


AN ALTRAN IMPLEMENTATION OF
THE FRACTION-FREE PADE ALGORITHM

K.0. Geddes

Department of Computer Science
University of Waterloo

RESEARCH REPORT CS-78-10
February 1978

Faculty

of

Mathematics

University of Waterloo
Waterloo, Ontario, Canada




AN ALTRAN IMPLEMENTATION OF
THE FRACTION-FREE PADE ALGORITHM

K.0. Geddes

Department of Computer Science
University of Waterloo

RESEARCH REPORT CS-78-10
February 1978

This research was supported by the National
Research Council of Canada under Grant A8967.



ABSTRACT

The Fraction-Free Padé algorithm for the symbolic computation of
Padé approximants is described in a pseudo-Algol algorithmic notation and
also as a set of ALTRAN procedures. The results of applying the ALTRAN
implementation to some sample problems are presented. The algorithm is
based on a new one-step/two-step fraction-free symmetric triangularization

algorithm and it exploits the block structure of the Padé table in case

of singularity.

~



TABLE OF CONTENTS

Abstract

1. INTRODUCTION

2. FORMAL DESCRIPTION OF THE ALGORITHM

3. SAMPLE PROBLEMS

4. SOURCE LISTING OF ALTRAN PROCEDURES

References

ii

17

42

63



1. INTRODUCTION.

The Padé method for deriving rational approximations to a power
series is a classical tool of analysis. The analytical properties of Padé
approximants have been expounded by several authors, including Wall [12]
and Gragg [9]. Perhaps the most extensive application of the method has

been in theoretical physics (see [1]).

The traditional framework for the method assumes that the power
series coefficients 1ie in the field of complex numbers and that the power
series represents a function in the complex plane. Although Padé approxi-
mants can be computed via solving a linear system of equations, algorithms
for efficient floating-point computation are usually based on recurrence
relations which reduce the computational complexity from 0(n3) to O(nz).
(See [13] for an extensive comparison of floating-point algorithms.)
Typica11y, one computes a sequence of Padé approximants rather than a single
approximant. The floating-point algorithms assume a restrictive normality
condition which guarantees that the linear system corresponding to each ap-
proximantis nonsingular; for example, it is assumed that every coefficient

in the series is nonzero.

In this paper, thg Padé method is viewed as an algebraic manipula-
tion algorithm which may be applied to a power series over an arbitrary in-
tegral qomain. In particular, it may be applied to a power series whose co-
efficients contain indeterminates (i.e. the coefficients are multivariate
polynomials) such as arises naturally from an initial-value problem with in-
determinate initial conditions. The normality condition is not assumed be-
cause singular systems can be identified in exact computation and the block
structure of the Padé table can be exploited to determine the corresponding

approximant. The algorithm may be interpreted as a method for summing an



arbitrary power series which has a rational representation, or as a method
for deriving rational approximations for a power series in contexts where

the concept of "approximatior' is valid.

1.1. Power Series over an Integral Domain D.

Following Birkhoff and Bartee [3], let D[[z]] denote the set of all
power series in the symbol z with coefficients lying in the integral domain
D, célled the coefgicient domain. The set D[[z]] itself comprises an integral
domain, called a power series domain. The subset D[z] of all polynomials
(finite power series) in z over D is also an integral domain. The quotient
field of D[z] will be denoted by D(z) and it consists of all rational forms
(rational functions) in z over D; i.e. D(z) contains quotients of the form
p(z)/q{z) where p(z), q(z) e D[z] with q(z) # 0 (the zero polynomial). The

standard equivalence relation is assumed in the quotient field D(z):

Pr(2)/ay(2) = py(2)/ay(z) if py(2) ay(2)= q{(2) py(z) .

The conditions under which a power series C(z) e D[[z]] can be
represented by a rational function p(z)/q(z) « D(z) are 4iscussad in [8].
The classical Padé theory requires that D[[z]] be embedded in the larger
domain FD[[z]], where FD denotes the quotient field of the coefficient do-
main D. The linear system defining a Padé approximant for C(z) can then be
solved over the field FD’ leading to a rational function lying in the new
quotient field FD(z). However, the fields D(z) and FD(z) are isomorphic
since a raticnal function can always be normalized to eliminate fractions
in the coefficients. Computationally, it is advantageous to pass directly
from C(z) « D[[z]] to a Padé approximant p(z)/q(z) e D(z) without ever form-

ing any fractions in FD'



1.2. Avoiding the Quotient Field FD.

If a rational function p(z)/q(z) is to represent a power series in
FD[[z]] then q(z) must be invertible as a power series in FD[[z]J. This will
be true if and only if the first coefficient ("constant term") of q(z) is
nonzero (see [3], Chapter 13). It is therefore traditional to represent a

Padé approximant in the normalized form
Vot VaZ + oL+ oy 2T

(-l) P(Zg - 0 1 m ¢ FD(Z)

qlz 1 - u]z - . - unzn

(the negative signs are convenient in the sequel). The power series expansion

of a rational function in the form (1) is

=]

p(z)/q(z) = ] ¢ 2K
k=0
where
k A :
(2) ¢ =v, +.Z U; € ss 05 ks my
i=1
n
(3) ¢, = g U; € ss ko> mg

with the convention that us = 0 for i > n and cj =0 for j < 0.

Conversely, given a power series

.7 k
c(z) —kZO ¢, 2 e Fyllz]],

the denominator fractions ui(l < i < n) of the (m,n) Padé approximant for
C(z) are normally determined by satisfying the first n equations of (3)
gﬁhe prober hand]iﬁgrof Singuiarify fs ﬂiéqcssed ié tg] }, and tﬁe

numerator fractions are then determined by solving (2) for v, (0 < k < m).

k



The Tinear system of order n which defines the denominator fractions is

called a Hankel system (see [6]) and is of the form

(4) Hm,n 4= Em,n

where u = [un, cee u]]T and where the augmented Hankel matiix is

Cm-n+1 Cn-n+2 te m Cm+1
[Hm,nlgm,n] T %m-n+2  Cp-n+3 m+1 “m+2

m S+l Cmtn-1 “m+n

I —

If all of the coefficients Cy lie in the integral domain D
(i.e. C(z) ¢ D[[z]]) then, rather than derive the (m,n) Padé approximant in
the form (1), we choose to derive it in the re-normalized form

(5) (Z ao + a12'. + ...+ amz
ETE%.= by + bz + + b z" < 0()
0 ] o ¢ & n

where: by = |H

bi = -b0 us (1 =1<n);

1]

a, b0 Vi (0 <k sm).

Evidently, bO € D by the definition of a determinant, and bi eD (1 <1i<n)
by Cramer's rule. To see that 3 € D, multiply through in equation (2) by
b0 and find:
k
(6) a =i§O bi Ci_; (0<ks<m),

which is simply a Tinear combination of elements in D. It is therefore possible



-5 -

to compute the Padé approximant (5) for C(z) ¢ D[[z]] with the computation
entirely in the integral domain D. In practice, we do not solve the linear
system (4) by the "division-ffee” Cramer's rule but rather we use a "fraction-
free" symmetric elimination algorithm which requires some exact divisions.

The 1attef algorithm produces the same results as Cramer's rule; namely,

in the above notation, bO u, (1 < i< n) and the determinant bO' Equation

(6) is then used to compute a, (0 < k sm).

.3. Fraction-Free Symmetric Triangularization

A new algorithm is presented in [8] for solving the Hankel system (4)
over an integral domain D yielding, via (6), the (m,n) Padé approximant
(5). The new algorithm exploits two special properties of the Hankel

system (4). Firstly, the matrix Hm is symmetric (but indefinite).

n

Secondly, the augmented matrix [Hm n | 1 preserves this "symmetry"

Sm,n
and has the interesting property that the (n-r) x (n-r+1) leading
principal submatrix is precisely the Hankel system for the (m-r, n-r)

‘Pade approximant (g < r<min mon 1) g o algorithm combines the

concept of "block diagonal pivoting" used in numerical algorithms for
symmetric indefinite triangularization with the concept of “two-step
fraction-free elimination" used in symbolic computation. With the new
algorithm, a diagonal sequence of Padé approximants can be computed
efficiently using only one triangularization (and several back substitutions).

In section 2, the fraction-free Padé algorithm is presented in a
bséﬁdé;ATgﬁfréigg;itﬂﬁ notation. Section 3 describes some sample problems
Which were solved uéing the ALTRAN implementation of the algorithm.

Section 4 contains the source listing of the ALTRAN procedures implementing

the fraction-free Padé algorithm.



-6 -

2. FORMAL DESCRIPTION OF THE ALGORITHM

In this section we give a formal description of the fraction-
free Padé algorithm. Subsection 2.1 contains some general remarks about
the algorithm and its implementation. The basic Padé procedure is
presented in subsection 2.2 and the procedures implementing the one-
step/two-step fraction-free method (see [8] ) for solving symmetric
systems of the linear equations are presented in subsection 2.3. Some
sample problems and timing statistics are presented in section 3.

Section 4 contains the source code 1isting of an implementa-

tion of the fraction-free Padé algorithm in ALTRAN. Section 3 illustrates the

application of the algorithm to power series generated by differential
equations with indeterminate initial conditions. 1In the latter application,
the relevant power series domain is Q[x][[z]], where the coefficient domain
is the multivariate polynomial domain Qfx] over the field Q of rational
numbers with indeterminates x = (x],.;.,xk). For example, the initial-
value problem

7) ¥'(2) = y() 1%, y(o0) = B,
generates the power series

y(z) =B + Bzz + 8322 + B4z3 + ...

which lies in the power series domain Q[BI[[z]]. In fact, this power series
lies in the domain Z[B][[z]] where Z denotes the integral domain of integers,
and it is significant that all computations in the fraction-free Padé

algorithm would remain entirely within Z[B] rather than the larger domain

Q[B] since Z[B] is also an integral domain.



| > 1 The Fraction-Free Padé Algorithm

Given m,n and the coefficients CyrevesC of the power series

m+n

C(z) = = ¢
k=0

the Padé algorithm computes the sequence of Padé approximants:

Rm-r,n-r(Z)f r=2,21,...,0,

K
Kz

where if Cs is the first nonzero coefficient then £ = min {m-o,n}. By the Padé
theary (see [8] ), Rm_z’n_z(z) is well-defined by the Hankel system (or
else it is a Taylor polynomial in case n-2=0). For each succeeding
approximant, either the Hankel system is nonsingular or the approximant is
the same as its predecessor in the sequence. For example, if the power
series is the one generated by problem (7)7_and if m=n=10 then the
sequence of approximants is
Ry, 002} Ry q(z)seeiiRyg qo(2)
~ where

i

RO,O('Z) B
Ry 1 (2)

Rk,k(z) = R]’](z) for 2 < k < 10.

B/ (1-Bz);

Note that the exact solution of (7)) is

y(z) = B/(1-Bz)
and this exact solution is obtained.

