Prlntng Requisition/Gra

phicServices

45610

. Please complete unshaded areas on

form as applica

2. Distribute copies as follows: White and
Yellow to Graphic Services. Retain Pink
Copies for your records.

ble.

3. On completion of order the Yellow copy
will be retumed with the printed

material.

extension 3451.

4. Please direct enquiries, quoting requisi-
tion number and account number, to

TITLE OR DESCRIPTION

795 -1/
DATE REQUISITIONED
[/v JZ k)

ACCOUNT NO.

I// I;jlé lﬂ/ Z/ 5,/]6,91}.

DATE REQUIRED

/SR

REQUISITIQNER - PRINT JPHOI\;’E L T SIGNING. AUTHORXTY
Sl [ESINCE(1 < RMNES e LA LIL/«'VLL*L/
MAILING NAME DEPT. BLDG. & ROOM NO.] pELIVER
INFO — PICK-UP
Copyright: 1 hereby agree to assume all responsibility and liability for any infringement of copyrights and/or patent rights which may arise from
the processing of, and reproduction of, any of the materials herein requested. | further agree to indemnify and hold blameless the
University of Waterloo from any liability which may arise from said processing or reproducmg | also acknowledge that materials
processed as a result of this requisition are for educational use only.
NUMBER 7, (* NUMBER / NEGATIVES iQUANTITY REER rime LABOU@ODE
el I e e
B\BOND DNCR PT. jCOVER DBRISTOL :iSUPPLIED D - IF‘L'MI { | | l 1 ll | ‘ | l 1 l J LJ l [J !Ciol'IJ
’E?PELR S1I12E [} st xia] 11 x17] :
il - - ELM oy b Il b g Heontd
PP/\.PER COLOUR INK.-
Aowre [Weeree [FL™Ml v b T e Jleony
PRINTING s NUMBERING ‘ :
' 1m¢‘;z(z_ From o FLM oy e e e by Heont]
\;gleG/FINISHmG*” oLe PMT :
COLLATING STAPLING D—PUNCHED D PLASTIC RING :
= Pl e e e e g T eo
FOLDING/ CUTTING) .
— s Tl b b b Jleon]
pecial Instructions
PPt vy b bt b 1 116041
PLATES
Pl e e P e | P01}
P b e ety o [P0y
Pt v b b e [Pogtd
STOCK ' ‘
Lo v v o b d b 1 f1og041]
COPY CENTRE op MACH.
" BLDG. . 0 O 1
G | ||J||!lL|t_ll ||rn|1|J|1!||JMH|;|1L||J
DESIGN & PASTE-UP opER. LABOURODE l 11 i [| JJ| 111 IJ} | H | | [J[0I0|1J
IR | SR A (o1 A | R B N § AW RO RRVIN RN U T § (I 1TR N
Lo Loy 1 |[Dog]f BINPERY
RNGL e b 1 Bioyt]
, L H | 11 |01 |
TYPESETTING QUANTITY BNGL o b T d b o 1 (Biogt]
[P1API010,00000y]y o o dlo g JmopRNGE o Iy fEa ey g |80yt
[P1AP[010,00,0) | ot b I moegtiimensfogeieioio L T d Ly oo] 180l
1PLAP010,0,000; || o L[y 1 | [Togt]| OUTSIDE SERVICES |
PROOF , .
PRFEL v e e T I 1|
|P\RF] IR R
COST
|P1RIF1 L 1.1 | Iji N H I“ 1JL‘ ’J TAXES ~ PROVINCIAL [| FEDERAL [| GRAPHICSERV.. OCT.85 482-2

An Optimal Algorithm for Symbolic Factorization
of Symmetric Matrices*

by

Alan George+
and

Joseph W.H. L1'quJr

Research Report CS 78-11

+Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

TfSystems Dimensions Ltd
111 Avenue Road
Torontq@, Ontario, Canada

*Research supported in part by Canadian National
Research Council grant A8111.

