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Abstract

s o e i e e

Several +third normal forms for relational data bases
have been proposed, notably those by Codd and Kent. Related
research has yielded algorithms for finding coverings of the
functional dependencies of a relational data base. Since
normal forms and coverings are intended to remove anomalies,
each is examined to determine its relative effectiveness in
doing so. It is then shown that under certain conditions a
relation can be reconstructed from the collection of rela-
tions constituting its third normal form.

The concept of a key is central to normal forms. Thus
an algorithm is presented which finds K, the set of all keys
for any subset of the given set of attribute names, A, and
for a given set F of functional dependencies, in time
polynomial in A}, |F| and |K|. For a single relation,
attainable upper bounds on the number of minimal keys are
given, in terms of |F| and {A}. It is shown that the
problem of deciding whether or not a specified attribute
name is prime (i.e. an element of some minimal key) is
NP-complete. In order to prove this result, it is first
shown that the prcblem of deciding whether or not there is a
key having at most m elements, for a given parameter m, is
NP-complete. , '

Neither coverings nor normal foras alone are found to
be as effective in removing anomalies as the +two together.
An algorithm is presented which, given any relation, finds a
Codd third normal form that covers the functional
dependencies, in time polynomial in |A}, |F| and the number
of keys for each relation. Possible choices for primary
keys are outlined. We suggest algorithms for deciding,
based on the collection of relations output by the Codd
third normal form algorithm, which Jjoins +to perform in
answering 4queries involving an arbitrary subset of A.
FPinally, an algorithm is given to determine whether a
covering Kent third normal form exists.
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1. Introduction

The relational model for data was suggested by Codd
several years ago [Codd 70]. He showed that a conceptually
simple model for data, one in which all data is represented
by relations, is adequate to describe conmplex applicatiouns
for data base management purposes. If the simple notion of
functional dependency is added to the basic mnodel, some
problems arising on insertion, update and deletion, which
seem to deal with the semantics of the data, can be handled
syntactically. To deal with these problems, Codd suggested
that a relation be decomposed into a collection of relations
in what he <called a third normal form; thus third normal
form is intended to be a form in which none of the problems
mentioned above can arise.

Since Codd's original paper, there has been a great
deal of related research, including other definitions of
third normal form, various ways to carry out decomposition,
and the related notion of covering the functional
dependencies. With the notable exception of Bernstein and
Beeri [ Bernstein 75a, 76b, 76c], there has been a lack of
emphasis on finding efficient algorithms, or analysing the
run time of any algorithms given.

Thus this thesis has three objectives:

e to clarify the +theoretical aspects of normalizing a

relational data base,
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e to examine the feasibility of efficient algorithms for
related problems, and
e to provide efficient algorithms wherever possible.

We begin, in Chapter 2, by examining in detail the need
for third normal form and by establishing the terminology to
be used throughout the thesis.

In Chapter 3, some properties relating to third normal
form are examined. Three distinct types of third nozrmal
forms are identified, and the relationships among them
established. It is shown that covering the functional
dependencies, often proposed as a way of achieving third
normal form, is not equivalent to third normal foxrnm. In
fact, both properties are desired in a collection of rela-
tions if the insertion, update and deletion problems are to
be avoided. One type of third normal form, as proposed by
Kent, is shown to be successful in solving these problens;
however, a Kent +third normal form that also covers the
functional dependencies does not always exist. One set of
conditions is given under which the original relation can be
reconstructed from a third normal form collection.

Chapter 4 is devoted to various aspects of finding keys
for relations. Attainable upper bounds on the number of
keys a single relation can have are given; this work was
done jointly with F. W. Tompa. Two related problems are
shown +to be NP-complete. Finally an algorithm is given

which, for a given set A of attribute names and a given s=t
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P of functional dependencies, finds all of the keys for an
arbitrary subset of A, in time polynomial in |A}, |F} and
the number of keys actually found. The two NP-complete
results and an earlier version of the key finding algorithm
whicﬁ finds all the keys for A were done jointly with C. L.
Lucchesi [ Lucchesi 77]}.

Since covering Kent +third normal forms do not always
exist, covering Codd third normal forms are studied first.
In Chapter 5, an algorithm is developed which finds a
covering Codd third normal form collection in time polyno-
~mial in [A{, |F} and the number of keys found for each rela-
tion in the resulting collection. The relations differ from
those found by Bexnstein's algorithm in that all keys for
all relaticns are considered, not just those that happen to
appear on the 1left-hand side of a given functional
dependency. The collection can have at most one more rela-
tion than output by Bernstein's algorithm, oxr up to n fewer
relations for an arbitrary value of n. The reason for
having possibly one more relation is that our algorithm
guarantees that the original relation is reconstructible,
whereas Bernstein's does not. We then discuss how to choose
primary keys for the resulting relations. We also suggest
algorithms for using the colllection of relations output to
decide mechanically which joins to perform to answer an
arbitrary query on the data base.

The problem of finding Kent third normal forms is
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studied in Chapter 6. It is shown through examples that
determining an optimum covering Kent third normal form in an
efficient way 1is probably not feasible. We do show,
however, a method of deciding whether or not a covering Kent

third normal form exists, which has not been done before.



Chapter 2

Background

2.1 Motivation

The purpose of a data base is to store information for
subsequent inquiry. We assume that all data needed to
answer any one guery can be considered (initially) to be in
a single table.

The totality of information in this one table can be
considered to represent an enterprise [ ANSI/SPARC].
Throughout this  thesis, the arguments given and the
algorithms presented pertain to designing a data base for
this enterprise. One area of research is to consider how to
break up this single table to make expected query processing
efficient. However, we will assume +that information
characterizing the queries of the particular enterprise is
not yet availabler Thus we are concerned strictly with
modelling the data and ensuring that gquery-independent
operations such as insertion, deletion and update of pieces
of information can be carried out efficiently.

To see that these ‘operations are mnot necessarily
straightforward, consider a sample table with colunn
headings {Professor, Department, Course number, Room, Time,
Student name, Address, Mark}. As various pieces of informa-
tion become available, values may be inserted into those
columns for which data is available, and each unknown value

can be represented by a special symbol (e.g., "?") meaning

13
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"unknown", as in Figqure 2.1. Each row 1in the table

represents an entity; each column can be thought of as an

attribute.

Fiqure 2.1

Prof Dept Course Room Time Student Address Mark

Smith C.S. 395 29 9:30 ? ? ?
Taylor C.S. 395 61 10:30 ? ? ?
Jomnson C.S. 405 1w 12:30 ? ? ?
Jones C.S. ? ? ? ? ? ?

Suppose we now want to add a student's name, course and
time +to the +table, where the time is 10:30 and the course
number is 395. It is not clear vwhether this is the course
taught by Taylor or whether it is another copy of 395
offered by someone else, for example Jones. Thus we do not
know whether to update the "unknowns"™ in Taylor's or Jones's
row or to add a new rovw in which the professor is unknown.

There are several ways to avoid this problem:

1. Break the table into sets of columns such that informa-
tion would always arrive in pieces that correspond to one of
these column sets. In other words, these column sets would
represent inserticmn or update units.

2. Only allow data to be entered if all attributes have

known values.

Solution 2 does not work very well as it means that
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none of the information in Figure 2.1 could have been
entered at all. Such inability to insert partial informa-
tion has been <called an insertion dependency or anomaly
[Codd 71a,Codd 71Lt]. The zreverse situation, i.e. being
forced to delete known information, could also happen. For
example, if everyone dropped a particular course, all rows
relating to that course would have +to be deleted thus
causing information about the professor's department to be
lost from the table. This has been called a deletion
dependency or anomaly [Codd 71a,Codd 71b]}. Thus one motiva-
tion for breaking up the table is to provide reasonable
update units; that is, to be able to handle partial informa-
tion.

In addition to the ability to add or delete sone
information, the work which must be done to insert, update
or delete a row of the table is also a criterion to be
considered. One might reasonably expect that this could be
done without having to look at other rows in the table.
Such might be the case if we made no attempt to maintain the
integrity of the data. Fdr example, a professor can only be
in one room at one time; +thus every zrow in the table
pertaining to Taylor at 10:30 should contaimn room 61. There
will be one such row for every student in the course. Aas a
result, every nevw student added to Taylor's class would
cause a check to avoid possible input errors. This

illustrates another type of insertion anomaly.
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The repetition of <room number for each professor is
clearly redundant. If a class is moved to another roon,
many rows will have to be changed to update what seems to be
a single piece of information. This is an example of an
update anomaly {[Codd 71a,Codd 71b]. If the original table
were broken up so that professor, room and time appeared in
one tabie and students and their courses in another, then
only one row would be updated if a room werxre changed.

What vwe seen tb need, then, is some external informa-
tion which indicates update units and also shows which
situations should be checked for integrity. This external
information is formalized in the next section by the concept
of <functional dependency. Functional dependency can, then,
be used to decide how to break up +the original table +to
avoid the problems described above.

Once the table has been split, we must still be able to
satisfy fhe original purpose for storing the data, namely to
answer queries. It is important that the original table can
always be reconstructed so that gqueries posed in terms of it

can still be answered.

2.2 Basic definitions
et A = {a(l)y . <« <« 4, a(n)} be a finite set of

attritute names. Associated with each a(i) is a set of

valid values which, together with the special symbol, ?,
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which represents "unknown", is called a domain and written
D(i). It will be assumed that domain values are
indivisible, that is, that all domains are simple [Codd 70].
It should be noted that although the a{i) are all distinct,
the D (i) need not be.

A relation R is a subset of D(1) x . . . x D(n) [Codd
70].1 (Note we have defined R as a set, and thus there are
no duplicate elements.) The table in Figure 2.1 is an
example of a relation and the column headings, of attribute
names. Professor and student name could have the same
underlying domain, namely the set of all people's names.

In order to break R into a set of relations avoiding
the problems of the previous section, we require information
on the relaticnships among the attributes. We will consider
only functional relationships and see +that they are
sufficient to identify the types of redundant information
exemplified above and that +they provide a method of
specifying update units. Another type of redundancy, namely
multivalued dependencies, [Beeri 77, Fagin 76b, Zanoilo 76]
will not be considered.

In +the timetable example, we have observed that each
professor can be in only one room at a time. That is, we
are modelling a situation in which, for each pair
<professor, time>, there can be at most one value for room,

so our tabulation should accurately reflect this. Each such

- —— —

1 since all domains are simple, R is said to be in first
normal form [Codd 71a,Codd 71b].
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relationship among values is called a functional dependency.

Functiomnal dépendencies may, of course, arise not only from
physical limitations, but also because of rules established
by the enterprise; e.g., a professor can be a member of only
one department within the University.

To formalize this notion, let F be a user-specified
binary relation on the power set of A (denoted 2**A). Each
member of this zrelation corrxesponds +to a functional
dependency. One functional dependency in F will be denoted
by X -F-> Y, where X and Y represent subsets of A. Where
there is no possibility of confusion, simply X --> Y will be
used. For example, one functional dependency for the
timetable relation might be {professor, time} --> {room}, or
pt --> r. (Single letter codes and =sample F for the
timetable relation are given in Figure 2.2.)

A functional dependency X --> Y means that, according
to the user's model of the enterprise, at any one time there
will be at most one value for Y associated with each value
for X in the relation. It would be very tedious for the
user to have to specify all of the members of 2%**)} k 2% %A
which agree with this model, as some of them are rather
trivial, e.g. dependencies such as X --> Y where Y ¢ X are
part of every model. Let us denote the complete set of
functional dependencies constituting a model by F .
Armstrong has called +this +the dependency structure of a

relation R {Armstrong 74]. That is, F contains only those
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Figure 2.2

A for timetable relation

Single letter code Attribute name
P Professor
d Department
C Course
r Room
t Time
s Student's name
m Mark
u Student's address
F for timetable relation
p -->4d
pt -=-> «r
sc -->n
S -->u
pt --> ¢
c ——->4d
sCc =-=>r
sc =-=>p
sc --> t

functional dependencies which are guaranteed to be
observable in the data at all times. This is the model that
the usexr intends to describe in specifying a set F, assuming
F is correct and contains enough information to derive F.
Given a set of functional dependencies F, where F is
not necessarily equal to gﬂ we define F(A, F), the

projective, transitive and additive closure of (A, F), (or

simply the closure of (A, F)), as follows:
F(A, F) = U i21 F (i)

where F(1) is defined to be the union of F and all pairs



Cha 2 Background 20

defined by projectivity, i.e. for all subsets X and Y of 3,

if Y ¢ X then X -F(1)-> Y;
and the F(i), i22, are defined to be exactly those
functional dependencies obtained by the following:

¢ transitivitys for all subsets X, Y and Z of A, if X

-F(i-1)-> Y and Y -F(i-1)-> Z then X -F(i)-> Z;

e additivity: for all subsets X, Y and Z of A, if X
-F(i-1)-> Y and X -F({(i-1)-> Z then X -F(i)-> YZ.1?

Note that for all i, F(i-1) ¢ F().

The reader should be able to verify that the functional
dependencies in the closure are consistent with the user's
model; din other words F(A, F) ¢ J. Armstrong has shown
thét the axioms used to define F (A, F) are sufficient to
characterize all of ?" i.e. that F(a, F) = F [Armstrong
74]. Fagin has verified the completeness of these closure
axioms for deriving all of F by showing the equivalence of
functional dependency statements and implications in
propositional <calculus ([Fagin 76a]. This means that the
user need not specify all of ¥, but may specify some F
whose closure is equal to F.

We will refer to the pair (A, F) as a relational
description. Because of additivity, vwe <can assume a

cannonical form for functional dependencies in F, namely

that all right-hand sides in F contain at most one attribute

name. This will standardize the input +to +the algorithms

1 Y7 is a shorthand notation for Y U 2Z.
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presenﬁed later, and thus also standardize the analysis of
these algorithams.

A subset K of A is a key for (4, F) if K ——> A is in
F(A, F). Intuitively, a key K is a set of attribute names
which, according to the model, or according to F (A, F), have
the property that, given a set of values for the attribute
names in K, there can be at most one xow in R with these
values, since K --> A. K is a minimal key for F(A, F) if K
--> A lies in F(A, F) but no proper subset of K also has
this property. (Minimal keys are called candidate keys in
the 1literature {[Codd 71a]). PFor the timetable example, sc
and spt are the‘minimal keys.

An attribute name is prime relative to (&, F) if it
lies in some minimal key for (A, F) [Codd 71a]. In the
example, s, ¢, p and t are the prime attribute names and the
rest of the attributes, d, r, m and u are said to be
nonprime.

The necessity of maintaining redundant iﬁformation can
arise for two reasons. The first is exemplified by the stu-
dent's address attribute in the timetable exampie. Each row
in the table containing the student!s name must have the
same address since s --> u is 4in F. However, there is
nothing in the model to prevent the student from taking more
than one course. Each sc combination can appear - only once
in the table, since sc is a minimal key. However, s is only

part of this key and therefore each s (and the corresponding
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u value) can appear more than onée.

This situation is formalized by the following defini-
tion. For subsets X and Y of A, Y is said to be fully
dependent on X in F(A, F) if X --> Y is in F(a, F) Dbut for
no X', a proper subset of X, does X' --> Y lie in F(A, F)
[Codd 71a]. In the example, then, the fact that u is not
fully dependent on sc results in redundancy.

The second type of zredundancy arises 1in situations
analogous to the following problem with the department
attribute in the timetable example. F contains the two
dependencies sc --> p and p ——> d. A given professor can
appear in more than one entry in the table but the depart-
ment associated with each such occurrence must be the same.

To formalize this notion, let X and Y be distinct
subsets of A, and let z be an element of A. If X --> Y and
Y --> z lie in F(a, ¥), Y -/-> X in F(A, F), and 2z € Y, then

z is said to be transitively dependent on X in F(A, F) [ Codd

71a]. Thus in the example, d is transitively dependent on
SC. Note that 2z € Y is not in Codd's original definition
but is consistent with what is intended; i.e. there is no
redundaﬁcy involved in ¢ --> ab --> b, whereas there is in
c --> ab -->d.

The two definitions above are stated in terms of the
closure because F may or may not contain X —-> Y and Y -=-> 2
in terms of the definition. Consider, for example, this set

of functional dependencies:
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a --=>b»
b -->c
c ——->4d
b -->4

The +two dependencies a ——> ¢ and b --> 4 are in the closure
of this set of functional dependencies and therefore 4
should be 1regarded as transitively dependent on attribute
name a whether or not a --> ¢ or b =-> 4 is menticned in F.
With these preliminary definitions, we are now able to
start examining various (third) normal form definitions.
Recall that Codd's first normal form requires that all
domains be simple (i.e. contain indivisible values and not
sets) [Codd 70, 71a, 71b]. His second normal form,
containing only pcint 1 below, is only partially free of
anomalies [Codd 71a, 71b]. Codd's third normal form is
intended to describe the properties of a single relation

that has none of the anomalies outlined above.

A relaticnal description (A, F) is in third normal form
if

1. every nonprime attribute name of A is fully dependent on
each minimal key relative to (34, F),

2. no nonprime attribute name of A is transitively depen-
dent on any mninimal key relative to (A, F) [Codd 71a,
71b].

In the definmition of fully dependent, an arbitrary

subset X of A is mentionmed. In the definition of Codd <third
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normal form, full depencencies are considered only in the
case that X is a minimal key. Thus a non-full dependency
violating Codd third normal form is characterized by the
following: there is a minimal key K, a proper subset K' of
K, (since K is minimal, K' -#-> K), there is an attribute
name z such that K' --> z, and since z is nomprime, 2z € K'.
In this 1light, a non-full dependency omn a minimal key is
just a special case of a transitive dependency on a minimal
key. Thus we can restate the definition of Codd third
normal form as: a relational description (A, F) is in Codd
third normal form if no nonprime attribute name is transi-
tively dependent on any minimal key relative to (A, F).

Kent has given a slightly different definition of third
normal form which removes the emphasis on nonprime
attributes [Kent 73]. The arguments that allowed us to
remove condition 1 for the Codd definition also apply here,
giving us a shorter definition than Kent's original one. A

relational description (A, F) is in Kent third normal fornm

if no attribute name in the complement of a minimal key is
transitively dependent on that minimal key. In the next
chapter we Wwill see the consequences of strengthening the
restrictions.

Codd gives another normal form definition which is
equivalent +o Kent +third normal form ([Codd 747. A

relational description (A, F) is in Boyce-Codd third nozrmal

form if, for every subset C of A, if any attribute name not
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in € is functionally dependent on C in F(A, F), then all
attribute names in A are functionally dependent on C 1in
F(a, F). Observe that this <can be rephrased as: if any
attribute name not in C is functionally dependent on C in
F(A, F), then C is a key relative to F(A, F).

The intent of these definitions is to break the set A
into (possibly intersecting) subsets, {A(1),. . . ,A(m)}, so
that each of the resulting relational descriptions obeys one
or more of the above definitions. The functional
dependencies associated with each A(i) in this <collection
would be all elements of F(A, F) whose left and right sides
contain only attribute names from A(i).

