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A Purely Homomorphic Characterization of Recursively
Enumerable Sets

K. CULIK II

University of Waterloo, Waterloo, Ontario, Canada

ABSTRACT. Characterizations of recursively enumerable sets as mappings of equality and minimal sets are given.
An equality (minimal) set is the set of all (minimal) solutions of an instance of the Post correspondence problem
where the solutions are viewed as strings. The main result is that every recursively enumerable set can be
expressed (effectively) as a homomorphic image.of a minimal set. From the algebraic point of view this seems to
be the simplest characterization of recursively enumerable languages. A corollary of the main result is the solution
of an open problem formulated by A. Salomaa. A purely homomorphic characterization of regular sets is derived.
How such a characterization can be obtained for various time and space complexity classes for languages is
outlined.

KEY WORDS AND PHRASES: formal languages, recursively enumerable sets, homomorphic characterization,
vquality scts

CR CATEGORIES: 5.22, 5.23, 5.25,5.27

In several recent proofs of decidability results (e.g. [2, 3]) it turned out to be of crucial
importance to effectively check whether two homomorphisms /;, k2 on a free monoid Z*,
generated by an alphabet Z, are equal on a certain subset of *, or alternatively, to find
the language of all w € 2* for which hy(w) = ha(w). Such languages were explicitly
introduced as equality sets in [5] and further studied. We introduce here another group of
languages called minimal sets which are defined as minima of equality sets using the
terminology of [4], i.e. a minimal set is a subset of an equality set L containing all strings
which have no proper prefix from L. These sets were also implicitly considered in [5}],
where it was noted that each equality set is a star language (star event in the sense of [1])
and where it was also shown that each minimal set is the minimal star root of an equality
set.

Alternatively we can say that an equality set is the set of all solutions of an instance of
the Post correspondence problem; a minimal set is the set of all its minimal solutions. Here
we consider an instance with lists 4, B of length n over alphabet X as homomorphisms 4,
B from {1, 2, ..., n}* to =*, and its solution as a string over {1, ..., n}. Each equality set
also contains ¢, the empty string. .

We are looking for characterizations of all recursively enumerable languages by map-
pings of minimal or equality sets. Our main result is that every recursively enumerable
language can be expressed as a homomorphic image of a minimal set. As simple modifi-
cations of the proof of this main result we will obtain several other more complicated
characterizations of recursively enumerable sets, one of them already shown in [5]. We will
also solve an open problem from [5]. We show that the regular set is characterized by a
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Abstract

We describe a very fast implementation of the minimum degree

algorithm, which is an effective heuristic scheme for finding Tow-fill
orderings for sparse positive definite matrices. Our implementation has
two important features; first, it is competitive in terms of speed with
other implementations known to the authors, and second, its storage
requirements are independent of the amount of fill suffered by the matrix
during its symbolic factorization. Some numerical experiments are
provided, comparing the performance of this new scheme to some existing

minimum degree programs.

Computing Reviews Categories: 4.0, 5.14
Keywords and Phrases: sparse linear equations, quotient graphs, ordering

algorithms, graph algorithms, mathematical software.



§1. Introduction

Consider the symmetric positive definite system of linear

equations
(1.1) Ax = b ,

where A is N by N and sparse. It is well known that if A s
factored using Cholesky's method, it normally suffers some fill-in. Thus,
if we intend to solve (1.1) by this method, it is usual to first find a

permutation matrix P and solve the reordered system
(1.2) (PAPT)(PXx) = Pb ,

where P is chosen such that PAPT suffers low fill-in when it is
factored into LL'.

A heuristic algorithm which experience suggests is very
effective in finding such lTow-fill permutations is the so-called minimum

degree algorithm [8]. This requires some form of simulation of the

factorization (either explicit or implicit), since ordering decisions are
made on the basis of the structure of the partially factored (reduced)
matrices which normally appear in the usual implementation of Gaussian
elimination. Specifically, at each step in the elimination, the
algorithm permutes the part of the matrix remaining to be factored so
that a column with the fewest nonzeros is in the pivot position.

Some previous implementations known to the authors store an
explicit representation of the partially factored matrix. The best
implementation we are aware of which uses this approach is contained in

the Yale Sparse Matrix Package [2]. In the sequel, we will refer to this



code as MDE. Implementations of this type require quite flexible data
structures, since the matrix structure changes as the (symbolic) factori-
zation proceeds and the data structures must accommodate these changes.