The procedures in subsections 2.2 and 2.3 are presented in a
pseudo-Algol algorithmic notation which can be readily translated into any
of the languages for symbolic computation. It should be noted that all
divisions appearing in these procedures are exact divisions in the integral

domain of power series coefficients, except of course for the final



formation of the Padé approximant as a rational function (step 4.4 of
procedure PADE). In a particular application, it may or may not be
desirable to have each rational approximant reduced to lowest terms (by
appropriate GCD computations). As an example, the solution for problem
(7) 1is obtained in the form

’ R 1 (2) = 8%/ (8%-8%) |
(the constant term in the denominator is always the determinant of the
corresponding Hankel matrix) and this rational function will be reduced
only if a GCD computation is performed.! In some applications, the extra
cost of such GCD computations may not be warranted.

There is no mention here of algorithms for generating Taylor
series coefficients. In the sample problems presented in this paper,
the Taylor series have been generated from initial-value problems by the
(expensive) method of repeated differentiation (see [7]). Efficient
methods for generating power series expansions are discussed by Norman [11]
and by Zippel [14].

As a final remark on implementation of the procedures, note that
the procedures in subsection2 .3 for solving symmetric linear systems
operate only on the upper triaqu]ar portion of the augmented matrix.

The ALTRAN implementation. ~ uses a one-dimensional array to store the
upper triangular augmented matrix, row by row, and employs appropriate

indexing operations.

1
In ALTRAN, the denominator of R] ](z) is represented in the factored form
-82(82-1) so that in this example the reduction does take place even if the

"non-canonical" option is specified. But the point holds in general.



494

2.2 Procedure PADE

procedure PADE (c,m,n)

Purpose: To compute the sequence of Padé approximants

Rm—r,n—r(z)’ r=2,21,...,0.
for the power series with coefficients given by array c, where if Cy

is the first nanzero coefficient then
£ = min {m-o,n}.

Input Parameters: ) .
¢ - array of power series coefficients Coe*3Cmens

m,n - degrees of numerator and denominator, respectively, of the
highest-degree Padé approximant desired.

Qutput:
The sequence of Padé approximants (see above) has been defined.

1. [Define upper triangular portion of n-by-(n+1) augmented Hankel matrix]

hij « cm-n+i+j-1 (1 <

< n, i <j <n+l) where ¢, =0 fork <0
2. [Triangularize the augmented Hankel matrix]
SYMTRI (h, n, det, perm, block) |
3. [Define 2]
o« index of first nonzero coef%icient in ¢

% < min{m-o, n}



_]0 -

4. [Compute the sequence of Padé approximants]
for r = £ step - 1 until 0 do
if n-r = 0 then [approximant is a Taylor polynomial]
.  m-
else if det(n-r) = 0 then [new approximant is preceeding approximant]

Rm_r,n_r(z) © Rm—r-],n-r-l(z)

else
4.1. [Invoke back-substitution procedure]
SYMSOL (h, n-r, perm, block, det(n-r), xnum)
4.2. [Define numerator polynomial]

for k = 0 step 1 until m-r do

min{k,n-r}
3« det(n-r‘_)*ck - izl xnum(n-r-i+])*ck_i

doend
m=-r k
p(z) « ] a z
k=0

4.3. [Define denominator polynomiall

) n-r k
q(z) « det(n-r) - § xnum{n-r-k+1) z

4.4, [Define new approximant]

Roer,n-r(2) < p(2) / a(z)

doend

end of procedure PADE.



=11 -

2.3 Procedures SYMTRI, SYMINT, and SYMSOL

Remark: The three procedures of this subsection constitute a fraction-free
package for the symbolic solution of symmetric indefinite systems of
1inear equations. The elimination algorithm used is the one-step/two-step

algorithm described in [8].

procedure SYMTRI (a, n, det, perm, block)
Purpose: To perform symmetric triangularization in the upper triangular
portion of the n-by-(n+1) augmented matrix a. The method used is one-

step/two-step fraction-free Gaussian elimination.

Input Parameters:
a - upper triangular portion of the n-by-(n+1) augmented matrix to be
triangularized;

n - the order of the matrix to be triangularized.

Output Parameters:

a - the triangularized augmented matrix (note that symmetric 2-by-2
blocks may appear on the diagonal as indicated by Boolean vector
block);

det - vector of length n whose i-th entry is the determinant of the
i-by-i leading principal submatrix of the input matrix (thus det(n)
is the daterminant of the input matrix);

perm - permutation vector of length n specifying the order of the un-

knowns in the triangularized linear system;



block - Boolean vector of length n such that if block(i) is true then
the i-th diagonal element belongs to a symmetric 2-by-2 block

(note that the upper left element of a 2-by-2 block will al-

ways be zero).

1. [Initialization]

det(i) <1 (1 =i <n) [could use any nonzero value]
perm(i) <« i (1 =14 <n)
block(i) « false (1 < i < n)

2. [Elimination Loop]
divisor <« 1

k<0

while k < n-2 do
. 2
determinant « a1 viy 3ip ke2 7 31, k42
ii déeterminant = 0 & ak+],k+] # 0
then [One-step elimination]
k < k+1

a5 (2, 315 " g akj)/divisor (k1 <i<n, isjs n+1)

divisor « 2y 1
if det(k) # O then det(k) « ayy
else [Two-step elimination]

k « k+2



- 13 -

2.1. [Ensure nonsingular 2-by-2 pivot]

2.2, [Update rows below row k]

2.3. [Update row k if possible]

divisor « determinant

if det(k-1) # 0 then det(k-1) « a, |
if det(k) # O then det(k) <« determinant

doend

3. [If final value of k is n-1, det{n) was not assigned]
if k = n-1 then det(n) + a

end of procedure SYMTRI
where steps 2.1, 2.2, 2.3 are refined as follows:

2.1. [Ensure nonsingular 2-by-2 pivot]
if determinant = 0 then [Note that Q1 ,k-1 = -1,k = 0]
det(k-1) « det(k) « 0
if-ak-],j =0 for all k+1 < j <n
then [A11 remaining subsystems singular]
det(j) « 0 (k+1 s j < n)
return [Exit from procedure]
else [Interchange and compute new determinant]
i « the smallest j (k+1 < j s n) such that 1. #0
SYMINT(a, n, k, i)
perm(k) < perm(i) [Interchange in vector perm]
det(j) « 0 (k+1 < j < i-1)

, 2
determinant « - ak~] K



- 14 -

2.2. [Update rows below row k]
determinant + determinant/divisor

for i = k+1 step 1 until n do

mip < (8,5 3k " ki 31,60/ dTvisor

Mip < (3 3y ko1~ k=1,i -1,k)/divIsor
a5 * (determinant * 355 7 My 31,5 " M2 akj)/d1visor (i < j < n+l)
doend

2.3. [Update row k if possible]
ifag g k1?0
then [One-step update for row k]

LI < determinant

45 < By ka1 %G T -1,k k-1,
else [Signal 2-by-2 block on diagonall

j)/divisor (k+1 < j < n+1)
block (k-1) + block(k) « true .

procedure SYMINT(a, n, k, 1)
Purpose: To perform a symmetric interchange of rows and columns k and i
in the upper triangular portion of the n-by-(n+1) augmented matrix a,
where k < 1,

a5 <> a.. (1 <3 sk-1)

ji
Ak > %4

By <> a5 (k+1 < § < i-1)
3 < 353 (i+1 £ § < n+1)

end of procedure SYMINT,



- 15 -

procedure SYMSOL(a, n, perm, block, determinant, xnum)
Purpose: To solve the n-by-(n+1) linear system which has been triangular-

ized by procedure SYMTRI, using fraction-free back-substitution.

Input Parameters:
a - the n-by-(n+1) augmented matrix as triangularized by procedure
SYMTRI;
n - the order of the linear system;
perm - permutation vector from procedure SYMTRI;
block - Boolean vector from procedure SYMTRI;

determinant - the value of the determinant of the n-by-n coefficient matrix.

Output Parameters:
xnum - vector of length n containing the "numerators" of the solution
vector -- the complete solution is obtained by dividing each element

of xnum by determinant.

1. [Solve bottom equation or bottom two equations, as required]
if block(n)
then [Solve 2-by-2 block on bottom diagonal]

a__ * xnum(perm(n)) )/a

xnum(perm(n-1)) « ( determinant * 2y n+1 ~ 2n

n-1,n
k+n-2

else [Solve bottom equation]

xnum(pem(n)) « 30 0+l

k « n-1



- 16 -

2. [Back-substitution loop]
while k > 0 do
if block(k)

then [Diagonal contains 2-by-2 block]

n
xnum(perm(k)) « ( determinant * 1.0+l " ._Z 31,3 * xnum(perm(j)))
gk . 731,k
n
xnum(perm(k-1)) « ( determinant * a - ¥ a . * xnum(perm(j)) )
k,ntl L& “kJ
J—k /ak"] ’k
k « k-2
else [Normal back-substitution]
n
xnum(perm(k)) <« (determinant * a - Y a,; *xnum(perm(j)) )
k,n+1 . kj
J=k+1 /akk

k « k-1
doend

end of procedure SYMSOL.



-17 -

3. SAMPLE PROBLEMS

In this section, the output from the ALTRAN program which imple-
ments the algorithm of section 2 is presented for the following sample
problems. For each problem, the power series has been derived from an
ordinary differential equation of initial-value type but the method of

deriving the power series is not part of the implementation described in

this report.

Problem 1: (Problem with rational solution)
v =yt ) = up
Series Solution: y (x) = My * u]2 X + u13 x2 + u]4 x3 + ...
Exact Solution: y (x) = My / (1 - HyX )

Problem 2: (Exponential function with parameters)

y' o= ugys y(0) =

Series Solution: y(x) = Ho + HolgX + u2u$/25 x2 + uzu?/S! X
U]X
Exact Solution: y(x) = u, @
Problem 3: (Tangent function)
. 2 =
y' =1 +y% y(0) =0.
5 7

Series Solutjon: y(x) = x + 1/3 x3 + 2/15 x

Exact Solution: y(x) = tan (x)

3

+ 17/315 x" + ...



- 18 -

Problem 4: (Ordinary Thomas-Fermi function)

y‘lll =8y3/2+6xy]/2y';

1}

y(0) =15 y'(0) =0; y''(0) =2 uy

3 5

Series Solution: y(x) = 1 + u]xz +4/3 X% + 2/5

+ 173 x8 + 3/70 u$x7 + 2/15 u]xg

(-1/252 uf + 2/27

+

) X2 + 1/175 ufx‘o

4

¥+ 3171485 u)) L

+

(171056 u

f + 4/405) x'2

+

(4/1575 u

(-3/9152 uf + 557/100100 uf) X

4
1t 4/693 My

13

+

) X14

+

(-29/24255 u

Remark: This problem is discussed in [7].