Two operations have been defined for breaking up the
relations into the relations R(i) that correspond to the
A(i), and for reccnstructing R.

let r be a tuple of relation R and let a(i) be one of
the attribute names of R. Then r.a(i) denotes the component
of tuple r corresponding to attribute name a(i). This is
extended to a set of attribute names B = {b(1), ..., b{k)}

by r.B = (x.b(1) ¢ ec.r, r.b(k)). The projection of R onto

the attribute name set B ¢ A is given by

P(R) (R) = {r.B | r € R}. [Codd 71a]
Let R and S be two relations where R has attribute
names A U B, S has attribute names B q c, &4 = {fa(1), ceep
a{n)il., 'B = {b(1)y e«e, D(m)} and C = {c(V), ..., c(k)}, and

A, B and C are disjoint. That is, all common attribute
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names are in B. Then the natural join of R and S is defined
by R * s = {(r.A, T.B, s.C) | T € R, s € S and r.b(i) =
s.b(i) for all i = 1,m} [Codd 71a].

Note that since our algorithms are intended to be wused
at the design stage, before any data is entered, the natural
join is the more important operation as it will be wused to
reconstruct the original table for queries. Data will be
entered into the appropriate R (i) output by the algorithas,
not into R to be projected into the R(i).

One approach to resolving the anomaly problems has been
taken by a numter of people [Delobel 72, 73, Rissanen 13,
Wang 75, Bernstein 75a]. It involves the notion of a
covering: a set of functional dependencies over A, F', is
called a covering of F if its closure is egqual to F(ai, F).
This approach involves finding a covering for F, and then
breaking A into collections {A(1), ..., A(m)} so that each
A(i) consists of all attribute names in one oxr more
functional dependencies in the covering.

Coverings can have one or both of the £following
properties:

e F' is a minimal covering if there is no proper subset G of
F' such that G is also a covering.

e F' is a minimum covering if there is no covering H such

that H has smaller cardinality than F'.
(Observe that a minimum covering is also minimal, but not

necessarily the ccnverse.)
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Coverings can have other characteristics. One can
insist, for example, that F' be a subset of F. This,
together with minimality, would reflect a desire that the
functional dependencies embodied in the final collection,
which determine the attribute name sets that can be used as
“ypdate wunits", e a nonredundant subset of +the ones
originally specified by the designer.

Optimization has been introduced for covering by the
notions of minimum and minimal coverings. For third normal
forms, Codd originally proposed tﬁat an optimum collection
of +third normal form relations be maintained [Codd 71a]. A
set of relations is in optimum Codd third normal form 1if
every relation in the collection is in Codd third nozxmal
form and the collection contains the smallest number of
relations satisfying this property. This is not the only
optimality criterion one might want to consider. If +there
were a choice between several third normal form collections,
and if query patterns were known, there might be one collec-
tion for which gquery processing would be faster, either
because fewer joins were required, or because the joins took
less time (e.g. the range of values present in the data for
some attribute namés might be much smaller ﬁhan for others).
Since we are analysing this at the design stage, however,
the only optimality criterion we can address is the number

of relations in the final collection.
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with some knouledge of the functional dependencies
pertaining to each relation. For these reasons, we prefer
to classify attempts as either a covering approach or a
third normal form approach, depending on their immediate
objectives. |

Most of the work has been in the covering area,
attempting to find a covering of the functional dependencies
and then to examine whether or not the resulting collection
is also in third normal form. The first major comntribution
was made by Delobel and Casey who use an equivalence between
functional dependency statements and Boolean functions to
find minimal covers [Delobel 73b]. They state that each
relation (corresponding to a single functional dependency in
the cover) is in Codd +third normal form. They do not
optimize the number of relations generated. The algorithm,
relying on techniques for finding prime implicants for
Booclean functions, is not very efficient.

Wang and Wedekind find a covering using a more
straightforward approach, originally suggested by Delobel
[ Delobel 721, which removes redundant functional
dependencies from a set until no more can be removed while
maintaining the same closure [Wang 75]. They then suggest
optimizing the number of relations by merging functional
dependencies in the <covering whose left-hand sides are
identical. This type of optimization is shown to guarantee

that the resulting relations are in Codd third normal fornm.
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However, the covering algorithm used generates all
coverings, and so is rather inefficient.

Bernstein provides a better optimization by merging
functicnal dependencies whose left-hand sides are equivalent
in terms of what attributes are functicnally dependent on
them [Bernstein 76b]. However, this type of covering does
not always produce Codd third normal forms, and therefore an
additional step is required to remove some attributes from
the resulting relations. Bernstein's algorithm 1is, in
comparison with previous work, very efficient, reguiring
only O(jA}2 |F}j2) steps for a given (A, F). The algorithms
given in Chaéter 5 differ from Bermnstein's in that they find
third normal form and covering at the same time.
Furthermore, they take into account all minimal keys for all
relations, not just those that happen to appear on the left-
hand side of a functional dependency. 1In general this can
take a lot more time, because, as we will see in Chapter 4,
the number of keys can be very large. On the other hand, in
some cases, it produces fewer relations than Bernstein's
algorithum.

The only related work that does not consider first
finding a covering is that of Rissanen and Delobel [ Rissanen
73]. They give a method for finding all decompositions of a
relation and suggest that the choice among them be based on
optimizing some performance criterion. Of particular

interest are decompositions into dirreducible relations
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which, as we will see in Chapter 3, is a stronger require-
ment than third normal form.

Although all of these algorithms have produced Codd
third normal form relations, we will see in Chapter 3 that
Kent third normal forms are more successful in eliminating
anomalies. However, a collection of relations in Kent third
normal form that covers the functional dependencies does not
always exist. No one has previousiy given either a test for
existence 0of covering Kent +third normal forms or an
algorithm for finding them when they do exist. Both are

given in Chapter 6.



Chapter 3

Normal forms and coverings

3.1 Ccmparison of third normal form definitions

Many anomaly-removing normal forms, which we loosly
call third normal forms, have been presented in the 1litera-
ture. In this section we will show that three distinct
third normal forms have been defined and examine the
relationships amcng them. We will also see how a similar
notion, irreducible relations, compares with +third normal
forms.

In section 2.2, definitions were given for Codd, Kent
and Boyce-Codd third normal forms. We will also consider
here definitions given in {Heath 71}, [Delobel 73a], [Date
75] and [Boyce 73]. |

The definition of third normal form in {Heath 71], with
an appropriate change in terminology, is almost identical to
(our version of) Kent's. A similar definition is also found
in [Delobel 73a])]. The eéuivalence between Kent and Boyce-
Codd third normal forms, often assumed in the literature
[e.g. Codd 74, Date 77], is mnot as obvious however;
therefore it will be shown more rigorously.

Lemma 3.1: A relational description (A, F) is in Kent third
normal form if and only if it is in Boyce-Codd third normal
forms

proof: Suppose (3, F) is in Kent third normal form but not

in Boyce-Codd +third normal <form; i.e. there is a proper

32
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subset C of A, an attribute name d not ih C such that C is
not a key, and such that ¢ --> 4 is in F(2a, F). (A, F) has
at least one minimal key, say K. By these assumptions, K
and C are distimct and C and d are distinct, but K and 4 are
not necessarily distinct. Consider then K U C - d, which is
a key but not necessarily minimal; i.e. K U C - d contains
at least one minimal key, say K', and K' and d are distinct.
We now have K' =-> C, C -»-> K', 4d € K', and 4 € C. That
is, d@ dis in the complement of minimal key K' and it is
transitively dependent on K', contradicting (&, F) being in
Kent third normal form.

To prove the converse, suppose (A, F) is in Boyce-Codd
third normal form but not in Kent third normal form, i.e.
there is a minimal key K, and some attribute name b not in K
such that b is transitively dependent on K. That is, there
exists a set C of attribute names such that K --> C,
C-»~>K, C-—->b,b € C, b € K. But if (A, F) is in Boyce-
Codd third normal form, then C —-> b and b € C implies that
C must be a key; thus C --> K should be in F(a, F).,
contradicting the assumption. no

The term primary key is used to denote one minimal key
which is chosen to act as an index for a relation and
therefore, in practice, is not be allowed to have unknown
values. The last two definitions we will discuss enmphasize
the role of the primary key and make no requirements of the

other minimal keys of a relational description.
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A 1relational description (A, F) is in Boyce third

in K is functionally dependent on K, then K ——> A is in
F(A, F)1 [Boyce 73].

A relational description (A, F) is in Date third normal

form if no attribute name in the complement of the primary
key K is transitively dependent on K in F(A, F) [Date 75].2

The proof that these two definitions are equivalent is
similar to the Kent, Boyce-Codd equivalence; therefore we
have:

Lemma 3.2: Date third normal form and Boyce third normal
form are equivalent.

We have +thus identified three sets of equivalent
definitions. We will nov show how they are related to one
another, using Codd, Kent and Date as representatives of the
three groups.

It is recognised [Bernétein 75a, Codd 74, Date 77, Kent
73] that Kent third normal form is strictly stronger than
Codd +third normal form. However the relationship of Date
and Boyce third ncrmal forms to each other and to the other
two has not been examined.

Lemma 3.3: Kent third normal form implies Date third normal

form.

1 This definiticn is 1not only reworded to conform to our
terminology, it is renamed-—Boyce <calls it fourth normal
form!

2 Recall that the non-full dependency which would be the
first condition in this definition 1is a special case of
transitive dependency.




Cha 3 Normal forms and coverings 35

proof: 1f, for every minimal key X, there is no tramnsitive
dependency of attribute names in the complement of X on X,
then +this property clearly holds for one particular minimal
key, namely the primary key. o
enma 3.4: Date third normal form does not imply Kent third
normal form.
proof: Consider this example: 1let A = {a, b, c, 4, 2} and
let ¥ contain:
ab --> ¢
bce --> a
bce --> 4
The minimal keys are abe and bce. If +the primary key 1is
chosen to be bce, then the description is in Date third
normal form but not in Kent third normal form. n

Lemma 3.5: Date third normal form implies Codd third normal

form.

proof: Suppose (A, F) is in Date third normal form but not
in Codd third normal form; i.e. suppose K is a minimal key
not equal to the primary key P, that H is a set of attribute
names, j is an individual attribute name and that K --> H,
H--> 93, jJ€H and H -»-> K in F(A, F). Since H —-#-> K, H
is not a key. Therefore H -#-> P. Therefore j 1is +transi-
tively dependent on P, contradicting the assumption that
(A, F) is in Date third normal form. n

Corollary: Kent third normal form implies Codd third normal

form.
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Lemma 3.6: Codd third normal form does not imply Date third
normal form.
proof: Using the example of Lemma 3.4, let the primary key
be abe. Then (A, F) is in Codd third normal form but it is
not in Date third normal form. no
Corollary Codd third normal form does not imply Kent third
normal form.

To complete this discussion we shall briefly coasider
another property of relations discussed in the literature.

A relation R is said to be irreducible if there is no

projection of R onto attribute name sets B and C such that
both B and C are proper subsets of A and R = P(B) (R) *
P(C)(R) (R is the natural Jjoin of +these projections)
[Rissanen 73]; This notion is similar +to that of atomic
relation [Zaniolo 76]. It is not immediately clear what
relationship this property bhas with third normal fornms,
since it is not defined in terms of functional dependencies.
However Rissanen and Delobel show that if a relation is
irreducible, then every non-projective'functional dependency
is of the form A - {a(i)} —> B [Rissanen 73]. By putting
these 1into canonical form for functional dependencies, if
necessary, |B|{ = 0 or 1, i.e. B is either the 1null set or
equals {a(i)}. Prom this it follows that irreducibility
implies Kent third normal form. The converse is not +true
however. The relational system with A = {a, b, ¢} and F =

fa --> b, b --> a, a --> ¢} is in Kent third normal form but
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it is not irreducible since R is the natural join of two
relations with attribute names {a, b} and {a, c}.
Corollary: Neither Codd third normal form nor Date third
normal form implies irreducibility.

Figure 3.1 summarizes the results of this section. Ve

see that of +the +third normal form definitions, £Kent's

Fiqure 3.1

irreducible

Kent
Boyce-Codd
Heath

definition is the strongest and Codd's, the weakest. In the
remainder of the thesis we will concentrate on Kent and Codd

third normal forms. We will not consider irreducible rela-
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tions since, in practice, we are far more likely to be able
to achieve our optimality criterion with Kent or Codd third
normal forms, and, as we will see in Section 3.3, Kent third
normal form is strong enough to ensure that +there are no
anomalies. Date +third normal form puts emphasis on one of
possibly many minimal keys, the primary key. Keys for a
given relation are functionally dependent on each other, orx
are in one-to-one correspondence, Thus, if possible, we
would like all minimal keys to coexist in a single relation.
We would certainly not want the choice of one key over
another to change the collection of relations resulting from
a third normal form algorithm. Thus we will not study Date

third normal forms.

3.2 The relationship between covering and third normal form

In this section we will examine, for Kent and Codd
third normal forms and the two types of covering algorithms,
the following questions:

e Does covering imply third normal form?

e Does third normal form imply covering?
In order to answer these questions, we will first establish
a framework fcr comparison. Coverings have been expressed
as a set of functional dependencies, whereas a third normal
form ccllection has been expressed as a set of (A(i), F())

pairs.
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Supposedly, whenever a relational collection is stored,
there is scme record of these functional dependencies so the
system can tell what columns (if any) it is to check for
integrity. We will assume, then, that for each relation in
a covering or a third normal form collection, there is
enough irformation to deduce A(i) and the closure of (
U A(i), O F(i) ). In the case of a Kent third normal form,
for example, this could simply mean the attribute names and
the minimal keys are stored in some way, since the only
functiocnal dependencies necessary in F(i) are of the form K
--> B for K a pinimal key and KN B = ¢. For Codd third
normal form, storing the minimal keys would not be adequate,
since there may be a prime attribute in one minimal key that
is not fully dependent on another minimal key. For such a
functional dependency to be maintained by the system, it has
to be recorded. Covering algorithms typically output the
F(i), and the A(i) are assumed to be any attribute names
mentioned in the F(i). With Bernstein's algorithm the input
is Jjust F; any attribute names not mentioned in F will have
to be accounted fcr somehow in the fimal collection.

Thus from a covering algorithm or from a third normal
form algorithm, a set of pairs (A(i), F(i)) is deducible.
The third normal form collection or the whole covering is
denoted by the relational description {(a(i), F(i))}, and
the <closure of ( U A{i), U F(i) ) is called the set of

functional dependencies embodied by the collection. Clearly
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it is necessary for this closure to equal F(A, F) to have a

covering and for U A(i) = A. The latter is not always
emphasized.
We are now ready to answer the first question: does

covering imply +third normal form? The answer +to this
depends on the type of covering. For the simple type of
covering [Wang 75], where equal left-hand sides are merged,
covering does imply that each relation is in Codd third
normal form. Since no redundant functional dependencies are
allowed in thevwhole set of functional dependencies, no
redundant (transitive) dependencies can exist within the
functional dependencies for one relation. We will see that
it is not always possible to remove redundancy within a
collection of relatioms.

For optimal covering, with merging of eguivalent keys
[ Bernstein 76a, 76c], a purely covering approach no longer
necessarily guarantees Codd third normal form. Consider the
following example: 1let A = {a, b, ¢, 4, e, £f} and 1let F

consist of:

ab --> ¢
ab --> 4
ab -=-> e
de --> a
de --> Db
de --> £



Cha 3 Ncrmal forms and coverings 41

The minimal keys are ab and de. The covering algorithnm
requires all of A to be put into one relation. However, ¢
is then transitively dependent on de, one of the two minimal
keys. As a result, Bernstein must look for transitivities
[ Bernstein 76b]. It will be seen that +the algorithms
presented in Chapter 5 do the merging in a different way to
avoid these problems.

Before looking at this question for Kent third normal
form, 1let us consider the following example suggested by
Date [Date 75, p. 108]. Let A = {student, subject, teacher}
or {s, Jj, t} and let F = {sj -—->t, t -—> j}. 1A covering
approach would try to make both functional dependencies into
relations. The relational system ({t, j3}, {t --> j3}) would
be in Kent thifd normal form but ({s, j, t}, {sj --> t, t
--> 3j3}) would not be because the prime attribute name j is
dependent on t and therefore t should be a key, but it is
not. In fact, there is no Kent third normal form for this
system that covers the functional dependencies (in
particular that covers sj --> t). Thus a Kent third normal

form that covers the functional dependencies does not always

exist.

Note that with the first type of covering algorithm, we
could conclude that the collection was in Codd third normal
form without checking for transitivities. However, in light
of the sjt example, once we have a covering, even a simple

covering, we would still have to check for a violation of
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Kent third normal form (or whether or not a Kent third
normal fdrm exists). Any merging of equivalent keys im a
covering approach only increases the potential of
introducing Kent third normal form violatioms. Thus the
covering approach alone can never guarantee a Kent third
normal foram.

To answer the question "does a Codd or Kent third
normal form imply a covering?" consider the following
example: A = {person, project, department, location} or A =
{p, Jj., 4, 1} and F consists of:

p ——>

Figure

tw
.
TN

This can be represented by the diagram in Figure 3.2. Fach

of the three relations in the following collection is in
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both <Codd and Kent third normal form, and thus the collec-

tion is in both third normal forums.

A(1) = {p, J3 FQ) = {p --> 7}
a(2) = {j, 13} F(2) = {J --> 1}
a(3) = {p, 43 F@E) = {p --> 4}

Note that U A(i) = A is satisfied. However, d --> 1 is not
in the <closure of ( U A(i), U F(i) ) and thus this collec-
tion does not represent a covering. If the relationship
between d and 1 is to be maintained, it has to be
represented explicitly in the third normal form collection.
Therefore A(4) = {d, 13}, F(4) = {d --> 1} should be added.

We should note another integrity problem illustrated in
this example. The functional dependency p --> 1 is in the
closure of (A, F). In retrieving (p, 1) pairs £from the
third normal form tables, we could use the union of the
joins {p, j} * {j, 1} and {p, d} * {4, 1}. Care must be
taken that the two "join paths" never disagree. For single
tuple insertions or updates, this can be checked by at most
4 single tuple look-ups. Hovwever the claim +that non-
violative operations in one relation in a collection cannot
be violative in the <closure [Heath 71, Delcobel 727 is
clearly false because p --> 1 could become false by changing
a tuple in either A (2) or A(4).

In summary, neither third normal form nor covering is a
requisite of the other. In the next section we will see

that satisfying both criteria is necessary to maintain
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integrity. As a consequence, in Chapter 5 we will look for
a covering third normal form. It appears that Kent third
normal forms, when they exist, are much harder to find than
Codd third normal forms, and that finding a covering £first
may not help. Thus we begin, in Chapter 5, by finding
covering Codd third normal forms and then, in Chapter 6,

deal with the problems of finding Kent third normal forms.