A more serious practical difficulty with using an explicit representation
is that the maximum storage requirement is unpredictable, and may exceed
the storage required for the resulting factor L .

In a recent paper, the authors described a "minimal storage"
implementation of the minimum degree algorithm.[5]. The implementation
requires only a few arrays of length N , in addition to that needed for
the graph of A . Furthermore, the graph of A is preserved during
execution of the algorithm. In the sequel we denote this implementation
by MDI. Although MDI has obvious advantages in terms of storage when
compared to MDE, the comparisons of execution times have been mixed. As
the experiments in Section 5 show, for some problems the execution time
of MDI is comparable or even better than that of MDE, but for others the
penalty paid by MDI for low storage requirements can be a substantial
increase in execution time over that of MDE.

The implementation we describe in this paper is endowed with
most of the advantages of both MDE and MDI. Its storage requirement is
comparable with MDI, and for some problems its execution time is
substantially lower than that of either MDE or MDI. Its single disadvant-
age, shared by MDE and absent in MDI, is that the original graph of A
is destroyed. Thus, if the graph of A must be preserved for future use,

a copy of it must be made before the algorithm is executed.



Our algorithm makes heavy use of the notion of reachable sets,

described in [5], and also relies upon an efficient implementation of the

quotient graph model of symmetric factorization, introduced and analyzed

in [6]. We briefly review these topics in Section 2 and Section 3.1
respectively, but for more details the reader is referred to the references
cited. Since the algorithm is based on quotient graphs, we will refer to

our implementation of the minimum degree algorithm as MDQ.

§2 Preliminaries on Models of Symmetric Factorization

As pointed out in the introduction, the minimum degree algorithm
requires some form of simulation of the factorization process. In this
section, we discuss the various ways in which this process can be simulated.
The approach will be graph-theoretical and the reader is assumed to be
familiar with standard graph theory notions and terminology, reference
to which can be found in [1].

In subsequent sections, various graph-theory notions will be
applied to different graphs. When the graph under consideration is not
clear from context, we will add the appropriate subscript on the defini-
tion, Thus, the notation Ade(y) will be used to denote the adjacent

set of the node y in the graph G .

2.1 Elimination Graph Model

In this section we describe the graph theory approach to
symmetric elimination as given by Parter [7] and Rose [8]. Let A be an

N by N symmetric matrix. The labelled undirected graph of A , denoted



A A

by 6" = (xP

, EA) , 1S one for which X' s labelled from 1 to N :

A _
X° = {x], Xos «os xN} R

and {Xi’ Xj} € A if and only if Aij # 0. Forany N by N permu-
tation matrix P , the unlabelled graphs of A and PAP' are the same,
but the associated labellings differ. Thus, the graph of A is a
convenient vehicle for studying the structure of A , since no particular
ordering is implied by the graph.

Now consider the symmetric factorization of A into LL' .
The sparsity changes (fil1-in) can be modelled by a sequence of graph
transformations on GA . Let G = (X, E) be agraphand y e X . The

elimination graph of G by vy , denoted by Gy » is the graph
(X = {y}, E(X - {y}) u {{u, v} | u,v e Adj(y)}) .

In words, Gy is obtained from G by deleting y and its incident
edges, and then adding any edges to the remaining graph so that the set
Adj(y) 1is a clique. This recipe is due to Parter [7].

With this definition, the process of symmetric elimination on
A can be modelled as a sequence of elimination graphs
G, G

G G , Where

0> 71”727 *"r2 UN-1

and



Here X, = {x and it is straightforward to verify

i i+17 Xq+20 o AN o
that

H.
'

o
1]

where Hi is the part of the matrix remaining to be factored after step
i of the factorization has been completed. Thus, this model is quite

explicit; the structure of Gi corresponds directly to the matrix Hi

2.2 Reachable Set Characterization

A useful notion in the study of symmetric factorization in

sparse linear systems is the reachable set [5]. It can be used to model

the factorization process in terms of the original graph structure.

Let G = (X, E) be a given undirected graph. Consider a
subset S < X and anode y ¢ S . The node y is said to be reachable
from a node x through x if there exists a path (x, S1s sees Sp y)
such that S; € S for 1 <i<t. Since t can be zero, any node in

Adj(y)-S s reachable from y through S . The reachable set of vy

through S is then defined to be
Reach(y, S) = {x ¢ X-S | x is reachable from y through S} .

