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ABSTRACT

Using binary search and a Strassen-like matrix multiplication
algorithm we obtain efficient algorithms for computing the diameter,
the radius, and other distance-related quantities associated with
undirected and directed graphs having unit cost (unweighted) edges.
Similar methods are used to find approximate values for the
distances between all pairs of vertices, and if the graph satisfies
certain regularity conditions to find the exact distances.
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1. Introduction

We consider the problem of computing distances in directed and undirected
graphs whose edges have unit costs. We will use standard notation from graph
theory [1,4]. We assume that a graph G = (V,E) is connected (strongly connected
if it is directed), that its vertex set is ¥V ={1, 2, -- -, n}, and that its edge set E
has e elements. We develop algorithms for computing the diameter, radius, and
other distance-related quantities associated with the graph. Our algorithms
employ binary search techniques and use fast matrix multiplication routines to
achieve asymptotic efficiency. Using similar methods we develop algorithms for
computing approximate distances between all pairs of vertices. Finally, we discuss
a class of graphs for which the exact distances can be easily computed.

The distance between two vertices i and j is the number of edges in a
shortest path connecting them. This distance is denoted by d(ij). The
eccentricity of a vertex is the greatest among all of its distances to other vertices in
the graph. We denote the eccentricity of a vertex by

e(i) = max{d(ij)| jEV I

The diameter and radius of a graph G are the largest and smallest eccentricities of
its vertices, thus defining for us the two notions

diameter (G) = max{e(i)| (EV }
radius(G) = minf{e(i)]| i€V |.

Vertices of maximum eccentricity are on the periphery of G, while those of
minimum eccentricity are in the center of G, these two sets being defined as

periphery(G) = {i | e(i) = diameter (G )}
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center (G = {i| e(i)= radius (G)}.

A pair of peripheral points consists of two vertices whose distance apart is equal
to the diameter of the graph. A shortest path between a pair of peripheral points
is called a geodesic.

For our purposes a graph will be represented by its augmented adjacency
matrix, which is the n Xn matrix A = (a; ;) defined by

1, if there is an edge {i,j}EE or if i=j
aij =
0. if there is no edge {i,jJEF and i #].

Choosing the augmented adjacency matrix instead of the ordinary adjacency
matrix effectively means that ones are added along the main diagonal of the
matrix. This corresponds to adding loops to every vertex in the graph. This
feature will be used in the algorithms which follow.

A second matrix associated with a graph is also of interest here. The
distance matrix for G is the n Xn matrix D =(d;;) in which d;; is the distance
between 7 and j.

For directed graphs we define similar notions and consider the obvious in-
and out- generalizations of eccentricity, diameter, radius, periphery, and center.
Unless otherwise noted we will state our results for undirected graphs and imply
the corresponding results for directed graphs.

Floyd’s shortest path algorithm computes the distance matrix of a graph in
O (n?) steps [2]. Fredman [3] has an algorithm whose running time is a bit less,
O (n(loglog n /logn)1/3), but Floyd’s version is the practical choice for real
applications. Our algorithms will be asymptotically faster than either of these
algorithms, although we will not displace Floyd’s algorithm except for problems
which are only of theoretical interest.

Both of these algorithms compute the distance matrix of a graph having
arbitrary non-negative costs on the edges. Our graphs have unit cost edges.
Although this would appear to make the problem easier, we do not see how to
capitalize on the extra information inherent in the unit cost asumption. In fact,
we know of no better way of finding the distance matrix for unit cost edges than
to apply a general algorithm designed to handle arbitrary cost edges.

In some applications we do not need to know the entire distance matrix.
Knowledge of extremal distances such as the diameter or radius may suffice. Or
we might need only a list of the peripheral or central vertices. If the graph has
arbitrary costs on its edges we see no shortcuts, but for unit cost edges we show
how to compute these quantities in O (M (n)logn) steps, where M (n) is the
number of steps required to multiply two nXn matrices. If we really are
interested in the entire distance matrix but not in the exact values of its entries, we
show how to obtain, with relative error at most ¢>0, approximate distances
between all pairs of vertices in O (M (n Y(log n)?) steps.
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Throughout our discussion we will let M (n) stand for the complexity of
n Xn matrix multiplication and we will express all of our upper bounds in terms of
this quantity. Strassen’s algorithm provides an O(nlog27) upper bound [7]. Pan
[6] has given a slightly better asymptotic bound. The results given here will
automatically improve whenever a new upper bound is shown for matrix
multiplication.