3.3 Coverinqg and third normal form with respect to anomaly

removal

The original reason for third normal forms and
coverings was to ensure that certain anomalies did not
occur. We observed that these anomalies can arise on inser-
tion, update or deletion of a tuple in a relation. Some of
the situations described meant that an insertion or update
was ambiguous, e.g. adding a student, course and time in the
timetable relaticn. Others had to do with maintaining
redundant infermation, e.g. the room a professor is in at a
certain time.

Let us first examine ambiguity anomalies. In the
timetable example in sectiomn 2.1, we could not add a stu-
dent, course and time tuple, because none of the entries in
the table had all the key values filled in for the minimal
key {student, course}. If we establish the rule that for at

least one minimal key (which would themn be called the
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primary key), no entry is allowed with unknown key values,
then none of these ambiguous situations can arise. We are
hoping that +the ability to enter many forms of partial
information will be provided by breaking up the original
relation into subrelations, which, if possible, should
correspond to update units. The above rule concerning no
unknown primary key values also applies to all subrelations.

Since the Kent third normal form definitiom was found
to be the strongest, let us see how well it handles the
remaining type of anomaly, namely the redundancy anomaly.
The Eoyce-Codd wording is perhaps more helpful here. It
says that, for one relation, the only functional
dependencies that exist in the closure are those whose left
sides are keys. This means that, since the values for keys
are unique for all tuples, as far as we can deduce from the
functional dependencies given, there are no redundant
attrikutes in any one relationm.

Thus; as far as one relation is concerned, Kent +third
normal form has no anomalies. However, we are usually
dealing with a collection of relations, and there is nothing
in +the Kent +third normal form definition to prevent the
collection having a —-> b in one relation, b --> ¢ in a
second relation, and a -—> ¢ im a third. If vwe were to
update an (a, c) pair in the third relation, then the (a, <¢)
derivable by joining the <first +two <relations might not

agree. It is this type of redundancy in the whole <collec-
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tion of relations that is prevented by insisting the U F (i)
be a minimal covering. The +third relation represents a
redundant functicnal dependency and would not be allowed.
This points out, however, a slight drawback to having a
collection in Kent third normal form that embodies a minimal
covering. If one wanted to enter an (a, c¢) pair and did not
have a value for b, one would only be allowed to enter
(a, ?) into the first relation. That is, @not all update

units can be accomodated if both third normal form and a

minimal covering of the functional dependencies are desired.

Another problem created by requiring a minimal covering
of the functional dependencies was exemplified in the
previous section by figure 3.2. If an attribute name
appears on the right side of more than one functional
dependency in a minimal covering, then perhaps more than one
relaticn must be consulted in order +to maintain the
integrity of +the closure of the functional dependencies.
This cannot be avoided in any type of third normal form, as
long as covering the functional dependencies is also
required. The designer may want to omit the maintenance of
some functional dependencies whemn these situations arise.

Since Kent third normal form does not always exist,
e.g. in the {s, j, t} relation, the designer may choose to
put the relation into Codd third normal form. Again the
definition describes what anomalies are allowed to exist,

namely transitive dependencies of prime attribute mnames on
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another minimal key. In the {s, j, t} example, sj and st
are the minimal keys and Jj, a prime attribute name, is
transitively dependent on st. These cases will be seen to
be easily identified by the algorithms in Chapter 5. To
maintain the functional dependencies in a situation such as
this, whenever a tuple is added, a check must be made to see
that one other j is the same for this t, assuming all data
is currently correct, or that this t has no Jj associated
with it. If {t, j} is also to be»allowed as a relation, (in
order to avoid deletion dependencies) two strategies could
be used: all (t, Jj) pairs could be kept in a second rela-
tion which is consulted vhenever an insertion or wupdate is
done to the first; or omly those (t, j)'s not currently in
{s, j, t} could be stored in this second relation (which
could be considered am Woverflow relation”"). In either
case, adding a triple to the first relation, say {s(1),
j(2), t{(1)} that disagrees with {t(1), j(1)} in the second,
would bhave to be identified either as an updAte to the
second relation as well as an insertion to the first, or as
an inserticn to the first to be checked for validity (and
then possibly deleted from the second relation) if another
type of ambiguity anomaly is to be avoided.

If update units are not important, i.e. +we are not
concerned that there is a place to put each functional
dependency such that the left side is a key, and we are not

concerned that deleting an {s, j, t} entry means 1losing a
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(t, Jj) pair, then it would not be necessary to keep a rela-
tion for {t, 3j}. The functional dependencies are still
covered as long as t =--> j 1is mentioned in the set of
functional dependencies for {s, j, t}. Some other technique
or storage structure could still be used to maintain t --> J
within the relaticn containing s, j, and t.

In conclusion, if a collection of relations
{(A(i), F(i))} emlodies a minimal covering of the given
functional dependencies, and if each relation is in Kent
third normal form, then any single tuple insertion or update
can te carried out without anomalies arising, and no dele-
tion dependencies can occur, with the following two excep-
tions: if there is more than one way to derive a functional
dependency in the closure, then some extra work may be
required +to maintain +this functional dependency in the
closure; and if an update unit is not represented
explicitly, we may not able to accomodate this update unit.
If a collection of relations is in Codd third ncrmal form
and embodies a covering of the functional dependencies, then
as well as the above two problems, there may be transitive
dependencies of prime attribute names to maintain.

If the update units are more important to the designer
than third normal form and covering (e.g.,vthe units may be
beyond his/her control) then the algorithms to be presented
later could still be used to get as close as possible to

third normal form and covering. Perhaps more importantly,
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the algorithms allow the designer to see how many functiomnal
dependencies would have to be maintained to provide
integrity checking. Since we assume that all interactions
are made with arbitrary subsets of A, we will not pursue

this idea further.

3.4 Conditions for reconstructing the original relation

We began in Chapter 2 by assuming that +the data base
exists because someone wants to query it. We also assumed
that one large tatle might be used for any attributes that
may Ye related in a query. The problems caused by updating
and partial information forced us to break the 1large table
into subtables, but the natural join of data in the
subtables should be what would exist if the data were put in
the large table.

This idea «corresponds to work on decomposition
[Rissanen 73, 77, Delobel 73b]. Rissanen, in particular,
studies the necessary and sufficient conditions under which
a relation can be projected onto two or more relations whose
join equals the original relatiom [Rissanen 77]. One such
sufficient condition is +that the intersection of the tvwo
attribute name sets (which is the set over which the Jjoin is
made) be a key for onme of the two relations. Note that if
we join in an arbitrary way, (for example, if the intersec-

tion is empty, the Jjoin results in taking.the cartesian
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product) the resulting table could contain "more facts" than
were in the original table. Since we are not finding
decompositions alone, we will use this condition as well as
others to guarantee that Jjoins can be performed to
reconstruct the relation R with all of A as its attribute
name set. The algcrithms in Chapter 5 will produce a set of
relations satisfying these conditiomns.

Note that decomposition does not guarantee third normal
form because it could produce, for instance, two or more
relations which are "not yet" in third normal fornm. For
example, the relation given in Figure 3.2 could be
aecomposed into {p, j} and {p, d, 1} , the latter not being
in (any) third normal form. If the decomposition is carried
out until irreducible relations are reached, then, by the
results . in Section 3.1, the relations are all in (all types
of) third normal form.

A decomposition does not necessarily imply a covering
of the functional dependencies. This is illustrated by
Delobel and Casey's algorithm for finding all decompositions
[ Delobel 73b]. In the first example on page 381 ofv that
paper, two of the four decompositions do not cover the
functional dependencies.

Neither ccvering the functional dependencies nor third
normal form guarantees a decomposition since neither, alone,
requires that U A({(i) = A.

Consider a simple example with A = {borrower,
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borrovwer's address, book, book'!s 1library} and functional
dependencies:
borrower --> borrover's address
book --> book's library.

There 1is 1no functional relationship between books and
borrovwers; the relationship is many-to-many. Yet we nmay
want to know how books and borrowers are related at any
given time to answer such queries as: "Are there any books
from library A borrewed by person B?"

The «covering approach would be to cover the two
functional dependencies by tvwo disjoint relations
R (1) {borrower, borrower's address} and R (2) {book, book's
library}. A join of these tvwo relations would show all
books being borrowed by all readers, since the Jjoin opera-
tion between non-intersecting relations is egquivalent to
forming the cartesian product. This is definitely not what
we want.

The problem here is that, considering all of (&, F),
nowhere in +the collection {R(1), R(2)} is there a key for
all of (A, F). The only minimal key this system has is
{borrovwer, book}. If we make this R(0), all of which is the
key, then the above problem is solved. Thus one criterion
for reconstructing A in a meaningful way is that there nmust
be a (minimal) key for A in one of the relations din the
collection.

In order to establish the sufficient conditions for
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reconstructibility, we need the following definitions and
basic results.

For a set of functional dependencies F' on 2*%*3 and
subset B of A, if P' contains L --> R such that L ¢ B but R
is not a member of B, then B is F'-expansible and B U R is
an F'-expansion of B.

The following lemma follows directly from the defini-
tion of the closure F(a, F):

Lemma 3.7: For subset B of A and F-expansion B' of B, B -->
B* and B! --> B in the closure.

The following 1lemma can be proved by induction on i,
where i is the induction counter in the definition of the
projective, transitive and additive closure of (A, F). The
induction step involves considering elements in F (1)
obtained by transitivity and additivity.

Lemma 3.8: For each i, a subset of A is F(i)-expansible if

and only if it is F-expansible. Consequently a subset of A
is F-expansible if and only if it is F-expansible.

Thus for a relational system (A, F) and any key K,
there is at least one sequence of given functional
dependencies £(1), £(2), -« - « f(m) called a derivation of A
fronm 3 such that £(j) € F and K = A(0), A{(m) = A and each
A(j) 4is +the -expansion of A(j-1) obtained by applying
functional dependency f£(j). Note that since every applica-
tion is amn expansion, each f(j) can appear at most once in

any derivation.
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lLemma 3.9: Given a 1relational collection {(3 (1), F(i))}

that contains a key for A in some 2(i) such that the
functional dependencies embodied constitute a covering of
(2, F) and such that for each functional dependency f in the
covering, the left-hand side of f is a key for one relation
in the collection, then relation R whose attribute name set
is A can be reconstructed by a series of joins in which each
join is over the key of one of the two relations involved.
proof: Consider a derivation of A from the key K. The
derivation gives a sequence of attribute name sets K = B (0),
B(1), . . .« , B(m) = A corresponding to applications of
functional dependencies £(1), £(2), . . . , £(m) xrespec-
tively. By the hypotheses in the lemma, since U F (i) is a
covering, such a derivation is possible and furthermore each
such f(k) is embodied in some F(i). Let C(0) be the
attritute names in the relational description containing K.
Then EB(0) ¢ C(0). Let R(0) be the relation whose attribute
name set is C(0). Then the following algorithm gives the
required join sequence.
For j <-- 1 until m do
if B(J) ¢ C(3-1)
then let S(j) be the relation for which
the left-hand side of f£(j) is a key
R(J) <== R(3-1) * S(3J)
else R(J) <~ R(3-1).

Since every join is over the key of the S relation, the
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condition that it be over the key of one of the two rela-
tions 1is satisfied. Also, since B(m) = A, R{(m) has
attritute name set A.

Corollary: If the conditions of the Lemma are satisfied,
U A(i) = A.

It is interesting to note that Delobel and Casey have
given a set of conditions under which R is recomnstructible
[Delobel 73b]. Their conditions are weaker thamn ours in
that +they dc nct regquire a covering of the functional
dependencies tut simply insist that each attribute name be
chained to a key. This means that there must be at least
one "join path" that includes every attribute nanme. This
condition could be substituted for the covering requirement
in Lemma 3.9 but, since we will be finding a covering
anyway, we chose to show reconstructibility in terms of

covering.

3.5 Conclusions

In this <chapter we have examined three criteria for
relations: minimal covering, third normal form and
reconstructibility. We have seen that we want to satisfy
all three conditiomns, and that none of them alone implies
any of the others. The algorithms +to be presented in
Chapter 5 will generate relational systems satisfying all

three conditions, which has not been done before.
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Bernstein's algorithm generates a covering third normal form
collection, but to guarantee reconstructibility it needs an
additional requirement that one of the relations contain a
key for all of A. We will also see that, by finding all
minimal keys for all relatiomns, our algorithm can, in some
cases, find a much smaller collection than Bernstein's can.
Rissanen's atomic relations [Rissanen 77] guarantee
reconstructibility, cover the functional dependencies, and
are irreducible, which is, of course, a stronger requirement
than ours. However, he does not give an algorithm for

generating a set of atomic relatioms.



Chapter 4

Computational complexity of key finding

4.1. Prelimipary results

The definiticn of Codd third normal form is concerned
with properties of nonprime attribute names in a relational
systenm (A,‘F). Thus one way of finding third normal forms
would be to start by finding all prime, and +thus nonprime,
attribute names. At first it is not clear whether or not
this can be done without actually finding all the minimal
keys for (A, F). In section 4.5 we will show that the
problem of deciding whether or not a given attribute name is
prime is NP-complete [Cook 71, Karp 72]. Problems in this
class can all be solved, or more precisely the corresponding
languages can be recognized, in polynomial +time on 'a
nondeterministic Turing machine. It is an open question
whether or not they can be recognized in polynomial time on
a deterministic Turxring machine. In fact, all known
algorithms for these problems are exponential. This means
that it is unlikelj that there is an algorithm polynomial in
|A{ and |F} to determine if an attribute name is prime.

Given, then, that it probably requires expomnential time
to determine prime attribute names, the next question we ask
is "how hard is it to find all the minimal keys?" W#We will
show below +that the number of minimal keys for a given
(A, F) can be exponential in |A] and factorial in |F}, and

that both of these bounds are attainable. However, in

56
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practical cases, the number of keys is typically very small.
An algorithm that finds keys in time polynomial in the
inputs to the prcblem, |2} and |F}, and in the output, i.e.
the number of keys found, would therefore be considered
acceptable in most cases, Such an algorithm is given in
Secticn 4.6,

The following lemma follows directly from Lemma 3.7:
Lemma 4.1: For subset B of 2 and F-expansion B' ¢of B, B is
a key if and only if B' is a key.

The next lemma follows from Lemma 3. 8:

Lemma 4.2: If a proper subset of A is a key for (4, F),
then it is F-expansible.

In the following 1lemma an algorithm is presented and
its time complexity is given. For this algorithm and those
that follow, we assume that the welementary step being
counted is the comparison of two attribute names. Thus if
we assume that subsets of A are represented as sorted lists
of attribute names, then a Boolean operation om two subsets
of A requires at most |A| elementary steps.

The algorithm uses as a subroutine (called Key here)
Bernstein and Beeri's algorithm to determine whether a
single functional dependency is in the closure of a given
set of functional dependencies [Bernstein 76c]. Beginning
with a given left-hand side B, their algorithm constructs a
set called DEPEND containing all attribute names in any

right-hand side of a functional dependency in the <closure
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with B as its left-hand side. The algorithm ends by testing
whether or not DEPEND contains a specific attribute name.
To wuse this algorithm to determine if a given set is a key,
ve simply need to change this test to:
if DEPEND = A
then return "true"
else return V"false".

Bernstein and Beeri show that this algorithm rumns in
time linear in the size of the input, which in their case is
linear in the length of the description of +the functional
dependencies (in canonical form).  We prefer to analyze
algorithms in terms of |A|] and |F|. Note +that, for
functional dependencies in canonical form, the length of the
functional dependencies is bounded by |A] * |F|, so there is
a direct correspondence between their analysis and ours.
to K if K - {b} is not a key for (A, F). We then have
Lemma 4.3: For %kXey K of (4, F), subset K' of K and
attribute‘ name b of K, if b is essential to K and K' is a
key then b lies in K!' and is essential to K°'.

Corollary: The following algorithm determines a minimal key
for (A, F) that is a subset of a specified key K. Moreover,
it requires O (|F] [A|2) elementary operationmns.
Alqgorithm Minimal Key (A, ¥, K);

K' <-- K;

for each attribute name b in K do
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Comment if b is nonessential to K' then delete
it from K';

if Key (2, F, K' - {b})
then K' <—— K' - {b};

return K'.

4.2 An attainable upper bound in terms of F

Yu and Jochnson prove that, for any 4, where 4@ 1is the

cardinality of F, a relational system can be constructed to
have 4! minimal keys [Yu 76]. The following lemmas prove
that this is in fact an upper bound, in terms of |F|, omn the
number of minimal keys. They use the notion of a derivation
defined in Section 3.4,
Llenma 4.4: For a derivation of A from a key K, ( £(1).,
£¢2, . . « 4, f(m), where f£(j) is of the form L (j) -->
H(j) ) and an attribute name b € A - K, there is a value J
such that 1 £ 3 < m, b € L(Jj) fcr j £ J, and b € H(J).

proof: If b € A - K and £(1), £(2), . . . , f(m) 1is a

derivation of A from K, then b € A(0) and b € A(m). Let J
be the first f(j)-expansion such that b € A(3); that is b €
A(j) for j < Jd. The definition of expansible requires that
L(i) ¢ A(i-1) and that A(i-1) U H(i) = A(i) for all 1 £ i =
m. Therefore b € L(j) for j < J and b € H(J). &

let P be the set of all permutations of a given set of

functional dependencies F. For any key K for the systenm
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(A, F), 1let P(K) be the subset of P having the sequence of
functional dependencies comprising one derivation of A2 from
K as its prefix. That is, P(K) = {p€ P | p=£M).£(2), -
e wof(m),f(r+1), . . . ,E£(k) and £(1), . . <, £(m) is the
given derivation of A from K and f(m+1), . . .,f(k) forms an
arbitrary permutation of the remaining elements in F}.

lemma 4.5: If K1 and K2 are distinct minimal keys for

(A, F), then the intersection of P(K1) and P(K2) is null.

proof: Assume f£(1), £(2), . . . ,f£(k) € the intersection of

P(K1) and P(K2), where £(1), £f(2), . . .« ,f(m) 1is the

derivation of A from K1 and £(1), £(2)y « « « » £(n1),

f(p1+1), . . . , £(m2) is the derivation of A from K2 (m2 =2

ml) . Further assume that K1 = fa(i) { 1 £ 1 £ x} 0 {b(i) |

1 <i <y} and that K2 = fa(i) | 1 £i<x} U {c(d) | 1< i

< 2}; that is, the intersection of K1 and K2 is {a(i)}. Let

£(S):L(S) ——> H(S) be fhe first functional dependency in the
derivation of A fxom K1 where the interseétiou of {c (i)} and

H(S) is not empty. The existence of S is guaranteed by

Lemma 4.4. Consider T such that £(T):L(T) --> R{(T) is the

first functional dependency in that same derivation where

the intersection of {b(i)} and L(T) is not empty.

e Case 1: T £ S. Consider the derivation of A from K2. By
lemma #4.4, there must be a t < 7T such that the
intersection of {b(i)} and H(t) is not empty. Let t!
be the smallest such t; that is, for all j < t, the

intersection of {b(i)} and H(Jj) 4is null, and the
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intersection of {b(i)} and L(j) is null. Thus £ (1),
£(2), « -« « 4, £(t') is a derivation of the set A (t?!)
from {a(i)}, vhere some b(i) € A(t'). This implies
that K1 is not minimal and thus is not a minimal key.
e (Case 2: T is not £ S (that is, T does not exist or 7T >
S). This implies that for all j < S, the intersection
of ({b(i)} and L(j) is empty. Therefore £(1), £(2), .
« « o £(S5) is a derivation of +the set A(S) from
fa(i)}, where some c(i) € A(S). This implies that K2
is not minimal.
In conclusion, if the intersection of P(K1) and P(K2) is not
empty, fcr K1 # K2, then either K1 or K2 is not a minimal
key. nm
Corollary: For any relational system (A, F), there can be
at most d! minimal keys, where 4 is the cardinality of F.
proof: 'Each minimal key can be associated with omne or nmore
subsets of all permutations of F such that no two such
subsets intersect. There are at most d! such subsets (i.e.,

when each permutation is in its own subset). n

4.3 An attainable upper bound in terms of A

If two sets of attribute names are minimal keys, then
one of them cannot be a subset of the other, or the
minimality condition of the keys would be violated. Thus

the npumber of @minimal keys for a given (&, F) cannot be
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greater +than the maximum number of subsets of A, no one of
which is a subset of another. Let K = {K(1), K(2), « . . ,
K(m)} where each K(i) 1is a subset of A, such that K(i) ¢
K(j) for any i, j. Consider the (undirected) graph G whose
vertex set 1is 1, and whose edge set is E = U 1<i<m E (i),
where each E(i) is given by: E({i) = {(a,b) | a, b € K(i)}.
That is, the vertex set corresponding to each K(i) is
completely connected in G. Furthermore, since K(i) ¢ K(3j)
for anmy i, Jj, it follows that each K(i) is a maximal
completely connected set or a clique in G. The following
result from graph theory places an upper bound on the number

of cliques in a graph with n vertices [Even 73]:

3*%¢ if n = 3r
f(n) = ( 4e3%x(r-1) if n = 3r + 1
2e3%ky if n = 3r + 2

Thus, f(n) is also an upper bound on the cardimnality of 5,‘
and therefore on the number of minimal keys for a given A.