Consider the graph example in Figure 2.1. Let

S = {s], 52, S3s 54} . We have

Reach(y, S) = {a, b, c}



because of the paths
(¥s Sp» 545 @)
(y, b)

(¥s sy c)

()——)

Figure 2.1 Example to illustrate reachable sets

The reachable set notion can be used to characterize the
A

adjacency structure of elimination graphs. Let G = (XA, EA) be the
graph of A , with X = {x], Xos woes xN}
Let GO’ G], e GN—] be the sequence of elimination graphs

as defined by the nodes Xy, Xps .05 Xy - Define S, = {x], cees Xi}
for i=1,...,N with SO = ¢ . The following result relates the
structures of the elimination graph Gi and the original graph GA

through reachable sets.



Theorem 2.1 [5] Let y be a node in the elimination graph

G, = (Xi’ E.

; 1) . The set of nodes adjacent to y in the graph Gi is

given by

Reach A(y, S.)

G 1

The result means that the elimination process can be modelled
by the subsets Si and the Reach operator on the original graph GA .
since they represent implicitly the sequence of elimination graphs.

For convenience in later discussions, we introduce two more

definitions that are related to the reachable set notion. Consider a

graph G = (X, E) . Let S<X and y ¢ S . The neighborhood set of y

in S is the subset
Nbrhd(y, S) = {s ¢ S | s 1is reachable from y through S}

In other words, this set Nbrhd(y, S) contains those nodes in S through
which the reach set Reach(y, S) can be determined. The closure of ¥y

in S 1is defined to be
Closure(y, S) = Nbrhd(y, S) u {y} v Reach(y, S)

In Figure 2.1, we have
Nbrhd(y, S) = {s], Sy 54}

and Closure(y, S) = {s], Sps Sps ¥s s b, c}



2.3 Quotient Graph Model

In [6], the authors have introduced the quotient graph model for
the study of the Gaussian elimination process. Its primary advantage is
that it lends itself to very efficient computer implementation in simulat-
ing the factorization. We now introduce notations and definitions for the
model.

Let G = (X, E) be a graph with X the set of nodes and E
the set of edges. For a subset S < X, G(S) will be used to refer to

the subgraph (S, E(S)) of G , where
E(S) = {{u, v} ¢ E l u,v ¢ S}

The central notion in the new model is that of a quotieht

graph [3]. Let P be a partitioning of the node set X :

P = {Y], Yoo «ovs Yp} .

2’

p
That is, uy
k=1

of G with respect to P is defined to be the graph (P, &) , where

= X and Yi n Yj =¢ for i#j . The quotient graph

k

{Yi’ Yj}esé’ if and only if Y, n Adj(Yj) # ¢ . This graph will be
denoted by G/P

Consider the graph in Figure 2.2. If
P = {{a, b, c}, {d, e}, {f}, {g, h, i}} dis the partitioning, the

quotient graph G/P is given as shown.
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®

O—O—0—O

Lo & 08

&

(E)

Figure 2.2 A quotient graph

An important type of partitioning is that defined by connected
components. Let S be a subset of the node set X . The component

partitioning C(S) of S is defined as

c(s) = {Y ¢ S| G(Y) 1is a connected component in the subgraph G(S)} .

A closely related type of partitioning turns out to be relevant in the

modelling of Gaussian elimination. The partitioning on X induced by S

is defined to be
C(S) = ¢(S) u {{x} | x & S}

That is, the partitioning C(S) consists of the component partitioning
of S and the remaining nodes of the graph G .
Consider the graph in Figure 2.1. Let S be the subset

{a, b, d, f, h}. The component partitioning C(S) is given by

c(s) = {{a, b}, {d, f}, {h}}
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so that C(S) has seven members and the quotient graph G/C(S) is given

in Figure 2.3. Here, double circles are used to indicate partition members

in ¢(S) .

®
©
&)
(o)

o—)
<E>

Figure 2.3 The induced quotient graph
G/C(S) .

We now study the relevance of quotient graphs in symmetric
factorization. Consider the factorization of a matrix A into LLT.

The process can be interpreted as a sequence of elimination graphs

Gy, G

0> Bp> wreo By
where Gi precisely reflects the structure of the matrix remaining to
be factored after the i-th step of the Gaussian elimination.