2. Counting Walks

The problem of computing a graph’s diameter can be viewed as finding the
smallest integer k such that every pair of vertices is connected by a path whose
length does not exceed k. Similarly a graph’s radius is the smallest integer k such
that some vertex is connected to all other vertices by paths whose lengths do not
exceed k. If we can efficiently test these two conditions for any k we can find the
minimum k quickly using a binary search. Since both the diameter and the radius
are bounded above by n, at most log n values of k need be tested in order to find
the diameter or radius.

Directly deciding the existence of paths of length & between all pairs of
vertices might be as hard as computing the entire distance matrix. It seems easier
to test a slightly different but closely related condition.

A walk between two vertices i and j is a sequence of vertices beginning at i
and ending at j having the property that successive pairs of vertices are adjacent in
G. In general a walk is not a path because vertices, even edges, may be repeated.
But a shortest walk is always a shortest path, and vice versa, since otherwise the
walk or path could be made even shorter by eliminating the edges connecting two
instances of a repeated vertex.

For our purposes walks have one major advantage over paths: the existence
of a path of length k from i to j usually tells nothing about the existence of longer
paths between i and j, but a walk of length & can always be extended to a walk of
length & +1 simply by traversing any loop around a vertex in the walk, thus
picking up the extra length. Notice that without loops there might not be a walk
of length k +1 since in the undirected case we might be forced to repeat an edge
twice (producing a walk of length k +2), and in the directed case there might be
no way at all to extend the walk.

Using this fact plus our observation that shortest paths are the same as
shortest walks we can state the following characterization for the diameter of a
graph.

LEMMA 1: A graph G has diameter & iff

(1) between every pair of vertices there exists a walk of length &, and

(2) between at least one pair of vertices a walk of length k —1 does not exist. [1
We state a similar characterization for the radius of a graph which, together

with the previous lemma, will reduce the extremal distance problems to simply
counting walks within a graph.
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LEMMA 2: A graph G has radius k iff
(1) for some vertex there exist walks of length k to all vertices, and

(2) for all vertices there is at least one other vertex to which a walk of length
k —1 does not exist. O

To implefment an efficient test for these two conditions we cite a well-known
result relating walks of length &k to the kth power of the augmented adjacency
matrix [1.4].

LEMMA 3: Let A4 be the augmented adjacency matrix for a graph G. Then (A4 k),-"/-
is precisely the number of distinct walks of length k between i and j. O

We can restate our first two lemmas in terms of the augmented adjacency
matrix and thus characterize all of the problems under discussion in a form
convenient for our algorithms. The characterizations in which we are really
interested are the following.

LEMMA 4: A graph G has diameter k iff
(1) for every i and j (A l"),'",->0, and
(2) for some i and j (A k ”'),3_,:0. O

The characterization of the radius is similar.

LEMMA 5: G has radius & iff
(1) for some i and for all j (A k),-.b,->0, and
(2) for all i and for some j (A ”"_I),-J:O. O

Note that having found the diameter of G we can easily find the periphery
according to the rule that

periphery(G)={i | for some j, A,]f/-_l=0}.
Here k is the computed diameter of G. If k is instead the computed radius of G
we find the center according to the rule that

center (G)Y={i | for all j (A4 1"),-'/->0}.

All pairs of peripheral points can be calculated in a similar manner and a
breadth-first search will easily find a geodesic between any such pair. These last
two computations can be carried out in O(n 2y operations given the appropriate
matrices A%~ and 4%,

3. Extremal Distances

Our algorithms are designed to utilize any fast method for multiplying n Xn
matrices. Our running times will have corresponding improvements each time that
the upper bound on matrix multiplication is improved.
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The basic idea is to precompute the power-of-two powers of the augmented
adjacency matrix and to then conduct a binary search to find the & which satisfies
the criterion of lemma 4 or 5. Our algorithm is asymptotically faster than Floyd’s
because it uses a Strassen-like matrix multiplication routine.