- 19 -

3.1. Remarks on the OQutput

The first part of the output 1ists the specified values of M and N,
the maximum degree of numerator and denominator, respectively. Then follows
a listing of the specified power series coefficients. The timing statistics
presented next include the time for triangularization of the N-by-N Hankel
system and the time to solve the order-N system by back-substitution.

(Note that, in general, there will be back-substitutions performed in all N
subsystems and only the timing for the Targest subsystem is presented here.

Also note that if the order-N system is singular then no order-N

back-substitution is performed.)

The total time required to compute the Pade approximants is listed
next. This is the total time for execution of procedure PADE to compute
the full sequence of approximants

RM-r,N-r(X)’ r=2, 21,...,0,

where if Cq is the first nonzero power series coefficient then

g = min {M-o, N} .
The latter timing statistic thus includes the cost of one triangularization,
all back-substitutions, and the formation of the numerators and denominators
of the approximants (in particular, this timing statistic includes the
previous two).

The Pade approximants are then listed in rational function form.
The index I appearing in the output is related to the indices used above by

I=2-r.
Thus I ranges from 0 to % and if M=N and <, # 0 then the approximant
corresponding to the index I in the output is the (I,I) Pade approximant.
Finally, the total elapsed time is listed. The difference between the

total elapsed time and the time spent in procedure PADE is mainly due to



- 20 -

the formation of the approximants in rational function form (i.e., dividing
the numerator polynomial by the denominator polynomial for each approxi-
mant). In the sample problems here, these approximants were formed with
the "non-canonical" option specified so that no GCD computations were per-
formed and the cost was thus minimized. If the standard "canonical" option
was in effect, the difference in time could be very significant. It should
be noted that the Padé theory guarantees that the numerator and denominator
of each approximant, as formed here, are relatively prime in the independ-
ent variable (i.e. the variable X of the output) so that the only possible
common factors would be polynomials in the parameters of the problem

(i.e. the variables MU(1), MU(2), etc. of the output).

3.2. Further Options in the ALTRAN Program

There are two parameters to procedure PADE which are not basic to
the algorithm but provide options in the use of the algorithm. These are
the LOGICAL parameters FRCTNS and SEQUEN (read “fractions" and "sequence").
In the sample problems and timing statistics presented here, the values of
these two parameters were both .TRUE. .

The parameter FRCTNS specifies if fractions are to be carried
during the computation. This refers to the rational coefficients of the
polynomials in the indeterminates of the problem (or to the rational power
series coefficients if no indeterminates are present). For example, if
the (2,2) Padé approximant for Problem 2 is to be computed, the truncated

powerseries passed into procedure PADE would be

C(x) = Hp *HoHyX + uzuf/Z X% + uzu?/6 3 + uzu?/24 x*

(i.e. the array of power series coefficients is passed to procedure PADE).



- 21 -

The power series coefficients are bivariate polynomials with rational
coefficients. The computation can be made to work entirely in the integral
domain of bivariate polynomials with integer coefficients (and thus avoid
the GCD computations required when working with rational numbers) by noting

that

]

C(x) = D(x)/24

where

D(x) = 24 Wy * 24 WolpX + 12 ”2“]2 x2 + 4 uzu? x3 + MZH? X4.

The Padé approximants for D(x) can be computed and then the constant factor
24 can be replaced at the end of the computation.

The algorithm will carry fractions (i.e. work directly with C{(x)
in the example above} if FRCTNS is .TRUE. and it will convert to integer
coefficients (i.e. work with D(x) in the example above) if FRCTNS is .FALSE. .
This option was put into the program in the belief that avoiding fractions
might decrease the cost of the computation. This option has not been
thoroughly tested and all of the sample problems presented here were run with
FRCTNS set to .TRUE. . Preliminary tests with this option have shown that
the increased size of the integers carried when FRCTNS is .FALSE. may offset
the savings to be gained by avoiding GCD computations on rational numbers.

The second LOGICAL parameter providing an option in procedure PADE

is the parameter SEQUEN. The algorithm described in section 2 computes a

diagonal sequence of Padé approximants
RM-Z,N-l(X)""’RM,N(X)'

In the ALTRAN implementation of section 4, this sequence will be computed if
SEQUEN is set to .TRUE. . However, if it is desired to compute only the

approximant RM N(x) then the parameter SEQUEN may be set to .FALSE. .



- 22 -

In the sample problems presented here, the value of SEQUEN was always
.TRUE. . Table 2 in the following subsection indicates that, at least for
Problem 4, the cost of computing the single approximant RM N(x) is about

equal to the cost of computing the entire sequence up to and including
Ru-1,N-1 ()

3.3. Summary of Timing Statistics

Table 1 presents the timing statistics for the four problems of this-
section. The problems were run on a Honeywell 66/60 and all times are in
seconds. The memory requirements for these problems was minimal except for
Problem 4 (see Table 2). The meaningsof the headings in Table 1 are as
follows.

(M,N) - the highest-degree Padé approximant in the sequence

computed;
SYMTRI (order N) - time to triangularize the order-N Hankel matrix;
SYMSOL (order N) - time to do the order-N back-substitution (note
that a back-substitution is done for each non-
singular subsystem and this column is timing .
only the largest subsystem);

PADE (full sequence) - total time spent in procedure PADE (includes
one triangularization, all back-substitutions,
and formation of the numerator and denom-
inator polynomials);

TOTAL (PADE plus output) - this time includes the time specified

in the preceeding column plus the time
to form the approximants as rational

functions (in non-canonical mode - see



- 23 -

subsection 3.1) and the time to print

them out.

Table 1: Execution Times for Problems 1-4.
(Times are in seconds; System: ALTRAN on Honeywell 66/60)

Problem SYMTRI SYMSOL PADE TOTAL
Number  (M,N) (order N) (order N) (full sequence) (PADE plus output)

1 (10,10) 5.2 - 9.5 17.9
2 (5,5) 4.1 1.7 17.5 20.8
3 (7,7) 3.6 1.1 17.5 21.4
4

(7,7) 15.6 9.9 64.4 70.3

Table 2 illustrates the effect of increasing the maximum degree of
approximant to be computed. In this table, only Problem 4 (the "hardest"
problem)is considered. A1l of the headings are as described for Table 1
with the addition of the final heading:

MEMORY (Workspace) - the number of words of memory required in the

workspace (note that the total memory require-
ments are 45K words plus the workspace, with a

minimum of 4K words required in the workspace).



- 24 -

Table 2: Execution Times for Problem 4 -
The Effect of Increasing Degree.

(Times are in seconds; System: ALTRAN on Honeywell 66/60)

SYMTRI SYMSOL PADE MEMORY*

(M,N) (order N) (order N) (full sequence) (Workspace)
(3,3) .6 4 3.8 4K words
| (4,4) 1.5 1.1 7.9 4K words
(5,5) 3.6 2.1 16.2 4K words
; (6,6) 7.5 5.0 32.0 6K words
| (7,7) 15.6 9.9 64.4 8K words

*Total Memory Requirements = 45K words + Workspace

(Min. 4K words in Workspace)




- 25 -

Qutput for Problem 1:

# M
10

# N
10

# THE POWER SERIES COEFFICIENTS ARE

#C
¢ MUty ,
MU(1)%%2
MU(1)¥*%3
MU (1) %%y
MU(1)*%%5
MU(1)*%6
MU(1)*%7
MU(1)%%8
MU(T)%%9 |
MU(1)*%10
MU(1)%*%11
MU(1)%%12 |
MU(1)*%13 |
MU(1)¥%1y4 |
MU(1)%**¥15 |
MUC1)*%16
MU(T)*%17 |
MU(1)%*%18 |
MU(1)%%19 |
MU(1)*%20 |

MUCT)**21 )



#
#

#
#

#
#

#

#

#

#

#

#

i

TIME (SEC.) FOR TRIANGULARIZATION WAS

TNEW

5.209312

TIME (SEC.) TO COMPUTE PADE APPROXIMANTS WAS

TNEW
9.530109

THE PADE APPROXIMANTS ARE

I

RI
MU(T)

RI

- MU(1)

RI

- MU(1)

/ (

/ (

/7 (

/A«

X*MU(1)

X*MU(1)

X*EMU(1)

X*EMU(1)

_Zb-



#

#

#

#

#

#

#

#

#

#

10

RI

X*¥MU(1)

X*MU(1)

X*¥MU(1)

X*MU(1)

X*¥MU(1)

- MUC1) / ( X*MU(1)

1

)

- 27 -

TOTAL ELAPSED TIME (SEC.) WAS

TNEW

1.790972E1



- 28 -

Outputbfor Problem 2:

# M

# N
5
# THE POWER SERIES COEFFICIENTS ARE
#C |
( MU(2) ,
MUCT)*MUC2)
MUCT)**2%MU(2) / 2 ,
MU(1)%%3%MU(2) / 6
MU(1)*¥U%MU(2) / 24
MU(1)*%5%MU(2) / 120 ,
MU(1)**6%MU(2) / 720 ,
MU(1)*%7%MU(2) / 5040
MU(1)*%8%MU(2) / 40320 ,
MU(1)**9*MU(2) / 362880 ,
MU(1)**#10%MU(2) / 3628800 )
# TIME (SEC.) FOR TRIANGULARIZATION WAS
# TNEW
4.090094
# TIME (SEC.) TO SOLVE ORDER-N SYSTEM WAS
# TNEW
1.720328
# TIME (SEC.) TO COMPUTE PADE APPROXIMANTS WAS
" # TNEW

1.753778E1



#

#

#

#

#

#

#

it

#

#

#

THE PADE APPROXIMANTS ARE
I

0
RI

MU(2)

1
RI
- MU(2) * ( X*MU(C1) + 2 ) /7 ( X*¥MU(1) - 2 )
I
2
RI
MU(2) * ( X*¥2EMU(1)%%2 4+ 6¥X*MU(1) + 12 ) /
( X**2EMU(1)%¥%2 - G*X*MU(1) + 12 )
I
3
RI
= MU(2) *® ( X*¥3I¥MU(T)%%¥3 4 12%X*#2%¥MU(T1)%%2 4 SO*XEMU(T) + 120 ) /.
( X*RIEMU(T)%%3 o 12¥(*R2%MU(1)*%2 4 SO*X*MU(T) - 120 )
I
u
RI
MUG2) *® ( XRRUXMU(1)*%Y 4 20%X**3IHMU(T)%%3 4 180%X*¥2AMU(1)*%2 4
BHO*X*MU(1) + 1680 ) / ( X**4*My(1)**y . Q0¥ *EIXMU (1) *%3 4
TBO*XX*2¥MU(1)*%2 - ZUO*X*MU(1) + 1680 )