Alternatively, the process can also be represented as a

sequence of quotient graphs, which may be regarded as implicit represen-
tations of the elimination graphs {Gi} . Let {x], Xos «ens xN} be the
sequence of node elimination in the graph G = GA . As in Section 2.1,

let Si = {x1, ey Xi} for 1 <14 <N and S0 = ¢
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Consider the partitioning E(Si) induced by 81 and the

corresponding quotient graph

6/T(s;) = (T(s,), &)

1

We shall denote this quotient graph by Gi . In this way, we obtain a

sequence of quotient graphs

G], GZ’ ...y G

N -
The following result shows that, indeed, the quotient graph Gi = G/E(Si) can

be regardedas an implicit representation of the elimination graph Gi
Theorem 2.2 For y ¢ Si >
Reach, ({y}, C(Si)) = {{x} | x e Reach;(y, Si)}
i
Proof: Consider X ¢ ReachG(y, Si) . If x and y are adjacent in
G, soare {x} and {y} in Gi . Otherwise, there exists a path
Yo S7s cees Sy X in G where {s], cens St} c Si . Let C be the
component 1in G(Si) containing {s], cees St} . Then we have a path
{y}, C, {x} in G, so that
{x} e ReachG.({y}, C(Si))
i
Conversely, consider any {x} ¢ ReachG_({y}, C(Si)) . There
1

exists a path

{y}, C1, cees Ct’ {x}
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in Gi where each Cj € C(Si) . If t=0, then x and y are
adjacent in the original graph G . If t >0 , by the definition of

C(Si) , t cannot be greater than one; that is, the path must be

{y}, C, {x}

Since G(C) 1is a connected subgraph, we can obtain a path from y to X

through C ¢ Si in the graph G . Hence

X € ReachG(y, Si) .

Figure 2.4 contains an example of a quotient graph sequence.
Partition members in C(Si) are marked in double circles for clarity.

As a theoretical tool for studying and understanding the
symmetric factorization, the use of quotient graphs does not appear to be
better than the elimination graphs or the reachable set notion. However,
the new model can be implemented very efficiently both in terms of time
and space. In what follows, we shall show that it can be implemented

in-place.

Lemma 2.3 let G = (X, E) be a given graph, and et S < X , where

G(S) 1is a connected subgraph. Then

ZSIAdj(x)I > |Adj(S)]| + 2(|S] - 1)
Xe



eO—Q)- @—«@fw@ O—)—0——®
OO0 j@L—@

G

@

Gy Gg

Figure 2.4 A sequence of quotient graphs
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Proof: Since G(S) 1is connected, there are at least |S[-1 edges
in the subgraph. These edges are counted twice in Y |Adj(x)| and

XeS
hence the result.

We now show that the edge set sizes of the quotient graphs Gi
cannot increase with increasing i . Let X1s Xps «ves Xy be the node

sequence, let

be the corresponding quotient graph sequence.

Theorem 2.4 For 1 <1 <N,
IC(51+1)| < IC(Si)I
and |é?i+]| < | é?il

Proof': Since C(Si) is the set of components in the subgraph G(Si) ,

we have

1C(S54)1 < IC(S;)1 + 1
However, |C(S.)| = IC(Si)l + N -1, so that

TS pq) 1 = 1C(Sqy) 1 # N =8 =1

IA

C(S )1+ N =1 = [C(s;)]
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For the inequality on the edge size, consider C(S.. ) . If

i+]

{x;,1} € C(S54y) » clearly & pq ! = [61] . Otherwise, the node x,;

i+l
is merged with some components in C(Sj) to form a new component in
C(Si+]) . But then Lemma 2.3 applies, so that Iéﬂ+][ < lé%[ . Hence
in all cases,
€1 < 1€

a

The next theorem illustrates the advantage of the quotient
graph model over the elimination graph model, and is one of the primary

motivations for our introduction of the model.

Theorem 2.5

max lé}l < |E] < max |E,|
1<i<N O<i<N

Proof: The first inequality follows from Theorem 2.4, and the fact

that |E0| = |E] implies the second one.