We construct an algorithm to find the diameter of a graph given its
augmented adjacency matrix as input. The final value of £ corresponds to the
diameter of G as given by lemma 4. The matrix B is the k& —Ist power of the
matrix 4 and is used to test the conditions of lemma 4. At each iteration one
additional bit of accuracy is added to &, so that after [logn ] iterations the value
of k is the exact diameter of the graph.

Throughout the discussion we use the notation “X >0 to mean that the
matrix X has all of its entries non-zero and we use the notation “X %0 to mean
just the opposite, that the matrix X has at least one zero entry.

integer procedure DIAMETER(A, n):
begin
{ A is the augmented adjacency matrix of a connected n-vertex graph G }
if n <1 then return O;
if 4 > O then return 1;
Mgy := A;
for p := 1to [logn] step 1 do
A23=1Mp_rk%—ﬁ

P
k=12
B .= A;
for p := [logn]—1to 0 step —1 do
{ B = AKk=1%0, B-M, >0, and M;=42 for 0</ <[logn] |
if B-MP)O then

begin
k= k420
B:= B-M,
end,
{ AK1%0 and 45>0}
return k

end

LEMMA 6: Let M (n) be the number of operations required to multiply two n Xn
matrices. Algorithm DIAMETER computes the diameter of a connected n-vertex
graph using O (M (n)logn) operations and O (n 2log n) words of storage.

PROOF:

Correctness: 1f G has 0 or 1 vertices then trivially it has diameter 0 and the
procedure obviously returns the correct value. We also notice that the only
possible way that any graph can have a diameter of 1 is for the graph to be
complete. Because the procedure explicitly checks for 4 >0 this case is again
handled correctly. Thus it remains only to verify that the procedure is correct
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when processing a graph whose diameter is at least 2.

If the graph does have diameter at least 2 both tests must fail, so the
procedure continues its initialization by building a table of the power-of-two
powers of the matrix 4. The 2/ power is stored in the matrix M, for
0</«[logn]. The algorithm never uses any higher powers of the matrix because
the diameter of an n-vertex graph is at most n—1. The next two assignments
initialize k and B. Thus whenever the program first reaches the second loop the
assertion stated there is valid.

We next show that the assertion remains true each time the loop is executed
if 1t is true before the loop is executed. Let us use B', p’, and k' to denote the
values of the corresponding variables after executing the entire loop and reserve B,
p. and k to denote the values of the variables before executing any part of the
loop. The loop consists of an if-statement, so there are two cases to consider.

In the case where B-M,>0 we have no changes to the variables, except for
the loop index p. Thus B'=B, p'=p—1, and k'=k. Substituting these values
into the invariant, we obtain

B'=B =AF1=4K"13%),
B'"My 4 =BM, >0

Obviously none of the matrices M, is changed by the loop. Hence the assertion
remains valid.

In the case where B-M,#0 we have a similar argument. The M/ again are
unchanged, but this time B'=B-M,, p’=p—1, and k' =k +2P. Substituting
into the assertion, we find that

B'=BM, =447 =413
BI'M[,'+| = (BMP)MP = B'Mp+1 > 0.

Thus regardless of the path through the loop, we know that the values of the
variables after executing the loop satisfy the assertion whenever the values of the
variables before executing the loop satisfy the assertion. The assertion is thus an
invariant of the program.

From this it follows that the final assertion is also an invariant because the
only way in which the return statement can be reached is when the second loop
terminates with p =—1 (we assume that the control variable p is defined after the
loop exit only as a convenience in our proof). This final invariant implies partial
correctness of the program. Total correctness follows from the observation that
termination is guaranteed because each loop is executed at most [lognr ] times.

Timing: As we have just remarked, each loop is executed at most [logn]
times. The primary work within each loop consists of a single matrix
multiplication. All of the other operations within the loops and within the rest of
the program are dominated by these matrix multiplications. Hence the total
number of operations is O (M (n)logn).



Extremal and Approximate Distances 7

Storage: The largest space requirement is for the matrices M;. Each of
these has O(n?) entries and there are [logn]+1 of the matrices. Thus the total
storage is O (nlogn). O

The procedure is easily modified to find the radius of a graph simply by
looking for a single row or column of the matrix which contains no zeros, instead
of demanding that the entire matrix contain no zeros. We have now shown the
following.

THEOREM 7: We can find the diameter, radius, periphery, center, all pairs of
peripheral points, or a géodesic of an n-vertex graph in O(M (n)logn) operations.