Abstract

A fundamental problem in the computer solution of a sparse,

N by N, positive definite system of equations Ax=b is, given the structure

of A, to determine the structure of its Cholesky factor L, where A = LLT,

This problem arises because it is often desirable to set up a data
structure for L before the numerical computation is performed, and in
order to do this we must know the positions of the nonzeros of L. We

describe a representation R for L which typically requires far fewer

data items than the number of nonzeros in L, and an algorithm is then
described which generates RL. The time and space complexity of the
algorithm is shown to be O(|A| , IRLI), and can never be worse than
0(|L]). Here |RL] denotes the number of items in the data structure for
L, and |Al and |L| denote the number of nonzeros in A and L respectively.
For a certain class of problems, we show that the execution time of the
algorithm is O(N), even though |L| is O(N log N). We also provide

some numerical results showing that the algorithm can be implemented so
that the program performance reflects its theoretically predicted

behaviour.

1. Introduction

Consider the symmetric positive definite system of linear
equations
(1.1) Ax=b,
where A is N by N and sparse. If we solve (1.1) using Cholesky's
method, the system is usually first reordered by an algorithm such as
the minimum degree algorithm [4], so that its Cholesky factor
suffers Tow fill-in. We do not deal with this reordering problem here,
and simply assume that (1.1) has already been reordered appropriately.

Since L is sparse, the next step in the solution process is to
construct a data structure for L, so that only its nonzeros are stored.
In order to do this we must know the positions of the nonzeros of L,
leading to the problem which we deal with in this paper. That is, given
the structure of A, we want to determine the corresponding structure of
its Cholesky factorization. Since the process is entirely logical,
involving no numerical computation, it is often referred to as "symbolic
factorization".

At Teast two such algorithms for computing the fill-in (or the
structure of L) have been described in the literature [8,9]. The
algorithms are quite similar, and their time complexity has been shown
to be O(|L|), where [L| denotes the number of nonzeros in L. If the
desired output of the algorithms is the positions of the nonzeros in L,
then the immediate implication is that these algorithms are asymptoti-
cally optimal.

However, in practice, the reason for performing symbolic
factorization is to construct a storage scheme for L, and very often

these data structures involve far fewer than| L| items of information, [9].

For example, for one such data structure and problem class, the number
of data structure pointers etc. is O(N), even though |L| is O(N log N)
[3]. In this context it seems reasonable to regard an algorithm as
optimal only if its execution time and its space requirement are
O(IRL] > |A]), where R is the representation used to describe the
structure of L.

In this paper we describe an algorithm for symbolic factor-
ization which generates a specific representation for L. The time
complexity of the algorithm is shown to be optimal in the above sense
(i.e., 0(|RLl » |Al)) and can never be worse than 0(|L|). For a special
class of finite element problems, appropriately ordered, we show that
the execution time of the algorithm is O(N), even though |L| is
O(N Tog N).

In general, we note that the representation produced may
not be optimal with respect to |RL|. However, the algorithm is optimal

for producing this representation.

Our algorithm has another important feature not present in

previous algorithms. The algorithm does not use any of its output

during execution; it operates on]y on the graph of A. Thus, if

insufficient space is available to retain RL’ it can be discarded; the
algorithm can still execute and determine the number [R [, thus
furnishing the amount of space needed for RL. Alternatively, RL can be
written on secondary storage as it is generated. In either case, we

argue that eur algorithm is optimal in terms of space requirements.

An outline of our paper is as follows. In section 2 we describe
a useful representation RL for the structure of L which is the basis for
at least two efficient storage schemes for sparse matrices [3, 9].

Section 3 contains a review of a quotient graph model of symmetric

factorization, developed by the authors in [5]. Section 4 contains a
development of the symbolic factorization algorithm, using the quotient
graph model, and section 5 contains an example illustrating that its
execution can be of an order Tower than |L|. Section 6 contains a few
numerical experiments showing that the algorithm can be implemented
efficiently, along with a discussion of its advantages and disadvantages

compared to alternative symbolic factorization algorithms.

§2 Representation of the Structure of L

In this section we consider the problem of efficiently
representing the structure of the lower triangular matrix L. This task
is clearly fundamental in the design of an efficient data structure for
storing L.

It is often true that when symmetric Gaussian elimination is
applied to matrices which have been ordered so as to suffer Tow fill-in,
the resulting factor L has many "similar" columns. That is, for some
column k, there are several columns j, j > k, having essentially the
same nonzero structure. This fact motivates the following definition.