The advantage of the quotient graph model over the reachable
set approach is, in fact, implicit in the proof of Theorem 2.2. To
determine the set ReachG(y, Si) , paths emanating from the node Yy
through the subset Si have to be traced. These paths can be of
arbitrary lengths (less than N), and many may be traversed unnecessarily.
For example, in the graph of Figure 2.4, to find ReachG(x7, 57) , the

three paths
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(Xg5 X1 x5)
(X75 Xg5 Xg> x8)

(g5 Xg5 X35 x8)

have to examined, of which the last one is unnecessary.

However, the determination of ReachG.({y}, C(Si)) in the
quotient graph involves paths of length at mostTtwo (see proof of Theorem
2.2). Indeed, the time required can be shown to be proportional to the

size |Reach; ({y}, C(S;))]
i

§3. Description of the Minimum Degree Algorithm

3.1 Using Elimination Graphs

The minimum degree algorithm is probably the most widely used
heuristic algorithm for finding low fill orderings. In terms of
elimination graphs, it can be best described as follows. Let

G. = (X, E) be an unlabelled graph.

0
Step 1 (Initialization) Set i< 1.
Step 2 (Minimum degree selection) In the elimination graph G, _; »

choose X5 to be a node such that

|Adjg  (x;)] = min |Adjg (V)]
i-1 yeX, i-1
i-1
where G, 5 = (X;_;» Es_q) -
Step 3 (Graph transformation) Form the new elimination graph

6 = Gy,
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Step 4 (Loop or stop) i < i+l . If i > |X[ , stop. Otherwise, go to
Step 2.

In effect, the algorithm orders a given graph by selecting nodes
of minimum degree from elimination graphs (hence the name minimum degree
algorithm). The formationlof the elimination graph in Step 3 is necessary
to facilitate the selection of the next node to be ordered. Different
versions of the algorithm can be formulated for different ways of comput-
ing degrees of nodes in the elimination graph.

An extremely good implementation of this formation can be found
in the Yale Sparse Matrix Package [2]. The sequence of elimination graphs
js represented explicitly in a linked list structure. Interested readers

are referred to that reference for details.

3.2 Using Reachable Sets

Theorem 2.2 relates the adjacency structure of the elimination
graph to that of the original graph. With this simple connection, the

minimum degree algorithm can be restated in terms of reachable sets.

Step 1 (Initialization) S « ¢
Step 2 (Selection) Pick a node y e X-S such that

|Reach(y, S)| = min [Reach(x, S)]
XeX-S

Number the node y next.
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Step 3 (Implicit transformation) Set S <« S u {y} .
Step 4 (Loop or stop) If S =X, stop. Otherwise, go to Step 2.

It should be noted that in the actual implementation, the number
|Reach(x, S)| for x ¢ X-S should be stored to avoid re-computation.
This means in the implicit transformation step, some of these numbers
have to be updated to reflect the change in the subset S . The following

result is quoted from [5].
Theorem 3.1 For u e X-S ,
Reach(u, Su{y}) = Reach(u, S)

if u ¢ Reach(y, S) .
0

This result justifies keeping the numbers |[Reach(x, S)|
since many of them remain unchanged after the node y is numbered.
Indeed, the numbering of node y only affects the degrees of the nodes
in Reach(y, S) .

In [5], the authors have implemented this approach with some
refinements to speed up the execution of the algorithm. The main advant-
age of this implementation is its small and predictable storage require-

ments. Moreover, it preserves the adjacency structure of the given graph.
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3.3 Using Quotient Graphs

The selection step in the minimum degree algorithm depends on
the degrees of the nodes in the elimination graph. The reformulation of
the algorithm in Section 3.2 makes use of the connection between the
degree of a node in the elimination graph and the reachable set. In view

of Theorem 2.2, we can describe the algorithm in terms of quotient graphs.

Step 1 (Initialization) Set S« ¢ , G = G/C(o) .
Step 2 (Selection) Pick a node in y e X-S such that

IReachG({y}, c(s))| = min |ReachG({y}, c(s))|
XeX-S
Number the node y next.
Step 3 (Quotient graph transformation) S <« S u {y} and put
G « G/C(S) .
Step 4 (Loop or stop) If S =X, stop. Otherwise, go to Step 2.

Basically, there is not much difference in the formulation of
the algorithm in terms of reachable sets and quotient graphs. They both
employ the notion of reachable sets; one on the original graph and the
other on quotient graphs. Their major difference Ties in their imple-
mentation. The important features of the quotient graph implementation
are described in Section 5.

