Correctness of a Lucid Interpreter
Based on Linked Forest Manipulation Systems

by

Mansour Farah
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report (CS-78-07
June 1978

Correctness of a Lucid Interpreter

Based on Linked Forest Manipulation Systems

Mansour Farah

Department of Mathematics
Université de Moncton
Moncton, N. B., Canada

Abstract

The non-procedural programming language, Lucid, is described
formally using a model based on linked forest manipulation
systems. In this model the semantics is defined computationally
by an abstract interpreter which is essentially non-deterministic
and involves parallelism. This computational semantics is proven
to be totally correct with respect to the denotational semantics

of Lucid.

l. Introduction

The notion of Linked-Forest Manipulation System has been
introduced in [4, 5] as a powerful tool in computational
semantics and in particular for the formal description of pro-
gramming languages. The basic objects which are manipulated
in such a system are linked trees, i.e. rooted multilabelled
trees with pointers. 1In describing a programming language, the
syntax and semantics can be in two parts. Essentially, the
syntax part defines (in a constructive way) a mapping from any
syntactically correct program to the corresponding linked tree.
The semanfics part defines some transformations on such a linked
tree leading to a final linked tree on which the results of the
computations are shown.

The formal descriptions of several conventional programming
languages using linked-forest manipulation systems (l1.f.m.s.)
have been given, e.g. [6, 8]. These descriptions are at the
same time precise and readable.

In this paper the computational description of Lucid, a
non-procedural language, is given and shown to be totally correct
with respect to its denotational semantics. This language differs
from the more conventional programming languages in that it is
not sequential and has operators which require parallel computa-
tions. A goal oriented demand driven interpretation scheme is at
the basis of the semantics given here. A similar scheme has
been used in [3] to give a deterministic operational semantics

for the same language. However, in this description

non-determinism and parallelism are handled very elegantly by
the l.f.m.s. that defines the semantics of Lucid.

The tools necessary for proving the equivalence of two
models, one of which is based on l.f.m.s., had to be developped
before being able to state and prove the correctness of the
computational semantics of Lucid that is given here. Moreover,
these tools, and more specifically the notion of transformation
on subtrees, would allow the expression of properties of l.f.m.s.
in general.

In the next section we give the computational description
of Lucid. The basic tools for expressing properties of an
l.f.m.s. are introduced in section 4. The following two sections
deal respectively with the partial correctness and the consis-
tency of this computational semantics, thus showing the total

correctness of the interpretation scheme for Lucid.

2. Computational Description of Lucid

2.1. Syntax Description

Table I gives the syntax rules for Lucid programs. ID
is a set of identifiers including the identifiers INPUT and
OUTPUT. The constants are elements of the domain D=2y {T,F},

i.e. consist of integers and booleans. Terms are formed from

constants, variables, unary operators, binary operators and
the if-then-else operator. The set of unary operators is
UNOP = {first, next, latest. latest™ , — , —}, that of the

binary operators is BIOP

lasa, fhy, +, %, =, /., 4, >, 3,
<, =, eq, A, v} . The priorities of the operators which is
implied by the context-free productions is such that the unary
operators have higher priority than the binary operators, which
in turn have higher priority than the if-then-else operator.

An assertion consists of an identifier, representing a
variable, followed by the "=" sign, followed by a term. A
program consists of a list of assertions followed by a natural
number which indicates the instance of variable OUTPUT to be
computed. The l.f.m.s. associated with the non-terminal <program >
checks for multiple definitions of a variable, and for the defi-
nition of the special variable OUTPUT. Then it links every
point of usage of a variable with its defining expression.
Finally it puts back the names of the variables at their usage
points. This latter action is only necessary to be able to

carry out the proof of correctness.

Example

The following Lucid program computes the factorial of a

positive integer given as input (in this case it is 5).

INPUT = 5;

N =1fby N + 1;

F =1 fby F*next F;

OUTPUT = F asa N eq first INPUT ;

0

According to the syntax description of Lucid given in

Table I, the linked tree corresponding to this factorial program

is as follows,

e Erogl (EVAL, 0, £)

¢ INPUT _,»const, 5

o N

LR

6 var, INPUT

The pointers are constructed in the 1l.f.m.s. associated

with the non-terminal <program > .

Table I - Syntax of Lucid

<ident> + £ of
£ ¢ ID
<const> =+ y oconst,x
X €
<prim> + <const> o
<const>
<prim> -+ <ident> o var
<ident>
<prim> -+ q <prim> o0
: <prim>
@ € UNOP prim
<prim> + (<term>) e}
<term>
<term> + <prim> o
<prim>
<term> + <prim> B <term>
€ A
B BIOP <prim> <term>
if

<term>+if<term>then<prim>else<term>

<term> <prim> <term>

10

11

12

13

<assertion> + <ident> = <term>

<ident> <term>

<assertion list>-<assertion>;<assertion listp

<assertion>

<assertion list>

<assertion list> + <assertion> Cl

o

<assertion>

<program> + <assertion list> ; i

o prog, (EVALIlI £)

i €N <assertion list>
START /\ - ERROR| L1l
g £
L1 -+ L2 ERROR
cuTPUT oUTPUT
- ovar, g var, v L2 L3
>
g g
var, v - var, &
L3 L3 STOP
g g

2.2. Semantics Description

The 1.f.m.s. describing the semantics of Lucid programs
is given in Table II. Of special interest in this description are
a subset of the set of labels called control labels, and
the set of basic functions. The subset of control labels is

denoted CL and is defined as
CL ='({EVAL, WAIT} x N* x N*)_ U '({VAL} X N* x N* x D)

where N* denotes the set of all strings of non-negative inte-
gers including the empty string denoted by €. The labels of
this set control the evaluations in the program. A label of the
form (EVAL, t, s), where ¢t, s € N*, can be interpreted as a
request to evaluate the instance, indicated by t, of a certain
term, while s is used as a stack of indices which is necessary
for parallel computations. A label of the form (WAIT, t, s) is
used only with variables to point out that the instance, indi-
cated by t, is being evaluated. Finally, a label of the form
(VAL, t,s, m), where m € 2 U{T,F}, indicates that the value
of the instance corresponding to t of a certain term is m.
The set of basic functions is given below. The function
spef (for special functions) and feps (for reverse special
functions) manipulate time parameter t and stack s
according to the special operator involved. This special opera-
tor can be any one in the set SPOP = {first, next, latest,