This upper bound is achieved by the following

relaticnal systems (A, F). For n = 3r, let A = {a(i) |
1<i<r} U {b(i) | 1<i<r} U {c (i) | 1=2i<r} and let F consist
of {a(i) --> b(i), b(i) --> c(i), c(i) --> a(i) | 1<isr}.

Then for this relational system, every minimal key must
contain, for all i, either a (i), b(i) or c(i). Thus, (&, F)
has 3**r distinct minimal keys.

For n = 3r + 1, let A = {afi) | 1£i<r-13} U {b(i) |

1<i<rx-1} U {c(i) | 1<i<x-1} U {4, e, £, g}, and 1let F
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consist of {a(i) --> b(i), b(i) --> c(i), c(i) —-> a(i) |
1£i<r-1 U {d --> e, e =-> £, £ --> g, g =-=> d}. Every
minimal key for this system must contain, for all i, either
a(i), b{(i) or c(i) as well as one of 4, e, £ or g.
Therefore this (2, F) has 4e3** (r—1) minimal keys;

For n =v3r + 2, let A = {a(i) | 1£i<xr} U {b(i) | 1=<ix<r}
U  {c (i) | 1Li<r} U {4, e} and let F comsist of {a(i) —-->
b(i), b(i) --> c(i), c@d) —-> a(i) { 1fisr} U ¢d --> e, e
-—> a3 . This system has 2e3%%r minimal Xkeys, each
containing, for all i, either a(i), b(i) or c(i) and either

d or e.

4.4 NP-completeness of the key of cardinality m problem

In the next two sections we show that two problems
related to candidate keys are NP-complete. The first
problem is that of deciding whether or not there is a key of
cardinality less than or equal to a specified integer m is
NP-complete. We refer to +this problem as the key of
cardipality m problen. The second 1is that of deciding
whether or not a specified attribute name is prime, which we

call the prime attribute name problem, is NP-complete. The

key of cardinality m result is an intermediate zresult for
the proof that the prime attribute name problem is
NP-complete. It is also interesting in its own right.

There are two aspécts to proving that a language 1 is
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NP-complete. The first 1is to exhibit a nondeterministic
polynomial algorithm for recognizing L. This shows that 1
lies in NP. The second part of such a proof, showing
completeness, is typically done by transforming a known
NP-conmplete problem into L. Such a transformation must be
performed in polynomial +time so that a polynomial time
algorithm for recognizing 1, if ever found, would yield a
polynomial algorithm for all NP-complete languages.

The key of cardinality m problem can be stated as
follows: given a set A of attribute names, binary relation
F on 2%*2 and integer m, decide whethexr or not there exists

a key for (A, F) having cardinality less than or equal to m.

Theoren 4.1: The key of cardinality m problem ic=s
NP-complete.
proof: The problem 1lies in NP, Nondeterministically

generate a subset of A, say K, and then verify whether K is
a key containing no more than m attributes. Since algorithn
Key is polyncmial so is this algorithm.

To complete the proof of the theorem, it now suffices
to prove that the vertex cover problem, an NP-complete
problem stated below, is pblynomially transformable into the
key of cardinality m problen.

The vertex cover problem: given integer m amnd graph G

having vertex set V(G) and edge set E(G), decide whether or
not G has a vertex cover of E(G) having cardinality not

greater than m. 2 graph G consists of elements called
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edges, together with a relation of incidence that associates
two vertices of V(G) with each edge &X of E(G), <called the
ends of ). Each edge &K in E(G) is incident upon its ends.

A vertex cover K of E(G) is a subset of V(G) such that each

edgé of E(G) is incident upon some vertex in K. Vertex b of
V(G) is adijacent to vertex c of V(G) if E(G) contains an
edge having b and ¢ as its ends. The vertex cover problem
is NP-complete [Karp 72].

To transform +this into the corresponding key of
cardinality m proklem, define A to be V(G) and F to be {N(v)
-=> {vl: v 1lies in V(G)} vwhere N(v) denotes the set of
vertices in V(G) that are adjacent to v.

Observe that (A, F) can be determined in time polyno-
mial in |V(G) | and |E(6)}. Note also that |2} = |V(G)] =
|Fit. Moxreover, by Lemﬁa 4.6, asserted below, the vertex
cover problem is polynomially transformable into the key of
cardinality m problemn,

Lemma 4.6: Subset K of 2 is a key for (i, F) if and only if
it is a vertex cover of E(G) in G.

proof: Assume as inductive hypothesis that the assertion
holds <for each subset K' of A that properly includes K. If
K is equal to A then the assertion holds trivially. Assume
therefore that K is a proper subset of A. By lLemmas 4.1 and
4.2, K is a key for (2, F) if amd only if it has a
F-expansion that is a key for (&, F). By construction of F,

K has a F-expansion if and only if V(G) - K contains a
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vertex, say v, such that K includes N(v). By the induction
hypothesis, K U {v} is a vertex cover of E(G) im G. That
is, ©proper subset K of 2 is a key for (A, F) if and only if

it is a vertex cover of E(G) in G, as asserted. n

——— s s S i et

Given a set A of attribute names, binary relation F on
2*%¥A and attribute name b in A, decide whether or not b is
prime relative to (2, F).

Theorem 4.2: The prime attribute name problem is
NP-complete.

proof: The problem lies in NP, Nondeterministically
generate a subset of 2 and then verify whether it is a
minimal key that contains b. To complete the proof, it
suffices to prove that the key of cardimality m problenm is
polynomially transformable into +the prime attribute name
problen. For this, assume that set A', binary relation F'
and integexr m have been given as input to +the key of
cardinality m problen. Define sets A, F and {b} for the
corresponding prime attribute name problem as follows:
Define A to be A' U [A" x A'] U {b}, where A" is a set whose
cardinality is the smaller of [(A'] and m, and b is a '"new"
attribute name not in A' U [A"™ x A']. Define binary rela-
tion ¥ on 2*¥*2 as follows:

(i) for each pair E, F of subsets of aA', if E -F'-> F
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then {b} U E —-> F,
(ii) (b} U A" -=> am x av,
(iii) for each e€lement i of A" and each element e of ',
(b} T {(i, e)} —-> f{e},
(iv) for each element i of A" and for each pair e, f of
distinct elements of A', {(i, e), (i, £)} -—> {b},
(v) for each element e of A', {e} --> {b},
(vi) no ordered pairs other than those given by (i) - (V)
lie in F.
Observe that [A"™] < |2'|, |A] £ |A'|2 + |a*'] + 1 and
IFl < |F'| + 1 + |A'}|2 + |A'"|3 + |A'}. Thus, by Lemma 4.7
stated below, the key of cardipnality m problem is polyno-
mially transformable into the prime attribute name problemn.
Lemma 4.7: Attribute name b is prime relative to (2, F) if
and only if (a*', F') has a key of cardinality not greater
than =m.

proof: Consider first the case where (2, F) has a minimal

key, K, that contains b. By the minimality of K, and in
view of (iv) and (v) above, K = (b} U {(i(1),
c(1)) seeersd(n), c(n))}, where i(1),...,i(n) are n distinct
elements of A", c(1),...,c(n) are elements of A' and n 2 0.
We assert that {¢{(1),...,c(n)}, denoted by K', is a key for
(A%, F'). To prove this, let L' denote a maximal subset of
A' such that (K', L') lies in the closure of F'. If L' is
equal to A', then K' is indeed a key for (A', F'). Assume

thus that L' is a proper subset of A'. By the choice of L!
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and by lemmas 4.1 and 4.2, L' is a proper subset of A' that
includes K' but is not F'-expansible. Thus, K U L' is a
proper subset of A that includes K but is not F-expansible.
By Lemma 4.2, K is not a key for (A, F), a contradiction.
As asserted, K' is a key for (A', F'). 1Indeed, lK'}] £ n <
Jan| 5 m. As asserted, if b is prime relative to (2, F),
then (A', F') has a key having cardinality not greater than
m.

To prove the converse, assume that (a', F') has a key,
denoted K', having cardinality n not greater than m. Denote
the elements of K' by c(1),...,c(n). Since n < |A'| and
|A"} = min(}A'}, m), A" contains n distinct elements:
denote them i(1),...,i(n). We assert that {b} U {(i(1),
c(1))seeer,i(n), c(n))}, denoted K, is a key for (A, F). To
prove +this, define L to be a maximal subset of A such that
(K, L) lies in the closure of F. By lemmas 4.1 and 4.2, by
the choice of L and in view of (iii) above, 1 is a subset of
A that includes K U K!' but is not F-expansible. Thus, L N
At is a subset of A' that includes K' but is not
F'-expansible. Since K!' is a key for (', F'), sois 1 N
At By lemma 4.2, L N A' = A', Thus L includes {b} U 2a‘%,
whence L = A by (ii) above. As asserted, K is a key for
(2, F).

Finally, K - {b} is a proper subset of A that is not
F-expansible, whence b is essential to K. Thus K includes a

minimal key for (4, F) that includes b, by Lemma 4.3. That
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is, b is prime relative to (A, F). n

4.6 An algorithm for finding all minimal keys

Several algorithms for finding all minimal keys have
been rpresented in the literature [Berﬁstein 75a, Bernstein
75b, TLelobel 73b, Fadous 75]. The following example has
exactly one minimal key and yet each of these algorithms
requires 2%*A steps or more to find the one key. This
particular example has 8 attribute names and 4 functional

dependencies; it can be generalized to larger examples where

|A} = 2 |F|. lLet A = {a,...,h} and let F contain:
a --> b,
c -——-> d,
e --> £,
g —=> h.

This system has exactly one minimal key, namely f{a, c, e,
g3.

Bernstein's approach is to test, for all subsets A' of
A, whether A' is a key and whether it is minimal. This
algorithm takes 2**A steps regardless of the number of Xkeys
found.

For this example, Delobel and Casey's algorithnm
involves finding +the prime implicants for the following
Boolean function:

F = abcdefgh + ab' + cd' + ef' + gh'.
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They show that the prime implicants with no ccmplemented
variakles correspond to minimal keys. Known algorithms for
generating prime dimplicants run in time exponential in the
number of variables, or in this case, in time exponential in
jAf.

Fadous and Forsyth's algorithm is not analyzed noxr is
it easy to deduce its worst-case behaviour. For examples in
the family descrilked above, one of the temporary sets used
by this algorithm, T2, gives some idea of how it works. The
first time T2 is coanstructed, it contains Choose{(|lF]|, 2)
elements after elements which are supersets of others have
been discarded. The néxt time T2 is comnstructed it contains
Choose (|F|, 3) elements after supersets are discarded. The
pattern continues, and in general, the number of operations
required to maintain T2 alone is more than

1¥|

2{: Choose(|F], 1)

i=2
or more than 2%*|F| steps.

In [Lucchesi 77)] an algorithm is presented which finds
all minimal keys for a relatiomal system in time polynomial
in {2}, |F} and in the number of keys found. As pointed out
by Bernstein and Beeri, this is not really what we need when
finding the ccllection {(A(i), PF(i))} of covering third
normal form relations. The covering approach, for example,

yields such sets A(i) together with some of the minimal keys
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for (A(i), F(i)). What we then want to find is all minimal
sets of attribute names K such that K -=> A(i) and
A(i) --> K. These could be called minimal keys for 2A(i)
except that they are not necessarily im 2 (i). They are in
some sense equivalent to A (i) with respect to all of F in
what they can "derive'".

let us define the maximal expansion 2(i) * of a subset

'

A(i) of A to be all attribute names that are in any
F-expansion of A(i). Intuitively A (i)* contains everything
"derivable" from A(i). When we speak of finding all minimal
keys for A(i), what we really mean is finding all K ¢ A(i)*
such that K is a minimal key for A (i) *.

Maximal expansions can be found using Bernstein and
Beeri's membership algorithm, again changing the output from
the algorithm to return the set DEPEND as the expansion.
This &ersion or their algorithm will be called Expansion
below.

Using this algorithm to find A(i)* for +the A(i) in
question, we can then restrict our attention to the
functional dependencies whose left-hand sides are subsets of
A(i)*, by lemma 4.8 below. This lemma follows directly fronm
Lenma 3.8.
lemma 4.8: If a subset B of A is F-expansible, then B or a
proper subset of B is a left-hand side of a functional
dependency in F.

These functicnal dependencies, then, constitute F(i).
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Note that ¥ (i) can be determined in O(|F] |A(i)*]) steps.
By definition of A(i)* we also know +that +the right-hand
sides of all functional dependencies in F(i) are subsets of
A (i) *.

We are now ready to show the conditions under which an
additional key for A(i)* exists.
lemma 4.9: Given an arbitrary subset A(i) of A, F(i) and a
nonnull set K of minimal keys for A(i)*, 2**%2 - K contains a
minimal key for A(i)* if and only if X contéins a minimal
key K and F(i) contains L --> R such that L U (K - R) does
not include any key in K.

proof: To prove that wunder these conditions 2%*A -

=

contains a minimal key for A(i)*, assume there is a K € K
and L —-> R in F(i) such that L U (K - R) does not include
any other key inm K. Since L U K U R includes K and K is a
key for 2(i)*, L UK U R is a key for A (i)*. It is also
true that L U (K- R) —-> L U K U R; therefore L U (K - R)
is also a key for A(i)*. Thus L U (K - R) contains a
minimal key, say K'. Since L U (K - R) does not include any
key in K, K' is not already in K.

To prove the converse, assume that 2%*A - K contains a
minimal key K' for A(i) *. Define K" to be the ﬁaximal
subset of A that includes K' but does not include any key in
K. Since K is nonnull, K" is a proper subset of A(i)*.
Since K' is a key for A(i)*, So is K"; i.e. K" —=> A(i) * is

in ¥F(A, F). By lemmas 4.1 and 4.2, K" is F-expansible. By
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definition of A(i)*, it is F(i)-expamnsible; i.e. F(i)
contains 1 --> R such that L ¢ K" and R ¢ K". By the choice
of K", K" U R dincludes a key in K, say K. That is, K"
includes 1L and K - R, or LU (K - R) ¢ K". Since K" does
not include any key in K, neither does L U (K - R). m

If A(i) # A, then before we can start finding keys, vwe
must first find A(i)* and F(i). If A(i) = A, we simply
renape A and F. Then, before we can apply the lemma, we
must have a nonnull set of minimal Xeys. This can be
accomplished by applying the Minimal Key algorithm to all of
A(i)* to 1isolate one minimal key. Then the test in the
lemma is used to determine if there are any remaining keys,
again using Minimal Key to isolate one such key whenever the
test is satisfied. In the algorithm, it is assumed that K
is accumulated as a sequence which can be scanned in the
order in which the keys are entered. |
Corollary: The following algorithm determines the set of
minimal keys for an arbitrary subset A(i) of A, given a set
F of functional dependencies over A.
Algorithm Set of Mimnimal Keys (A(i), F) ;

if a(i) # A

then B <-- Expansion (A (i), F)
F (i) <-- all functional dependencies
in ¥ whose LHS ¢ B
€lse B <-- 1;

F(i) <- F;
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K <-- {Minimal Key (B, F(i), B)}:;
for each K in K do
for each pair L .--> R in F (i) do
S <=- L U (K - R);
test <-- true;
for each J in K do
if S includes J then test <—- false;
if test
then K <—— K U {Minimal Key (B, F(i), B)}l;

return K.

Observe that the algorithm takes O(e + |F] + |F(1)!| [Kl (IB]
+ |El IBl) + |Kl m) elementary operations where e 1is the
complexity of Expansion and m is the complexity of Minimal
Key. That is, the algorithm has time complexity O(|F}| Bl +
{F(i) 1 (Bl IRl (IRl + 1iBl)). For any A(i), this is no
greater than O(IF[ [A] [Kl (IKI + {2])).

‘Bernstein and Beeri have shown that finding an
additional key for a set A(i), a sub-relation of a larger
system (&, F), is NP—cdmplete with respect to the size of
A(i). This result does not contradict +the analysis of
algorithm Set of Minimal Keys because the algorithm finds
one more key in time polynomial in jA(i)|, IF(i)} amnd the
nubber of keys already found, where F (i) is determined after
A(i)* has been found, and there is no reason for jA(i)*| to

be small with respect to |A(i)|. The point is that this

algorithm will be used when £finding a third normal form
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collection for (A, F), and any algorithm that is polynomial
in |2}, |F}] and anything else we want to know, e.g. keys, is
considered acceptable. In finding third normal forms, this
algorithm will be invoked at most r times, where r is the
number of relations in +the final <collection; for the
covering algorithms, and for the algorithm in Chapter 5, r

is bounded by |Fi{.



Chapter 5

Algorithms for finding covering Codd third normal forms

5.1 The graphical approach

In order to develop algorithms for covering Codd third
normal form, we will use an approach based on directed
graphs. This section 1is devoted to establishing an
appropriate model.