Given an N by N lower triangular matrix L, column k is a

representative for column j, j > k, if and only if for all i = j,

Lij F0 <=> Lik $ 0. Simply stated, column k represents column j if
they have identical structure below position j. Note that column k

represents itself.

If we know the structure of column k, and we know which
columns it represents, then their structure is completely determined.
Since we are interested in representing the entire structure of L, we
are led to the following definitions.

A representative map M for L is an ordered set of integers
(m1,m2,...,mN) such that 1 < mj < j, and such that mj=k implies that
column k is a representative for column j. The subset M* < M consisting

of distinct members of M is called a representative set for L. Finally,

a representation for L by M is the set R > where R is given by

Re= ((1.3) 1 d e W%, Ly; + 03

An example illustrating these definitions is given in Figure

2.1.

X
X X
X
X X X
L = X
X X
X X
X
X X X

12 3 456 7 8 910

M = (]3233’494363] ’63496)
M* =1{1,2,3,4,6}
. {(7,1), (8,1), (3,2), (5,3), (7,3), (8,3),

L (5,4), (7.4), (8.4), (9,4), (10,6)}

Figure 2.1 An example illustrating the sets
M, M* and R -

A representative map is said to be monotone if Mo < My
1 <41 <N. In this case it is clear that ¥ and RL are sufficient to

describe the structure of L, since M can be inferred from M*.

§3 The Quotient Graph Model of Symmetric Elimination

3.1 Graph Theoretic Preliminaries

Symbolic factorization is the process of simulating the
numerical factorization of a given matrix A in order to obtain the
zero-nonzero structure of its factor L. Since the numerical values of
the matrix components are of no significance in this connection, the
problem can be conveniently studied using a graph theory model. The
readers are assumed to know the basic notions in graph theory,
reference to which can be found in [1]. We now introduce some more
definitions and establish results that are pertinent in the study of
the elimination process.

Let G = (X,E) be a given undirected graph. Consider a subset

ScXand a node y € X-S. The node y is said to be reachable from a

node x through S if there exists a path (x, s],...,st,y) such that S; € S

for 1 < i < t. The reachable set of y through S is then defined to be

Reach (y,S) = {x ¢ X-S | x is reachable from
y through S}.

A related notion is the neighbour hood set of y in S, which is

the subset
Nbrhd (y,S) = {s € S | y is reachable from
S through S}.
For convenience in later discussions, we define the closure of y in S
to be
Closure (y,S) = Reach (y,S) u Nbrhd (y.S) u {y}.

We now review the relevance of these notions in Gaussian

elimination. Let A be an N by N symmetric matrix. The labelled un-
directed graph of A, denoted by GA = (XA,EA), is the one for which XA
is labelled from 1 to N:
A _
X = {x-|3X23--'$xN}9

A . .
and {Xi’xj} e E7 if and only if Aij £ 0

Let A = LLT, where L is the Cholesky factor of A. The matrix

F=L+L"is called the filled matrix of A and the corresponding graph

GF = (XA,EF) the filled graph of GA. The following result relates EF

directly to EA using the reachable set notion. This idea was discovered

independently in [8]. Let Si = {x1,...,x1} for 1 =i <N and S0 = ¢

Lemma 3.1 [4] Let j > i. The unordered pair {Xi’xj} € EF if and only

if X5 € Reach (Xi’si-])' O

Corollary 3.2 [4] lEFl =

™M=
—

1 | Reach (xi,Si_]) . 0

In subsequent sections of this paper, these various graph
theoretic notions will be applied to different graphs. When the graph
is not clear from context, we will attach the appropriate subscript to

the nomenclature. Thus, notations of the following type will be used:

Adjs(y). degn(y). Reachs(y,S), etc.

3.2 The Quotient Graph Model

In [5], the authors introduced a quotient graph model for the
study of the Gaussian elimination process. We now briefly review this
model.

The central notion is that of a quotient graph. Let G = (X,E)
be a given graph. Let P be a partitioning of the node set X:

P =’{Y],Y2,...,Yp}.

