)) and the pair (k). hy) has
Jf-bounded balance on e(h;, h;) with respect to ho for some f € %. For example, we
conjecture that the context sensitive languages are exactly those which can be expressed in
the form ho(e(hy, hy)) where the pair (hy, ;) has linearly bounded balance on e(h,; hy) with
respect to ho.

ACKNOWLEDGMENTS. The author is grateful to J. Opatrny for discussions of the charac-
terization of regular sets and to M. Penttonen for remarks on a draft of this paper.
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Abstract

We give characterizations of recursively enumerable sets as
mappings of equality and minimal sets. An equality (minimal) set is the
set of all (minimal) solutions of an instance of the Post correspondence
problem where the solutions are viewed as strings. The main result is
that every recursively enumerable set can be expressed (effectively) as
a homomorphic image of a minimal set. From the algebraic point of view

this seems to be the simplest characterization of recursively enumerable

languages. As a corollary of our main result we get the solution of an
open problem formulated by A. Salomaa. We also get a purely homomorphic

characterization of regular sets.



In several recent proofs of decidability results (see e.g.

[2, 3]) it turned out to be of crucial importance to effectively check
whether two homomorphisms h], h2 on a free monoid I* , generated by an
alphabet ¥ ,are equal for certain subset of I* , or alternatively, to
find the language of all w e * for which h](w) = h2(w) . Such
languages were explicitly introduced as equality sets in [5] and further
studied. We introduce here another type of languages called minimal sets
which are defined as minima of equality sets using the terminology of
[4], i.e. a minimal set is a subset of an equality set L containing

all strings which have no proper prefix from L . These sets were also
implicitly considered in [5], where it was noted that each equality set
is a star language (star event in the sense of [1]) and also shown that
each minimal set is the minimal star root of a equality set.

Alternatively we can say that an equality set is the set of
all solutions of an instance of the Post correspondence problem, a minimal
set is the set of all its minimal solutions. Here we consider an instance
with 1ists A, B of length n over alphabet I as homomorphisms A, B
from {1, 2, ..., n}* to I* , and its solution as a string over
{1, ..., n} . Each equality set also contains ¢ , the empty string.

We are looking for characterizations of all recursively
enumerable Tlanguages by mappings of minimal or equality sets. Our main
result is that every recursively enumerable language can be expressed as
a homomorphic image of a minimal set. As easy modifications of the proof
of this main result we will obtain several other more complicated

characterizations of recursively enumerable sets, one of them was already



shown in [5]. We will also solve an open problem from [5]. Finally we

get a restriction on h,, h2 to characterize regular sets.

1
Definition For homomorphisms h],h2 D I* > A

E(h], h2) = {we I* : h](w) = hz(w)}

e(h1, h2) = {w e st h1(w) = hz(w) and if w = uv where

Uel ,Ve £¥ then h1(v) # h2(v)} .
Note that using the notation of [4]

e(hy, h,) = Min(E(h,, hy)) - {e}

1° 2)

If a language can be expressed as E(h], h2) it is called an equality

set [5], if it can be expressed as e(h1, h2) it is called a minimal set.
Now, we show that every recursively enumerable set can be

expressed as a homomorphic image of a minimal set.

Theorem 1 For each recursively enumerable set L (represented by a
grammar), there effectively exist homomorphisms hO’ h], h2 so that
L = ho(e(h], h2)) . The homomorphism hy maps each symbol either to

itself or to ¢

Proof Let G = (N, T, P, S) be a phrase structure grammar such that
L = L(G) . Assume that S+ S < P to assure that each string in L(G)
has a derivation of odd length.

Let F={#}UNUTU{<OL38>:(OLSB)€p}9

=3
I
—-~
o |
[oF]

eT} and T=1{2a:aeT} . Let
b Tulk, $, 0,2, 3 and

™
i
~
c
el

A=T v Tu{0,1,2,3,F -} . Homomorphisms h,, h, from i



to A* are defined by the following table

£ F X X <a, B> <o, B> $  a 0 2 3
h1(£) X X o a #  a 10 4 123
hZ(E) FS# X X B R 41 01 € 2 3

for all X e NuTu{#}, (o, B) e P and ae T . Let

P = {p], Pos -5 pm} . Consider a derivation of grammar G

S=WN®M®.“©%

where n is odd and Wi = W, is obtained using production

P = (ai’ Bi) from P = {p], cees pm} for i =0,...,n-1 . Then there are
i

; for 1=20,...n-1 and w, = u, jo. qVi 4

for i=1,...,n. For x e T* let X denote the string obtained from

.y V. S h W. = U.o.V
Ujs Vi » uch that ; u1oc1

X by "hooding" each symbol. Consider the string vy in Z* of the form
(%) <, Bp#u <oy B>V #U <0,y B>V, Hla<ans B>Vs #...
..#un_]<an_],Bn_]>vn_]$wn21(01) 3