A directed graph G(V, E) consists of a finite, non-

enpty set of vertices V and a set of ordered pairs of
vertices called edges. For a relatiomal system (A, F), the

equivalent directed graph has labeled vertex set V = 2%*}3,

the 1labels being subsets of A. Furthermore, for each
functional dependency 1L -> R in F, there is an edge (L, R)
in the equivalent directed graph. Where there is no
possibility of confusion, we will simply call this the graph
for a relational systen.

Since the third normal form and covering definitions
pertaining to relational systems are in terms of the
(projective, transitive and additive) closure F(A, F), vwe
will now define a closure operation for the equivalent
directed graph. Given a set V of vertices and a set E of

edges, the equivalent-graph closure G* of G(V, E) is a

directed graph comnsisting of the same vertices V, and all
edges in
U i21 E(i)

where E(1) is the union of E and all edges obtained by

76
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e graph proijectivity: for X apmd Y in V, if the label for Y

is a subset of the label for X, then (X, YY) is in E(1);
and the E(i), i 2 2, are defined to be exactly those edges
obtained by the fcllowing:

o graph transitivity: for all vertices X, ¥, and Z in Vv, if

(X, Y) and (Y, Z) are in E(i-1) then (X, Z) is in E(i);
e graph additivity: for all vertices X, Y and Z of Vv, if
(X, Y) and (X, Z) are in E(i-1) and Y and Z are not both the
empty set, then (X, YZ)1 is in E(i).
Lemma 5.1: For a relational system (A, F) and its equiva-
lent graph G(V, E), an edge (L, R) 1is in the equivalent-
graph closure iff L --> R is in the projective, tramsitive
and additive closure of (A, F).

We will now associate 1labels with the edges of the

equivalent graphs, in the following way:

label meaning

given a functional dependency given in F
projectivity derived by graph projectivity
transitivity derived by graph transitivity
additivity derived by graph additivity

In all figures, the underlined letter will be used as the
label.

Note that an edge could be derived in more than one
vay. For example, ({bc}, {b}) could be a given functional

dependency or it could be derived by graph projectivity.

1 YZ is the label of the vertex corresponding to Y U Z.
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Whenever +this harpens, we will choose the edge label as
follows: if any cne of them is derived by projectivity,
then the label is projectivity; otherwise if one of then is
a given edge, then take given. In the only other cases
having a choice, the edge was derived by both transitivity
and additivity, the choice is made as follows: if the label
of the terminus of the edge is a single attribute name, the
edge is a transitivity edge; otherwise the edge 1is an
additivity edge. We choose a projectivity label above all
others because it reflects +the set structure of the
attribute name sets, and the fact that one element of 2*%*3
is a subset of ancther can never be "deleted" from whatever
¥e are considering. <The above ranking of tramnsitivity and
additivity is needed to distingquish between vertices
corresconding to. single attribute names and those
corresponding to sets of attribute names in characterizing
third normal forms in a graph. 1In this way, priority is
given to the behaviour of single attribute names because it
is +the single attribute name behaviour that is specified by
the third normal form definitionms.

To illustrate the graphical approach, consider the
relaticnal system with 2 = {a, b, ¢} and F = {a --> b,
b-—->¢, a->c}. The equivalent directed graph is given
in Figure 5.1, and the equivalent-graph closure is shown in

Figure 5.2, where projectivity edges are dashed for greater
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In this examfrle, the set of vertices with labels {abc},
fab}, fac} and {a} are pairvise connected by edges in the
equivalent-graph closure. Since the edge ({a}, {abc}) is in
the equivalent-graph closure, then by lemma 5.1,
{a} --> {abc} in F(A, F). Thus {a} is a key for (A, F); in
fact it is a minimal key.

In an equivalent graph G(V, E), V can be divided into
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Figure 5.2

equivalent-graph closure

equivalence classes V(i) , 1<i<r, such that vertices v and w
are equivalent iff +there is an edge (v, w) and an edge
(w, v) in the equivalent—graﬁh closure G*, Let E(i), 1%is<r,
be the set of edges connecting vertices imn V(i). The graphs

G(i) (V(i), E(1i)) are called the strongly connected conpo-

nents of G*.
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We can make the following observations concerning the
strongly connected components of the equivalent-graph
closure for a relational system (A, F):

e Since the V(i) in the definition of strongly connected
components are equivalence classes, A belongs to exactly one
of themn.

e Since X --> A for every vertex in the strongly connected
component containing 2, by Lemma 5.1 every vertex in the
strongly connected component containing A corresponds to a
key for (a2, ¥).

e Since A —> X for all X in 2*%A, by projectivity, for no X
outside of A's strongly connected component does X --> A.
In other words, there are no edges entering A's strongly
connected component. Thus A's strongly connected component
contains all the keys for (&, F).

We conclude this section with the following definition
and observation. If X and Y represent vertex labels, then X

is said to be a pminimal member of a strongly connected

component if no Y which is a proper subset of X is also a
nember of +the strongly connected component. Thus the
minimal members of A's strongly connected component are the

minimal keys of the relational system (&, F).
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5.2 Covering Codd third normal forms

In this section we will discuss a characterization of
covering Codd +third normal form but ignore algorithm
efficiency. Recall that there are two main properties to
satisfy, namely covering the functional dependencies and
making sure that each relation in a collection is imn third
normal form. We will begin with the definitions describing
the graph parallel to covering the functional dependencies,
and then we will discuss the properties of a graph
corresponding to a single relation in +third normal form.
Finally we will combine the two requirements by giving an
algorithm to find a collection of relations satisfying both
properties and show +that +the resulting collection also
allows the reconstruction of the original relation.

3 xreduction G+ of an equivalent graph G(V, E) is a

subset of the equivalent graph whose equivalent-graph
closure equals the <closure of G(V, E). A reduction G+ is
said to be minimal if, for no proper subset H of G+, does
H¥ 1 equal Gt*, 2 reduction Gt is said to be minimum if
there is no reduction J with fewer edges than G+ such that
J* egquals G+*,

By Lemma 5.1 and the definitions in Chapter 2, we have
the following basic results:
Lemma 5.2: If G(V, E) is the graph of a relational systen

(A, F), then G+ is a minimal reduction of G iff the edge set

1 This notation will be used for closure where the context
indicates what closure operation 1is involved.
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of G+ corresponds to a minimal covering of F.
lemma 5.3: If G(V, E) is the graph of a relational systen
(8, F), then G+ is a minimum reduction of G iff the edge set
of G+ corresponds to a minimum covering of F.

We observed at the end of the last section that all the
minimal keys for the relational system (&, F) are 1in the
same strongly connected component of the equivalent graph.
The same is true for any subrelation (A(i), F(i)): if K and
L are contained in A (i) and are two minimal keys for A (i),
then K --> L and 1 --> K in the closure, and thus they are
pairwise ccnnected in the equivalent-graph closure.

Any attribute name in a minimal key of a subrelation is
prime with <zrespect +to that subrelation. Recall that Codd
third normal form requires no +transitive dependencies of
nonprime attribute names on minimal keys. Any violations of
Codd third normal form will be caused by nonprime attribute
names which are minimal members of some strongly connected
component cther than the one containing all the minimal
keys. These potential violations will be found by examining
'the interactions between the strongly connected components,
not within them. Thus we define below the acyclic equiva-
lent graph which collapses strongly connected components and
allows us to look only at an acyclic representation of the
graph.

The acyclic equivalent graph G' of an eguivalent graph

G(V, E) is constructed from the equivalent-graph closure G*
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as fcllowvs: Let G(i)(V(@E), E(1)), 1%isr, be the strongly
connected components of G*. Then G' has r vertices, omne for
each set V (i), suck that each <vertex is 1labeled by a
distinct set L(i) = {x | x is the label of v - 7V(i)}. The
edges of G' are given by: (V(i), V(j)) is an edge of G' if
and only if thexe is an edge (u, v) in G* such that u € V(i)
and v € V(j). The labels on the edges of G' are given by
the fcllowing rules:

e If there is a given edge from any member of V(i) to any
membexr of V(j), then (V(i), V(j)) is labeled given.

e Otherwise, if there is a transitivity edge from any member
of V(i) to any member of V(j), then (V(i), V(j)) is a
transitivity edge.

e Otherwise, if there is an additivity edge from any menmber
of V(i) to anj menber of V(j), then (V(i), V(j)) is an
additivity edge.

e Otherwise (all edges are projective), (V(i), V(3J)) is a
projectivity edge.

For the example in Figure 5.2, the acyclic equivalent
graph is given in Figure 5.3. The minimal members of each
strongly connected component are underlined.

Closure and reduction héve been defined in terms of G
whose vertex set corresponds to 2*%*A, All cycles in the
closure G* have been removed in constructing the acyclic
equivalent graph, but the information has been retained in

the labels. The closure of the acyclic equivalent graph can
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be found Lty replacing each vertex in the acyclic eguivalent
graph by the set cf vertices in the corresponding strongly
connected component, and adding edges to form a simple cycle
incident to all vertices in the strongly connected compo-
nent. The closure of this graph is clearly the same as G¥*
(without edge labels). Therefore a reduction G+ of an
acyclic equivalent graph G' is a subset of G' such that

(G¥)* = (G')*, where both closure operations are as



Cha 5 2lgorithms for covering Codd normal forms 86

described above.

Aho, Garey and Ullman have proved that for conventional
acyclic directed graphs, the miniﬁal reduction is unigque
[ Aho 72]. The following example shows that this is not true
for acyclic eguivalent graphs. Let A = {u, v, X, y} and F =

fu -->v, u-->%x,u-->y, Xy ——> v, v -->y}. The acyclic

uv;
uvy;

ux; uy; uvx}
uxy; uvxy

Figure 5.4

equivalent graph is shown in Figure 5.4. Figure 5.5 shows

two minimal reductions for this example. In all suckh
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figures, the null set is omitted, projectivity edges
(dashed) are included for clarity, and only mRinimal members
of each strongly connected component are shown. The reader
can verify that they both have the same closure.

The above example shows that, because of the properties
of graph additivity, the minimal reduction is not unique,
and also in this case the minimum reduction is not unique.
However, it is important to remember that what we want to
optimize is the number of relatiomns in a Codd third normal
form collection. From the discussion so far, it is not
clear whether oxr not all minimal reductions give rise to
equal size sets of relatioms.

Although we have defined a minimal reduction to be a
subset of the given graph, we should consider briefly other
graphs, perhaps containing +transitivity and additivity
edges, which represent minimal sets of functional
dependencies having the same closure. Two such examples are
shown in Figures 5.6 and 5.7, each with tvwo possible minimal
representations. We will see at the end of Section 5.3 that
the number of relations produced by the Codd +third normal
form algorithm does not depend on the cardinality of the
minimal covering of the functional dependencies embodied.
Thus, since we have a choice, we choose a covering that is a
subset of the given functional dependencies, since they are
likely to be update units. The following lemma shows that a

minimal representation of the acyclic graph corresponding to
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given functional dependencies does always exist.

Lemma 5.4: For +the acyclic equivalent graph G' of a
relational system (A, F), there is at least one minimal
representation that contains only given edges.

proof: Recall that there will not be projectivity edges in
a minimal representation since they are always generated in
forming the closure. Also 1zrecall that 1in the acyclic
equivalent graph G', a given edge appears wherever there is
a given edge between any vertex in V(i) and any vertex in
V(j). Thus the given edges of the acyclic equivalent graph
form one representation, although not necessarily a minimal
one. To form a minimal one from these given edges,
temporarily delete a given edge and see if the closure
operation yields the same result as before. If it does,
then permanently delete this given edge. When no more edges
can be permanently deleted in this manner, the resulting set

of given edges is a minimal representation, and thus, a
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Figure 3.6
¥

A = {a, b, c} = fa —-> b, a --> ¢}

5.6 (a) acyclic equivalent graph

5.6 (b) minimal representation not consisting of all
edges (projectivity edges shown for convenience)

90

given
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5.6 (c) minimal representation consisting only of given
edges (projectivity edges shown for convenience)
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Fiqure 5.7

A = {fa, b, x, ¥}
F= f{a~-->%x, a~-->yY, Xy -—->5b, b-—>17y}

5.7 (a) acyclic equivalent graph

92
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5.7 (c) minimal representation containing only given edges

ninimal reduction. o

This completes +the discussion of how covering is
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manifested in a graph. We will now turn to third normal
forms before combining the two concepts. In order to talk
about third normal form, Wwe need a means of identifying
potential third ncrmal form violations; i.e. we need a no-
tion similar to prime and nonprime for equivalent graphs and
for acyclic equivalent graphs.

A vertex V in the equivalent graph G(V, E) of a
relational system (A, F) is all nonprime if all the elements
of A in its label are nonprime relative to (4, F).
Otherwise it is graph prime. For example, in Figure 5.2,
the vertices lateled b, c and bc are all nonprime‘and all
other vertices are graph prime.

In the acyclic equivalent graph G' for a relational
system, a vertex is prime if all of its minimal members are
graph prime. Otherwise, (at least one minimal member is all
nonprime) it is said to be nonprime.

A1l vertices in the acyclic equivalent graph have at
least one minimal member. A vertex is said to be simple if
the strongly connected component it represents has exactly
one minimal member. Otherwise a vertex in +the acyclic
equivalent graph is compound. With these definitions, we
can now characterize a graph representing a single relation
in Codd third normal form.

Theorem 5.1: The acyclic equivalent graph G! of a
relational system (A, F) corresponds to a relatiom in Codd

third normal form iff
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P1: every nonprime vertex is simple and

P2: there is no path of 1length greater than one to a
nonprime (simple) vertex such that the last edge of the path
is a given edge.

proof: Assume (A, F) is in Codd third normal form but that

P1 is not true. That is, G' contains a nonprime, compound
vertex, say B. Since B is nonprime, it is not the strongly
connected component containing all the minimal keys. BY
definiticn of nonprime for acyclic egquivalent graphs, B
contains at least one minimal member, say X, that is all
nonprime in G. By the assumption that B is compound, B
contains at least one other minimal member, say Y.

If X is a single attribute nane, then; being nonprime,
it is transitively dependent on any minimal key K; 1i.e. K
--> Y, Y -»-> K, Y --> X and, since Y is minimal, X € Y.
This contradicts the assumption that (A, F) is in Codd third
normal form.

If |X| > 1, then Y —=> X is an additivity edge in the
closure, or Y --> x(i) for all x(i) € X. Since X is a
minimal member of B, none of the x(i) are imn B. Since X is
all nonprime, all the x(i) are nonprime. Y ¢ X since X is
minimal in B. Therefore there is at least one x(i) € Y.
This x(i) is +transitively dependent on any minimal key,
contradicting the Codd third normal form assumption.

NFow let us assume that'(A, F) is in third normal form

but that P2 is not true. That is, G' contains a path of
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length greater +than one ending in a given edge into a
nonprime simple ncde. Because this ends in a given edge, by
canonical form for functional dependencies the simple node
in fact contains only a single attribute name, say z. Let
this path be C --> B --> z where C and B are two other
strongly connected components. B is not +the strongly
connected component containing the keys since there is an
edge coming intc it. Thus if K is the strongly connected
component containing all the keys, K --> B --> z., Since B
~-> z is a given edge, there is at least one member Y in B
such that ¥ --> z is a given edge in the closure and thus z
€ Y. Thus 2z 1is a nonprime attribute name transitively
dependent on a minimal key, contradicting (A, F) being in
Codd third ncrmal form.

To prove the converse, assume we have amn acyclic
equivalent grarh satisfying +the two <conditions imn the
theorem but that the corresponding relational system is not
in Codd third normal form. That is, there is a +transitive
dependency of a nonprime attribute name, say z, on a minimal
key, say X. 1In other words, there exists some Y ¢ A such
that X --> Y, ¥ -»-> X, Y --> 2z and z € Y. Since Y -7#-> X,
X and Y are in differemnt strongly connected components.
Since 2z is nonprime, by P1, 2 is the only minimal member of
its strongly connected compoment. Since z § ¥, z and Y are
in different strongly ccnnected components. Since Y --> 2z,

there is an edge from Y to z in the equivalent graph closure
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which cannot be a projectivity edge since z € Y, cannot be
an additivity edge because |z} = 1, and therefore is either
a given edge or a transitivity edge. Therefore, by defini-
tion c¢f the acyclic equivalent graph, the edge from 1Y's
strongly connected component to 2z!'s is either a given edge
or a transitivity edge. If it is a given edge, then P2 is
contradicted. If it is a transitivity edge, themn by the two
lenmas below, we also have a contradiction to P2.

lemma 5.5: In the equivalent-graph closure, G¥, of the
graph for a relational system (A, F), if there is a
transitivity edge from vertex M to vertex N, then there is
also a path from M to N of length greater tham one ending in
a given edge.

proof: Let M* be the maximal expansion of M. Then in the
closure, M --> M*, Consider M* — N, Since this is a proper
subset of M*, M* —-> M* - N by projectivity. Thus, by
transitivity, M --> M* - N is in the closure. Since in the
closure, M --> N is not a projectivity edge, then in forming
the maximal expansion M*, there is some point at which N is
the right-hand side of a functional dependency in F which is
used. Since M* is maximal, the left-hand side of this
functicnal dependency, call it 1L, must be a subset of M* -
N. Therefore in +the equivalent-graph closure, there is a
path M --> M* = N ——> 1L --> N, the last edge of which 1is
given in F. n

Lemma 5.6: In the acyclic equivalent graph for a relational
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systen, if 2z is the only member of its strongly connected
component and B —--> 2z is a trapnsitivity edge, then there is
a path from B tc z of length greater than one ending in a
given edge.

proof: Since in the acyclic graph B --> z is a transitivity
edge, there exists at least one X in B such that X --> z is
a transitivity edge in the equivalent-graph closure. By
Lemma 5.5, there is a path in the equivalent-graph closure
from X to z ending in a given edge. Let this given edge be
W-->2z. If H(were in B, then B --> z would have been a
given edge. Since ® 4is on a path from X to z in the
closure, X —--> W is in the closure by transitivity. Thus
there 1is an edge from B to W's strongly connected component
in the acyclic equivalent graph. Since 2z is the only
minimal member of its strongly connected component, W and z
are in different strongly connected components and thus
there is a path B =-> W's strongly connected component --> 2
ending in a given edge. o

The proof of these two lemmas completes the proof of Theorem
5.1. =&

We have shown how Codd third normal form is
characterized in these graphs, and we know +that a minimal
reduction cecrresponds to a minimal covering of the
functional dependencies. Thus to achieve a set of
relaticnal descriptions {(A(i), F(i))} each in Codd third

normal form, such that U A(i) = A and the closure of U F(i)
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= the closure of F, i.e. a covering Codd third normal form,
we are going to extract subgraphs from a minimal reducticn
of the acyclic equivalent graph in such a way that each
subgraph is guaranteed to correspond to a relation in Codd
third normal fornm.