PROOF:

Using the procedures outlined above we can find the diameter or radius in
the desired time. The periphery, center, and all pairs of peripheral points can be
read out of the appropriate matrices A k=1 and A% using the characterizations
given in section 2. This requires at most a single scan over the two matrices,
which is only O (n?) additional work. Given a pair of peripheral points it is easy
to find a connecting geodesic in O (n?) operations using a breadth-first search. O

If we use a Strassen-like method for matrix multiplication we improve both
upon Floyd’s algorithm and upon Fredman’s.

It is worth noting that our approach is useless without a fast matrix
multiplication scheme. If we use the naive O(n % method our algorithms are
actually worse than Floyd’s algorithm, both in a practical sense and
asymptotically.

The storage requirement for our algorithm is O (n %log n) because of the logn
matrices which we precompute. We could store these using O (n Yogn) bits
because we really do not need the actual numerical values of the matrices. Rather
we are only interested in the zero or nonzero state of each entry. In an
implementation this savings in storage might be worth the extra overhead required
to store the bits in a packed form. The asymptotic time bounds would remain
unchanged.

A final comment is that our algorithm precomputes a table of the power-of-
two powers of the augmented adjacency matrix. This table of matrices is the
dominant storage cost in the algorithm. This cost can be substantially reduced if
the matrices are recomputed each time they are needed. This increases the
running time by a factor of logn but reduces storage requirement by the same
factor. Whether this time-space tradeoff is optimal we do not know.

4. Approximate Distances

In the previous section we discovered that extremal distances can be
computed in less time than required by current algorithms for computing the
entire distance matrix. If we are interested in computing all of the distance
matrix, but will settle for having our answers correct only to within a factor of



8 K. S. Booth and R. J. Lipton

two, our algorithms also apply. We are essentially asking for the integer parts of
the logarithms of the distances. The power-of-two powers of the adjacency matrix
computed earlier provide sufficient information to determine all distances to within
a factor of two using O (M (n)logn) operations.

We can actually obtain approximate distances correct to within any constant
factor if we are willing to perform a little more work. For any ¢>0 define
¢ = l+e If we let

d(ij) = min{ [¢k] | (4199, ;> 0}
then c'/(z',j) is a good approximation to d(i,j). This is formalized by the next
lemma.
Ld(i.))=d(.))|
- <e.
dfij)

LiMMA 8: For all i # .

PROOF:

.. Since 7/ #j we must have d(i,j)>0. Choose the minimal k such that
d(i.j)= |¢*|. By definition.

lo* =1 <d(ij) < L¢*) =d (i)

Because d(i.j) is an integer we can ignore the floor function and observe that in
fact ¢k ! <d(i.j). Thus we find that

d(ij) = 6" < " < ¢d(ij).
But ¢ = 1+€ so when we subtract d(i,j) from each side we are left with
d(ij)=d(ij) < ed (i)
Because J(i,j) is no smaller than d(i,j) we may conclude that in fact
dij)—d(,j
[ d( ja’)(i,j)( N <,
which is the desired result. OJ

To compute J(i,j) for all i and ; we need only compute the sequence of
matrix powers A4 R L R stopping certainly when the nth
power of A4 is reached and possibly much sooner. As we compute successive
powers we check to see when each (i,j)-entry first becomes nonzero in one of the
matrices, recording the corresponding power as d(i.j).

THEOREM 9: Given any €>0 there is an O (M (n)(logn)?) algorithm (whose
constant of proportionality depends upon €} which computes approximate distances
d(i,j) having a relative error no larger than e.

PROOF:

We compute loggn matrix powers. Each matrix can be computed using at
most 2logr matrix multiplications by inspecting the binary expansion of its
exponent. These computations dominate the remaining work. If we note that
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logyn is actually logn/log¢ then an upper bound on the total number of
operations is O(M(n)(logn)z). In terms of e the constant of proportionality
varies as 1/log(1+¢€), which is 1/e for sufficiently small e.

The number ¢ is of course not an integer. We must keep enough of the
low-order (fractional) bits to ensure that the truncated value [¢*] is correct in its
integer part. If we initially compute ¢ to loggn fractional bits the computation
stops when ¢* reaches n so the cumulative error will not propagate into the integer
part of our calculation.