P
That is, U Y, =Xand Y, n Y. = ¢ for i ¥ j.
k=1 K P

The quotient graph of G with respect to P is defined to be the graph
(r,E), where'{Mi,Yj} e Eif and only if Yion Adj (Yj) £ 0. This graph
will be denoted by G/P.

An important type of partitioning is that defined by connected

components. Let S be a subset of X. The component partitioning C(S)

of S is defined as

C(S) = {Y ¢ S| G(Y) is a connected
component in the subgraph G(S)} .

This can be extended to a partitioning on X. We define the partitioning

on X induced by S to be
¢(s)

C(S) u {{x} | x ¢ X-S}.

We are now ready to model the elimination process as a sequence
of quotient graphs. Let GA = (XA,EA) be the graph and xysX,s...sXy be
the sequence of node elmination. As in section 3.1, let

S; = {x],...,xi} for 1 < i <N and Sy = ¢-

Consider the partitioning E(Si) induced by Si and the corres-

ponding quotient graph G/ﬁ(si). We shall denote this quotient graph by

10

G.. In this way, we obtain a sequence of quotient graphs

G]’GZ’°"’GN'

We quote the following result from [5].

Theorem 3.3 For y ¢ Si’

ReachGi ({y}, €(S;)) = {{x} | x ReachcA (y,8;)}.

By lemma 3.1, the filled graph GF is characterised by the set
of reachable sets ReachpA (Xi’si-1)‘ Then, the above theorem implies
that the filled graph can be implicitly represented by the sequence of
quotient graphs.

The primary advantage of the quotient graph model is that its
computer implementation is very efficient. In particular, it can be
implemented in space proportional to the number]EAJ of nonzeros in A.
The in-place implementation of the model relies on the following
results quoted from [5].

Theorem 3.4 Let G, = (C(S:),E:)» 1 < i < N be the sequence of quotient
graphs. Then, for 1 < i <N

18(S;49)1 < 1E(S9)] 5

and |E; 41 < |E4l
Theorem 3.5 For X § Siyq

45 g (NI < IAddg (£))]
1 1

1
For details of the in-place implementation, the reader is
referred to [5]. In the next subsection, we shall consider some

properties of the induced partitionings C(Si).

1

3.3 The Component Partitionings C(Si)

In the formulation of the quotient graph model, the sequence
of node subsets

S], 52, cees SN

defines a sequence of component partitionings

c(s]), c(sz) seens c(sN).

We first establish the relation between C(Si_]) and C(Si) through a

series of lemmas.

Lemma 3.6 Nbrhd (Xi’ Si

_1) = U {Y e C (Si']) I Xi € Adj (Y)}.

Proof Consider any Y ¢ C(Si_1) with X; e Adj (Y). Fory e Yc Si_1°
since X; € Adj (Y), y is reachable from a sabset of Y and hence
y ¢ Nbrhd (Xi’ 51-1)'

On the other hand, consider y ¢ Nbrhd (xi,Si_]). Let
(xi,s],...,st,y) be a path where {51,...,st,y} c Si-l' Define
Y ¢ C(Si_]) such that {s],...,st,y} < Y. Clearly Adj (Y) contains X
and hence the result. O
Lemma 3.7 {x;} U Nbrhd (x.,S, ;) e C(S;).
Proof Clearly {Xi} U Nbrhd (Xi’si-1) < S, and is connected. That it

is a maximal connected set in G(Si) is left as an exercise. O
Theorem 3.8 C(Si) = {{Xi} U Nbrhd (Xi’si-l)} U
{Y € C(Si']) [X1 * Adj (Y)}’
Proof It follows from lemmas 3.6 and 3.7. 0
We now establish an interesting property on the component

partitionings C(Si). Define the set

IA

X=U {c(si) | T <1 <N},

12

that is, X contains all the component subsets in gll_C(Si).
Theorem 3.9 X = {{x;} U Nbrhd (Xi’si-l) | T <1 <N}
Proof By lemma 3.7, it suffices to show that

c(s,) = {{x;} U Nbrhd (x;,S;_ ¢) | 1 <1 <N

k
for k=1,...,N. But this can be proved by induction on k using theorem
3.8. 0
There is therefore a one-to-one correspondence between the node
set X and the component set X. Indeed, the mapping is given by
X; = {Xi} U Nbrhd (xi’si-l)'
This correspondence will be useful in establishing complexity bounds

for the symbolic factorization algorithm. The following result relates

the set X with Reach (xi,S{_1) .