In [5], the authors discussed various enhancements in the
implementation of the algorithm by the reachable set approach. Some of
these novel features are applicable in the use of quotient graphs. In
what follows, we shall quote results from [5] and discuss how we can apply

them to quotient graphs.
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Minimum Degree Selection

For each execution of Step 2 of the minimum degree algorithm as
described, a node of minimum degree is selected and numbered. The follow-
ing theorem shows that a set of nodes can be numbered at one time at the

expense of some minimal extra work.
Theorem 3.2 [5] Let y be a node in X-S satisfying

|Reach(y, S)| = min|Reach(x, S)|
x4 S

Let Y be the set
Y = {x ¢ Reach(y, S) v {y} | Adj{x) < Closure(y, S)}

Then the nodes in Y can be numbered next consecutively in the minimum

degree algorithm. 0

This result can be translated in a straightforward way to

quotient graphs. Consider the quotient graph

G = G/C(S) .

If y 1is a node in X-S such that

|Reach.({y}, C(S))| = min|Reach.({x}, C(S))|
G X&S G

then the nodes in the set

v = {x | {x} ¢ Reach ({y}, ¢(3)) v {{y}} and

» Ade({x}) c C]osureG({y}, C(S))}

" can be ordered next in the algorithm.



22

Consider the graph example in Figure 3.1. The subset S
contains 27 nodes marked in shade. The corresponding quotient graph is
also given in Figure 3.1. To simplify the notation, we use y to stand
for the node {y} in the quotient graph where y =a, b, ¢, d, ... .

In the example, the node a 1is one of minimum degree, where

ReachG(a, c(S)) = {b, ¢, d, e, g, h, i}

Nbrth(a, c(s)) = {51, 52} .
But Ade(b) = {a, c, Sqs 52}
which is contained in C]osureG(a, C(S)) . In other words, the nodes a

and b can be numbered consecutively.

Original graph G Quotient graph G/C(S)

Figure 3.1
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Degree Update

The remark in Section 3.2 about degree update aiso applies to
the quotient graph formulation. If y s the node selected in Step 2,

only the degrees of the nodes in

ReachG({y}, c(S))

need be updated; the others remain unchanged.
In [5], the authors have also introduced an enhancement in the
degree update procedure, whereby a set of nodes can have their degrees

updated together. We quote the result and adapt it to quotient graphs.

Theorem 3.3 Let U be the set of nodes whose degree {Reach(x, S)I

for x e U need to be computed. Let u e U satisfy the condition
Reach(u, S) = Adj(Nbrhd(u, S))

Consider v ¢ U with Nbrhd(v, S) = Nbrhd(u, S) . If

Adj(v) < Closure(u, S) , then

|Reach(v, S)| = [Reach(u, S)]

To illustrate the applicability of the result to quotient
graphs, we consider the example in Figure 3.2. It is in fact a continuation

of the elimination process from the example in Figure 3.1.
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Figure 3.2

Consider the elimination of the node c¢ . In this case,
U={d, e, f, g, h, i}

contains the nodes whose degrees have to be updated. Let S be the set
of eliminated nodes (including c), and G = G/C(S) . Consider the node

felU. Clearly, we have

Nbrth(f, c(S)) = {54, s7} s
so that

ReachG(f, c(S)) = Ade(Nbrhd (f, ¢(S)))

Furthermore, the node g ¢ U satisfies

Nbrth(g, c(S)) = {54, 57}
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and

Ade(g) = {f, h, S4 57}

Hence, the nodes f and g have the same degree through S . (Their

degrees are 11.)

§4. Some Details About the Implementation

4.1 Computer Representation of Quotient Graphs

A graph is complietely determined by its adjacency structure,
that is, the set of adjacency lists for every node in the graph. We
represent such a structure by storing the adjacency 1ists sequentially in
a one-dimensional array along with an index array of length N containing
pointers to the beginning of each adjacency list in the storage array.