NNy~

latest™!}. The functions inc and dec manipulate the time

NN NN

parameter only. These functions are used for the semantics of

the Lucid special operators. The functions uop (for unary
operator) and bop (for binary operator) are used for the
semantics of the arithmetic and logical operators. The set
of binary arithmetic and logical operators is

ALOP = {+r - *, /0 4, Ve Ay €9, Ne, £, <, >, >}

The definition of these special functions is as follows.

spef: SPOP x NT x N* —>N* x N*

Q
]
5
1]
t

(Otl...tn. 7 toSo...Sm) if

NS

|

(to+l treeet, s S50 -s,) if o

(0, tgt;.. -ty 1 Sge- .S) _
(Eyeeety s EySgeee8y) if 0 = latest

: - 1
(Otg...t s sqeee8p) if o = latest
feps: SPOP x N* x WN* —911\1'*' X IN*
(sotx"'tn ’ sl...sm) if o= first

(t-1l t ..t ,s....8) if o = next
(o, totl...tn,sosl...s)— © ' noo m
: m .
(SotO"'tn ’ 51--'sm) if o = latest

(€1--ety 1 SSyeees) if o = latest™
inc: Nt — ot
tobyeeoty = totl .ot

dec: N+ — fN+

totlco-tn — to—l tlo;.tn

10

wop: {=, -} xD — D
’(— ; N) —>-n if n €N

K—x, n) > -~n if n € {T,F}

bop: ALOP X D x D —> D

(0, n, m) F——>npm

Note that functions uop and bop are partial functions. They
can be changed into total functions by adding the special

element A to the domain and letting

udp {n, n) = A if nn is not defined

bop (p, n, m) = A if npm is not defined.

Intuitively A indicates an error like division by 0 .or
wrong type in a term.
The label parameters and their domains are listed below.
g € SPOP
t e N* , £’ ¢ {0} x N* , t" ¢ (N-{0}) x N*
S € IN*
n € {=, -}
p € {+, =, *, /, *, vV, A, eq, ne, <, <, >, 2}
pr€ {+, —, *, /, 4, eq, ne, =, <, >, =}
m, n €D
i €N
There are no tree parameters since the productions are

essentially structure preserving.

11

The productions of the 1l.f.m.s. describe the semantics
of Lucid in a computational way. The goal of the computations
is the value of OUTPUT; in a given program. Production 29
starts the evaluation of OUTPUT; by regquesting its value.
When this value is obtained the computations come to a halt
as indicated by production 30. Productions 1 through 28 define
the evaluation of any possible term. Since all these produc-
tions are labelled by the same blank label, as well as their
success and fajlure fields, the computations are essentially
non-deterministic. Moreover the evaluations are performed in
parallel as implied by production 8 and 17-23. This paralle-
lism is essential for the operators A and v but not so for

all the other arithmetic and logical operators.

Table II — Semantics of Lucid

12

o, (EVAL, t, s) o]
I -
(EVAL, spef(o, t, s))
asa, (EVAL, t, s) asa
>
(EVAL, spef (first.t,s))
asa B
->
(VAL, t, s,F) (EVAL, inc(t), s)

/ .
(VAL, t,s,T)

tby, (EVAL, t’, s)
A -

fby, (EVAL, t", s) fby
-
(EVAL, dec (t"), s)

In, (EVAL , t, s) n

(EVAL, t, s)

10

11

12

13

14

15

13

p, (EVAL, t, s) o
/\ R
(EVAL, t, s) (EVAL, t, s)

if, (EVAL, t, s) if
/J\ ’
(EVAL, t, s)

if if
/\ >
VAL, t, s, T) (EVAL, t, s)

i if
4;5')\ A\ (EVAL, t, s)

var, (EVAL, t, s =
v, r r8) var, (VAIT,t,s)

(EVAL, t, s)

o const, n, (EVAL, t,s) oconst, n, (VAL, t, s, n)

var, (WAIT, t,s) var, (VAL,t,s,n)
->

(VAL, t, s, n)

if if (AL, t, s, n)
/\-r A\
(» trs,n)

16

17

18

19

20

21

22

23

14

if

if if, (VAL,t,s,n)
’ A\
(VALI t, s, n)

Dl Py (VAL, t,s
N bop(p, ,n,m))
(VAL, t, s, n) (VAL, t, s, m)

\Y; v, (VAL, t, s, T)
-5
(VAL, t,s,T)

/\ >
(VAL, t, s, T) ’

v v, (VAL, t, s, F)
-
(VAL, t, s, F) (VAL, t, s, F)
A A, VAL, t, s, F)
-
(VAL, t, s, F)

A Ay (VALr t, s, F)
->
(VAL, t, s, F)

A
A, VAL, t, s,T)
>
(VAL, t, s, T) (VAL, t, s, T)

24

25

26

27

28

29

30

15

n n, (VAL, t, s, wop(n, n))
-
(VAL, t, s, n)
fby fby, (VAL, inc(t),s,n)
- /\
(VAL, t, s, n)
fby fby, (VAL, t, s, n)
A
(VAL, t, s, n)
asa, (VAL, feps (first,
/\ t, s),n)
>
o, (VAL, feps (o, t, s), n)
- |
o]

START)

prog
-+ =
OuUTFRUT

(EVAL, i, €)

(VAL, i, £, n)

prog,

OUTPUT

(VAL, i, €, n)

STOP

16

3. Brief overview of the denotational semantics of Lucid

The complete semantics for Lucid can be found in [1]1,
but we will give a short review of the main points. The
domain of values is augmented by adding the undefined element
denoted 1, and a flat complete partial order is defined on
this domain. Thus 1 E x for any x of the domain while any

two elements which are different from 1 do not compare in

this relation.

A program is written as X = T(X) where X = <X,;, ..., X, >
and T(X) = <1, (X), ..., TV(§)>'. The operators which may be
conbined to form a functional T; are the constant functions,
the arithmetic and logical operators as well as the Lucid
special operators mentioned in the previous section. One
additional class of operators consists of the projection func-
tions denoted pj for j =1, ..., v. They are defined by

pj(i) = X and clearly are not needed when using the infix

j H
notation for the operators as in the previous section.