The input to the algorithm is a minimal reduction of
the acyclic equivalent graph of a relational systen,
consisting only of given edges; i.e. a vertex set V+ which
contains the strongly connected components, and an edge set
E+ consisting of the given edges in the reduction.

Algorithm Extract Relatioms (V+, E+);
1. i <-- 1

2. While the graph is nonempty do

3. Y <-- any source in V+
4. A(i) <-= A(i)0 <-- uynion of all minimal members of ¥
5. F(i) <-- F(i) 0 <-- enough functional dependencies to

generate the pairvwise connections between minimal

members of ¥

6. for each edge (¥, W) in E+ do

7. if ¥ contains no minimal member that is a subset
of A(d)

8. then A(i) <-- A(i) U one minimal member of ¥

9. F(i) <-- P (i) U the edge

(one minimal member of ¥V, the memberxr of
¥ chosen above)

10. delete edge (¥, W)
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11. if F(i) is empty and ¥V is not the key strongly

connected component

12. then discard (2(i), F(i))
13. else i <~ i + 1
14. delete ¥

15. for all i do
16. F(i) <= F() U all functional dependencies in

E+‘U F' whose left and right sides are

contained in A (i)
Remark 1: F(i)© can be constructed in the following way:
for each pair X, Y of minimal members in the strongly
connected component, F(i)©? contains X --> y(j) for each y(j)
€ Y and Y --> x(k) for each x(k) € X. These are in
canonical form and are also sufficient to generate the
strongly connected component.. 0f course any projectivity
edges thus created should be deleted from F (i)°.
Remark 2: for each (A1), F(1)), the closure of
(A(i), F(i)) is a subset of the closure of (A, F). That is
nothing is added by the algorithm in terms of functional
dependencies that was not known in the context of all of
(2, F).
Remark 3: in the acyclic equivalent graph for any
(A(i), F(i)) generated by the algorithm, every strongly
connected component is a subset of a strongly  connected
component in the acyclic equivalent graph for (2, F). This

follows from remark 2: since we have not added any
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functional dependencies, nothing is pairwise connected that
was nct pairvwise connected in G*. Thus strongly connected
components in G* may get split up, but they cannot be merged
together.

Remark 4: 2A(i)°® 4is a strongly connected component in the
acyclic equivalent graph for (A(i), F(i)). Furthermore it
contains all the keys for (A (i), F(i)).

Recall from section 5.1 that there are no edges in G*
entering the strongly connected component containing all the
minimal keys for A. Thaus this strongly connected component
is a source 1in G*, and in G+. Therefore lime 3 of the
algorithm chooses this strongly connected component as A (i)©
for some i. This gives the following basic lemma.

Llemma S5.7: One 2 (i) contains a key for (2, F).

Since each F(i)0 <reconstructs the strongly connected

component for A(i)©9, and all the given edges in a minimal
reduction are included by line 6 in at least one F(i), we
also have the following basic result:
Lemma 5.8: For every given edge (and thus functional
dependency) in the minimal zreduction, there exists an
(A(1i) , F(i)) for which the left-hand side of the
corresponding functional dependency is a key.

Lemma 5.9: The closurxe of (0 A(i), U F(i)) equals F(A, F).

That is, {(ad (i), F(i))} embodies a coverimng of (i, F).
The above three lemmas satisfy the conditions of Lemnma

3.9. Therefore we have:



Cha 5 Algorithms for covering Codd normal forms 102

Corollary: The xelaticn R with attribute name set 2 is
reconstructible fxom {(A (i), F(i))}.

To show that each relational description (A(i), F(i))
is in Codd +third normal form, we must show that its
corresponding grarh obeys the properties of Theorem 5.1.
lempa 5.10: For each (A(i), F(i)) constructed by the
algorithm, all nonprime nodes are simple.
proof: This follows directly from line 8 of the algorithm
and from remark 3. o
Lemma 5.11: For each (2(i), F(i)) constructed by the
algorithm, in the acyclic equivalent graph for each system
there are no paths of length greater than one to a nonprime
node ending in a given edge.
proof: By remarks 1 and 3, 2(i)? is a strongly connected
component in the acyclic equivalent graph for (A(i), F(i)).

Suppose there is such é path in the acyclic equivalent
graph for (A(i), F(i)). Then it would be of the form B —-->
C --> 2z vhere C —--> z is a given edge, Z is simple and z €
A(i)o. By remark 4, if A(i)©° contains all the keys for
(2(i), F(i)) then there are mno edges leading into the
strongly ccnnected component corresponding to A2(i)©°. Thus C
is distinct from A(i)©°. Furthermore, since A(i)©° contains
all the keys, there 1is amn edge from A(i)©9's strongly
connected component to C im this acyclic equivalent graph.
Thus there is a path A(1)0 --> C --> 2z ending in a given

edge. Now in G+, A(i)0 and C are distinct. C and 2z are
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also distinct strongly comnnected components in G+ or there
would not have been a given edge to add to F(i). Thus by
remark 1, +this path is also in G+, Now, since z is
ﬁonprime, A(i)9 --> z is a given edge in G+ by construction
of A(i). Thus, A(i) --> 2z is also in G*. This functional
dependency is redundant in G+, contradicting the assumption

that G+ is a minimal reduction. o

5.3 Efficient algorithms for covering Codd third normal
forms

Qur objective in this section is to give algorithms for
carrying out the theoretical results given in Section 5.2.
A1l of the graphs discussed in 5.2 have 2**A as their vertex
set. Any polynomial graph algorithms on such a graph would
result in covering third normal form algorithms which are
exponential in the size of the inputs to our problem, namely
in }A} and |F{. Thus, if possible, we would like to avoid
such a large graph, and rather manipulate a graph whose size
is polynomial in }A} and |F}.

Notice, for example, that the algorithm for extracting
{(a(i), F(1))} £from the graph only refers to the minimal
members of the strongly comnected components and given edges
between the strongly connected components. Thus one

improvement we might make 1is to ignore completely those

members of 2**A which are not minimal in their strongly
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connected components.

We can also economize by reducing the number of rela-
tions we keep: the algorithm, as it stands, produces too
many relations. Consider the following example: A = {a, b,

X, ¥, 2} and F:

The acyclic equivalent graph is shown in Figure 5.8.

The relations extracted by the algorithm would be:
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A(1) = {x, Y, 2} F(1) = {x --> 7, x ==> 2},

A(2) = {a, b, ¥, 2} F(2) = {ab -—->y, ab --> z, yz --> a,
yz --> b, yb -—> 2z, yb --> a, za --> b, za --> y},

A(3) = {ar ¥} F(3) = {y -——> a, a -—> ¥},

A(4) = {b, z} F(4) = (b --> z, z --> b}.

Note that in F(2), all of the functional dependencies are
non-full dependencies and thus none of them are necessary in
the minimal covering. However, since all of the attribute
names are prime with respect to (A(2), F(2)), this relation
is in Codd third normal form. If +the given functional
dependencies indicate update units, then information will be
inserted as (a, y) or (b, z) pairs, or as (x, y, 2z) triples.
Only wvwhen y and 2z are both known can a (Y, 2) pair be
inserted into R(Z). Any retrievals involving the associa-
tions between y and z could be answered using R(1) (as long
as there is an x value). Thus R(2) is completely useless
and unnecessary.

One characteristic of this unnecessary relation is that
the strongly connected component that coanstitutes its A (i) ©°
has no given edges leaving it. Another ‘characteristic is
that none of its minimal members are the left-hand side of
any given functional dependency. Thus if we zrestrict
ourselves to strongly connected components containing the
left-hand side of a functional dependency given in F, then
we will certainly cover all the given functional

dependencies and thus cover F(A, F). If we delete nmnon-full
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dependencies from F before constructing the graph, then we
will avoid strongly connected components with all non-full
left-hand sides and thus avoid these unnecessary relations
while still covering F(A, F). For example, yz --> a could
be a given functional dependency in the above example, and
thus to avoid such a strongly ccnnected component we would
want to remove such functional dependencies from F.

In Section 4.6 we gave an algorithm for finding all
minimal keys for a given B*, where B c A.

Lemma 5.12: M is a minimal key for B* iff B -—-> M and M -->

B in the closure and M is minimal with respect to M --> B.
proof: If M is a minimal key for B*, +them M ¢ B* and
therefdre B* —-> M by projectivity. B --> B* by defimition
of B*¥., Therefore B ——> M. If M is a minimal key for B*,
them M --> B* and B* =--> B by projectivity. Thus by
transitivity M --> B. Suppose M is not minimal with this
property. That is, suppose that M!'! is a proper subset of M
and that M' --> B. Then M' --> B --> B*, contradicting the
assumption that M is a minimal key for B*.

To prove the converse, if M --> B then M --> B* by B
-=> B* and transitivity. Thus M 1is a key for B*. The
minimality of M with respect to M --> B implies that M is a
minimal key for B*. n
Corollary: If M is a minimal key <for B*, then M 1is a
minimal member of B's strongly connected component in the

corresponding acyclic equivalent graph. (Note that B itself
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need not be a minimal member).

Using this result, then, we can find all the m@minimal
members of strongly connected components containing left-
hand sides L, by finding all minimal keys for each L*.

Lemma 5.13: If B is the strongly connected component
"obtained by finding all minimal keys for B*, given B, then B
contains exactly those minimal members in the strongly
connected componenthfdr‘B that would be fouhd by taking the
closure of G(V, E) and the corresponding acyclic equivalent
graph.

proof: This follows from Lemma 5.12 and the fact that the
algorithm in Sectiomn 4.6 finds all minimal keys for B*. n

We are now ready to give an efficient algorithm to
generate a reconstructible.covering Codd third normal form
collection for a given (A, F).

Algorithm Covering Codd third normal form (&, T)
1. delete non~full functional dependencies from F;
2. for each L(i) --> r(i) in F do
L(i)* <-- Expansion (L(i), F);
3. Comment delete duplicates from the set of expansions.
C <= {L(1) found in step 2};
4. if no L(i)* = 23
then C <— C U {a};
5. for each L({(i)* in C do
K{i) <-- Set of minimal keys (L(i)*, F);

6. Comment define the vertex set for G+;
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V+ <-- {K(i)} U {any single attribute nane
z € A that is not a minimal key in one of the K(i)3l s
7. Comment define the edge set for G+;
for each L --> r in F do
if L€ Yand r € N, ¥ and @ - V+,
then E+ <-— E+ U {(¥, H)};
8. Comment define F', the functional dependencies necessary
to regenerate the strongly connected component;
P' <~ X -->7y 1| X, YE€Y, v €Y, for all ¥ in V+};
9. Comment find a minimal reduction of E+ using Bermnstein
and Beerit's membership algorithm;
for each edge e in Et do
if Membership (F' U E+ - e, e€)
then E+ <-— E+ - e;
10. Comment extract a covering Codd third normal form
collection;

"Extract relations (V+, E+).

%

emma 5.14: The above algorithm produces a collection

{(d(i), FP(i))} such that U F(i) covers F(a, F).

proof: Each functional dependency in F is either entered as
an edge in E+ or its left and right sides are in the same
label for V+. 1In the latter case the functional dependency
is covered by F?!. Therefore all the given edges are
covered, and thus F(a, F) is covered. o

Lemma 5.15: The above algorithm produces relational

descriptions that are in Codd third normal form.
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proof: By lLemma 5.13, the labels for V+ contain all the
minimal members for a strongly connected component in the
equivalent graph. The lemma follows by observing that the
proofs of Lemmas 5.10 and 5.11 do not rely on the fact that
G+ 1is an acyclic equivalent graph but only on the construc-
tion of the strongly connected components, the construction
of {(A(i), F(i))} from the algorithms, and the fact that Gt
is a minimal reduction. o

Lemma 5.16: A is reconstructible from the relational
descriptions produced.

proof: By construction there is a key for all of A in ome
A(i). Each 1left-hand side in the wminimal covering of
F(A, F) is a key for one L* and therefore a key for one of
the extracted relations. Thus the «collection produced by
the algorithm satisfies the conditions of Lemma 3.9. n
Lemma 5.17: The algorithm runs in time 0 (fA]2 [F{2 + |[A]2
IFf X (1, IFI+1)k (1) + 1Al IF| F(1,IFi+1)k(i)2 + [A| [F]2
k')‘where k(i) is the number of keys for (a(i), F{(i)) and k°
is the largest k(i).

proof: We will analyze the steps separately. Since they
are executed sequentially, the total run time will be the
sum of the times for each step.

1. Non-full dependencies can be deleted by checking, for
each f in F, if the left-hand side of f minus one attribute
name implies the right-hand side of f. Thus the membership

in the closure algorithm must be called {A4] |Fl times.
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Therefore this step requires 0(|A|2 |F|2) operations.

2. Finding |F| maximal expansions takes a total of O0O(j3]
iF|2) operatioms.

3. At this point, C contains at most |F| entries. Therefore
deleting duplicates from C takes O (]JA} |F}2) operatioms.

4. Adding A to C, if necessary, requires 0(|A{ |F|) opera-
tions and leaves C with at most {F| + 1 members.

5. Let k(i) be the number of minimal keys found for the ith
member of C. Then, in total, this step takes 0 ({A|2 |F|
2 (1, 1FI+1)k (i) + Al |FI X(1,IFl+1)k(i)2) operations.

.6. V+ will have at most A} + |F{ + 1 members. For any
members that were already in C, the 1labels for these are
output by step 5 and thus could be stored at that time in
the required format. Setting up vertex labels for the
remaining single attribute names involves only 0 (|A]|) steps.
7. There are at most |F| edges to account for. We could
keep track, in step 3, of which member of C is associated
with each 1left-hand side. The right-hand side of any
functional dependency in F must be a single attribute name.
Thus, as step 5 is done, if any minimal key is a single
attribute name, the member of C to which it belongs can be
;ecorded. This saves scanning all minimal keys for all
members of C in crder to record Et+. Thus, if the necessary
information is stofed during steps 3 and 5, this step takes
|F] + |A} cperations.

8. There will be, for each minimal key K for each member E
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of C, one functional dependency for each attribute name in
any key in B that is not in K. Thus the number of
functional dependencies in F' is bounded by ¥ (1,ICl) 12|
k(i) where k(i) is the numbexr of keys for the ith member of
C. Recall that |C] < |F} + 1. Therefore this step requires
O(tAl &£ (1,IFI+1)k(i)) operationms.

9. Each «call of Bernstein and Beeri's membership algorithm
takes (A} (lE+|{-1 + |[F']) steps. It will be <called |E+|
times. ‘Since IE+] = [F|, this step takes O(lA] |F|2 + |A|2
IFl 2 (1,1F1+1)k (1)) operatioms.

10. The exfracticn algorithm was not analyzed in Section
5.2. For each vertex in V+, or in terms of the extraction
algorithm, for each source 1in the graph, step 4 takes
O0(lAlk (1)) operations and step 5 +takes O({A}lk(i)) opera-
tions. Observing that for vertices in V+ that were added in
- step 6 of the Codd third normal form algorithm, k(i) = 1,
ﬁhese 2 steps, over all times through the loop in the
extraction agorithm, take O(|A} X (1,IFl+1)k(i)) operations.
Steps 6 to 8 of the extraction algorithm are done a total of
J]E+| times; each time, the k(j) minimal members of W are
examined. Since (almost) all wedges in E+ could have the
same terminus, if k' is the largest k(i), then all execu-
tions of steps 6 to 8 take O (JFlk') operations. Steps 15
and 16 of the extraction algorithm are done n times where 1
is the number of relations left after trivial ones have been

discarded. If we note that any vertex added in step 6 of
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the Codd third normal form algorithm would be discarded,
then steps 15 and 16 of the extraction algorithm are done
ICI times or 0 (|F|) times. Each execution of these steps
involves (JF'}{ + |Et]) IA{(i)| operations, or at most
A1) 1 'Z (1, 1Cl1)I12| k(i) +[F] ) steps. Thus these steps
take at most 0 (IF| |A| & (1,1F1+1)k(i) + |F| ) operations.

Thus, in total, the Codd third normal form algorithm
takes 0 ( (2|2 |F{ + JAj2 |F| X (1,(Fi+1) k(i) + [A] |F|
2 (1,1F|+1) k(i)2 + (A}l |F| k' ) operations. Note thaf if
each k(i) = 1, then the bound becomes 0 (|A{2 |F|2 ), which
is exactly Bernstein's bound of (length of input)2.

If the k(i)'s are not small, then the terms involving
¥ k(i)2 and k' dominate. This is to be expected since the
number of keys can be so large.

There will be cases where we output one more relation
than Bernstein; this occurs when a vertex containing the
minimal keys for all of A must be added. Since Bernstein
does not require reconstructibility, his algorithm does not
do this. Since both algorithms merge equivalent left-hand
sides and then produce one relation for each set of equiva-
lent left-hand sides, in all cases we will produce either
exactly the same number of relations or cne nore.

Recall, however, from Section 3.3, that if update units
are not essential, then one could simply record a functional
dependency 1like t --> j, in the sjt exanmple, in the set of

functional dependencies for {s, 3j, t}, and not store a
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separate relation for t --> j. The relatiom {s, j, t} is
still in Codd third normal form. 2 slight modification of
the extraction algorithm, adding the following three lines,
would accomplish this:

17. for all i, j do

18. if A(i) ¢ A(9)

19. then delete (A (i), F(i))

This modified algorithm has the same worst-case run time as
the original algorithm. Each relation is still in Codd
third normal form, and U F(i) still covers +the functional
dependencies.

Consider the following example: A = {a, b, ¢, x1, x2}
and F = {a,b -f> x1, x1 --> x2, x2 --> b, b --> ¢c}. The
minimal keys for a,b* are a,b, a,x2, and a,x1. The graph
(V+, Et) is shcwn in PFigure 5.9 with projectivity edges
added. With the modified version of the extraction
algorithn, oniy two relational descriptions would be output:
A(1) = {a, b, x1, x2} with P(1) = {a,b --> x1, a,b --> x2,
a,x?1 -—-> b, a,xt —-> x2, a,x2 --> b, a,x2 -—> x1, x1 --> x2,
x2 =-> b} and A(2) = {b, c} with F(2) = {b -——> c}. Even if
Bernstein's algorithm discards a relation whose attribute
name set 1s a prorer subset of another, it would not be able
to do so here since, without generating all keys, there is
no way to knov that a,x?1 and a,x2 are equivalent to a,b. In
this example, Bernstein's algorithm would produce four rela-

tions. This example can be generalized to a system in which
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A= {a, b, ¢, x1, . . . xn} with F= {a,b --> x1, . . . , xi
-~> xi+1, « « « 4y Xn --> b, b --> <c}. In this case our
modified algorithm would produce two relations and
Bernstein's would produce n + 2.