where Iwn| is the Tength of w_ . We have

h](ui<ai’ Bi>v1) = U,0.V. h2(u1<ai, 61>v1) = uBV. for

i=20,2,...,n-1 and h](u1<a1, Bi>v1) = U0 Vs s

hz(ui<ai, Bi>vi) = “181Vi , for i=1,3,...,n-2 . Therefore

hy(F<S, 8p>#) = hy(F) = =S# ,

h](u_i<a1-s B.i>v.i) = hz(u-i_'|<a -



h](ui<ai, Bi>vi) = h2(ui—]<ai-1’ Bi_]>v1_]) =w, for i=1,3,....,n-2,

hy(w ) = hy(u _q<o 15 B, 1>V, ¢) = w.and finally

lw_| a W] [w_|
h, (20 N3y = h,, ($w 20 "'3) = 4 1(01) " 23 . When combining the

above with the images of markers #, # we get h](y) = hz(y) as shown

in Figure 1, we also see that hy(y') # hy(y') for each proper prefix y' of vy .

EooSs o Hu oo
N
f—<S,,BO>#u]<oc] > B>
N/

=S #BO #u] By

WS 1772 2 2" \n-1 n-1 n—[
Wo W W, Wa W
Figure 1

Now, we define homomorphism h0 by ho(a) =a for aeT
and h(b) = e for b eZ-T . Clearly, we have shown that
L(G) c hO(e(h1, h2)) .

Consider now any string w in s* for which h](w) = hz(w)
and h](u) # hz(u) for each proper prefix of w . We will analyze the
form of w and its images. We start from the right end.

(0) First, we note that neither the first nor the last symbol of w is
0" since 1in h](w) every occurrence of zero must be followed by

“1" and in hz(w) preceded by "1".



(1) - The only symbol & ¢ & - {0} for which h](g) is a suffix of hz(g)
or vice versa is "3" which thus must be the last symbol of w .

Since “3" in both homomorphisms cannot be obtained from any other
symbol, the occurrences of "3" produced from the same "3" must match.
Since w 1is a minimal solution we conclude that it has exactly one
occurrence of 3 as its last symbol.

(2) By (1) h](w) has a suffix 123. With each occurrence of "0" in
h](w) there must be a left-adjacent occurrence of "1" and in
h2(w) with each occurrence of "0" there must be a right-adjacent
occurrence of "1". Since there is exactly one occurrence of "1" in
h1(w) not parred with "0" coming from 3 we conclude that h](w)
has the form t(O])k123 for some k >0, and t e A* |

Now, it is easy to deduce step by step more information about

the form of w and h1(w) . We get
k

(3) w has a suffix 203 for some k =0 .

(4) h](w) has a suffix —1(10)k123 for some k =2 0 .

(5) w has a suffix $220k3 for some x e T* , x| = k .

(6) hy(w) has a suffix #x1(10)123 for some x ¢ T* , Ix| =k .

Now, we will analyze the form of w and hy(w) from the left
end:

(7) The only symbol EZeZ-{0} for which h,(g) is a prefix of h, (g),

1
or vice versa, is |- . Therefore the first symbol of w must be
. Thus hy(w) has a prefix FS# .

(8) By (7) we must have either prefix —<S, By># or prefix Fs# . In

either case h1(w) has a prefix }—S#y]¥' where S =%y,



When continuing the analysis of w and its images in the way

outlined we can verify that h](w) (= h2(w)) must have the form

— _ ty |
Yot PtV - #y,. 4 (10) Y123 where r > 1, Yo =S and

Yioqg*vyy for i=1.2,...,r . Hence, w must be of the form
(xx) F2$y201Y 13

for some z in (T uT)* and y in T* such that S E>* y . Since
each w 1in e(h], hz) has the form (*x) we conclude that
hyle(hys hy)) < L(G) .
0

Corollary 1 A language over alphabet % s recursively enumerably
iff there exist an alphabet A and two homomorphisms hys hy on (z u A)*
so that

L = h(e(h;, h,))

where h is the homomorphism mapping each symbol of ¥ to itself and

each symbol of A to ¢

Proof We can suitably rename the symbols and extend the homomorphisms

hys hy

not get any additional strings on which h] and h2 are equal. It is,

from the proof of Theorem 1 to a common alphabet so that we do

of course, obvious that each Tanguage expressed it this way is recursive-

ly enumerable.



From Theorem 1 immediately follows the solution of an open

problem from [5]:

Corollary 2 For every recursively enumerable Tanguage L , there
effectively exist homomorphisms hO’ h], h2 » wWhere hO maps each symbol
to itself or to e , so that L* = hO(E(h], h2)) .

We show that by modifying the above construction we can show
that every recursively enumerable language can be expressed as a gsm
mapping of an equality set. This result has been shown in [5].

If we would like to use E(h], h2) instead of e(h], h2) in
the above construction than we have to modify the mapping h0 to erase
everything after the first occurrence of the "endmarker" 3 since, clearly,
E(h], h2) = (e(h], h2))* . This cannot be done anymore by any homomorphism

but can be done easily by a deterministic gsm mapping.