The semantics of the special Lucid operators is as follows.
Let t be an infinite sequence of non-negative integers i.e.

t = t,t; ... and let x and y be elements of the domain.

o
(first x) = x cen
CEEL LIRS TS 0t,
Xt X v i, T Fe 41 e, ...
(x fby y)totl R I Y if t, =0

yto-l t, ... otherwise

17

(latest x) ce. =T X .o
¥ tot, t,
(latest™! x) = X
~~~~~~ P P Ototl.--
(x asa y)totl cee = xst1 ees 1f 3 s: VY r<s, yrt1°" =
and ystl - o o = T
1 otherwise

The arithmetic and logical unary, binary and trinary opera-
tors are pointwise operators with respect to the time parameter

t, e.g. (x + y)t = X, + Y -

The semantics of a program P is defined as being the minimal
solution for P which is shown to exist because all the opera-
tors are continuous. Moreover, it can be computed as the upper
bound of Ti(I), where I=z <1, ..., L> and Ti denotes the
composition of 1 with itself i times. As it is shown in [7]
this upper bound is in fact the limit of the sequence

() =T, (DM, D), ...
because that sequence is increasing, i.e.

DL @) forall ien.
Therefore 3j: (13(D), =m# 1 iff (Jt (1), = m.
1

Notation: For any t € N* we write X, = m to mean that

for any infinite sequence of non-negative integers t’ we

have Xipr = M.



18

4. How to express certain properties of l.f.m.s.

Since we will be dealing with programs and their linked
tree representations we need a notation which expresses the
relation between the two representations. We will denote by
[P] the tree representation of program P as produced by the
syntax description of Lucid given in Table I. Moreover, for
any term ¢ (or more formally o(X)) we denote by [o] the
tree (without pointers) corresponding to ¢ in the mapping
defined by the syntax description.

Let CL denote the set of control labels in the semantics

description. Two linked trees e, and e, are almost identical,

written e, = e, , if the removal of all control labels from

both trees makes them isomorphic.

Definition 4.1. Let e and f be such that e = f (i.e. f

derives from e by some production) and suppose that label
2 € CL is at node x in e. We say that (x, &) 1is essential
for e =3>f if the tree g obtained from e by removing
label & from node x is such that f 5é>g (i.e. there is no
production such that £ =>gq). J

' For any linked tree e we denote by Af{e) the set of pairs
(x, &) such that x is a node in e and £ is a label at

ncde x in e.

Definition 4.2. Let e and f be linked trees such that

b b
e = &0 =£ég>e1 =3, ::.]§$>ek = f and e = f. Also let



19

B, c Ale) and B, ¢ A(f) . We say that B, produces B, in

the above derivation if there are linked trees f? = el ,

£l o= gl , .. £5 = &K such that

P P, Py
A :::$>fk
with A(£%) = B,
A(fY) c a(e’) for 1l =i =k
k
and B, ¢ A(£Y), L]

Intuitively, if B, produces B, and (x, &) € B, then
control label & at node x in f is generated in the deriva-
tion by the control labels of e which are at the nodes indicated
by the pairs (node, label) of B, , and only by these control
labels.

The notion of transformation on subtrees in a given deriva-
tion is needed to be able to express different properties of

terms in a certain evaluation. The following definition makes

this notion precise.

Definition 4.3. Let E and F be linked trees such that E = F .

Also let e be a subtree of E, and f a subtree of F such
that e = £. For any &,, &, € CL we say that (2, , e) |is

transformed into (%, , f) and write

o4, * of,
e = £
P, p Pr &




20

and relatively to the above derivation the following two condi-

tions are satisfied:

(i) 1f r is the root of e in E and s the root of

f in F then {(r, 2,)} produces {(s, 2,)}.
(ii) for all i and any pair (x, &) € A(E') which is
essential for ET ==g>El+l ,

{(r, 2,)} produces {(x, 2)}. H

5. Partial correctness of the Lucid interpreter

In this section we will show that whenever an instance
oy of term ¢ 1is defined in the minimal solution 6f a program
P and its value is m, then the evaluation of the term o
(in tree form) by the interpreter leads to the same value m .

This is stated more formally as follows.

Theorem 5.1.

For any term o(X) in P, e such that e = [o(X)], and
any t, s € N*, if
3i, (0(1‘1(1‘)))t = m and m# i

then
o (EVAL, t, s)

o(VAL, t, s, m)
e == o

for some e’ = [o(X)]. O



21

Before proving this theorem we will prove a lemma which
simplifies the proof of the theorem. Also we say that term
o(X) , or simply o, has property w,(k) if it satisfies the

property of Theorem 5.1 with i = k.

Lemma 5.1.

If o,, o0, and o0; are terms having property T, (1) then
So is any term ¢ formed from one or more o5 (3 =1, 2, 3)
using any Lucid special function or arithmetic or logical

operator.

Proof.

Several cases have to be considered.

(a) Let £ € SPEC’ = {first, next, latest, latest™ '}, and

consider fo, . Suppose that for some t,(fc:lrl(I))t=In
and m # 1 . If (t’',s’) = spef(f, t,s) it is easy
to check from the definitions of f and spef that

(foirl(I))t = (clrl(Iﬁ)t, .

£
Also [fo,] = I , and
[o,]

if e,, e; = [0,] then for any s,

£, (EVAL, t, s) 1 £
I I
(EVAL, spef (£, t, s))

e, el

£
(by hypothesis on g,) ==* I

(VAL, spef(f, t, s), m)
€1



(b)

22

=