Techhically we would require a different algorithm for each n because the
actual data constant which represents ¢ depends upon n, but in practice we can
always choose e=27" and eliminate this problem altogether. O

The storage requirement for this algorithm is clearly O (n?) because we have
only a fixed number of matrices in use at any time. It is interesting to ask
whether the second factor of logn is really necessary in theorem 9. Is it possible
to calculate the [¢*]-th power of A from the [¢* ~!|-th power of 4 using only a
fixed number of matrix multiplications? For arbitrary values of ¢ we see no better
method than examining the binary expansion of [¢*] to obtain A4 [‘i’kJ, even if we
have available all of the powers of 4 previously computed. (This method would,
of course, require additional storage.) Perhaps there is an easier method. We
leave this as an open question.

5. All Distances

If we want to compute all distances instead of just the extremal distances
our techniques do not always work. If the graph is sparse we can take advantage
of its sparseness by computing distances using a breadth-first search beginning at
each vertex [5]. This will yield an O (ne) algorithm which for e <n? will be better
than Floyd’s algorithm. The problem seems to be with dense graphs.

It would seem that with many edges a dense graph would be likely to have a
small diameter. If the diameter is small then we can compute the matrices 49,
AY 42 gdiameter(G) o find all distances in the graph, a method similar to
that outlined in theorem 9. This would require at most O (M (n)-diameter(G))
operations. For arbitrary graphs we could then use a hybrid approach, depending
upon the density of edges, and perhaps achieve a uniformly fast algorithm.

But density alone does not insure a small diameter [8]. It is easy to exhibit
graphs with almost n2/4 edges whose diameter is n. If we want to employ our
hybrid solution we need a more uniform condition than density.

Define a graph to be pseudo-regular of degree p iff the degree of each vertex
is bounded above and below by

/2 L degree(i) < 2p

so that all vertices have about p neighbors. Note that all regular graphs are
pseudo-regular but that the converse is not true.
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LeMMA 10: If G is a pseudo-regular graph of degree p then diameter (G) < 6n /p.
PROOF:

Consider a geodesic of G whose vertices are ig. 7|, . Idigmeter(GY
Because a geodesic is a shortest path between its endpoints the neighbors of i; and
ij+3 must be distinct for every j. Thus the total number of vertices on the
_geodesic and adjacent to it must be at least [diameter(G)/3)-(p/2]. This cannot
exceed the number of vertices in the graph, hence we know that
diameter(GYg6n/p. O

Our hybrid algorithm will want to balance the cost of the breadth-first
search for sparse psuedo-regular graphs against the cost of performing
diameter (G) matrix multiplications when the graph is dense. Ignoring constants
“and low-order terms we must solve the equation

nMm)p= nip

for p, where the left-hand side is the cost for dense graphs using our matrix
technique, and the right-hand side is the cost for sparse graphs using breadth-first
search. The crossover occurs when

p = (M(n)/m)'?

We have shown the following result.

THEOREM 11: There is an O((n3M (n))!/?) algorithm for computing all distances
in any pseudo-regular graph. O

This algorithm achieves the same running time as does Johnson’s algorithm
[S] if the input graph is sparse, but our algorithm is superior if the number of
edges exceeds a threshold which depends upon the running time of the matrix
multiplication algorithm. (The lower the bound for matrix multiplication, the
lower the threshold and hence our hybrid algorithm becomes even more
attractive.) Recall, however, that our algorithm is only designed to work well for
pseudo-regular graphs whereas Johnson’s algorithm works well for any graph.

It is interesting to note that if we use a naive matrix multiplication instead

of Strassen’s method we won’t improve on Floyd’s algorithm and in the unlikely

event that M (n)=0(n Ywe would matchff the O (n 2.3y decision tree complexity of
the algorithm given by Fredman [3].

6. Conclusions

We have exploited the fact that it is unnecessary to know all distances within
a graph when computing various distance statistics such as the diameter and radius
of a graph. These same techniques have also been used to compute approximate
distances between all pairs of vertices in a graph with unit cost edges. Finally, we
have achieved an improved running time for the exact all pairs problem in graphs
with unit cost edges under the assumption of pseudo-regularity.
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It would be nice to find other classes of graphs for . which the all pairs
problem can be solved efficiently. We suspect that distances are not as hard to
compute for unit cost edges as for arbitrary costs and propose this as an area for
further research.
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