The coliection of relations produced by this modified
algorithm no 1longer satisfies the reconstructibility
criteria of Lemma 3.9. Thus we need:

Lemma 5.18: The relation R whose attribute name set is A is
reconstructible from the collection {(A(i), F(i))} produced
by the modified algorithm.

proof: The only condition of Lemma 3.9 missing is the one
requiring that, for every functional dependency £ in the
covering, there Dbe a relation im the collection for which

the left-hand side of £ is a key. However, the <collection
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does embody a covering of the fuctional dependencies. 1In
the reconstruction of A from a key K according to a deriva-
tion f(1), . .« . 4 f£(m), if the left-hand side of a given
f(j) in the derivation is not the key for any (a(i), F(i)),
then we do know it is contained in some F(i) by construc-
tion. This relation R(i) can be projected onto the
attribute names in f£(j) and the resulting relation be used
as S(Jj) in the algorithm in Lemma 3.9. o

Note +that if the functional dependencies such as f(j)
have been maintained, then the join mentioned in the above
proof will not generate amny "extra facts." We may, however,
lose some partial information due to the omission (by
choice) of update units such as £ (3J).

We should note at this point that, with respect to a
relation over A(i), the functional dependencies in F (i)
which are transitive dependencies of prime attribute names
(and thereforé have to be maintained) are easily identified
because they are all added in step 16 of the extraction
algorithm. By construction, before that, all functional
dependencies are either those required to reconstruct the
strongly connected component or are functional dependencies
of nonprime attribute names that appear as edges in E+.
Although sonme fuhctional dependencies needed to reconstruct
the strongly connected component are non-full, it 1is only
the full functional dependency that is added in step 16 that

has to be maintained explicitly. Note in +the previous
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example, a,x1 --> x2 is needed to reconstruct the key node
whereas it is x1 --> x2 that has to be maintained. ©Not all
the functional dependencies added in step 16 have to be
maintained because some of them could be non-full as well.
The rfpoint is that we have not worried about minimal
representation of the F(i), but only about minimizing the
nunber of relations. The F(i) could be minimized by
deleting non-full dependencies, if +this were considered
necessary.

The remainder of this section is devoted to showing
that we have achieved our optimality objectives, that is,
that the collecticn of relations produced by +the algorithm
has the smallest cardinality possible. Note that we do not
require that the size of the covering be +the smallest
possible nor that the covering contain only given functional
dependencies. These lemmas, then, will justify our decision
to use only given functional dependencies in the covering
and show that no other method could produce fewer relatioms.
Lemmpa 5.19: The covering Codd third normal form algorithm
produces the spallest possible collection {(A(i), F(i))}
such that:

1. each (A(i), F(i)) is in Codd third normal form,

2. U F(i) covers F(a, F),

3. for every functional dependency f in some n@minimal
covering of F(A, F), the left-hand side of f is a key for

one of the (A({i), F(i)),
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4. the original relation A 1is reconstructible from
{(A(1), F(1))}.

proof: The proof is by induction on the number of relations
output by the algorithm. Clearly when the algorithm outrputs
one relation, this collection of size omne is optimum.
Assume that for all i < k, the algorithm outputs an optimunm
collection. To show that this is also true for k+1, assume
that the algorithm produces a collection C(1) of size k+1,
but there exists a smaller collection C(2) that also
satisfies all of these properties, There exists some
minimal covering. of +the functional dependencies such that
each relation in C(2) contains either a functicnal
dependency in this minimal covering or the keys for all of
A, or such a relation could be deleted from C(2) and all the
properties (in particular reconstructibility) would still be
satisfied. Consider the equivalent-graph closure G* for the
given (A, F) and the minimal covering used in extracting
C(1). By construction, there is one relation im C(1) for
each strongly connected component in G* with an edge
corresponding to a given full functional dependencj
origimating imn it. For every strongly connected component
incident tc an edge in one minimal covering, there is an
edge incident to this strongly connected component in every
minimal covering. This follows from the fact that every
functional dependency in a minimal covering is full, and

thus no preper subset of its left-hand side derives its
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right-hand side. Therefore, the only way to derive this
functional dependency in the closure of another minimal
cover is by initially applying additivity or transitivity.
The algorithm produces one relation for each subgraph
of G* sﬁch that one of the minimal keys for that subgraph is
the left-hand side of a functional dependency in the
covering. By +the above argqguments, any other minimal
covering would have a functional dependency incident to this
strongly connected component. We will now comnsider all ways
in which C(2) can differ from C(1).
Case 1: a relation (A(j), F(j)) imn C(2) properly contains a
relation (A(i), F(i)) in C(1). If it contains more than one
(A(di) , F(i)), consider a maximal such A(i). Let B = A(j) -
A(i). There are two subcases: A(i) --> B and A (i) -#-> B.
If A() --> B, then A (i) contains all the keys for A(j) and
B is nonprime with respect to (A(j), F(J))-. Either this
introduces a transitive dependency in (A (j), F(j))., and thus
(A(J), F(j)) is not in third normal form, or, for, each
attribute name b in B, A(i) --> b nontransitively in the
closure of (A(j), F(j)). If A(i) ——> b exists and is not a
transitive‘ dependency, then it cannot be derived by
transitivity in the closure of (A(j), F(Jj)), and since it is
not due to projectivity by the definition of B, then it must
be a given functional dependency. In this case the
algorithm would have included each of these b's in A (i).

1f A(i) -»-> B, then A(i) U B corresronds to a bigger
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subgraph of G* with keys in a strongly connected component
other than A(i}9. If A(i) is not <contained in any other
A{(j), then the left-hand side of the functional dependency
in the minimal covering incident to A(i)9 is no lomnger
represented by a relation for which it is a key,
contradicting property 3. If A(i) is in another A(j), then
by deleting the functional dependencies in A(i)©° from the
given F, the algorithm would produce an optimum collection
of size less than or equal to k by the induction hypothesis,
and thus C(2) cannot possibly have fewer than k+1 relations.
Case 2: There is a relation (A(Jj), F(J)) in C(2) that does
not contain all of an A(i), for any (A(i), F(i)) in C(1).
There are two subcases to consider: +the minimal keys for
A (j) are keys for some A(i) in C(1), or they are not. if
they are, then either A{j) contains some attribute names B
not in the A(i) which has the same keys, or it is a proper
subset of this A(i). If it doés contain extra attribute
names B, then by arguments similar to ones used above, if
A(j)'s keys --> B nontransitively, then the algorithm would
have put B into A(i). If A(j) is a proper subset of A(i),
then some other relatiom in C(2) must cover part of F(i).
By removing from the given F the functional dependencies in
the minimal covering incident to A(i)9, the algorithm would
produce a collection with less than or equal to k relations,
and by the induction hypothesis that collection is optimunm.

Thus C{2) cannot have fewer than k+1 relations.
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The <remaining subcase occurs if A(J)'s key strongly
connected component is not the key strongly connected compo-
nent for any A(i) in C(1). That is, the inclusion of B with
possibly part of some A(i) to make A(j), requires another
strongly connected component to hold the keys for A(j).
This implies that A(j) 's strongly connected component is not
the strongly connected component containing the keys for all
of (A, F). Thus whatever functional dependency in +the
minimal covering A(j) is covering is a non-full dependency
in A(j), thus violating property 3. o
Lemma 5.20: The modified algorithm produces the smallest
possikle collection {(A (i), F(i))} for a given (3, F) with
the follcwing properties:

1. each relaticn is in Codd third normal form,

2. U F(i) covers F(A, F),

3. The original relation is reconstructible from
{(A(1), F(1))}.

proof: The modified algorithm discards an (A{(i), F(i)) if
A(i) is properly contained in some A(j). Consider the key
strongly connected component for A(i), A(i)o. After the
algorithm 1is finished, all of A(i)©9 is contained in A (Jj).
Thus either A(i)9 c A(J)©° or A(i)©? comntains only one minimal
member, or (A(j), F(j)) would not be in Codd third normal
form. Thus there is no choice of representative for A(i)?°
when forming A (j).

By the arguments in the previous lemma, any optimunm,
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covering, reconstructible, Codd third normal form has to
contain a relation covering functional dependencies incident
to the key strongly connected component of A (i) and the key
strongly connected component of A (j). The only way two
collections satisfying the set of properties in the previous
lemma could not bceth accomodate deleting (A(i), F(i)) would
be if there is a choice of which minimal mémber of A{(i)9 to
include in A(j), which has just been ruled out.

The fact that no other merging of relations in the
collection can be done follows from arguments in the

previous lemma. o
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5.4 Choice of primary and foreigm key

As well as allowing us to produce a collection of third
normal form relations, the graph input to the extraction
algorithm contains other useful information for a data base
designer. We will show in this section how this information
can be used in specifying primary and foreign keys. In the
next section, we will show how to use the information in the
graph to ansver queries.

A foreign key in a relation described by (A(i), F(i))
is a subset of A(i) which is not a key for (A(i), F(i)) but
is the primary key for some other relatiorn (A(j), F(Jj)) in
the collection [Codd 70]; Let us consider the following
exanmple: A = ka, b, ¢3, F= {a -->b, b -->c, c ——> b}.

The algorithm extracts the following relations:

A(1) = {a, b}, F(1) {a --> b},

A(2) = {b, c), F(2) b ~—-> ¢, ¢ -—> b}.

Attritute name ¢ could replace b in A (1) and. F(1) .
Whichever of b and ¢ is chosen as the "link" to R(2), that
is, as the foreign key for (2(2), F(2)) to be included in
(A(1), F(1)), should be the primary key for (2a(2), F(2)).
Recall that it is the primary key values that are not
allowed to be unknown, and thét joins are performed over the
intersection of the two attribute name sets. If this
intersection is the primary key for relation R, and R's

foreign key in relation S, then the join R * S is performed

over a key for one of the +two relations 3involved and
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furthermore, there are no unknown values to worry about. On
the other hand, the intersection could properly contain the
primary key for R, in which case there could be unknown non-
key values for attribute names in the intersection. In this
case the standard join algorithm should be modified to make
use of the pridary key's properties and the fact that
functional dependencies are being maintained.

The extracticn algorithm tells us the choices we have
for foreign kéys wvhich are also to be the primary keys for
their relations. The conditions under which we have a
choice are given in line 7, and the choice itself is in line
8. There is no choice when one of the minimal members of §
is a subset of A(i) as in the following example: 1let A =
fa, b, ¢, 4, e} and F = {ab --> d, ad --> b, ab --> ¢, ab
--> e, bd -->c¢c, ¢ -=-> b, ¢ --> d}. The transitive reduc-
tion of the acyclic equivalent graph is given in Figure
5.10. If c is chosen as the primary key for {b, c, d}, then
it must also be the foreign key in A(1). This, hovever,
would introduce a transitive dependency in (a(1), F(1)).
Therefore, A(1) must be (a, b, 4}, not {a, b, ¢, 4d}. Thus,
as stated in the algorithm, only if no ninimal member of the
strongly connected component at the terminus of a given edge
is a subset of what is already in A (i) do we have a choice.
Note that although edge {ab; ad} —--> {bd; c} is shown as a
given edge (in fact ab --> ¢ 1is the given functional

dependency that lead to this), this edge is <covered in
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U F(1) by ab --> d; thus ab --> bd by projectivity and
additivity.

In those cases in which there is a <choice of primary
key, the choice could be made according to other criteria,
e.g. the key less likely to be unknown in the real world
situation being modeled, or the key that requires the fewest
bits for storage because these key values are stored two or
more times (if +they are the foreign key in more than one
relation).

There are some cases in which it is impossible tb have
only cne primary key. Consider Figure 5.11. As far as
relaticn bcx 1is concerned, b should be the foreign key for
bdf. But relation dey requires 4 as the foreign key. Thus
there can be a conflict within a relation such as bdf over
which key should be the primary key. We cannot add 4 to bcx

nox add b to dey without introducing a transitive
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Figure 5.11
A= {a, b, ¢, 4, e, w, X, ¥, 2}

F = {abcde --> z, bc --> x, de -—-> y, b -=-> 4,
d --> b, b =-=> w}

/

dependency. Thus it may not be possible to have a unique
primary key in all cases. The best solution, to avoid
insertjion anomalies, would be to have two primary keys, i.e.

to insist that neither key can have an unknown value.
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5.5 Retrieval from the third normal form collection

In this section we will suggest how +the relational
descriptions output by the third normal form algorithm can
be used to answer a query involving an arbitrary subset of
A, It was okserved by Lochovsky and Tsichritzis that the
most frequent logic error made by users of a relational data
base <concerned specifying +the correct Jjoins in a query
[ Lochovsky 77]. HWhile the suggestions to be given below do
not constitute an efficient algorithmic solution to this
problem, they do provide a first step toward removing this
responsibility frcm a user.

This solution is based on three assumptions. The first
is that the gquery contains only restrictions (or Boolean
expressions involving attribute names) and no projection or
join operators. In other words, we are proposing that thg
user consider only the original table, and not be aware of
the +third normal form used to maintain the data base, in
formulating queries.

The second assumption is that the method for answering
a query is to join together everything mentioned in the
query and, as a final step, project the resulting relation
onto those attribute names mentioned in +the conditions in
the query. Obviously there will be many cases in which it
is more efficient to do projection operations in the middle
of the query-answering process and join together resulting

relations each of which contains a smaller set of attribute
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names directly related to the query. Since the>algorithms
to be given below will give all possible Jjoin sequences,
this output could be used to see which of the possible
sequences allow projection and extraction of tuples
concerning parts of the query along the way. That is, this
work should be thought of as a way of using the knowledge
available from the fact that the relations are in covering,
reconstructible third normal form to say where all the valid
answers to a query can be found, and not as a complete
gquery-answering method. The algorithms given are not
efficient, but +they might be considered acceptable because
they deal only with the relational descriptions, whereas the
actual retrieval ihvolves manipulating the data base itself,
and is thus typically far more costly.

Oour third assumption is the partial information assump-
tion which has motivated all the work on third normal fornms;
that 1is, not all information is available in all the rela-
tions in the collection. Recall the example of Figure 3.2
in which A = {p, j, 4, 1} and 7 = {p --> j, j -——> 1, p -=>
d, § --> 1}. There may be some (p, 1) pairs available by
joining {p, j} * {j, 1} and projecting onto {p, 1} that are
not available by doing {p, d} * {d, 1} and projecting cnto
{p, 1}, and vice versa. Thus to obtain all possible tuples
satisfying a query, it may be necessary to process the query
according to all possible join sequences and take the union

of the results.
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As a diagramatic aid we will use a modified graph G".
This graph has one vertex for each A(i) extracted by the
third normal form algorithm, with A (i) as its label and the
primary key underlined. G" has two types of edges:

1. (B, C) is a type 1 edge in G" if the primary key for C
is completely contained in B;

2. (B, C) 1is a type 2 edge if a proper subset of the
primary key for C is contained in B.

We will call this the relation graph. An example of a rela-
tion graph for a system is given in Figure 5.12.

The thecretical aspects of joins have been examined by
others in some detail [Rissanen 73, 77, Aaho 77]. Ip
particular, the Jjoin operation is associative and commuta¥
tive. This does not mean, however, that we want to do the
joins din an arbitrary order. It was observed earlier that
if two relations with disjoint attribute name sets are
joined together, then the result is the cartesian product of
the two relations. Such a situation is called a lossy Jjoin
[Aho 77] because, by creating "extra facts" or tuples, we
have lost some informatiom. The same 1is true if the
intersection is non-empty, but is not a key for one of the
relaticns involved. Thus the following result from
[Rissanen 73,77, 3ho 77] is the theoretical basis for this
section. Let R and S be two relations with attribute names
A and B respectively. Then R * S is non-loss if and only if

A B--> 24 or A B --> B. As a corollary to this, if
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Fiqure 5.1

. A= {a, b, ¢, 4, e, £, b}

G+ for this (4, F)

relation graph G" for this (4, F)
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there exists a sequence of joins such that the intersection
of the attribute names always contains a vkey for the new
relation being Jjoined in, then a key of the first relation
of the sequence is a key for any of the resulting relatioﬁs,
and the result of the whole sequence of joins is non-loss.

The work of Aho, Beeri and Ullman is related +to this
but not directly applicable. They give an algorithm to test
if a set of relations has a nomn-loss joimn. Since the rela-
tions in our third normal form collection are
reconstructible, they clearly have a non-loss join, given by
the algorithm in Lemma 3.9. Their work also includes a test
of whether a set ¢f relations contains relations with a
lossy join. Whereas this can happen with relations output
by our algorithm (for example {a b d} * {bc £} in Figure
5.12), the purpcse of the algorithms to be suggested is to
make sure such lossy joins are never performed.

Considering the relations in Figure 5.12, suppose we
wanted to ansver a query relating attribute names a and £f.
By the above discusion, we cannot join {a, b, d} * {b, c, £}
since b is not a key for either relation. However, if we do
{a, b, 4} * {d, c} * {b, c, £} in left to right order, then
every join is over the key of one of the two relations
involved. Since it is necessary to join over a key, we must
always make sure, for a relation like {b, ¢, £} vwhich has
only incoming type 2 edges in the relation graph, that we

have jcined enough relations to have b and <¢ among the
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attribute names in the result. For {b, c, £}, this could be
done in any of the following ways:

{fa, b, 4} * {4, c} * b, c, £},

{a, b, 4} * (b, e} * {4, c} * {b, c, £},

{a, b, d} * {4, ¢} * {c, h} * {b, c, £f}.
We cannot, however, use any (b, ¢, £f) tuples in the final
join 1if we do not have both b and ¢ known. For example,

consider the following relatioas:

a b d d ¢ b ¢ £
1 1 2 1 4 1 1 6
2 2 1 2 3 12 7
3 1 4 3 6 3 1 8

The join {a, b, d} * {d, ¢} gives the following:

a b cd
1 1 32
2 2 41
3 1 24

There is no way we can associate the correct f value with a
= 3 without knowing the correct ¢ value. Joining in {c, h}
before {b, c, f} does not help because we cannot validly
associate the unknown value ? when it occurs in the primary
key over which the join is being dome. That is, the special
value ? does not behave the way other values do under the
join operator. Since we do not allow tuples for which
primary key values are unknown, if they occur in the other

relation, the tuple is discarded in forming the Jjoin.
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The above discussion also demonstrates that joining in
either {b, e} or {c, h} before {b, c, £} does not add any
information about wunknown b and c values. If possible, we
want to avoid such "extra' joinms.

In the collection of Codd third normal form relatiomns,
a relation X is an ancestor of relation Y if there is a non-
loss Jjoin }sequence starting with X and containing Y.
Referring to the relation graph, this <can happen in two
ways: either +the Jjoin sequence corresponds to a directed
path consisting only of type 1 edges, or at some point in
the Jjoin sequence a relation like {b, c, £} occurs which
means that enough of the originms of the type 2 edges into
{b, ¢, f} must precede it in the join sequence to cover the
attritute names in its primary key.

4 set of relations {R(i)} has a common ancestoxr N if N
is an ancestor of each R(i). Note that in +the collection
output by our algorithm, all sets of relations have at least
one common ancestor, namely the relation containing all the
keys for a.

To summarize, the following characteristics are desired
in a join sequence:

1. The join sequence must stért with a common ancestor of
all the relations taking part.

2. The ordering of a join sequence is govermned by the fact
that the primary key of the relation being added to the

sequence must be contained in the attribute names collected
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so far.