Lemma 3.10 Reach (Xi’si—l) = Adj ({xi} u Nbrhd (Xi’si-1)) .

13

84 Symbolic Factorization Using the Quotient Graph Model

4.1 Symbolic Factérization

Consider a symmetric matrix A with Cholesky factor L. Let GA =

(XA,EA) be its associated graph, where

A _
X' = {x1,x2,...,xN}.

In view of the result of lemma 3.1, symbolic factorization of A may be
regarded as the determination of the sets

ReachiA (xi5 {Xqs.0iuxs 1)

for i=1,...,N.

These reachable sets in the geaph GA can, however, be determined
in terms of the structure in the quotient graphs. The correspondence is
given in theorem 3.3. With this connection, we can state a symbolic
factorization algorithm in terms of quotient graphs.

Step 0 (Initialization) Let Sy = 95 G, = GA/E(SO).
Also put i « 1.
§Egg_l_(Reachab1e set determination) Find the reach set

ReachGi_] ({Xi}’ C(Si-]))

in the quotient graph G, ;.

Step 2 (Quotient graph transformation) Form Si « Si-] U {Xi} and
C(Si) as given by theorem 3.8.
Perform the in-place transformation [5] of the quotient graph

G; from G _;, where

= ch/a
Gi =G /C(Si)'

Step 3 (Loop or stop) Set i < i+ 1. If i >N, stop; otherwise

go to step 1.

14

To consider the complexity of the algorithm, we first study
the overall contribution from step 1. The next lemma shows that it is
bounded by O(lEFI). In the next section, we shall show that step 2 can
be implemented with the same bound. Thus, it is an 0(]EF]) algorithm.
Lemma 4.1 The overall complexity in the reachable set determination
step is O(ET|).

Proof Consider the i-th step in determining
ReachGi_ ({x;3,¢(S;_4)).
This can be done by inspecting

Adj, ({x;})
Gy 1

and Adj, (Y), for every Y ¢ C(Si—l) n Adjg]({Xi}) .
i- 1=

1

By theorem 3.5,

1 Adig () 1< E 1 Adig(xg) 1 = oY),
T 1- 1

On the other hand, by theorem 3.9 and lemma 3.10,

z(IAdIg (]] Y ec(s;q) nAdig (1)
i i-1 i-1

= 2 {IAdI(N)] | Y e X

=z {JReach(x:,S; ()1 | 1sisMN

= 0(IE"1).

Combining, we have shown that the complexity is O(lEFI).

15

4.2 Incomplete Quotient Graph Transfermation

In this section, we shall introduce the technique of incomplete
tranformation, which helps to reduce the amount of work in step 2 of
symbolic factorization as described in section 4.1. This basic idea is
similar to that exploited by Rose et.al. [8] and Sherman [9], although
here the technique is presented in the context of quotient graph trans-
formations. We first prove a Temma. Recall that

X =\ {C(Si) | T <1 < N}.

Lemma 4.2 Let Y e X. Then Y e Adjg, ({Xi}) if and only if
= i-

1
min {k | Xy € Ade(Y)} =1,

Proof "if part" Assume min {k | Xy € Ade(Y)} = 1.
By theorem 3.9, let
Y = {xj}'u Nbrhd (xj,sj_])
Since the minimum subscript of neighbours of Y is i, by theorem 3.8, we
have

Y ¢ C(Sj) n C(Sj_l_]) eee N C(S'i—'l)'

In other words, Y ¢ C(S;_;) so that Y e Adj; ({x;1).
'I-

1

"only if part" Assume Y ¢ Adjg ({Xi})‘
i-1

Clearly x; e Adjp(Y). If Y = {x;} v Nbrhd (xj,Sj_]), we have

Y ¢ C(Sj) N eve N C(Si_]). That means Adj(Y) n {Xj+]""’xi-1} = ¢, and

hence the result.
The idea of incomplete quotient graph transformation is based

on Lemma 4.2. In performing the transformation

16

G-l_'l = (C(S'l-])’ E.i_'l) - G.i = (C(S_i), E_i),
if Y= {xs} u Nbrhd (xi,51_1), the complete transformation requires the
setting up of
Adjs (Y) = {{x} | x e Ade(Y)}
i
and for x e Ade(Y),