28 T f, (VAL, feps (f,spef(f,t,s)),m

o)

’
el

However, feps(f, spef(f, t, s)) = (t, s) for any £ € SPOP.

Thus for any e = [fo,],

o (EVAL, t, s) I * o (VAL, t, s, m)
e af

for some e’ = [fo,].

Consider o, gasa 0, and suppose that for some
tr = byt ... £, ((0) 253 0,) Tl(I))t=m and
m# i .

From the definition of asa follows that there exists

té such that for t’ = tdt, ... tn ’ (cz)t, = T and
for all tg < t(') -1, (cz)t,. - ¢ = F. Also
o Ereee by

i,- i,-
asa
On the other hand [0, asa o,] = AN
[o,] [o,]

So, if e, = [o,] and e, = [0,] , then

asa, (EVAL, t, s)

2 ;
o/ = (EVAL, 9, 590)

30
W
L3

1 2
where (t%,s%) = spef (first, t, s)
= (Otz . e tk 7 to S * e Sj ) .



23

But (0, T (1I)),, ¢ 1is either F or T, i.e.
| 1... k

different from : . Using the hypothesis on g, , we

have that

asa asa

' % d///p
(EVALI tO’ SO) (V.ALI tO'SO
€ €. e, e;
- i,—
where m, = (g, T (J.))Otl . tk‘
If my, = F then asa
3

(EVAL, t!, s9)
1

€, e
where t! = lt, ... t, . Also we have that
asa
:___.*
(VAL, t!', s°, m,)
e, ei
where m., = (o Ti(I))
1 2 1t, ...t °

Thus, it can easily be shown that production 3 would

have to be used té times, because My, o m

tg -1
are all equal to F , and m_, = T. Let i = tl
0
we would then have
asa 4 asa
-
O (VAL, tlr sll ml) (EVAL, ti, Sl)
e et ' i
1 S2 € e,
. i, —
By hypothesis on o, , and since (o, T (J.))itl c
cee tp



24

k,so o a0 Sj)

and - feps(first,it, ... ty s tSg - sj) = (tgt; ... t

asa

VAL, t°, s!, m)

e’ et
2

asa, (VAL, t, s, m)

[
[N

Consequently, for any e = [0, asa 0,],
o (EVAL, t,s) |==* O (VAL, t, s, m)

e e’

(c) Consider o, fby o, and suppose that for some

=ty ...t ((0, fhy 0,) 'rl(I))t =m and m# 1.

Two cases are to be considered.

- If t, 0 then by definition of fhy

(o0, fby 0,) TH(I), = (o, vt (@,

In this case, for any e, = [0,] and e, = [o,]
we have,

fby, (EVAL, t, s)

=

(by hypothesis on o,)




25
.15}32 (VAL, t, s, m)

€,

- If t, # 0 then by definition of fby

(0, by 0) T (D) N @D, . .
e oLty e

= i,-
- (02 T (J-))dec(t)

In this case, for any e, « [0,] and e, = [0,],

since inc(dec(t)) = t, we have
fby, (EVAL, t, s) foy
6
==
(EVAL, dec(t), s)
€ €, €, e,
fby

(by hypothesis on g,) ’_—_=*

(VAL, dec(t), s, m)
€,

fby, (AL, t, s, m)

e, e;

Thus in both cases for any e = [0, fby o,]

1

o (EVAL, t, s) T o (VAL, t, s, m)
e ‘ er

(d) Consider go; where g € {—=,~=}.

Suppose that for some t, (g0, Tl(I))t= m and m# 1 .



26

Then (9o, t (D)), = m, i.e. (o, D), = my 1)
and g(ml)im. g
But [go;] = .

[o,] )

So, for any e; = [0,] we have

7

g,(EVAL, t, s)
I =

Ig
(EVAL, t, s)
e1

e,

(by hypothesis on g,) g

’=*
I(VAL, t, s, ml)
e'
1

g,(VAL, t, s, UOp(g, ml))

’
el

By definition of wop, |uwoplg, m,) = g(m,) .

14

Thus for any e = [go;], there exists e’ = [go, ]

such that: o (EVAL, t, s) o (VAL, t, s, m)
e Iﬁ e’

(e) Consider ¢, h g, where h ¢ ALOP - {v, A}
Suppose that for some t,((o, h o,) Tl(I))t = m
and m# 1 . It follows that

i,— i - :
(0, T (J.))th (oo T (1))t =m and m ¥ L
and

(g, Ti(I))t = m, # L, (o, Ti(I))t =my,m hmy,=m.



(£)

Since g, h g, =

[o,] [o,]

for any e, = [0,] , e, = [0,] we have

27

h, (EVAL, t, s) h
(EVAL, t, s) (EVAL, t, s)
e, e, e, e,
h
(by hypothesis on o, and o,) f=—=*
KVAL,t,s,nH) SVAL,t,s,mz)
€ 2
17 h, NAL' t, S’ mp(hl ml Imz))
=
14
e’ e,

However, bop(h,m;, m,) = my, h m, by definition

of the basic function bop.
Thus, for any e = [0, h 0,]

o (EVAL, t, s
14 14 ) i "
e e

o(VAL, t, s, m)

7

for some e’ = [0, h o,].

Consider o, v 0, , and suppose that for some

1

t, ((o, v g,) Ti(I))t =m and m# 1 . This means

that (0, t (@) v loy D), = n and m# 1

By definition of the V operator if m = T then at

least one of (o, Tl(I))t and (o, Tl(I))t should



28

be T, but if m = F then both (0, Tl(I))t and

(o, Tl(I))t should be equal to F .
v
Since [0, v 0,] = » for any e, = [0,]

(0,1 [0,]

and e, = [g,] , we have

v, (EVAL, t, s) \Y
8
O/\ /\O
(EVAL, t, s
e

) (EVAL, t, s)
e, P 1 €,
- If =T and (o, Tl(I))t = T then by hypothesis
on g, ,
v v
/\Q ]==* D/\O
(EVAL, t, s) (EVAL, t, s) (VAL, t, s, T)
? ’
e, e, e, e,
18 v, (VAL, t, s, T)
=>
?
€, €.

-~ If m=T and (o, 11(13)t = T then by hypothesis

on 02 r

’.=*,
VAL, t, s) (EVAL, t, s) (VAL, t, s, T)
e e, ’ ’



29

19 v, (VAL, £, s, T)
\o
e'! e’
1 2

- If m=F then by hypothesis on o, and o,
Y v
#*
(EVAL, t, s) (EVAL, t, s) VAL, t,s, F) (AL, t,s,F)
e, e, e, e,
‘' (VALI t, s, F)

20

e

Thus in all possible cases and for any e = [o, v g,]

o (EVAL, t, s) I * o (VAL, t, s, m)

e e’

for some e’ = [g, v o,] .

(g) Consider g, A O,
Suppose that for some t, (o, A 0,) 'ri(l'))t = m and
m# 1 . Then (o, Ti(l'))t A (o, Ti(I))t =m and m# 1.
By the definition of A, if m = F then at least one
of (o, (D)), and (o, tH(I)), should be equal to F,
but if m = T then both should be equal to T.

Let e, = [o,] and e, = [0,], then

A, (EVAL, t, s) 8 ' A
/\
EVAL, t, s) (EVAL, t, s)

e e e, ez



30

- If m=F and (oltl(.-f))t = F then by hypothesis

A A
* /\
(EVAL, t, s) (EVAL, t, s) (VAL,t, s, F)

e, e, e e;
)1 A, (VAL, t, s, F)
/\
’
e e

- If m=F and (cz'rl (].'))t = F then by hypothesis

on o,
A A -
/\O ' * A
(EVAL, t, s) (EVAL, t, s) (VvAL, t, s, F) -