- 30 -

5

# RI
- MU(2) * ( X¥*SE¥MU(1)%%5 4 J0ORX*RUEMU(1)*%Y 4 YOOXL¥*JEMU(1)*%3 4
3360*X**¥2¥MU(1)%%2 + 15120*X*MU(1) + 30240 ) /
( XEXSHEMU(1)%%5 _ 30%XRRUFIMY(T) %% o HRO®X ®AIEMU(1)%%3 - 3360%K*#*2 %
MUCT)¥%¥2 + 15120%X*MU(1) - 30240 )

# TOTAL ELAPSED TIME (SEC.) WAS

# TNEW
2.084383E1



Qutput for Problem 3:

# M

# N
7

# THE POWER SERIES COEFFICIENTS ARE
# C

2/ 15 ,

0,

17 / 315,

o,

62 / 2835 ,

o,

1382 / 155925

o,

21844 / 6081075 ,

0)
# TIME (SEC.) FOR TRIANGULARIZATION WAS
# TNEW

3.589547
# TIME (SEC.) TO SOLVE ORDER-N SYSTEM WAS
# TNEW

1.125734



#
#

#
i

#

#

#

#

#

#

#

i

#

- 32 -

TIME (SEC.) TO COMPUTE PADE APPROXIMANTS WAS

TNEW

1.7T45994E1
THE PADE APPROXIMANTS ARE
I

RI

RI

3¥X / ( X**¥2 - 3 )

X ¥ ( X*¥%¥2 - 15 ) / (3 * ( 2%¥X**2 . 5 ) )

3
RI

- SEX % ( 2¥X¥%2 _ 21 )./ ( X*®Y - U5EX*¥%2 4 105 )

I
y
RI
X * ( X¥*4 _ 1065%¥X%%2 L qug5 ) / (

15 % ( X%%4y _ Dg¥Y*¥%¥2 4 63 ) )



#

#

#

=

#

- 33 -

I

5
RI

- 21%¥X * ( X*¥¥4 . GO¥{¥%¥%2 4 495 ) /
( X**6 - 210%X*%¥4 4 J725%(*¥2 . 10395 )
I
6
RI
X ¥ ( X¥%5 - 378%X¥¥Y . 17325%X%¥%2 _ 135135 ) /
(7 % ( U4¥X%%¥6 _ USO¥X*¥*¥4 4 8910¥X*%¥2 - 19305 ) )
TOTAL ELAPSED TIME (SEC.) WAS
TNEW
2.136477TE1



- 34 -

Qutput for Problem 4:

# N

7
# THE POWER SERIES COEFFICIENTS ARE

MUC1)
4/ 3,
0,
2*MU(1) / 5
173,
3EMU(T1)%*2 7 70 ,
2*¥MU(C1) / 15 ,
- ( 3*MU(1)**3 - 56 ) / 756 ,
MU(1)%%2 / 175 |
MUCT) * ( US*MU(1)%*%3 4+ 992 ) / 47520 ,
b ¥ ( QEMU(1)*%¥3 4 35 ) / 14175
- MU(1)*%2 % ( SOS*MU(1)%%3 -~ 8912 ) / 1601600
- MUC1) % ( 29%MU(1)**3 - 140 ) / 24255 )
# TIME (SEC.) FOR TRIANGULARIZATION WAS
# TNEW
1.558583E1
# TIME (SEC.) TO SOLVE ORDER-N SYSTEM WAS
# TNEW
9.917313

1



#
#

#
#

#

#

it

#

#

#

#

- 35 -

TIME (SEC.) TO COMPUTE PADE APPROXIMANTS WAS
TNEW
6.438642E1
THE PADE APPROXIMANTS ARE
I

RI

( QXX **2XMU(1)%%¥3 4+ 16%¥X¥%¥2 _ 12%(*¥MU(1) + 9¥MU(1)%%2 ) /

( 16*X*%¥2 _ 12¥X¥MU(1) + GXMU(1)**2 )

3

RI
- ( TT16T1*X*¥*3¥MU(1)*%*3 4 S200%X*¥%3 4 SIO¥X*%2EMU(1) %%y 4
H260*X*¥2¥MU(1) + HOS*X*MU(1)**¥2 4+ B10%*MU(1)**%3 + 4800 ) /
(3 % ( 108¥X**3X¥MU(1)%%3 4+ UOO*X*¥*3 4+ 180X **2¥MU(1) -

135*X¥MU(1)*%¥2 - 270%MU(1)¥%¥3 - 1600 ) )



#

I

- 36 -

4

# RI

( SHOETS*X*XUXMU(1)*%¥6 + 118368*¥X*¥*UXMU(1)*%¥3 - 318500%X **y -
S511550*X ¥ ¥3*¥MU(1) % ¥4 - 2247000*X*¥*¥3¥MU(1) - U55625%X**¥2%My(1)*%5 .
T651860*X**¥2¥My(1)¥%¥2 - 62370%¥X¥MU(1)*%¥3 - 29L000%X - 510300%

MUCT)*¥%4 - 1833300%¥MU(1) ) / ( 3 * ( 6596¥X*¥*U*MU(1)¥%%3 4+ 24500%X %%y 4
U3THO*X ¥ XIXMU(1)**Y 4+ 163800*X**¥3¥MU(1) + 18225%X*¥*¥2¥MU(1)**5
GOLUBOXX*¥*2XMU(1)%*2 - 20790*X*MU(1)*%3 - 98000%*X - 170100*MU(1)**y -

611100%MU(1) ) )

5

# RI

-~ ( 286U41G2L00*X*¥S¥MU(1)%¥%¥9 + 1 3375989 TULXX*¥SEMU(1)*%5 4
9670542000 %X ¥¥5¥MU(1)##3 + 7803250000%X*%5 4+ L81595625%X ¥ ¥4 ¥M(1)*¥*10
9377735850 ¥X ¥ ¥4 *MU(1)**7 - 4 U4130561300¥X**U*MU(1)**4 + 2881200000%
X*ELXMU(1) - UT706879625*X¥%3¥MU(1)*¥%¥8 ~ 1 2868212420%X ¥ %3 *¥MU(1)**5 4
2_1207690000¥X **3*¥MU(1)*¥¥2 + 5682828375*X**2¥MU(1)*%g +
2_9744181780*¥X*¥2XMU(1)*%6 + 2_T372U29000*X *¥2¥MU(1)**3 .
7203000000%*X**2 - 1_2198976650*X*MU(1)**¥7 - 4 5268826L00%X*MU(1)**y -
3241350000*X*MU(1) + 5201232750*MU(1)**¥8 + 2 U6596351L0%MU(1)**5 +
2_16707TH0000*MU(1)%*2 ) / ( 3 * ( 13851607S*X**S*MU(1)¥*9 + 662786964 %
X*X5¥MU(T1)%%6 + T182U42000*X**5%MU(1)**3 + 600250000*X**5 — 801006570%
X*XUEMU(1)*%¥7 - 3508728300¥X*RU¥MU(1)*%Y - 185706675 *X¥¥3¥MU(1)**%8
159633180*X**3X¥MU(1)*%5 + TUB1T60000*¥X ¥¥3¥MU(1)*%¥2 _ 160531875  **2*
MU(1)*%*9 -~ 14QU8UBBBO*X**2%¥MU(1)**6 - 1900563000*X**2 %My (1) **3 -
2H07000000*X**2 + 4066325550*X*MU(1)**7 + 1 5089608800¥X ¥MU(1)**4 +
1080450000*X*MU(1) - 1733744250*MU(1)**8 - 82198783R0*MU(1)¥**%5 -

AN OAAANAARWITT, A A\ XA AN



#

I

- 37 -

6

# RI

3 % (2240_1718171875%X**¥6%¥MU(1)**15 — 1119327 _2284957200%X ¥*6 %
MU(T)*%12 - 5704238_7216210564 ¥X¥*6¥MU(1)**9 4+ 8180274 11597894 40*X**§
MU(T)¥*%6 + 50528246_4081920000*X ¥*6*MU(1)**3 - 5010906 _2080000000%X **6
410274_9993588750*X ¥*5¥MU(1)*%13 ~ 4746820 4559168120 ¥X ¥X5%MU(1)**10 -
17461113_2455939200*X ¥ ¥5#MU (1) *¥*7 ~ 24341449 7636688000 ¥X ¥ %5 %My (1) *¥*1
16838301_3568000000*X *¥S*MU (1) - L7263 _1062640625%X¥*u¥MU(1)**14
304912_TU62965500 %X ¥* 4 ¥MU(1)**¥11 + 8880514 5845999520 %X ¥* L ¥MU(1)*¥*3 +
18702078_6010060800*X ¥*4*MU (1) **5 - 35827920 2265600000 *X **U*#MU (1) *¥2
2261913_7862648250*¥X **3¥MU(1)*¥%¥12 - 7619427 7375240080 %X ¥*3*¥MU(1)**g 4
25331345_8492348800¥X*¥3*¥MU(1)*%6 + 79127058 OU55040000*X ¥¥3*MU(1)**3
2733221_5680000000%X*#*¥3 - 358329 3621862500*¥X **2¥MU(1)**13 -

9510694 5202636500 %X ¥*2¥MU (1)*¥10 - 36482565 1826865600 ¥X ¥*2¥MU (1) **7
17860635_6473664000*X ¥*¥2*MU (1) **4 - 5640375 _4176000000*X ¥¥2%MU(1) -
1599355_6601022000*X *MU(1)**11 + 12340739 8835804 160%X*MU(1)**8 +

69299950_9996886L400*X ¥*MU(1)*¥%5 - 22429810 0857600000*X*MU(1)**2 -

308826_0841050000*MU(1)**12 -~ 12176809 _0291663200%MU(1)%*9 -
31828870_2584160000*MU(1)**%6 + 49517455 6800000000*MU(1)**3 +
6833053_9200000000 ) / ( 559413 B89U2UOSLOORX ¥*¥G*#MY(1)*%12 +
3913225_00724TU4356*X*¥*¥6XMU(1)**9 ~ 1710508 _U893733T60*X*X5%¥MU(1)*%6 -
32807087_5937280000*X¥*¥6*¥MU(1)**3 + 3644295 42U0000000%X **6 4+

90749 _U572U422500*X **5¥MU(1)¥**¥13 + 380518 _178286U600*X ¥¥5¥MU(1)**¥10 +
9016418_6880969600*X ¥¥5*¥MU (1)*%7 + 30466287 S5286672000%X ¥*¥5 ¥ MU (1) **4 -