Adjg (1x}) = (Adjg,]({x}) b {¥3) n B(S,).
1 i-
However, in view of lemma 4.2, we do not have to form all the Adjg ({x})
i

for every x ¢ Ade(X). Instead, the neighbours update needs only be

performed on the x ¢ Ade(Y) with the smallest subscript. Thus, we

have proved the following resutlt.
Lemma 4.3 The overall complexity in the incomplete quotient graph step
is 0(JET1). 0

4.3 Mass Symbolic Elimination

The results of lemmas 4.1 and 4.3 imply that the symbolic
factorization process can be implemented in time proportional to
O(]EFI). In this section, we discuss another enhancement so that the
time complexity becomes O(IRL]), where Ry is the representation used to
describe the structure of L, discussed in section 2.

The idea for the enhancement is motivated from an implementation
of the minimum degree algorithm by the authors [4]. We first quote some
results about reachable sets.

Let G = (X,E). Consider a subset S ¢ X, and a node y §S.

Lemma 4.4 [4] Let x ¢ X-S. If
Adj(x) < Closure(y,S),
then Reach(x,S) < Reach(y,S) u {y}. 0

17

Corollary 4.5 Let x be as in lemma 4.4. Then

Reach(x, S u {y}) < Reach(y,S).
Proof Consideranyu e Reach(x, Su{y}). Clearly u#y . If ucanbe reached
from x via S, it follows from lemma 4.4 that u e Reach(y,S). Otherwise,
the path from x to u via S u {y} has to go through the node y; again this
implies u ¢ Reach(y,S). 0
Lemma 4.6 If x ¢ Reach(y,S), then

Reach(x, S u {y}) > Reach(y,S) - {x}.
Proof Consider any u € Reach(y,S) - {x}. There exists a path
Us Sps wnv 5Se5 Y where {s], ... ,st} c S. However, x e Reach(y,S),
which implies there exists one from y to x through S,

Ys S7s +-- 255 X.

By joining the two paths, we see that u is reachable from x through
S u {y}. 0
Theorem 4.7 Let x ¢ X-S. If

X ¢ Reach(y,S)

and Adj(x) < Closure(y,S),
then Reach(x, S u {y}) = Reach(y,S) - {x}.
Proof It is a direct consequence of corollary 4.5 and lemma 4.6. a

The result in theorem 4.7 can be used to speed up the symbolic
factorization algorithm. After the reachable set

ReachGi_]({xi}, c(S;40)

has been determined at step 2, the two conditions in theorem 4.7 can be
tested for the node {x1+]} in G;_1- If they are satisfied, we have

immediately the reach set for {Xi+1}‘ This can be applied repeatedly to

{x.i+'l}’ {x_i+2}’ « o

18

until one that violates either of the two conditions is encountered.
Only then, the quotient graph transformation step is performed.
In this way, we need only to examine the adjacent sets

Adj (x.

1+]), Adj(x.+2), ... in order to find the reachable sets

i
Reach(xi+], Si)’ Reach(xi+2,Si+1), cen

Moreover, these reachable sets can be represented implicitly by that of
X; - Thus, a set

M = {X. 5 X. ..y X. }
N 2 r

of representatives is defined naturally by the algorithm, where each

X; represents the immediately succeeding nodes until the next represent-

k
ative x. .
k+1

Let IR 1=z | Reach(x;, S, 1) I. It follows then that the

1

complexity of the improved algorithm is O(IEAI + IRLI). In the next
section, we consider a practical example where the improvement is

significant.

§5 An Example - Nested Dissection on an nxn Grid

we consider the nested dissection ordering [3,

19

To demonstrate the effectiveness of the algorithm in section 4,

grid.
78 77 Eg 68 67
76 75 84 66 65
L 80 79) 83 (70 69)
74 73 82 64 63
72 71 E{U 62 61
(90 89 88 87 86)
54 53 Q;; 46 45
52 51 59 44 43
(56 55) 58 (48 47)
50 49 EEL 42 41
Figure 5.1

A nested dissection ordering of

100

99
98
97
96
95
94
93

92

\il

a 10x10 grid.