Theorem 2 For each recursively enumerable set L , there effectively
exist homomorphisms h], h2 and deterministic gsm mapping g so that

L = g(E(hys hy)) .

Proof Consider hO’ h1, h2 and G from the proof of Theorem 1.

Using the notation of [4], let gsm mapping ¢ be defined by gsm machine

M = ({qo, qf}w Z. A, S, A {qf}) , where 6(q0, x) = (qO, ho(x)) , for
x ez - {3}, 8(qy, 3) = (9, €) and 68(qy> x) = (a;, €) for each
X ey . Clearly, g(E(h], h2)) = L(G) .



We can further exploit the construction from the proof of
Theorem 1 to show that each recursively enumerable set can be obtained
from a minimal set by operations of left and right quotient with reqgular
sets (see [4]) or from an equality set using the same operations plus

intersection with a regular set.

Theorem 3 For each recursively enumerable set L there exist

homomorphisms h_, h2 and regular sets R], R2, R3 so that

1

(a) L = R]\e(h], hz)/R2
(b) L = (R\EChy, hy)/R)) o R
Proof Consider L, h], h2 from the proof of Theorem 1, where the

role of T and ? is interchanged. Let R] = *{§}, R2 = {2} 2* and

R3 =T* . Clearly, (a) and (b) are satisfied for this choice.

We conclude with a purely homomorphic characterization of
regular sets. For that purpose we need the notion of balance originally

introduced in [2].

Definition Consider two fixed homomorphisms h] and h2 from z*

to A* and a word w in t* . The balance of w 1is defined by

We say that the pair (h], h2) has k-bounded balance on a given language
L for some k >0 if |B(u)] <k holds for each prefix u of every

word in L .
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We say that the pair (h], h2) has bounded balance on L if it has
k-bounded balance on L for some k =20 .

For k = 0 , we denote by Ek(h1’ h2), ek(h], h2) the
largest subsets of E(h1, h2), e(h], h2) such that the pair (h1, h2)
has k-bounded balance on Ek(hl’ h2), ek(h], h2) , respectively. In
[6]'and essentially already in [2],it was shown that Ek(h1, h2) is

regular. Using almost the same argument we have the following:

Lemma 1 For homomorphisms h], h2 and k=20 , ek(h1, h2) is
regular.

Theorem 4 A language L 1is regular iff there are homomorphisms
hys h], h, such that L = hO(e(h], h2)) and the pair (h], h2) has

bounded balance on e(h1, h2) )

Proof Assume that L = ho(e(h], h2)) and the pair (h], h2) has

k-bounded balance for some k > 0 . Then e(h], h2) = ek(h], h2) and

by Lemma 1 e(h], h2) is reqgular. Thus also its homomorphic image

h

h h2) is regular.

O( 1’
Assume that L 1s regular. Then there is a (nondeterministic)
finite automaton with only one final state Ge (possibly q0 = qf)

A= (K, Z, 8, gy {qf}) such that L = L(A) . Let

{<q, a, p> : p e 8(g, @), q,p ¢ K, a e X}, m is a finite alphabet.

=3
"

let T={a:aent and T=muvmull, =], $}.

Let homomorphisms hO’ h1, h2 be given by the table
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£ I <q, a, p> <q, a, p> 4 $
hO(E) £ a a € £
hy (€) = q q e g
h, (€) Mo P p = =

for all a eI , p,qe K such that p ¢ &(q, a) .

It is easy to verify that L = ho(e(h1, h2)) . This fact is illustrated
in Figure 2 where n 1is even. For computations of add length the "end

marker" would be used.

hy(w) k= % a -1 % -
| | | N/
ik a]’ 91><qy> 8ps Gy oo <Gy g5 3ps Cp>
l\ | o
q2 Qf —"I
Figure 2

The condition of bounded balance in Theorem 4 is noneffective. However
we can give the following stronger and effective conditions on the

homomorphisms.

Theorem 5 A language L 1is regular iff there are homomorphisms

hO’ h], h2 such that L = hO(e(h], h2)) where hO js 1-1imited on
e(h1, h2) (cf. [4]) and the pair (h has 1-bounded balance on

'I’ h2)

If ¢ ds not in L , then h can be chosen to be a

h 0

e(h], 2) )

letter-to-letter homomorphism.
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Proof The if-part follows by Theorem 4. Also the first statement of
the only-if-part has been proved in the proof of Theorem 4 since h0
erases only the first and the last of each string in e(h1, h2) and,
clearly, B(w) =1 for all proper prefixes of strings in e(h], h2) .
It is easy to see that if ¢ ¢ L we can modify the construction of
automaton A by merging | with <qy» 25 G> and - or $ with

<q, a, qf> for each a ¢ f and g e K. We get larger but still a
finite alphabet. The homomorphism h0 is then defined only on triples

<q, a, p> and therefore letter to letter.
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