10311699_5520000000*X¥*¥5¥MU (1) + 6720 5154515625 X * % ¥My(1)*%14 -



- 38 -

686182_64T4095600¥X ¥ ¥4 ¥MU(1)*%11 - 8760331 0077101280 %X ¥*U %My (1) **3 -
18959294_2136371200%X ¥*U ¥MU(1)**5 + 19655767 6761600000 %X ¥* 4 ¥MU (1) **2
752370_0420678750¥X*¥¥3*MU(1)**¥12 - 11173266 TUG6UTII20%X ¥¥3¥MU (1) *¥*q .
4590334_4176972800%X¥*3%MU(1)*¥6 + 106600781 6737920000 %X *¥3¥MU (1) ¥*3
19132550_9760000000%X**3 - 148509 8342437500%X ¥¥2¥MU(1)*%13 +
7998343_5267080100*X **¥2¥MU(1)*¥%10 - 13961084 7728116800¥X ¥¥2¥MU (1) **7
202134273_9820992000%X ¥*¥2%¥MU (1) *¥*4 - 37420288 _0128000000*X **¥2*¥MU (1) -
4798066_9803066000%X*MU(1)**¥11 + 37022219 65074 12480%X*MU(1)**8 +
207899852_9990659200*X ¥MU(1)*¥*5 - 67289430 2572800000 *X ¥MU(1)**2 -
926478_2523150000%MU(1)*¥%12 - 36530427 0874989600%MU(1)**9 -
95486610_7752480000%MU(1)**¥6 + 148552367 _0400000000*MU(1)**3 +
20499161_7600000000 )

#1
7

# RI
- 3 % ( 578_T73563840U_T368546875*X**T*MU(1)**18 +
32613_0978210095_1537097200¥X **7 ¥MU (1) **15 .
601784 0573066657 6921180928*X ¥¥T¥MU(1)*%12 .
4487295 7227303470 7620082432 %X ¥¥7¥MU(1)**%9 4+
15099632_8360751379_5627212800*X ¥¥7 ¥MU(1)**6 +
21261328_7596337351_2761344000¥X ¥ %7 ¥MU (1) #*3
7606653_5520844591_9232000000*X **¥7 + 38 4163350599 4391406250 ¥X **6 *
MUC1)*%1G - 18284 0582370920 _9702737500¥X**6¥MU(1)**¥16 -
330347_1903563211_8269676400%X ¥*6 *MU (1) *%13 -
2128063_5147627304_127276TTHUXX¥*6 ¥ MU (1) **¥10 -
5555484 3862909288 3740917760%X ¥¥6 ¥MU (1) **7 -
3112862_8325527691_1396864000*X ¥X6¥MU (1) **L .



-39 -

5930168_8605404147_3024000000*X ¥*6 ¥MU(1) - 2646 6419981889 0450140625
X*¥5¥MU(1)¥%¥17 + 152860 9229541139 _8114511200%X *¥5 XMy (1) *¥* 10 4
1610552_2199253679_2050137728¥X ¥*5%¥MU(1)%¥%11 4
4O41418_T001497967_4338593280*X ¥¥5%MU(1)**g -
2037818_9284562375_1016243200*X ¥¥5 ¥ MU (1) ¥%5
11578164_0112406276_U564480000*¥X #*5 %My (1) **2
1016_8772657574 4223906250 ¥X ¥*U¥MU(1)*%18 .
101430_1824392553_5123190000%X ¥ ¥4 ¥MU (1) *¥15 4
1177879_4027895409_8879801600*X ¥¥4*MU(1)**12 4
6901630_5680667621_2645544960*X ¥ ¥4 ¥ MU (1) *¥%g 4
23494981_3918350391_8257356800*X ¥ *4*MU (1) **6
32977791_240945894L 3276800000 X ¥*U ¥MU (1) **%3

4149083 _7556824322_8672000000¥X **¥4 ~ 23846 2501016710 9987200000 ¥X ¥*3 ¥
MU(1)*%¥16 - 588055_0219073510_6789136000*¥X¥*3¥MU(1)**13 -
3626841_8379763862_7851646T20*X ¥¥3XMU(1)**10 -
5987852_3791309740_5095833600*X ¥¥3%MU (1) **7
7361667_4105990975_0542336000*X ¥¥3¥My (1) ¥*4
19269855_5707331647_7337600000*X *¥3*¥MU(1) + 3340_0646002407_ 9150000000
X*¥*2%MU(1)%¥*17 + 725705_8395413983 2704682000%X ¥* 2% My (1) *¥14 .
5565815_6349343019_9 114631680 %X ¥*¥2%My(1)%*11 +
18827835_1827607302_7017553920*X **2¥MU (1) ¥*8
18835887_5374646599 5220992000 *¥X ¥¥2¥MU (1) ¥*5
11952182_8870538353_4592000000%X ¥¥2 ¥ MU (1) *¥*2 -
22016_2719977040_5356950000¥X¥MU(1)*¥*15 - 1141129 5136673003_198827200¢
X*MU(1)#%12 - 6030073_4086044445 503654 1440%X*MU(1)**g -
252730_5434635568_UH69UU25600*X *MU (1) *%6 +



- 40 -

25483843 6498552043 2250880000 %X ¥MU(1)**3 -
10372709_3892060807_16sooooéoo*x + 2361_6036695432 9317500000%
MUCT)*%16 + 589110_7341348048 0684L492000%MU(1)**¥13 +
4044913_3002729587_7786900480*MU(1)*¥10 + 6228772 6714240832 486922240
MU(1)*¥7 + 3985199 0801418551 _4805248000%MU(1)**L +
26769138_6418349089_9968000000%MU(1) ) /

( 143_7873923337_1470562500%X **¥7¥MU(1)**18 - 949 2773130362 9605950000
X*¥TEMU(1)**15 + 176703_5928858805_0266969600*X#*7 ¥MU(1)*%12 +
2172355_U4189901433 6751493888 *¥X#*¥7 *¥My(1)%%g
8715523_3333339335_TU479321600¥X ¥*¥7 ¥M(1)**6 +
13185636_3484265923_6405248000*X ¥ %7 #MU(1)*%3 +
5532111_6742L432430_4896000000%X ¥*7 ~ 6550 5609143893 2146827500 %X * *6 *
MU(1)%%16 - 183379_8004890260 5137186000%X **6 ¥MU(1)*¥13 -
1738931_0934329403_2258063616*¥X **6 ¥MU(1)¥*10 -

6624858_1013999140 TUBO279OUO*X**6 ¥ MU (1) *¥*7 -
8389833_T057278267_4UTTO56000*¥X ¥*6 ¥MU (1) **U +
1376487_14995808612_5158400000*X **6*MU(1) - 248 6548692656 5299328125%
X*XSEMU(T)®%17 + 97511 0724664264 3418056800%X ¥¥5 ¥ MU (1) *%14 4
1135890_1499891593 291 18T7HU32*¥X**5 MU (1) **11
3626064_9579075131_4739499520%X ¥¥5% My (1) **3 -
8875_5275055831_1868620800¥X #¥5 ¥ My (1) ¥¥5 -

10559224 _3027224204_0668160000%X #*5 ¥ MU (1)*%2 -
115_2490051798_3174218750*X ¥*4%¥MU(1)**18 + 17429 _6809111982_9263200000°
X*XL¥MU(1)¥%¥15 - 535449 2590537946_0609299200%X **4 *MU(1)**12 -

7027997 _8046081235_1637806080*¥X **4 *MU(1)**g -
26943800_9773909305 2302540800 %X ¥ ¥4 ¥MU (1) **5 -
41448866_3877600869 6954880000 ¥X ¥ %4 ¥MU (1) **3 -



-4 -

29043586_2897770260_0704000000¥X **4 + 14936 3489900743 1160750000 *X**3
MUC1)*%16 + 697219 4612593714 _T140560000%X ¥¥3¥MU(1)*¥*13 +
8969958_4892076602_9592917T60*¥X**3¥MU(1)*%10 +

42120456_1926985846 0681113600%X¥¥3¥MU(1)**7 .
70307325_0383357410 4346624000 X *¥¥3¥MU (1) **4 +
18148859_6875218995_2819200000*X #¥3*¥MU(1) - 2935_3827920924 9497500000
X*¥2¥MU(1)*#17 - 409785_3162197805_6060570000%X ¥¥2¥ MU (1) % %14 -
7562707_0039840296_3983193600*X **2¥My (1) *¥ 11

37797187_5340099410_644LUOQUSE0 XX ¥¥2¥ My (1) %%3 -
44552065_371968414L 1247232000%X**2%¥My (1) *%5 4
44450867_2643432209_6128000000*X *¥¥2*¥My (1) *#%¥2 .
66048_8159931121_6070850000*X *MU(1)**15 + 3423388 5410019009 596481600
X*MU(1)*%¥12 + 18090220_2258133336_5109624320*X *¥MU(1)%%9 +
758191_6303906705_4083276800*X¥*MU(1)**5 -
76451530 _9495656129_6752640000*¥X ¥MU (1) **3 +
31118128_1676182421_5040000000%*X - 7084 8110086298 _7952500000%
MUCT)*¥16 - 1767332_2024044144 2053476000*MU(1)*¥13 -
12134739_9008188763_3360701440*MU(1)*¥%10 -
18686318_0142722497 460766T200%MU(1)**7 -
11955597 2404255654 441574 4000*MU(1)**y -
80307415_9255047269_9904000000*MU(1) )

# TOTAL ELAPSED TIME (SEC.) WAS

# TNEW

7.031533E1



R42-\

4. SOURCE LISTING OF ALTRAN PROCEDURES

The ALTRAN implementation of the method described in this

report is given in this section.

Index of Procedures:

MAIN -~ p. 43
TAYLOR - p. 44
PADE - p. 45

SYMTRI - p. 51
SYMINT - p. 57
SYMSOL - p. 59



- 43 -

PROCEDURE MAIN

# MAIN PROCEDURE FOR COMPUTING PADE APPROXIMANTS FOR A POWER
# SERIES EXPANSION.

INTEGER M, N, I, LAST, NUM, DEN
REAL TOLD, TNEW

LONG ALGEBRAIC (X:31, MU(1:5):31)
LONG ALGEBRAIC RI

LONG ALGEBRAIC ARRAY C, R

LONG ALGEBRAIC ARRAY ALTRAN TAYLOR, PADE

# IN THIS IMPLEMENTATION, PROCEDURE TAYLOR DEFINES THE VALUES OF
# M AND N, AND ALSO RETURNS A POWER SERIES EXPANSION AS ITS

4  VALUE.

C = TAYLOR(X, MU, M, N)

WRITE M, N

WRITE “THE POWER SERIES COEFFICIENTS ARE”

WRITE C

# INITIALIZE TIMING VARIABLE.

TIME(TOLD)

# OBTAIN THE SEQUENCE OF PADE APPROXIMANTS.

R = PADE(C, X, M, N, .TRUE,, .TRUE.)