4 ’
e, €y e e,
- A (VAL, t, s, F)
———
e] e;

- If m =T then by hypothesis on ¢ and ¢

A
/\ -
(EVAL, t, s) (EVAL, t, s)
e1 e2

23 A 4 (VAL, tl Sl T)

—

1 2
A
(VAL,t,s,T) (VAL, t,s,T)

' ’
€ e,

e’ e’
1 2



31

In all possible cases for any e = [; A 0] and
for some e’ = [0, A 0,]

o (EVAL, t, s) o (VAL, t, s, m)
) E:*A ar

(h) Consider " if o, then 0, else ¢, and suppose that for

some t, ((if o, then o, else o,) Tl(I))t Zm and m # 1.
By the definition of the if-then-else operator,

(o, 'rl(I))t =m, for some m, ¢ {T,F} ,

and if m; = T then (o, Tl(I))t =m,

but if m, = F then (o, Ti(f))t =m.

14

Let e, = [0,] , e; = [0,] and e, [o,] .

if if
" 9
==
(EVAL,t,s)
e, e, e, e, e, e,
(by hypothesis on g,) #::: * £

(VAL,t,s,m,)
e; e, e,
- if m, = T then
if 10 _1if
e’ e e ’
1 <2 3 e; ¢2 e,
if
h::*
(VAL,t,s,m)
e’ e’ &3

2



32

if, (VAL, t, s, m)
15 -
e 3

(
14 r
€, €2 €

(EVAL, t, s)

3

(VAL, t, s, m)

/&
e' =¥ e
1
if
| % m
’ ’
81 e2 e

16 if, (VAL, t, s, m)

’ ’
el ez e3

-

In both possible cases, for any e = [if o, then o, elseog,]

e = [if o, then o, else o,]

o(EVAL, t, s) o(VAL, t, s, m)

e !=* e’

for some e’ = [if o, then o, else ]

Therefore, any possible term ¢ formed from one or
more oi's (1 =1, 2, 3) wusing a Lucid special func-

tion or an arithmetic or logical operator, has



33

property m, (i) provided that 0,, o, and g, have

property w,(i) for some i . []

Now we can prove Theorem 5.1.
Proof (Theorem 5.1)

It will be done by induction on i .

Base step for i =0, (o Tl(I))t (c(I))t
Suppose that (G(I))t =m and m# L for some t .

Let us perform a structural induction on g .

Basis: -~ If o is a constant function m, let
e = [g] =oconst, m. By production 13, for any

t and s,

© const,m, (EVAL,t,s) é; o const,m(VAL,t,s,m)
e e

Thus property m,(0) is verified by any constant.
- If o 1is a variable X3 (or projection function

pj), it is trivial because pj(I) = 1.

Inducion: Lemma 5.1 with i = 0 shows that this step
is verified. Thus, every term o verifies

property w, (0).

Induction step Suppose that every term o verifies property

T,(k) for some k, and let us show that every
term o verifies property T, (k+l1). Let o be

any term, and let t such that

(o K+l (I))t =m and m # 1 .



34

Structural induction on ¢

Basis: ~- Let o be a constant function m, and
e = [0] = o const, m. For any t and s € N*,

o const,m, (EVAL, t,s) :l-§$> o const,m, (VAL,t,s,m)
[S] e

Thus property w,(k+l) 1is verified by every

constant.

- Let o be a variable xj (or projection function
pj). We have that (pj Tk+l(I))t = (Tj Tk(f))t.
Let e = [xj] = o vaz, xy, and ey = [Tj(i)]. For
any t and s,

var, X. , (EVAL,t,s) /O vaxr, Xj , (WAIT,t,s)
g J 22y H(EVAL,t,s)
e. .
3

%5

(by induction hypothesis on Tj) &(////43 ygg,xj,(hmIT,t,s)_

}=* (EVAL,t,s)
e’
J
14 var, x;  (VAL,t,s,m)
=
e’,
]

Thus property ™, (k+1) is verified by every
variable (projection function).
Induction: Lemma 5.1 with i = k+1 shows that this step is .

verified.

This completes the induction step on i .

D (Theorem 5.1)



35

6. Consistency of the interpreter

Here we will prove that if the interpretation of some
term o(X) with time parameter t leads to a value m, then
the value of (c(i))t in the minimal solution is also m. A

more precise statement follows.

Theorem 6.1.

For any term o(X) in P, any e = [0(X)], and any
t € N*, if there exists s ¢ N* such that for some e’ = [g(X)]

and some m,

o (EVAL, t, s) o (VAL, t, s, m)
e =" e’
then
(1) Vv s’ € N* Z (EVAL, t, s') |=* :’(VAL,t, s’ ,m)
and (ii) 3 i : (o 'ri(I))t =m and m# L. (]

Note that condition (i) expresses the result of the evaluation
is independent of the stack s.

Before proving this theorem we need the notion of complexity
of a derivation which will be defined below.

Consider the semantics description of Lucid as given in
Table II. Let E and E’ be linked trees such that E k::* E’!
and E,E’ = [P] for some program P. Also let e and e’ be

subtrees of E and E’ respectively, such that

o (EVAL, t, s) o (VAL, t, s, m)
e *  e!

for some t, s e N* and m ¢ D.



36

In what follows ng denotes the root node of e (or e’)

in E (or E’).

Definition 6.1. An evaluation path generated by (ng, (EVAL, t, s))
in the derivation implied by

o (EVAL, t, s) — o (VAL, t, s, m)

e e’
. . _ 1 1 k k
is a (finite) set H = {(ng, t, s), (n,, £, st),..., (nk,t , s}
such that (i) between every pair of nodes (n. , n ) there is

1 i+l

an edge or a pointer,
and (ii)'{(no, (EVAL, t, s)} produces

{(ni, (evaL, t1, sM)) | i=1,...,k} and

{tn, , (VAL, tt,st,mN)) | i=1,...,k} in the
derivation implied above. ]

Note that an evaluation path always includes (ng » t, s).

Definition 6.2. Evaluation path H is said to be of complexity
¢ 1if there are exactly c¢ pairs of elements of H,

i i+
, sl) , (n. 1 i+l

1 i+l ,tl+ , S ) > such that there is a pointer

< (ni,t

between n; and n;.q - []

The derivation implied by
o (EVAL, t, s) ,______:* o (VAL, £, s, m)
e !
has a finite number of evaluation paths since the number of
productions used is finite and each of them produces a finite

number of control labels. Let Cy 1Cay soeys cp be their