6 1 of the n by n regular

Figure 5.1 shows such an ordering on the 10x10 grid problem.

29 28 o 20
27 26 35 19
(31 30) 34 (20
25 24 33 18
23 22 32 17
(40 39 38 37)
10 9 " 3
8 7 15 2
(12) |14 D
6 5 13 1

20

It has been established that the nested dissection strategy
produces orderings that are optimal in the order of magnitude sense.
With such orderings, the amount of arithmetic required to factor the
matrix problem is O(n3) and the number of nonzeros in the factored

matrix is O(nzlog n) .

We now consider the symbolic factorization of the grid problem
with such orderings. On applying the improved algorithm in section 4,
we note that the nodes in the "dissectors" (nddes grouped by incircling
lines in figure 5.1) satisfy the conditions in theorem 4.7. Thus, as far
as the symbolic factorization is concerned, a dissector can be represented
by the lowest subscripted node in it, and such representation is in fact
set up by the enhanced algorithm.
With the so-defined representative set, let s(n) be the number
of nonzeros in the representative columns of the factored matrix for the
nxn grid. That is s(n) is the corresponding size IR 1. It is easy to
establish the following recursive equations:
s(n) < s{(n)
where §(n) s 12n + 45 (3).
On solving the equations, we have
s(n) < s(n) < 12n°.
Together with the observation in section 4.3, we have proved
that the symbolic factorization of an n by n grid problem ordered by
nested dissection can be done in time proportional to nz, even though

the number of nonzeros in the triangular factor is O(n2 log n).

21

86. Some Numerical Experiments and Concluding Remarks

In this section we present numerical experiments demonstrating
the performance of our algorithm. We also discuss its advantages and
disadvantages compared to a very good "conventional" implementation
supplied in the Yale Sparse Matrix Package [2], which was kindly provided
to us by Professor Stanley Eisenstat. In what follows, we refer to the
Yale routine as SSF, and to ours as SFQG.

In order to demonstrate experimentally the results of section.
4, we applied SFQG to a sequence of "graded L" problems taken from [6].
This is a set of similar problems of increasing size, typical of those
arising in finite element applications. The ordering used was produced
by the implementation of the minimum degree algorithm described in [4].
Execution times reported are in seconds on an IBM 360/75 computer. The
program was written in Fortran, and the optimizing version of the H-level
compiler was used. The results of the experiment are summarized in
Table 6.1. As the theory developed in section 4 predicts, the execution
time for SFQG appears to be proportional to IRLI.

How does SFQG compare with a good conventional implementation of
symbolic factorization, such as the subroutine SSF from [2]? To a sub-
stantial degree, their relative merits depend upon the computing
environment.

We have already observed that the major advantage of our sub-
routine is that it "fails gracefully". Since it does not use its output
during execution, if insufficient storage is available, the output can be
discarded butthe program can still execute, producing the number IRLI.
Alternatively, the output RL could be printed on an auxiliary file as it

is generated, and the subroutine then only needs storage for GA.

N Time]RLJ Time/]RLl

265 .16 1353 1.19
406 .24 2252 1.08
577 .33 3293 1.05
778 .48 4604 1.04
1009 .58 5842 .99
1270 .80 7856 1.02
1560 .95 9424 1.00
1882 | 1.19 | 11707 1.01

(x10—4)

Table 6.1 Execution time and IRLl for SFQG,
along with their ratio, for the
sequence of graded-L problems
from [4].

22

23

To be fair, we must point out that in some contexts this
storage argument is not relevant. Some ordering algorithms can be quite
easily modified so as to provide either IRLl or a good upper bound,
so that we can be assured when we use either SSF or SFQG with such order-
ings that they will not fail. However, it is not clear that all ordering
algorithms can efficiently provide a good upper bound for]RLI; for
example, we do not know how to appropriately modify the automatic nested
dissection algorithm in [6] so that an inexpensive estimate for]RLI is
provided.