# PRINT OUT TIMING INFORMATION.
TNEW = TIME(TOLD)

WRITE "TIME (SEC.) TO COMPUTE PADE APPROXIMANTS WAS”
WRITE TNEW

# PRINT OUT THE APPROXIMANTS AS RATIONAL FUNCTIONS.
OPTS(103, 3) # SET NON-CANONICAL FORM FOR RATIONAL FUNCTIONS.

LAST
NUM

DBINFO(R)(1,1)
l; DEN =2

WRITE "THE PADE APPROXIMANTS ARE”
DO I = 0, LAST

RI = R(I,NUM) / R(I,DEN)
WRITE [, RI

DOEND



- 44 -

# PRINT OUT FINAL TIMING INFORMATION.
TNEW = TIME()
WRITE "TOTAL ELAPSED TIME (SEC.) WAS”, TNEW

END # END OF PROCEDURE MAIN.

PROCEDURE TAYLOR(Z, INDET, M, N)
INTEGER M, N
ALGEBRAIC VALUE Z
ALGEBRAIC ARRAY VALUE INDET

# THIS PROCEDURE DEFINES THE VALUES OF M AND N, AND RETURNS AN
# ARRAY OF POWER SERIES COEFFICIENTS AS ITS VALUE.

LONG ALGEBRAIC ARRAY C

# TAYLOR SERIES FOR THE ORDINARY THOMAS-FERMI FUNCTION,

C = (1,0, INDET(l), 4/3, 0, 2/5*INDET(l),

1/3, 3/70*INDET(1)**2, 2/15*INDET(1) )

C = (G, —1/252*INDET(1)**3 + 2/27, 1/175*INDET(1)**2,
31/1485*INDET(1) + 1/1056*INDET(1)**4,
4/1575*INDET(1)**3 + 4/405 )

C = (G, 557/100100*INDET(1)**2 — 3/9152*INDET(1)**5,

4/693*INDET(1) — 29/24255*INDET(1)**4 )

TPSORD(C) # CONVERTS C TO A TPS —— L.E. INDEXED FROM 0.

RETURN( C)

END # END OF PROCEDURE TAYLOR.



- 45 -

PROCEDURE PADE(C, Z, M, N, FRCTNS, SEQUEN)
INTEGER VALUE M, N
LOGICAL VALUE FRCTNS, SEQUEN
ALGEBRAIC VALUE Z
LONG ALGEBRAIC ARRAY VALUE C

# COMPUTE PADE APPROXIMANTS BY A FRACTION-FREE METHOD

e T

PADE APPROXIMANTS ARE COMPUTED FOR THE POWER SERIES WITH
# COEFFICIENTS C. LET C(S) BE THE FIRST NONZERO COEFFICIENT
# IN C. THE SEQUENCE OF APPROXIMANTS COMPUTED IS:
(M-L,N-L), . . ., M,N),
# WHERE

L = MIN(M-S§;N) IF SEQUEN IS .TRUE. ;

L = 0 IF SEQUEN IS .FALSE.
IF THE FIRST M+! COEFFICIENTS ARE ALL ZERO THEN NO PADE
APPROXIMANTS ARE COMPUTED.

S

REFERENCE: K.O. GEDDES, SYMBOLIC COMPUTATION OF PADE
APPROXIMANTS, ACM TRANS. MATH. SOFTWARE, TO APPEAR.

#

#

#

#

#

#

#

#

# INPUT PARAMETERS:

# C — THE ARRAY CONTAINING THE POWER SERIES COEFFICIENTS

# C(0), ... , C(M+N) ;

# Z - THE NAME OF THE INDETERMINANT TO BE USED AS THE VARIABLE
# IN FORMING THE PADE APPROXIMANTS -— LE. THE POWER SERIES
4 IS THOUGHT OF AS:

# CO + CY*Z + ... + CM+N)* Z™*M+N) :

# M, N — DEGREE OF NUMERATOR AND DENOMINATOR, RESPECTIVELY,
4 OF THE HIGHEST-DEGREE PADE APPROXIMANT DESIRED:

#  FRCTNS - LOGICAL VARIABLE INDICATING IF FRACTIONS ARE TO BE
4 CARRIED. IF FRCTNS IS .FALSE. THEN THE POWER SERIES

4 COEFFICIENTS C WILL BE CONVERTED TO INTEGERS OR POLY-

# NOMIALS WITH INTEGER COEFFICIENTS BY REMOVING THE

# DENOMINATOR OF THE TAYLOR POLYNOMIAL. THIS DENOMINATOR
# WILL THEN BE REPLACED BEFORE RETURNING FROM THE PROCEDURE:
# SEQUEN - LOGICAL VARIABLE INDICATING IF THE FULL DIAGONAL

# SEQUENCE (SEE ABOVE) IS TO BE COMPUTED. [F SEQUEN IS

# FALSE. THEN ONLY THE (M,N) APPROXIMANT IS COMPUTED.

#
#
#

OUTPUT:
THE VALUE RETURNED IS A TWO-DIMENSIONAL ARRAY WITH THE
# FIRST DIMENSION INDEXED FROM 0 TO L (WHERE L IS DEFINED
# ABOVE) AND THE SECOND DIMENSION INDEXED FROM 1 TO 2. EACH
# ROW OF THIS ARRAY CONTAINS THE NUMERATOR AND DENOMINATOR,
# RESPECTIVELY, OF A PADE APPROXIMANT, AS POLYNOMIALS IN THE
# VARIABLE Z. THE FIRST ROW CONTAINS THE (M—L,N-L) APPROX~-
# IMANT AND THE LAST ROW CONTAINS THE (M,N) APPROXIMANT. THE
# RETURNED VALUE IS NULL IF EITHER OF THE FOLLOWING CONDITIONS

# HOLDS:
# THE FIRST M+1 POWER SERIES COEFFICIENTS ARE ALL ZERO,
# OR

# SEQUEN = .FALSE. AND THE HANKEL MATRIX IS SINGULAR.
#



- 46 -

# ASSUMPTIONS:
# [T [S ASSUMED THAT THE LAYOUT FOR THE ALGEBRAIC ARRAY C
# CONTAINS THE INDETERMINANT Z, WITH MAXIMUM EXPONENT M+N.
#
# PROCEDURES REQUIRED:

SYMTRI; SYMSOL; ARR AND ARRMIX (TWO SYSTEM PROCEDURES).

PROCEDURE:

7
#
# THE FOLLOWING DECLARATION MUST APPEAR IN THE CALLING
#
# LONG ALGEBRAIC ARRAY ALTRAN PADE .

INTEGER [, J, K, KSTART, LOW, L, LENGTH, II, 1J, ORDER
INTEGER ARRAY PERM

LOGICAL ARRAY BLOCK

REAL TOLD, TNEW

LONG ALGEBRAIC P, Q, DENOM, DETERM, COEF

LONG ALGEBRAIC ARRAY H, HSUB, DET, XNUM, R

INTEGER ARRAY ALTRAN ARR
LONG ALGEBRAIC ARRAY ALTRAN ARRMIX

DENOM = 1
I[F (NOT. FRCTNS) DO
# SET UP THE DEGREE—-(M+N) TAYLOR POLYNOMIAL AND REMOVE THE
# DENOMINATOR. THE POWER SERIES COEFFICIENTS ARE THEN ALL
# INTEGERS OR POLYNOMIALS WITH INTEGER COEFFICIENTS. THIS
# MAY MAKE THE ALGORITHM MORE EFFICIENT.
P = C(0)
DO I =1, M+N
P = P + CI)* Z*!
DOEND
DENOM = ADEN(P)
C = DENOM * C

DOEND



- 47 -

# SET UP THE AUGMENTED HANKEL MATRIX (UPPER PART) IN SYMMETRIC
# FORM AS REQUIRED BY PROCEDURE SYMTRI.

KSTART = M—-N+1
DOI =1, N
K = KSTART
DO J =1, N+1
# THE (I,J) ENTRY OF THE HANKEL MATRIX IS EITHER 0 OR C(K).

IF(K<0) H=(H,O0
ELSE H = (H, C(K))

K=K+1
DOEND
KSTART = KSTART + 2

DOEND

# INITIALIZE TIMING VARIABLE.

TIME(TOLD)

# TRIANGULARIZE THE HANKEL SYSTEM.

SYMTRI(H, N, DET, PERM, BLOCK)

# PRINT OUT TIMING INFORMATION.
TNEW = TIME(TOLD)

WRITE “TIME (SEC.) FOR TRIANGULARIZATION WAS”

WRITE TNEW

# DEFINE L DEPENDING ON THE (LOW) ORDER OF THE POWER SERIES.
TPSORD(C, LOW)

IF (LOW > M) GO TO EXIT # C(0), .., C(M) ARE ALL ZERO.

IF (SEQUEN) L = IMIN( M-LOW, N)
ELSE L =0



- 48 -

# EXTRACT THE PADE APPROXIMANTS.
DOK =1L, 0, -1

IF (N-K == 0) DO

P = C(0)
DOI1 =1, M=K
P

P + C(I) * Z*¥
DOEND

# THE (M—K, 0) APPROXIMANT IS A TAYLOR POLYNOMIAL.

# REPLACE FACTOR DENOM REMOVED AT BEGINNING OF PROCEDURE
Q = DENOM

R

(R, P, Q
DOEND # END OF "THEN CLAUSE".

ELSE DO

DETERM = DET(N-K)

[F (DETERM == Q) DO

# NEW APPROXIMANT IS THE PRECEEDING APPROXIMANT.

IF (NOT. SEQUEN) GO TO EXIT # HANKEL MATRIX WAS

# SINGULAR WHEN SINGLE
# APPROXIMANT SPECIFIED.
LENGTH = 2*(L-K)

R = (R, R(LENGTH-1), R(LENGTH) )

DOEND # END OF "THEN CLAUSE".



- 49 -

ELSE DO

# SET UP (N—-K)-BY—-(N—-K+1) HANKEL SUBMATRIX FOR
# PROCEDURE SYMSOL.

IF (K == 0) HSUB = H

ELSE DO
# DIRECTORY OF INDEX VARIABLES:
# II — POSITION OF (II) ELEMENT;
4 1J — POSITION OF (I,J) ELEMENT.
HSUB = 0$H # [.E. MAKE HSUB NULL.
I =1
DOI = I, N-K

HSUB = (HSUB, H(I))
=1

DO J = [+1, N=-K+1
=1 +1
HSUB = (HSUB, H(1J})
DOEND
I =1 + N-I+2
DOEND

DOEND # END OF "ELSE CLAUSE".