An example is shown in Figure 4.1, where the 1lists are separated for

illustrative purposes.

i
E

9000.6 1

3: [4 T8]
(9) 4: [3 16 7]
5: [1]
6: [4 [8]
7 [1 4]

8: [2 [3 16 [9]

(Vo]

Fiaure 4.1 A arabh and its reoresentation
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Given a graph G = (X, E) and a subset S . How can we

represent the quotient graph

G = G/C(S)
using the space provided by the adjacency structure of the original graph?
Consider a connected component Y in the subgraph G(S) . By

the result of Lemma 2.3, we have

Y OIAdi(y)] = |AdI(Y)] + 2(]Y] - 1)
yeY

or |Adi(Y)] =} [Adi(y)| - 2(]Y] - 1)
yeV

Therefore, there are always enough locations for Adj(Y) from those for
Adj(y) » y e Y . Moreover, for Y # ¢ , there is always a surplus of
2(1Y1-1) Tlocations which can be utilized for links or pointers.

In the graph example in Figure 4.2, let the subset

wm
]

{1, 2, 3, 4, 5} . Figure 4.2 shows the way the quotient graph

(]
"

G/C(S) 1is stored.

O—O0—Q@—® ).
O—@ *
® .

oS
Hle
EAR
S

T

1

~
H

[0}

121316191

8

tj

Figure 4.2 A quotient graph representation
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The components in G(S) are given by

c(s) = {{1, 5}, {2}, {3, 4}}

Consider finding the adjacent set of the component {3, 4} 1in the quotient
graph representation. It can be retrieved by first exhausting the current
1ist for node 3; the link to node 4 then gives the remaining neighbors of
the component.

Another point that is worth noting in the example is the use
of representatives for component members. The components {1, 5} and
{3, 4} are now represented by the nodes 1 and 3 respectively. In
other words, the nodes 5 and 4 will be ignored in future processing,
although the storage for their original adjacent Tists may be used for
the quotient graph representation.

In our implementation, the set S and its component represen-
tatives are maintained by a three-state array SMASK where

1) SMASK(i) = 0 if node 14 S

2) SMASK(i) > 0 if node i is a representative of a

component of S

3) SMASK(i) < 0 if node i is in S and can be ignored.

4.2 Quotient Graph Transformation

In the minimum degree algorithm, the selection of node y puts

jt into the subset S , so it is necessary to do the transformation

G/C(S) -+ G/C(S v {y})

It is easy to verify that
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{y} u Nbrhd(y, S)
is a connected component in the subgraph G(S u {y}) . A natural choice
of representative for this new component subset of S s the node y .

The transformation can be described as follows:
Step 1 (New adjacent set) Determine the
sets R = {x | {x} e Reach;({y}, c(s))} .

Step 2 (In-place transformation) Use the node y as the representative
of the new quotient member {y} u Nbrhd(y, S) . Reset
Adj(y) <« R

using the adjacency list storage from nodes in Nbrhd(y, S) if
necessary.

Step 3 (Neighbor update) For u e R, put

Adj(u) « (Adj(u) - Nbrhd(y, S)) v {y} .

4.3 Mass Elimination and Degree Update

The enhancements to the minimum degree algorithm are essentially
direct applications of Theorems 3.1 and 3.2, both of which involve a

test of whether a relation of the following kind is true.

Ade(x) c C]osureG(y, c(S))

The condition is usually tested for numerous x after ReachG(y, c(s))
has been generated. In order to facilitate this test, in our implemen-
tation we have a marker array MARKER which is initially zero. In

generating
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ReachG(y, c(s)) ,

we set the MARKER values of all the nodes in C]osureG(y, C(S)) to a
nonzero quantity. In this way, the above condition can be tested simply
by examining the MARKER values of the neighbors of the node x . Of
course, the MARKER values have to be reset to zero before the next

reach operation is performed.
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§5 Numerical Experiments and Concluding Remarks

In this section we report on some numerical experiments showing
the performance of our implementation of the minimum degree algorithm
(MDQ), based on the use of quotient graphs. As a basis for comparison,
we have used two other implementations, one from the Yale Sparse Matrix
package which we denote by MDE [2] ,and one from [5 1,which we denote by MDI.
The MDE subroutine is a conventional implementation, in the sense that it
represents the elimination graphs GO, G1, e GN—] explicitly in a
linked 1list structure. The MDI implementation, on the other hand, uses
only the original graph, and does not change it during the execution of
the algorithm. Information that is required about the Gi is obtained
through generation of the appropriate reachable sets, as described in
detail in [ 5]. The names MDQ, MDE, and MDI are intended to suggest
quotient graph, explicit, and implicit methods of representing the
elimination graphs.