respective complexities. The complexity of the derivation



37

is defined as Max {c, ,c2, ... ,cp}.

Now we will prove a lemma which simplifies the proof of
Theorem 6.1. We will say that a term o(X) has property m, (k)
if it satisfies Theorem 6.1 and the complexity of the derivation

in question is less than or egual to k .

Lemma 6.1.

If o¢,,0, and o, are terms having property m,(c) for
some ¢, then any term formed from one or more cj's (3 =1, 2, 3)
by means of any Lucid special operator, any arithmetic and logical

operators also has property m,(c) .

Proof.
Several cases have to be considered.
a) Consider fo; where £ ¢ {first, next, latest, latest™!}.

~NN S~ ~ NN NN A ~ o~ SN

Let e, e" = [fo;] = I £ such that

[0, ]

o (EVAL, t, s) |==* o (VAL, t, s, m)
e e’

whose complexity is ¢ .

The first production used in this derivation has to be production 1

o £, (EVAL, t, s) 1 £
Thus: i = I
(EVAL, spef (£, t, s))
61 e

1
f

(by hypothesis on ¢,) =* I
y (VAL, spef (£, £, s), m)
e

’
1



38

£, (VAL, feps(f, spef(£f,t,s)), m)
e
Also, feps(f, spef(f,t, s)) = (t, s) by definition of feps
and spec.

Let (t’,s’) = spef(f, t, s). By hypothesis on g,, m is
independent of s’ , thus m is independent of s . This
satisfies part (i) of T, (c) .

Also by hypothesis on o, , 3i: m = (o, Ti(l'))t, and m # 1.

But (fo, T (D), = (g, Tl(I))t, as can be checked from the
definition of £ and spef. It follows that

(fo, Ti(I))t =m and m # 1 .

Thus, f o, has.property m,{c) 1if o, has property 'rrz(c).

b) Consider ¢, asa 0, and let e, e’ = [0, asa 0,] such that

ce> (EVAL, t, s) I * Z’(VAL, t, s, m)
the complexity of which is ¢ . Since any other possible control

label at node n, (root of e in E) is not used in the above

derivation, we may suppose, without loss of generality, that

asa asa
e = A » and that e’ = for some e, ef = [0,],

14
e, €, e, e,

and some e,, e, = [0,]. The derivation should have the form:



asa, (EVAL, t, s)

(by hypothesis on o,)

(if my = F)

(by hypothesis on o,)

(whenever mj = T)

(by hypothesis on o,)

27

39

asa
(EVAL, t°, s9)
asa
1
€, e,
asa
(EVAL, t!, s9)
€, e,
asa
(VAL, t!, s°, m,)
2
el e2




40

The hypothesis on 0, and o, can be used because the
complexity of the derivation involving each of them has to be
the same as the complexity of the main derivation. If

t=tyt; ...t , then td = jt, ... tn , and it follows that

n
feps (first, td, s°) = (¢, s) .

This explains the last step of the derivation.
cees My
, + and m being independent of s° by

Moreover, m,, m being all independent of s©

1’

by hypothesis on o

hypothesis on o, , it follows that m is independent of s.

, O i, _
By hypothesis on o0, , my = (0, T o(l))to r o myo= (0, T (1))t1 ’
is _
seermg = (0, T J(.L))tj where % =0t ...t , th= 1t ...ty, ...,
s JE - - - = -
tr =3¢t ...tn, mo"m1"""mj_1'F' and mj_T. Also,

. _ 1541 -y .
by hypothesis on o, , m=(o, T (.L))tj and m # 1.

Let i = Max{i,, i,, ..., ij+l} . Then m = (o, Tl(f))tj
and (o 'ri(l')) =F for % <3 and (0, Ti(T : = T and
2 ) J 2 ( ))tj
m# 1.
Thus, by definition of asa, m = ((o, asa o,) Ti(I))t ’
m# L, and o, asa o, has property w,(c) if o, and o,

have it.

c) Consider g, fby 0, , and let e, e’ = [01 glgy 02] such

that o (EVAL, t, s) * o (VAL, t, s, m) the complexity
e ':: e’
of which derivation is c.

The other control labels at node ng(root of e in E) being

of no effect in the above derivation, we may suppose without loss



41

foy fby
of generality that e = /\ , and that e’ T

e e ’ ’
1 2 e, €,

where e, , el = [0,] and €z s e; = [92] .

The above derivation would have one of the two following
forms depending on t:

- if t € {0} x N*

fby, (EVAL, t, s) . fhy
/\ >
(EVAL, t, s)

€, s el €,

)

fby
(by hypothesis on o,) b *

)

(VAL, t, s, m)

r’
1 €,

0

fby (VAL, t, s, m)
26

{
D

O
]
N

- if t g {0} x N*

fby (EVAL, t, s) 6 fby '
/\
(EVAL, dec(t), s)

e, e, €2

b

(Y
[

b

)

(by hypothesis on gz) —— (VAL, dec (t), s, m)
14

2

(0]

e

f}gy, (VAL, t, s, m)

&
p:

]
(1]
-



42

The hypothesis on 0, in the first case, and on o, in
the second one can be used because the complexity of the corres-
ponding derivations is c.

The last derivation is obtained because inc(dec(t)) = t.

in the first case, and ¢ in the

Also, the hypotheses on o 2

1

second, show that m is independent of s, and

m

(o, Tll(I))t if t € {0} x m* (m # 1)

1)) if t £ {0} x N* (m # 1)

- i2
m = (02 T “A €

By definition of f£fby, if i = Max {i,,i,} then

~

m = ((o, fby o,) Tl(I))t and m # 1.
Thus, o, ggy 0, has property wmw,(c) if g, and g,

have it.

d) Consider go, where g € {—, =}, and let e s e’ = [go,]

such that o (EVAL, t, s) o (VAL, t, s, m)
*
e # e

the complexity of the derivation being c .

g
Without loss of generality, we may suppose that e = I
g
and that e’ = where e, ,e; = [o,]. e,
el

The above derivation would have the following form

I g, (EVAL, t, s) g
> |

; (EVAL, t, s)

e, €,



43

g
(by hypothesis on o0,) F::* I
(VAL’ t, S’ ml)
ey
>
el
1
where m; is such that uop (g,m;) = m.

Also, m,; being independent of s by hypothesis on 0,y s
we have that wuop (g,m;) is independent of s . By the same
hypothesis on ¢, , m;, = (o, 'rl(I))t and m,; ¥ 1. Thus