# IF LAST SUBSYSTEM, RESET TIMING VARIABLE.

IF (K == 0) TIME(TOLD)

# SOLVE THE HANKEL SUBSYSTEM.

SYMSOL(HSUB, N-K, PERM, BLOCK, DETERM, XNUM)

# IF LAST SUBSYSTEM, PRINT OUT TIMING INFORMATION.
[F (K ==0) DO
TNEW = TIME(TOLD)
WRITE "TIME (SEC.) TO SOLVE ORDER~N SYSTEM WAS”
WRITE TNEW

DOEND



- 50 -

# DEFINE NUMERATOR POLYNOMIAL.,
P = DETERM * C(0)
DOI =1, M=K

COEF = DETERM * C(I)

DO J = 1, IMIN(I, N-K)
COEF = COEF - XNUM(N=-K-J+1) * C(I-J))
DOEND :
P = P + COEF * Z**]
DOEND

# DEFINE DENOMINATOR POLYNOMIAL.
Q = DETERM
DO 1 =1, N-K

Q = Q - XNUMN-K-I+1) * Z**]
DOEND

# REPLACE FACTOR DENOM REMOVED AT BEGINNING
# OF PROCEDURE.

Q = DENOM * Q

# ADD THE (M—K, N-K) APPROXIMANT INTO THE LIST R.
R = (R PQ
DOEND # END OF "ELSE CLAUSE".
DOEND # END OF "ELSE CLAUSE".

DOEND # END OF K-LOOP.

# RESHAPE R INTO A TWO-DIMENSIONAL ARRAY.

R = ARRMIX( ARR( (0,1), (L.2) ), R)
EXIT: RETURN( R )

END # END OF PROCEDURE PADE.



- 5] -

PROCEDURE SYMTRI(A, N, DET, PERM, BLOCK)
INTEGER VALUE N
INTEGER ARRAY PERM
LOGICAL ARRAY BLOCK
LONG ALGEBRAIC ARRAY A, DET

# SYMMETRIC TRIANGULARIZATION

#

# PERFORM ONE-STEP/TWO-STEP FRACTION-FREE GAUSSIAN ELIMINATION
TO TRIANGULARIZE A SYMMETRIC N-BY—(N+1) AUGMENTED MATRIX
STORED IN A ONE-DIMENSIONAL ARRAY AS DESCRIBED BELOW
(SEE ASSUMPTIONS).

REFERENCE: K.O. GEDDES, SYMBOLIC COMPUTATION OF PADE
APPROXIMANTS, ACM TRANS. MATH. SOFTWARE, TO APPEAR.

INPUT PARAMETERS:

A — A ONE-DIMENSIONAL ARRAY CONTAINING THE ELEMENTS OF THE
N-BY—-(N+1) AUGMENTED MATRIX IN SYMMETRIC FORM, AS DES—
CRIBED BELOW (SEE ASSUMPTIONS);

N - THE ORDER OF THE MATRIX TO BE TRIANGULARIZED.

#
#
#
#
#
#
#
#
#
#
#
#
#
# OUTPUT PARAMETERS:

# A — THE TRIANGULARIZED AUGMENTED MATRIX (NOTE THAT SYMMETRIC
# 2-BY-2 BLOCKS MAY APPEAR ON THE DIAGONAL AS INDICATED BY

# BOOLEAN VECTOR BLOCK),

# DET - VECTOR OF LENGTH N WHOSE I-TH ENTRY IS THE DETERMINANT
# OF THE ORDER~I LEADING PRINCIPAL SUBMATRIX OF THE ORIGINAL

# INPUT MATRIX (THUS DET(N) IS THE DETERMINANT OF THE GIVEN

# INPUT MATRIX);

# PERM — PERMUTATION VECTOR OF LENGTH N SPECIFYING THE ORDER

# OF THE UNKNOWNS IN THE TRIANGULARIZED LINEAR SYSTEM;

# BLOCK — BOOLEAN VECTOR OF LENGTH N SUCH THAT IF BLOCK() IS

# .TRUE. THEN THE [-TH DIAGONAL ELEMENT BELONGS TO A SYM-

# METRIC BLOCK (NOTE THAT THE UPPER LEFT ELEMENT OF A 2-BY-2

# BLOCK WILL ALWAYS BE ZERO).

#

#

ASSUMPTIONS: ,
# IT IS ASSUMED THAT THE UPPER TRIANGULAR PART OF THE AUG-
# MENTED MATRIX IS STORED ROW BY ROW IN THE ONE-DIMENSIONAL
# ARRAY A OF LENGTH N(N+3)/2 , WITH THE I-TH ROW OCCUPYING
# POSITIONS [BEGIN TO IEND WHERE I[BEGIN = (I-1)2N-I+4)/2 + 1|
~# AND [END = [(2N-I+3)/2 . THUS THE (I,J) ELEMENT IS LOCATED
# IN POSITION IBEGIN+J-I OF A, FOR I <=J <= N+1 . NOTE
# THAT THE NUMBER OF ELEMENTS STORED FOR ROW I IS N-I+2 .
#
# PROCEDURES REQUIRED:
# SYMINT; ARR (A SYSTEM PROCEDURE).



- 52 -

INTEGER 1, J, K, KK, KI, KJ, 1J, K1I, K1J, KIK, KIKI, KiK2,
K2K2, NN, TEMP
LONG ALGEBRAIC DIVISR, DETERM, MI1, MI2

INTEGER ARRAY ALTRAN ARR

# SET UP ARRAYS:

# DET — LENGTH N, EACH ELEMENT 1 (COULD BE ANY NONZERO VALUE),
# BLOCK - LENGTH N, EACH ELEMENT .FALSE,;

# PERM - LENGTH N, I-TH ELEMENT EQUALS L

DET = NS§(1)
BLOCK = NS$(.FALSE.)
IF (N > 0) PERM = ARR(l,N)
DOT =1 N
PERM(I) = 1
DOEND

# ELIMINATION LOOP.

DIVISR = 1
K=290

KLOOP: IF (K > N-2) GO TO FINAL

# DIRECTORY OF INDEX VARIABLES:

KK — POSITION OF (K,K) ELEMENT,

K1K1l — POSITION OF (K+1,K+1) ELEMENT;
K1K2 - POSITION OF (K+1,K+2) ELEMENT,
K2K2 — POSITION OF (K+2,K+2) ELEMENT.

T e T T

I[F (K == 0) KIKIl =1

ELSE KIKIl = KK + N—-K+2
K1K2 = K1KIl + |
K2K2 = KIKI + N—-K+1



- 53 -

DETERM = A(KIKD)*A(K2K2) ~ A(KIK2)**2
[F (DETERM == 0 .AND. A(Ki1Kl) <> 0) DO
# ONE—STEP ELIMINATION,

K = K+1
KK = KIKl

# DIRECTORY OF INDEX VARIABLES:

# KK - POSITION OF (K,K) ELEMENT,;
# Ki — POSITION OF (K,I) ELEMENT,;

# KJ — POSITION OF (K,J) ELEMENT,
# [J — POSITION OF (I,J) ELEMENT.

K

J

Al =
DOEND

DOEND
# NEXT DIVISOR IS THE (K,K) ELEMENT; ALSO SAVE IT AS THE

# ORDER-K DETERMINANT UNLESS ALREADY SET TO ZERO (DUE TO
4  INTERCHANGES).

DIVISR = A(KK)
IF ( DET(K) <> 0 ) DET(K) = A(KK)

DOEND # END OF ONE—-STEP ELIMINATION.



- 54 -

ELSE DO
# TWO-STEP ELIMINATION.

K = K+2
KK = K2K2

# DIRECTORY OF INDEX VARIABLES:

KK — POSITION OF (K,K) ELEMENT,;

KiK! — POSITION OF (K—-1,K—-1) ELEMENT;
K1l — POSITION OF (K-1,I) ELEMENT,;

K1J — POSITION OF (K—1,J) ELEMENT,;
K1K - POSITION OF (K-1,K) ELEMENT;

KI — POSITION OF (K,I) ELEMENT;

KJ — POSITION OF (K.,J) ELEMENT;

[J — POSITION OF (I,J) ELEMENT.

S T T Sk Sk TR TR Ik

# ENSURE NONSINGULAR 2-BY-2 PIVOT.
IF (DETERM == 0) DO

# NOTE: THE (K-1,K-1) AND (K-1,K) ELEMENTS MUST BE
# BOTH ZERO.

DET(K-1) = 0
DET(K) = 0
KII = KIKI + 1

DO I = K+1, N
Kil = KII + 1
DETERM = — A(KII)**2
[F (DETERM == 0) DET() = 0
ELSE GO TO SWITCH
DOEND

# ALL REMAINING SUBSYSTEMS ARE SINGULAR SO EXIT FROM
# PROCEDURE.

GO TO EXIT

# INTERCHANGE ROWS AND COLUMNS K AND .

SWITCH: SYMINT(A, N, K, I)
TEMP = PERM(K); PERM(K) = PERM(I); PERM(I) = TEMP

DOEND # 2-BY-2 PIVOT IS NOW NONSINGULAR.



- 55 -

# UPDATE ROWS BELOW ROW K.

KiIK = KIKI + 1
K1l = K1K

KI = KK

IJ = KK + N-K+1

DETERM = DETERM / DIVISR
DO I = K+, N

KiJ = K11
KJ = KI
KII = KII + 1
KI = KI + 1

MI1
MI2

( AKKID*A(KK) - A(KD*A(KI1K) ) / DIVISR
( A(KD*A(KIK1) — A(KID*A(KIK) ) / DIVISR

o

DO J = I, N+1
KUJ = KI1J + 1
KJ = KJ + 1
U=1U+1
A(lJ) = ( DETERM*A(LJ)) — MII*A(K1)) = MI2*A(KJ) ) /

DIVISR

DOEND

DOEND

# UPDATE ROW K IF POSSIBLE.
IF (A(KIK1) <> 0) DO
# ONE-STEP UPDATE FOR ROW K.
A(KK) = DETERM

K1J = KIK
KJ = KK

DO J = K+, N+I

K1J = KlJ + 1

KJ =KJ +1

A(KJ) = ( A(KIKI)*A(KJ) — A(KIK)*A(K1J) ) / DIVISR
DOEND

DOEND # END OF "THEN CLAUSE".



- 56 -

ELSE DO
# SIGNAL 2-BY-2 BLOCK ON DIAGONAL.

BLOCK(K—-1) = .TRUE.
BLOCK(K) = .TRUE.

DOEND # END OF "ELSE CLAUSE".
# CURRENT DETERMINANT IS NEXT DIVISOR; SAVE DETERMINANT
# VALUES UNLESS ALREADY SET TO ZERO (DUE TO INTERCHANGES).
DIVISR = DETERM

IF ( DET(K-1) <> 0 ) DET(K-1) = A(KIKI)
IF ( DET(K) <> 0 ) DET(K) = DETERM

DOEND # END OF TWO-STEP ELIMINATION.

GO TO KLOOP

# END OF ELIMINATION LOOP.

# IF FINAL VALUE OF K IS N—1 THEN DET(N) WAS NOT ASSIGNED:; ITS
# VALUE IS THE (N,N) ELEMENT.

FINAL; IF (K == N-=1) DO
[F(N==1) NN = |
ELSE NN = KK + 3
DET(N) = A(NN)
DOEND

EXIT:

END # END OF PROCEDURE SYMTRI



- 57 -

PROCEDURE SYMINT(A, N, K, I)

INTEGER VALUE N, K, I
LONG ALGEBRAIC ARRAY A

# SYMMETRIC INTERCHANGE
#

# INTERCHANGE COLUMNS K AND [ AND THEN ROWS K AND I IN THE SYM-
METRIC N-BY—-(N+1) AUGMENTED MATRIX STORED IN THE ONE-DIMEN-
SIONAL ARRAY A AS DESCRIBED IN PROCEDURE SYMTRI.