The following +two additional rules concerning the
treatment of unkncwn values when performing the joins should
also be noted:

3. Unknown values, ?, may be kept in the relation resulting
from the jcins unless they appear in the primary key over
~which a Jjoin is being done. When this happens, the whole
tuple must be discarded.

4, When the intersection‘ over which a join is being dome
properly contains the primary key of one relatiomn, then any
unknown values appearing in one of the relations in non-
primary key columns in the intersection may be resolved if
the value appears in the other relation.

Cf course we are assuming that all data is correct so
that if there is, say, more than one way to derive a tuple,
they all agree.

The algorithms to be suggested include some
preprocessing to be carried out before any queries are asked
and some other processing to be done for each query. They
are not meant to be rigorous but only to indicate how this
might be done. Some open problems wi;l be outlined.

The result of the preprocessing will be an ancestor
matrix, which tells us whether or not relation i is an
ancestor of relation j. As well, for each pair of rela-
tions, we will stcre a list of all valid join sequences from

one tc the other. For the time being we will assume we must
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generate all permutations of a given set of relations each

of which obeys rule 2 above.

The preprocessing uses the following data structures (x

is the number of relations in the collection):

Ancestor (1::x, 1::x)

Join Segs(l::r, 1::r)

A(1::1)

Key (1::1)

P

the ancestor matrix which at

termination contains Ancestor(i, 7Jj)

1 if relation i is an ancestor of

relation j, and 0 otherwuise.

points to a list of sequences from
relation i to relation j, for each
i aﬁd e

attribute names in relation i, for
all i =1, r.

set of attribute names covered by
the current join seguence. .
primary keys for the relatioms

current join sequence

The notation Pj is used for the concatenation of P and j to

form a new sequence.

Alqgorithm Join Sequences ({A(i)}, {Key(i)}):;

procedure Search (B,

P);

for each unmarked relation j do

if Key(j) ¢ B then

mark j;

Ancestor (i, j) <-— 1;

Join Seqgs(i,j) <-- Join Segs(i,j) U Pj;
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Search (B U A(j), Pi);
unmark j
for i <-- 1 ster 1 until r do

mark i;

Search (A(i), i).

To answer a query, given the ancestor matrix and all
the Jjoin sequences, the following algorithm could be used.
Q contains the subset of A in the Query.

Algorithm Answers (Q);
C <—— all subsets of {A(i)} that cover Q;
for eachk S im C do

comment find all common ancestors of S;

D <-—- AND of the rows for S in Ancestor;

for each common ancestor i in D do

merge Join Séqs(i, k) for this i and all k in S
in all possible ways obeying rule 2 above;

output a set of join sequences for this common
ancestor i and this covering set S.

Both the preprocessing and the query answering
algorithns are‘exponential. After preprocessing, Join Segs
could contain almost all permutations of subsets of {A (i)}
of any size, where finding one Jjoin sequence takes time
polynomial in the number of relations. The set C could
also be exponential in the number of relatiomns. We could
reduce the number of possible join sequences to being all

possible combinations of relations if we could strengthen
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rule 2 by saying that for each set of relations there is a
unique ordering for the join sequence that guarantees we
will get all the tuples that any other join sequence over
the same relations would produce. This is certainly true
if the relation graph contains only type 1 edges. A rela-
tion graph with onlf type 1 edges must be acyclic since, if
it contained a cycle, then al} of the primary keys on the -
cycle would functionally determine each other and thus
would have been put in the same relation by the third
normal form algorithm. If such a unique ordering can be
found, then merging join sequences in the guery answering
algorithm is well defined and yields exactly one Jjoin
sequence.

Even if we can resolve this problem for graphs with
type 2 edges, we still need a good way of avoiding "extra®
relations in a sequence. If omne sequence for going from an
ancestor to a given relation properly contains another
sequence for the same pair, then are +the extra xrelations
always unnecessary? For the example of Figure 5.12, in the
join sequence {a, b, 4} * {d, c} * {c¢, h} * (b, ¢, £3,
relation {c, h} 1is wunnecessary, but is this always the
case? Even if this can be resolved, however, how do we
prevent the first step in the query answering algorithn
from choosing {b, e} and {c, h} as a member of C for the
query Q = {b, c}? Although we know for this example that

joining in {c¢, h} can never add any < values, 1is +this
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necessarily the case when one Jjoin sequence properly
contains another?

If we could solve all of these problems, then the join
sequences could te used in the following ways:
e If only omne join sequence is wanted, or the incomplete
information assumption does not hold, then choose a single,
most efficient Jjcin sequence according to some other
criterion; e.g. either the ease with which projection can
be wused to reduce the work involved, or, perhaps, because
of the range of values present in the data, one Jjoin
sequence might result in a smaller number of tuples in all
the intermediate relations, etc.
e TIf the incomplete information assumption is valid, and
all possible tuples to answer a query are wanted, then, for
a 'given ancestor, merge (uniquely) all sequences from each
ancestor, even if they are for different members of C.
This typically will result in very few join sequences (one
for each ancestor) and will give all valid ways of

associating the attribute names in a query.



Chapter 6

Cdvering Kent third normal forms

6.1 Examples

We begin this chapter with a number of examples to
illustrate the difficulty of finding covering Kent third
normal forms oxr even determining when they exist.

Consider again the standard.example: A = {s, j, t} and
F = ({sj -->t, t --> j}. PFiqure 6.1 shows the subset of

the equivalent-graph closure on vertices whose labels are

left-hand sides or elements of A. Recall that st is also a
key. Since we no longer have the luxury of ignoring the
behaviour of prime attribute names such as j, we must
consider the projectivity edges as well as the given edges.
If +transitive reduction were performed on the projectivity
and given edges, the projectivity edge from sj to j would
be deleted. This captures the dilemna of a covering Kent
third normal form not existing. In order for sj --> t to

be covered, it must be embodied in a relation; but whenever

138
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s, J and t are put together, t --> j is also present and
this triple can never be in Kent +third normal <form with
respect to these dependencies.

The next example, originally suggested by Bernstein and
Beeri [ Bernstein 76c], shows that sometimes a covering Kent
third normal form can be found by choosing one covering
over another. let A = {a, b, ¢, d, e} and F = {a --> b, a
--> ¢, bc --> a, ad --> e, bcd -->e, e =-> ¢}. Figure 6.2
shows the subset of the equivalent-graph closure on
vertices whose labels are left-hand sides or elements of A.
Graphs such as these are shown in this section for the
purpose of illustration only. It will be shown below that
we cannot consider the acyclic equivalent graph for Kent
third normal forms, as merging any equivalent keys is too
likely to cause Kent third normal form violations.

The following relational descriptions constitute a

covering third normal form collection for this example:

A(1) = {a, 4, e} F(1) = {ad --> e}
A(2) = {a, b, ¢} F(2) = fa ——> b, a --> ¢, bc --> a}
A(3) = {c, e} F(3) = {e =-—-> c}.

If we replace (A(1), F(1)) by A(1)'* = {b, c, d, e},
F(1)* = {bcd --> e, e =-> ¢} then we still have a minimal
covering of the functional dependencies but (A (1)', F(1) ")
is not in Kent third normal form. Under Codd third mnormal
form, a relaticn embodying a single functional dependency

is always in third normal form, and +thus any minimal
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covering leads to a third normal form collection, alghough
not necessarily an optimum one.

There are other disturbing points illustrated by thié
example. Under Codd third normal form, equivalent subsets
of A could always coexist in a single relation. For this
example, ad and bcd cannot be in the same relation because,
as only one of several Kent third normal form violations,
attribute name a is functionally dependent on bc which is
not a minimal key. A desigmer might find it unacceptable
that such equivalent keys cannot coexist; it should always
be possible to store a one-to-one relatiocnship in one rela-

tion.
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The other disturbing thing shown by this example is
that, whereas with Codd +third normal fornm we vere
guaranteed +to find a covering third normal form (although
not necessarily optimum) without finding all the keys (by
using Bernstein's algorithm), for Kent third normal form
this is not the case. If ad --> e is deleted from ©F, the
closure of the functional dependencies is the same. As we
saw above, this would lead to the collection with (A(1) ¢,
F(1)') 4in place of (A(1), F(1)). A covering Kent third
normal form exists for this example but to £ind it we would
have +to generate all keys (knowing they might not end up
together in a relation as with thé algorithm in Section
5.3) and possibly test all combinations of different keys
for different relations. Thus it seems that £inding Kent
third normal fcerms may require examining all minimal
coverings.

Our final example shows that even the simplest type of
optimization for the covering approach, merging equal left-
hand sides, cannot alvways be done. Let A = {s, c, m, ¥, D«
t, 4} and F = {s¢c --> m, sc¢ --> p, s¢c --> 1, sc ~--> t, pt
--> r, pt =-> ¢, p --> d}. PFigure 6.3 shows the subset of
the equivalent graph closure on vertices whose 1labels are
left-hand sides or elements of A. The subset with
attribute names {s, c, p, r,’m} is in Kent +third normal
form but adding t intrpduces pt ——> ¢ and pt —-> r, and pt

is thus a left-hand side that is not a key. Similarly ({s,
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cs t, £, m} can
this set. Thus
exists, finding
not only all

equal left-hand

exist together but p cannot be added to
even when a covering Kent third normal form
an optimum collection may require examining
coverings, but all possible ways to merge

sides, as well as possible ways to merge

equivalent left-hand sides.
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6.2 esting for existence of a covering Kent third normal

In this section we give an algorithm for determining,
for a given (A, F), whether or not there exists a covering
Kent third normal form. The test is based on the following
tvo lemmas.

Lenmma 6.1: A system (A, F) is in Kent third normal form

iff every left-hand side in F is a key (not necessarily
minimal).
proof: It follows from the definition (Boyce-Codd wording)
that, for a relation to be in Kent third normal form, every
left-hand side must be a key. However, the definition is
stated in terms of the <closure F(A, F) énd thus the
converse is not immediate. Assume that every left-hand
side in F 1is a key but that (3, F) is not in Kent third
normal form. Thus there is a transitive dependency in the
closure of the form Key -——> X —> vy, v € Key, X -#> Key, ¥
€ X. Thus X is F-expansible and therefore, by Lemma 4.7, X
or a proper subset of X is a left-hand side in F. But X is
not a key since it cannot aerive Key. This contradicts the
assumptions. nm

The above lemma provides a test for Kent +third normal
form providing we know F and thus the basis of the closure
over the attribute names in question. The problem is that
in a larger system A, when we want to know if a subset 1A (i)

and some functional dependencies F(i) constitute a +third
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normal form relation, we do not know all the potential
left-hand sides which might be expansible, i.e. F(i) nmay
not generate the same closure over A(i) as P does. For
example, let 3 = {a, b, ¥, ¥y, 2} and F = {a --> y, x -=-> 2z,
ax —=> bi. Suppose we are considering {a, x, b}. Then the
fact that a and x are left-hand sides in F does not mean
they are expansible with respect to {a, x, b}. If we add z
--> b to F, then x is a left-hand side that is expansible
with <respect to {a, x, b} but the functional dependencies
used to derive this are not contained in {a, x, b}. Thus
Bernstein and Beeri found that the question "does a subset
of A constitute the attribute names for a Kent third normal
form relation?" is NP-complete in jA| and (F|{ [Bernstein
76c].

Lemma 6.2: There exists a covering Kent third normal form
for a given relational system (A, F) iff there exists a
covering Kent third normal form consisting of canonical
full functional dependencies. (By this we meamn that if L
--=> r is a canonical full functional dependency, then one
relational description in the collection is given by: A(i)
= {L} U {r} and F(i) «consists of any functional
dependencies in the <closure whose 1left- and right-hand
sides are contained in (L} U {x}}).

proof: Let a covering Kent third normal form contain a
relational description (A(i), F(i)) where F(i) contains 1

-—->1x{(1)y, L =--> xr(2) for some L. Then our claim is that if
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(A(iA), F(i)) contains no Kent third normal form violations,
neither will ({1} U {r(@{i)}, L =--> 1r{(i) U any other
funétional dependencies over {L} U {r(i)}), for any such L
and ©r(i). Since (A(i), F(i)) is in Kent third normal form,
then every left-hand side J in F (i) has the property J -->
A(i), i.e. it is a key for A(i). Clearly if J ¢ (L} U
{r(i)} then J --> {L} U {r(i)}. The proof of the converse
is obvious. m
Corollary: The algorithm for testing the existence of a
covering Kent third normal form is:
Algorithm Kent third normal form existence (4, F);
1. Comment generate the closure F of (A, F):
for all X, Y in 2**3A do
if Membership (F, X --> Y )
then F <= P U {X --> Y};
2. for each canonical functional dependency L -->r1
in the closurxe do
if L ——> 1© is a full functional dependency
then A (i) <-- {L} U {r3};
F(i) <-- all functional dependencies in
the closure over A (i)
Kent <—— "truyet;
for all functional dependencies L(j) --> R(J)
in F(i) do
if -~ Key (A (i), F, L(J))

then Kent <-- Wfalse";
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if Kent then mark L --> r;
3. Ccmment find the closure F' of the marked full functional
dependencies;
F' <-- {marked functional dependencies};
for all X, Y in 2%*#*A do
if Membership (F', X --> Y)
then FP' <—— F' U {X --> Y};
4, if F = F!
then a covering Kent third normal form exists.
Corollary: If one of the marked canonical full <functional
dependencies has a left-hand side that is a key for all of
A, then there exists a reconstructible covering Kent third
normal form collection for (A, F).

Lemma 6.3: The Kent third normal form existence algorithn

runs in time 0 ([A}2 |F| (2#%*|2})3).

proof: Step 1 using Bernstein and Beeri's membership
algorithm takes O0((2*%*|A})2 |A| |F}) operations. There are
at most |A] 2%*}1A] canonical functional dependencies. To
check if each one is a full functional dependency takes at
most |A| calls of membership. For each such functicnal
dependency, determining F (i) requires looking at all the
0((2**|A|)Y2) functional dependencies in the closure. The
expression O ((2**]A})2) 1is also the bound on |[F(i)l.
Determining if a left-hand side is a key takes |A(i)]| [|F] <
{A] IFl orerations. Thus, in total, step 2 takes 0 (jA}

2x* 3 (|A}2 [F} + ((2%*}A})2 + A} |F| (2%*|A})3)) or
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o(lay2 IF| (2%%}A]) 3) operations. Step 3 1involves
0((2*%*f{A})2) calls of the membership algorithm with a set
of functional dependencies of size 0 (2**|A{). Thus step 3
requires O (}A| (2%*]A})3) operations. Step 4 takes
0((2*%jA})2) operations. In total, +then, the algorithm
requires at most O (}jA}2 |P] (2%*}|A])3) operations. um

An optimum covering Kent third normal form collection
will clearly be omne in which a minimal covering for the
marked canonical full functional dependencies has been
found. It is certainly possible to find such an optimunm
collection by an exhaustive enumeration of all such minimal
coverings, merging equil and equivalent left-hand sides in
all possible ccmkinations. However, such an algorithm does
not have a time bound which we consider to be acceptable.
As we saw in the examples in Section 6.1, none of the known
optimization techniques used to find optimum covering Codd
third normal form collections are guaranteed to work here.
Thus the task of efficiently finding optimum covering Kent

third normal forms appears to be intractible.



7. Conclusions

This thesis examines several ways of solving the
integrity prcblems identified in a relational data base by
the definition of functional dependencies on the data base.
After comparing covering, decomposition and third normal
form approaches, it is shown that the most desirable form
for a relaticnal data base is a covering, reconstructible,
Kent +third normal form. However, since such a form does
not always exist, covering, reconstructible Codd third
normal forms are also shown to be acceptable.

Finding all the minimal keys of a relation is necessary
for the Codd third normal form algorxrithm. A number of
problems related to key finding are examined, including
establishing uprer bounds on the number of keys for a
relational description both in terms of +the number of
functional dependencies given and in terms of the number of
attribute names in the relaion. As well, it is shown that
two related protlems are NP-complete: defermining whether
or not an attribute name is prime, and deciding whether ar
not there is a key with fewer than m attribute names, for a
given parameter m. An algorithm is then given which finds
all minimal keys for a given subset of the attribute names
in time pceclynomial in }jAj, |F] and the number of keys
found. Thus when there are only a few keys, this algorithm
gives an efficient method for finding them.

The key finding algorithm is then incorporated into an

148



Cha 7 Conclusions 149

algorithm which finds a covering, reconstructible, Codd
third normal form collection for a given (A, F). This
collection differs from +that output by other algorithms
because every relation in the collection contains all its
minimal keys. We then show how this collection might be
used automatically to generate join sequences to answer an
arbitrary query such that all the joins are non-loss and
thus valid as far as the functional dependencies are
concerned. We also discuss possible choices for primary
keys.

Finally, a test 1is given to determine, for a given
(A, F), whether cr not there exists a covering Kent +third
normal fora. Some of the problems of finding an optimum
Kent third normal form when one exists are also discussed.

In addition +to the specific results mentioned above,
several impcrtant ways in which our approach differs fron
others are in emphasising reconstructibility and in
stressing the incomplete information assumption. The
former allows us to say more about answering queries,
because we know there 1is always at 1least one conmon
ancestor fromn which to start, namely the relation
containing the keys for all of A. The latter tells us that
if there is more thamn one join sequence for a query, and if
we want all possible tuples which answer the query, we nust
take the union of all these join sequences.

Some open problems are introduced in Section 5.5. In
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generating join sequences for a query, is there a unigque
ordering for a givem sequence such that the resulting joins
produce all the +tuples any other seguence over the same
relations would produce? It would seem that there would be
one such sequence for each ancestor, since, in Figure 5.12,
if {a, b, d} is the ancestor, them {c, h} should precede
{b, ¢, £} in any sequence they share, but if {b, c, f} is
the ancestor, then clearly it must precede {c, h}.

Another problem dintroduced in Section 5.5 is how to
recognize unnecessary relations in a Jjoin sequence. An
answer to this gquestion could also be used to trim user-
generated jocin sequences.

0f more theoretical interest is the following problem.
In finding optimum Codd third normal forms, no matter what
the cardinality of the minimal covering used, the
cardinality of the resulting collection of covering Codd
third normal form relations is the same. Is this also true
for optimal covering Kent third normal forms?

A more dgeneral extension of the whole thesis would be
to examine the feasibility of efficient algorithms for Date
third normal forms or Rissanen's atomic relations which are
irreducible, reconstructible and cover the functional
dependencies. The Dbasic objectives of this work could be
altered to make the retention of wupdate aunits noxre
important than covering or third normal form, and

algorithms socught under these constraints. This extends to
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the problem of finding a covering third normal form for a
system (AUB, F) where attrubute names from A and B cannot
be mixed. A solution to this problem might have relevance
for a data base in a computer network enviroanment, where,
for example, informationm correéponding to attribute names
in A is the property of ome company or department on the
network and information for B is the property of another,

but answering queries relating to 4 U B is desired.
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