Our first set of test problems were chosen to obtain evidence
bearing on the asymptotic behaviour of our program. We used the set of
"graded-L" mesh problems from [3, page 318], which consists of a sequence
of similar problems typical of those arising in finite element applications.
The results of these runs are summarized in Table 5.1. Execution times
are in seconds on an IBM 360/75 computer. The programs are all written
in Fortran, and were compiled using the optimizing version of the IBM

H-1evel compiler.
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In terms of execution time, the MDQ implementation enjoys a
significant advantage over the other two implementations. Both MDI and
MDQ appear to execute in time very close to proportional to |E| for
these problems, but the MDE execution time appears to be superlinear in
|E| . However, because of differences in constants of proportionality,
MDE is still quite competitive with MDI until N 1is several thousand.

Turning now to storage requirements, it is evident that the
MDI and MDQ subroutines require storage proportional to |E| . On the
other hand, MDE explicitly generates a sequence of graphs Gog G], cees GN—]’
and the maximum storage required may greatly exceed |E| . The entries
in the storage column for MDE were obtained by monitoring the maximum
storage used by the working storage arrays. In general, for implementations
which store the elimination graphs explicitly, the user must estimate the
maximum storage requirement, and provide at least that much to allow the
program to execute. This is a major disadvantage not shared by MDI and
MDQ , since they use a fixed, predictable amount of storage.

It is interesting to note that the storage required by the
subroutine MDQ is actually less than that required by MDI. However, MDI
does not change the input graph structure, since it generates reachable
sets via the original graph GO . On the other hand, MDQ generates a
sequence of graphs starting with the original, and does not preserve its
input graph. Thus, to be fair in the comparison, we have added space
required to retain the input graph to the MDQ storage requirements.
Alternatively, one could preserve the input by writing it on auxiliary
storage, and then reading it after the ordering had been found. The

apparent storage advantage of MDI over MDQ would then be removed.
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Although MDI and MDQ will always enjoy a storage advantage over
MDE, the magnitude of this advantage is problem dependent. Moreover, it
turns out that the execution time advantage enjoyed by MDQ over MDE in
the above problems is not indicative of the results for other problems.
Sometimes the lower storage requirement of MDQ and MDI over MDE is paid
for through substantially increased execution time. To illustrate this,
we applied the three subroutines to a collection of problems from various
applications, including finite element problems and normal equations of
sparse least square problems arising in surveying and linear programming.
The results of these experiments are summarized in Table 5.2.

The results in Table 5.2 show that none of the methods is
uniformly faster than the others. However, the "AVERAGE" row in the
table suggests to us that the MDQ implementation is the method of choice.
Specifically, if we make the reasonable aésumption that the cost of
running a program is proportional to the product of execution time and
storage used, the average costs of MDE, MDI, and MDQ are 11.20, 14.07,
and 7.16 respectively. (In many installations, storage requirements are
weighted more heavily, thus making MDI and MDQ more favorable compared to
MDE.) We feel that these costs, combined with the predictability of

storage requirements, puts MDQ in a very strong position.



EXECUTION TIME STORAGE REQUIREMENTS

MDE MDI MDQ MDE MDI MDQ

1176 4.86 4.43 3.05 5.9 2.91 4.30
663 .33 .18 .22 .56 71 .55
822 1.38  9.27 2.78 1.20 1.06 1.04

822 5.46 30.22 8.09 3.4 1.22 1.37
1250 1.40 12.32 3.59 1.90 1.63 1.64
796 94 7.52 2.27 1.21 1.04 1.04

700 7.44 28.75 8.84 5.15 .98 1.05

936 3.65 3.98 2.62 2.77 1.47 1.72
1009 4.39 4.72 3.06 3.25 1.59 1.88
1089 4.26 4.66 3.19 3.32  1.72 2.02
1440 4.80 6.41 4.3] 3.85 2.25 2.62
1180 3.24  4.11  3.50 2.99 1.84 2.14
1377 3.36 4.79 3.85 3.52 - 2.14 2.49
1138 3.54 4.94 3.54 2.97 1.78 2.06
1141 4.09 5.16 3.57 2.99 1.77 2.06
1349 5.30 5.87 3.89 4.09 2.12 2.49

AVERAGE| 3.65 8.58 3.77 3.07 1.64 1.90

(x10h)  (x10h) (x10%)

Table 5.2 Comparison of the performance of the MDE, MDI
and MDQ implementations of the minimum degree
algorithms applied to 16 test problems.
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