INPUT PARAMETERS:

A — THE ARRAY IN WHICH THE INTERCHANGE IS TO TAKE PLACE;

N - THE ORDER OF THE MATRIX;

OUTPUT PARAMETERS:

A - THE ARRAY AFTER THE INTERCHANGES.

ASSUMPTIONS:

#
#

#

#

#

#

# K, I — INDICES OF THE ROWS AND COLUMNS TO BE INTERCHANGED.
#

#

#

#

#

#

IT IS ASSUMED THAT K IS LESS THAN 1.

INTEGER J, II, 1J, JI, KK, KJ, JK, ROWLEN

LONG ALGEBRAIC TEMP

4 DIRECTORY OF INDEX VARIABLES:
4 I — POSITION OF (II) ELEMENT;
4 1J — POSITION OF (I,J) ELEMENT;
4 JI — POSITION OF (J,[) ELEMENT;
4 KK — POSITION OF (K,K) ELEMENT;
#  KJ — POSITION OF (K,J) ELEMENT;
4 JK — POSITION OF (J,K) ELEMENT.

ROWLEN = N+1|
JK = K
JI =1

DO J =1, K~1

TEMP = A(JK); A(JK) = AUJD); AQI) = TEMP

ROWLEN = ROWLEN - |
JK = JK + ROWLEN
J1 = JI + ROWLEN

DOEND



- 58 -

KK = JK
I = (I-1)*Q*N-1+4)/2 + |
TEMP = A(KK); A(KK) = A(Il}; A(ll) = TEMP

KJ = KK
DO J = K+1, I-1
KJ = KJ + 1

ROWLEN = ROWLEN - 1|
JI = JI + ROWLEN

TEMP = A(KJ);, AK) = AJD; AJI) = TEMP
DOEND

KJ =

KJ + 1
1J I

[
DO J = [+1, N+|

KJ = KJ + 1
J=1U+1

TEMP = A(KJ); A(KJ) = A(lJ); A{)) = TEMP
DOEND

END # END OF PROCEDURE SYMINT.



- 59 -

PROCEDURE SYMSOL(A, N, PERM, BLOCK, DETERM, XNUM)
INTEGER VALUE N
INTEGER ARRAY VALUE PERM
LOGICAL ARRAY VALUE BLOCK
LONG ALGEBRAIC VALUE DETERM
LONG ALGEBRAIC ARRAY VALUE A
LONG ALGEBRAIC ARRAY XNUM

# SYMMETRIC SOLVE

#
# SOLVE THE N-BY—(N+1) LINEAR SYSTEM WHICH HAS BEEN TRIANGULARIZED

BY PROCEDURE SYMTRI. FRACTION-FREE BACK-SUBSTITUTION IS USED
TO COMPUTE THE "NUMERATORS” OF THE SOLUTION INTO ARRAY XNUM
—— THE COMPLETE SOLUTION WOULD BE XNUM/DETERM.

INPUT PARAMETERS:

A — THE ONE-DIMENSIONAL ARRAY CONTAINING THE ELEMENTS OF THE
N-BY-(N+1) AUGMENTED MATRIX IN SYMMETRIC FORM, AS TRIANG-
ULARIZED BY PROCEDURE SYMTRI;

N — THE ORDER OF THE LINEAR SYSTEM TO BE SOLVED;

PERM - PERMUTATION VECTOR OF LENGTH N SPECIFYING THE ORDER
OF THE UNKNOWNS IN THE TRIANGULARIZED LINEAR SYSTEM:

BLOCK — BOOLEAN VECTOR OF LENGTH N SUCH THAT IF BLOCK() IS
.TRUE. THEN THE I-TH DIAGONAL ELEMENT BELONGS TO A SYM~-
METRIC 2-BY-2 BLOCK (WITH UPPER LEFT ELEMENT ZERO);

DETERM — THE VALUE OF THE DETERMINANT OF THE N-BY~-N COEF-
FICIENT MATRIX.

OUTPUT PARAMETERS:
XNUM - VECTOR OF LENGTH N CONTAINING THE "NUMERATORS” OF THE

SOLUTION VECTOR —-- THE COMPLETE SOLUTION IS XNUM/DETERM.

%%%%%%%%%%%%%%%%%%%%%

# ASSUMPTIONS:
# IT IS ASSUMED THAT THE TRIANGULARIZED AUGMENTED MATRIX IS
# STORED IN SYMMETRIC FORM AS DESCRIBED IN PROCEDURE SYMTRI.

#
# PROCEDURES REQUIRED:

# ARR (A SYSTEM PROCEDURE).

INTEGER K, J, NN, NIN, KK, KI1K, KJ, K1J, ROWLEN
LONG ALGEBRAIC SUM »

INTEGER ARRAY ALTRAN ARR

# INITIALIZE XNUM TO BE AN ARRAY OF APPROPRIATE LENGTH.

XNUM = ARR(l, N)



- 60 -

# DIRECTORY OF INDEX VARIABLES:

# NN - POSITION OF (N,N) ELEMENT;

# NN+1 — POSITION OF (N,N+1) ELEMENT,;

# NIN — POSITION OF (N-I,N) ELEMENT;

# NIN+1 - POSITION OF (N—-1,N+1) ELEMENT;
# KK - POSITION OF (K,K) ELEMENT;

# Ki1K - POSITION OF (K—-1,K) ELEMENT;

# KJ — POSITION OF (K,J) ELEMENT;

# K1J — POSITION OF (K—-1,J) ELEMENT;

# ROWLEN - LENGTH OF ROW K .

NN = N*(N+3)/2 - 1
NIN = NN -2
# SOLVE BOTTOM EQUATION OR BOTTOM TWO EQUATIONS, AS REQUIRED.
[F ( BLOCK(N) ) DO
# SOLVE 2-BY-2 BLOCK ON BOTTOM ]jIAGONAL.
XNUM(PERM(N)) = DETERM * A(NIN+1) / A(NIN)

XNUM(PERM(N—=1)) = ( DETERM * A(NN+1) -
A(NN) * XNUM(PERM(N)) ) / A(NIN)

K=N-2

ROWLEN = 4
KK = NIN - 5
KIK = KK - 4

DOEND # END OF "THEN CLAUSE”".

ELSE DO
# SOLVE BOTTOM EQUATION.
XNUMPERM(N)) = A(NN+1)
K=N-1
ROWLEN = 3
KK = NIN - 1
KIK = KK - 3

DOEND # END OF "ELSE CLAUSE”.



- 6] -

# BACK-SUBSTITUTION LOOP.
KLOOP: IF (K == 0) GO TO EXIT
[F ( BLOCK(K) ) DO
# DIAGONAL CONTAINS 2-BY~-2 BLOCK.
KiJ = KIK
SUM = 0
DO J = K+, N
KlJ = K1J + 1
SUM = SUM + AKUJ*XNUM{PERM(®))
DOEND
KiJ = KIJ + 1 # K1J IS NOW POSITION OF (K-1,N+1) ELEMENT.
XNUM(PERM(K)) = ( DETERM*A(K1J) = SUM ) / A(KIK)
KJ = KK -1

SUM

]
<o

DO J
KJ

n M

+ 1
SUM + A(KJ*XNUM(PERM(J))
DOEND

KJ = KJ + 1 # KJ IS NOW POSITION OF (K,N+1) ELEMENT.
XNUM(PERM(K~1)) = ( DETERM*A(KJ) — SUM ) / A(K1K)
K=K-2

ROWLEN = ROWLEN + 2

KK = K1K — ROWLEN -~ |
Ki1K = KK - ROWLEN

DOEND # END OF "THEN CLAUSE".



- 62 -

ELSE DO
# NORMAL BACK-SUBSTITUTION.

KJ = KK

SUM = 0

DO J = K+1, N

KJ = KJ + 1

SUM = SUM + AKJ)*XNUM(PERM()))
DOEND

KJ = KJ + 1 # KJ IS NOW POSITION OF (K,N+1) ELEMENT.
XNUM(PERM(K)) = ( DETERM*A(KJ) -= SUM ) / A(KK)

K=K-1
ROWLEN = ROWLEN + 1

KK = KIK - 1
KIK = KK - ROWLEN

DOEND # END OF "ELSE CLAUSE".

GO TO KLOOP

EXIT:

END # END OF PROCEDURE SYMSOL.



REFERENCES

1. BAKER,G.A., and GAMMEL, J.L. The Padé Approximant in Theoretical
Physics. Academic Press, New York, 1970.

2. BAREISS, E.H. Sylvester's identity and multistep integer-preserving
Gaussian elimination. Math. Comp. 22 (1968), 565-578.

3. BIRKHOFF, G. and BARTEE, T.C. Modern Applied Algebra. McGraw-Hill,
New York, 1970.

4. BUNCH, J.R. and PARLETT, B.N. Direct methods for solving symmetric
indefinite systems of linear equations. SIAM J. Numer. Anal. 8
(1971), 639-655.

5. FOX, L. An Introduction to Numerical Linear Algebra. Oxford University
Press, London, 1964.

6. GANTMACHER, F.R. The Theory of Matrices, vol. 2. Chelsea, New York, 1959.

7. GEDDES, K.0. Algorithms for analytic approximation. Ph.D. Thesis,
Dept. of Computer Science, University of Toronto, 1973.

8.”WGEbDE§}1K;01 Syﬁbo]icféompﬁféi%dnidf‘Padé apbkoximantﬁf"ACM;f%aﬁé;'“;;;
Math. Software, to appear.

9. GRAGG, W.B. The Padé table and its relation to certain algorithms of
numerical analysis. SIAM Rev. 14(1972), 1-62.

10. LIPSON, J.D. Symbolic methods for the computer solution of linear
equations with applications to flowgraphs. Proc. 1968 Summer
Institute on Symbolic Mathematical Computation, R.G. Tobey, ed.,
IBM Programming Lab. Rep. FSC69-0312, 1369, pp. 233-303.

11. NORMAN, A.C. Computing with formal power series. ACM Trans. Math.
Software 1, 4 (Dec. 1975), 346-356.

12. WALL, H.S. Analytic Theory of Continued Fractions. Van Nostrand, New
York, 1948.

13. WYNN, P. The rational approximation of functions which are formally
defined by a power series expansion. Math. Comp. 14 (1960),
147-186.

14. ZIPPEL, R. Univariate power series expansions in algebraic manipulaticn.

- 63 -

Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation, ACM,
New York, 1976, pp. 198-208.



	