(go, Tl(I))t = g(o, Tl(I))t = gm, it follows that
m = (go, Tl(I))t and m # 1L .
This shows that if 0, has property m,(c) then so does go, .

e) Consider o, h o, where h ¢ ALOP - {v, A} and let

e,e’"=[o, ho,] such that

o (EVAL, t, s) o (VAL, t, s, m)
14

e =* e
the complexity of the derivation being c.

Without loss of generality we may suppose that

h h
e = d///g\\\b and e’ = d///g\\\o where



44

The derivation implied above should be as follows:

h, (EVAL, £, 8) O/lh\o
A (EVAL, t, s) (EVAL, t, s)
€, €, €, €,
h
(by hypothesis on == /\O
0, and o,) (VAL, t, s, m) (VAL, t, s, m,)
e’ e!
1 2
h' (VALI t,S, bOp(h, ml, mz))
17
e] e,
where m, and m, are such that bop(h, m,, Mp) = m. By

hypothesis on ¢, and g,, my and m, are independent of s .

Thus m = bop (h, m;, m,) is independent of s . Also,
il — iz -
my = (o, T (1))t, m, = (0, T (1))t and m # 1, m, # 1.
Thus for i = Max{i,, i,}, ((o, ho,) Tl(I))t = (o, Tl(I))t h(o, ‘L‘l(I))t
=m h m,
= bop (h, m,, m,) = m

and m ¥ 1.
This shows that if g, and o, have property m,(c) then

so does g, h g, .

f) Consider o, v o, and let e, e'= [0, v 0,] such that
o (EVAL, t, s) o (VAL, t, s, m)
e =1 e’

the complexity of the derivation being c.



45

Without loss of generality we may suppose that

v o v
e = /\ and e’ = (/\ where e;, e] = [o,]
o

e, €, e’ e’

and e, , ej = [0,].
The derivation would be of any of the three possible forms

that follow:
v, (EVAL, t, s) v

(EVAL, t, s) (EVAL, t, s)
e, e, e, e,

Case I (by hypothesis on g,) }_—_=*

18 v, (VAL, t, s, T)

Case II (by hypothesis on o,) =

(VAL, t, s, T)

el e;
v, (VAL, t, s, T)
19
=
e e;
V \

~Case TII (by hypothesis ¢, and 0,) =%

(VAL, t, s, F) (VAL, t,s,F)

vV, (VALI t, s, F)
20 A
e

ef



46

By hypothesis on o, and o0, the values T or F are

iy -
independent of s . Incase I, m=T and (o, 1 (1))t =T.

: »

: i, i, _ - i,
But  ((oy vop) T (1)) = (op 1 (1)), vilo, T (L)),

T by definition of V.

Case II is similar to case I with o instead of o, . In

2

i, i, -
case III, m = F, (o,(t 1(J.)))t =F and (o, T 2(l))t = F. Let

i = Max{i, i,} then ((o, v o) T (D) = (o, T (D) v (o, T@)

t
=FVF=F
Thus in all cases o, v ¢, has property m,(c) if o,

and o, have property mw,(c) .

g) Consider 6, A 0, and let e, e’ = [0, v 0,] such that

.0 (EVAL, t, s)
e

. o (VAL, t, s, m)

el

the complexity of which is c.

Without loss of generality we may suppose that e

;

and e’ where e, ,e] = [o,] and e, re;, = [0,].

The derivation could then be any of the following three:

A, (EVAL, t, s) A
-8
/\D
EVAL, t, s) (EVAL, t, s)

€, e, e, e,

~Cage I (by hypothesis on g,) F==*




47

A, (VAL, t, s, F)
21
Q\\\b
i e
A
Case II (by hypothesis on o,) F:::* d///}l\\\b
| (VAL, t, s, F)
e e;

’
1

22 (VAL, t, S, F)
=

r r’
e; e,
A
Case III (by hypothesis on F==*
o, and g,) (VAL, t, s, T) (VAL, t, s, T|
e! e;
1 2

A, (VAL, t, s, T)
23

(0]
(]

By hypothesis on 0, and o, the values F or T obtained

iy - .
are independent of s . 1In case I (o0, T (l))t = F (hypothesis

iy - 1y . 1
on o;), m=F and ((o, A g T (L)) = (o 7T “J)tJ\(UZ T (1))

F by definition of a.

,NCase;lImisﬁsimilafwto*caseslr»

i, _ i, _
In case III (o, T 1(.L’))t =T, (0, T (.L))t =T and m=1T.

So, if we let i = Max {i,,4i,} then

(oya0,) T D)y = (o) TH@ A (o, TH@,

TAT =T



48

Thus, in all three cases m = ((c1 A T,) fl(I))t for

some i and m # 1.

Hence, o, A o, has property T,(c) 1if o, and o, have

1

it.

h) Consider if o, then ¢, else o, and let
?

e,e’ = [if o, then o, else 0,] such that

o (EvaL, t, s) o (VAL, t, s, m)

e = e’
the complexity of the derivation being c.

Without loss of generality we may assume that

o /1\b e /1\ where eiseq = o]

e, e, =21 =¥} €3

€,r €, = [o,] and ey, e} = [og,].

The above derivation has to have one of the following two

forms:
if, (EVAL, t, s) if
9
=
EVAL, t, s)
e, e, e, e, e, e,
if
(by hypothesis on g,) #===*
(VAL, t, s, m,)
14
e, e, e,
if
e . 10
Case I (if m, = T) >
(EVAL, t, s)



'.—__—_*

(by hypothesis on g,)

4 14
€ &

15
b
’
e e
. 11
Case II (if m, = F) :@
e
(by hypothesis on o,) F:::*
el
16
=
e}
By hypothesis on ¢, , o, and

49

if

(VAL, t, s, m)

€,

~

(if , (VAL, t, s, m)

(EVAL, t, s)

(VAL, t, s, m)
€,

if , (VAL, t, s, m)

in both cases, m 1is

1, ~
independent of s . Moreover in case I, (o, T 1(1))t =T

i, _ ]
and (o0, T (1))t =m. So, if we let i =

. Cen _ i
((if o, then 9, else o,) T (L)) ¢

(by definition of if then else)

m # 1 by hypothesis on o, .

Max {i, ,i,} then
if (o, TH(I)), then@,(r (@),

“else(o, Ti(I))t

(gz Ti(I))t =m and



50

i, i, _
In case II, (ol‘r 1(l))t = F and (03 T 3(J_))t =m. If

we let i = Max {i,, i,)} then

((if o, then o, else g,) fi(I))t =if (o, Ti(I))t"then(o2 fi(I))t

o i-
else(oy T (1)),
(by definition of if-then-else) = (o, " (D)), = m
Thus, if we let i = Max (i,, i,, i,} then in any case

((if o, then g, else o,) Tl(I))t =m and m# 1 .

Hence, if o, then o, else o, has property T,(c) if o,
o, and o, have property 7, (c) . []

Now we can prove Theorem 6.1.
Proof (Theorem 6.1).

It will be carried out by induétion on the complexity c¢

of the derivation.
Base step (c = 0)
In the derivation implied by

o (EVAL, t, s) o (VAL, t, s, m)