In terms of execution times our implementation is somewhat
slower than SSF for small problems. The distributed version of SSF,
applied to the graded-L problems of Table 6.1, produced the times shown
in Table 5.2, along with which we have included the SFQG times from
Table 5.1. After discussing our work with Professor Eisenstat, he showed
us how to modify SSF so that it too employed our "mass elimination"
technique, described in section 4.3. The column in Table 5.2 labelled
SSF* contains the execution times of this modified subroutine.

The execution time of SSF is apparently growing faster than
]RL], so for Targe enough problems, the SFQG subroutine would be faster
than SSF. However, the improved version SSF* appears to execute in time
proportional to IRL], and continues to enjoy a substantial execution
time advantage over SFQG, even for the larger problems. We should
note that heither SSF nor SSF*, as implemented, can be proved to run
in 0(|RL|) time. Modifications to these subroutines which allow the
complexity bounds to be established considerably increase their

execution times.

24

SFQG SSF SSF*

TINE TINE TINE

N (| TIME TR TIME [IR | TIME [IR, |
265 || .16 | 1.19 01| .07 08 | .06
06 || .24 | 1.08 A7 .75 4| .62
577 || .33 | 1.05 26| .78 20 | .60
778 || .48 | 1.04 37| .80 27| .59
1009 || .58 | .99 47 | .80 35| .60
1270 || .80 | 1.02 64 | .81 46 | .59
1561 || .95 | 1.00 82 | .87 57 | .60
1882 || 1.19 | 1.01 1.04 | .88 68 | .58
(x10™%) (x10™4 (x1074)

Table 5.2 Comparison of execution times of SFQG, SSF

and a modified version of SSF.

25

Thus, to summarize, our implementation of symbolic factorization,
based on quotient graphs has some advantages in terms of storage and being
able to "fail gracefully". In particular, since its execution is indepen-
dent of its output, it is very attractive when storage is scarce, and
auxiliary storage devices must be used. In exchange, it appears to
execute more slowly than the best conventional implementation of which
we are aware.

It is important for the reader to understand the sense in which
our implementation is "optimal". We have shown only that it is optimal
in the sense that it executes in time proportional to the size of its

output, but we have not shown that its output is optimal. For purposes

of data structure construction, it is desirable to produce an RL having
as few members as possible because this will tend to reduce the
"overhead" storage requirements of the data structure for L. It is not
difficult to construct examples where the]RLI produced by our algorithm
is Targer than necessary. (In particular, note that SFQG only generates
monotone representative maps M.) Investigation into the development of
an algorithm which is optimal in both of the above senses is an interest-

ing area of future research.

§7.
[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

26

References

C. Berge, The Theory of Graphs and its Applications, John Wiley
and Sons, New York, 1962.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz, and A.H. Sherman, "Yale
Sparse Matrix Package I - The Symmetric Codes", Research
Report #112, Dept. of Computer Science, Yale University, 1977.

Alan George, "Numerical experiments using dissection methods to
solve n by n grid problems", SIAM J. Numer. Anal., 14 (1977),

pp. 161-180.

Alan George and Joseph W.H. Liu, "A minimal storage implementation of
the minimum degree algorithm", SIAM J. Numer. Anal., to appear.

Alan George and Joseph W.H. Liu, "A quotient graph model for
symmetric factorization", Research Report CS-78-04, Dept. of
Computer Science, University of Waterloo, Waterloo, Ontario,

February 1978.

Alan George and Joseph W.H. Liu, "An automatic nested dissection
algorithm for irregular finite element Problems", SIAM J. Numer.
Anal., 15 (1978), pp. 1053-1069.

S.V. Parter, "The use of linear graphs in Gauss elimination", SIAM
Rev. 3 (1961), pp. 364-369.

D.J. Rose, R.E. Tarjan, and G.S. Lueker, "Algorithmic aspects of
vertex elimination on graphs", SIAM J. Comput. 5 (1975),
pp. 266-283.

A.H. Sherman, "On the efficient solution of sparse systems of Tinear
and nonlinear equations", Research Rept. #46, Dept. of Computer
Science, Yale University, 1975 (Doctoral Thesis).

	