e e

every evaluation path generated by (EVAL, t, s) is of complexity
0, i.e. has no pair of nodes with a pointer between them.

Let us perform an induction on the structure of the term o .

Bagsis: - If ¢ is a constant function m’ let e = [o] -

The only production that can be used is production 13:

Thus, m’ has to be equal to m.

Also m’ is independent of s, and so is m.



51

As (m Tl(I))t = m, it follows that property T, (0)
is verified by any constant.

- 0 cannot be a variable x. because otherwise the

J
derivation would have to be of the form
d{/,—o var, xj,(ENAL,'t,s) =é§i>' 'Var,xj,(WAIT,t,s)
(EVAL,t,s)
ej Ej

var,xj,(WAIT,t,S)

=

VAL, t, s, m)
e!
J
var, x., (VAL, t, s,m)
14 - J
@
e’
J

where e. = [1.(X)] .
3 [J()]

This means that the root node rj of ej is in an
evaluation path generated by (EVAL, t, s) at the root

node r of e. This is impossible because there is a

pointer between r and r., and c = 0.

Induction: Lemma 6.1 used with ¢ = 0 shows that this

step is verified. Thus every term o (X) has property

™, (0).

Induction step

Suppose that every term o has property T, (k)
and let us show that every term o has property T,(k+1).
Let e = [o] for some o such that

o (EVAL, t, s) o (VAL, t, s, m)
14

*
e F== e



and suppose that the complexity of this derivation is

k+1.

Induction on the structure of o.

- Basis: - If
given in the
constant has

- If

and e. = [T
J

We may assume that e =

trol label at the root node of

derivation.

/O R ®y

%5

If k+

case c =0

property

52

o is a constant function, then the proof

m, (k +1).

o 1is a wvariable xj

j(x)].

o var, xj

We have

1

(EVAL, t, s)

125

‘-:*

14

=

applies here.

e

um/m‘,j

then let e,

e

Thus every

14

=

[x]

because no other con-

would be used in the

var, X.,
- ]

t,s)
j

var,>%,(WAIT,t,s)

(EVAL, t, s, m)

e’

J

/c var, Xj’ (VAL, t, s, m)
e’
J

is the complexity of this derivation then

the complexity of the sub-derivation evaluating

k . So, by the induction hypothesis, m

of s and m = Tj(rl(l'))t .  But we have that
i+l — _ i - -

(pj T (.L))t = (Tj T (1))t =m.

e.
J

is

is independent

WAIT, t, s) *

»



53

Induction: Lemma 6.1 with ¢ = k+ 1 shows that this
induction step is satisfied.

Thus any term o has property To(k+1l) if every term

has property w, (k) .

[] (Theorem 6.1)

7. Total correctness of the interpreter

The total correctness of the evaluation of any right hand
side term in a Lucid assertion results from Theorems 5.1 and

6.1 and is expressed as follows.

Theorem 7.1.

For any j ¢ {1, ..., v}, any ey ,eé = [Tj(f)] and any

t, s € N* :
O (EVAL’ t, S) o (\]ALI .t, S, m)
e, F===* el
J J
iff
3i: (Tj tl(T))t = and m # 1 .
Proof.

Immediate from Theorems 5.1 and 6.1 since Tj(f) is a term

in program P. ]

The input/output total correctness of a Lucid program is

shown next.



54

Theorem 7.2.

Given a program P with a variable OUTPUT, k € N and

e = [P] :

[P] e

iff
3i, 3j: OUTPUT = x5 and (Tj Tl(I))k =m and m# 1.

Proof.

a) Only if part: Consider the derivation implied by the given

transformations. Production 29 labelled START should be used
first, and STOP is the label that is reached at the end of the
derivation. Assuming that OUTPUT = Tj(i) is the assertion

defining variable OUTPUT, the relevant parf of the derivation

has to be:
29
= ==§> -
ouTPUT _ ouTPyUT (EVAL, k, )
T.(X b'd
[ j( )] [Tj(X)]
prog
el . 3 =
OuUTPUT (VAL, k, g, m)
e
prog, (VAL, k, €, m)
30
= =

OUTPUT



55

With xj = OUTPUT, Theorem 7.1 implies that

Ji:s (Tj. Ti(l-))tzm and m # 1.

b) if part: Suppose that for xj = OUTPUT, Tj(ri(I))k =m and

m# 1. Then by Theorem 7.1 and for some e = [Tj(f)] we have
"_—_‘*
OUTPUT o (EVAL, k, €) OUTPUT (VAL, k, €, m)
. (X ' e
[15()]
Therefore

prog, (EVAL, k, &)

- 29
QUTPUT OUTPUT . (EVAL, k, €)
[Tj(f)] [Tj(i)]
prog
= A
OUTPUT (VAL, k, €, m)

e

Erog, (VALI kl €, m)
30
= =

OuUTPUT

Hence the result. []



56

Références

[1] Ashcroft, E. A., and Wadge, W. W.  "Lucid, a Formal System
for Writing and Proving Programs", SIAM J. on Computing,

5, 3 (September, 1976).

[2] Ashcroft, E. A., and Wadge, W. W. "Lucid, a Non-procedural

Language with Iteration", Comm. ACM 20, 7 (July, 1977).

[3] Cargill, T. A., "Deterministic Operational Semantics of
Lucid", Research Report CS-76-19, Dept. of Computer Science,

University of Waterloo.

[4] Culik II, K. "A Model for the Formal Definition of
Programming Languages", Intern. J. Computer Mathematics,

Section A, Vol. 3, pp. 315-345,

[5] Culik II, K., Farah, M. "Linked Forest Manipulation Systems
a Tool for Computational Semantics", Research Report CS-77-18,

Dept. of Computer Science, University of Waterloo.

[6] Farah, M. "A Formal Description of ALTRAN Using Linked
Forest Manipulation Systems", Research Report CS-73-08,

Dept. of Computer Science, University of Waterloo.

[7] Manna, Z. "Introduction to Mathematical Theory of

Computation", McGraw-Hill, 1974.

[8] Zoltan, A. C. "A Formal Definition of ALGOL 60 Using
Linked Forest Manipulation Systems", Research Report
CSRR-1072, Dept. of Computer Science, University of

Waterloo.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

