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Abstract

Consider the computation of the Cholesky factorization LLT of
the symmetric positive definite matrix A . In this paper we present a
model of this factorization algorithm based on quotient graphs, and
discuss its relationship to existing models. The primary advantage of
our model is that its computer implementation is very efficient. In
particular, we show how it can be implemented in space proportional to

the number of nonzeros in A .



1. Introduction

Consider the symmetric positive definite system of linear

equations

(1.1) Ax = b,

where the N by N coefficient matrix A 1is sparse. If Cholesky's
method is to be used to solve (1.1), there are compelling reasons to
proceed in four distinct steps as follows:

Step 1 (Ordering Step) Find a "good" ordering for the system, and trans-

form it, perhaps only implicitly, to
(1.2) (PAPT)(Px) = Pb .

Step 2 (Symbolic Factorization) Determine the location of the nonzeros
in L , where PAPT = LLT , and set up the appropriate data
structures for L .

Step 3 (Numerical Factorization) Decompose PAP' into LLT , using
Cholesky's method.

Step 4 (Triangular Solution) Solve Ly = Pb , L'z = y , and then set

T
x=Pz.

Our objective in this paper is to present a model of symmetric
factorization which is useful in the analysis and implementation of Steps
1 and 2. Sparse matrices normally suffer some fill-in when they are
factored, so that L + LT has nonzeros in positions which are zero in
A . The objettive of Step 1 is usually to find a P so that this fill-
in is acceptably Tow. Several ordering algorithms, such as the minimum
degree algorithm [4, 9], essentially require that the factorization be

simulated as the ordering proceeds, because ordering decisions depend



upon the structure of the partially factored matrix. Thus, it is crucial
to be able to simulate the factorization efficiently. Similarly, the
implementation of Step 2 above also depends upon being able to simulate
the factorization efficiently, in terms of both space and time.

An outline of the paper is as follows. In Section 2 we review
some existing models of symmetric elimination (factorization), and discuss
some of their important features. In Section 3 we present our quotient
graph model, and compare it to those of Section 2. In Section 4 we show
that the space required for a computer implementation of the model is
proportional to the number of nonzeros in‘ A (that is, independent of the
~fi1l1-in). Section 5 contains a discussion of some applications of the

model, along with our concluding remarks.



2. Existing Models or Characterizations of Symmetric Factorization

2.1 Matrix Formulation

As a point of departure, we describe the factorization in terms
of the actual numerical computation that is performed. The models we
consider subsequently are used to simulate what happens in terms of
structural changes to the matrices, without actually involving any
numerical computation. Setting A = A = H , the factorization of A

0 0
can be described by the following equations.
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It is straightforward to show that A = LL , where

L = (kg]Lk) - (N—])IN

Here Ik denotes a k by k identity matrix, dk is a positive scalar,
and Vi is a vector of length N-k . The matrix Hk is an N-k by N-k
symmetric positive definite matrix, which we refer to as the part of A
remaining to be factored after the first k steps of the factorization

have been performed.



2.2 Some Elementary Graph Theory Terminology

The models we discuss in subsequent parts of this paper rely
heavily on graph theory terminology, so in this section we introduce some
of the essential definitions and notions. For our purposes, a graph
G = (X, E) consists of a finite nonempty set X of nodes together with
a prescribed edge set E of unordered pairs of distinct nodes. A graph
G' = (X', E') is a subgraph of G if X' <X and E'<E . For Y c X,
G(Y) refers to the subgraph (Y, E(Y)) of G , where
E(Y) = {{u, v} € E | u,v e Y} .

Nodes x and y of X are adjacent if {x, y} ¢ E . For

'Y < X , the set of nodes adjacent to Y 1is defined and denoted by

Adj(Y) = {x e X-Y | {x, y} ¢ E for some y e Y}

If Y ={y} , we write Adj(y) rather than Adj({y}) . The

degree of a node x is simply the number of nodés adjacent fo it, denoted
by deg(x) . We refer to y e Adj(x) as a neighbor of x . A set of
nodes Y < X which are pairwise adjacent is a clique.

A path of length £ 1is an ordered set of distinct vertices

(vO, Vis oo vQ) where v, e Adj(vi_]) for 1 <i<®. Agraph G is

connected if there is a path connecting each pair of distinct nodes. If

G is disconnected, it consists of two or more maximal connected components.
Let S< X, and we X-S . The node w 1is said to be reach-

able from y through S if there exists a path (y, Y1s Yos cees Yo W)

such that Y € S, for 1 <i<k. Weallow k to be zero, so any

node w e X-S and adjacent to y 1is reachable from y . The reach set



of y through S is then denoted and defined by

Reach(y, S) = {w e X-S | w is reachable from y through S}

We extend this definition to subsets Y as follows. Let Y < X and

YnS=¢ . The reach set of Y through S s then

Reach(Y, S) = {w ¢ X-(S u Y) | w is reachable from some node

y ¢ Y through S}
Note that when S = ¢ , Reach(Y) = Adj(Y) .

In subsequent sections of this paper, we will be applying these
definitions to various graphs. When the graph being referred to is not
absolutely clear from context, we will put the appropriate subscript on
the definition. Thus, notations of the following type will be used: Ade(Y),

degG(Y) , Reach.(Y, S), etc.

G



2.3 Elimination Graph Model

In this section we describe the graph theory approach to
symmetric elimination which was introduced by Parter [8], and popularized
and extended by Rose [9]. Let A be an N by N symmetric matrix.

The labelled undirected graph of A , denoted by GA = (XA, EA) » 1S one

for which XA is labelled from 1 to N :

A _
X ~'{X-I, X29 cesy XN} s

and {Xi’ Xj} € EA if and only if Aij #0. Forany N by N permu-
tation matrix P , the unlabelled graphs of A and PAPT are the same,
-but the associated labellings differ. Thus, the graph of A is a
convenient vehicle for studying the structure of A , since no particular
ordering is implied by the graph.

Now consider the symmetric factorization of A into LL”
using the algorithm described in Section 2.1. The sparsity changes (fill-
in) can be modelled by a sequence of graph transformations on GA . Let

G =(X, E) be agraph and y € X . The elimination graph of G by y ,

denoted by Gy , is the graph
(X - {y}, E(X - {y}) v {{u, v} | u,v e Adj(y)})

In words, Gy is obtained from G by deleting y and its incident
edges, and then adding any edges to the remaining graph so that the set
Adj(y) 1dis a clique. This recipe is due to Parter [8].

With this definition, the process of symmetric elimination on
A can be modelled as a sequence of elimination graphs

G, G4, G G , Where

0° %17 U7 e ON-T



_ A
GO_G .
and
Gi = (Gi_])xi = (Xi’ Ei) s 1= 1,2,...,N-1
Here Xi = {Xi+1’ Xigps +oos xN} , and it is straightforward to verify
that
H.
G, =G ',

1

where H, (defined in Section 2.1) is the part of the matrix remaining
to be factored after step i of the factorization has been completed.
Thus, this model is quite explicit; the structure of Gi corresponds

directly to the matrix Hi .
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2.4 The Element (Clique) Model for Symmetric Elimination

We saw in the previous section that in graph theory terminology,
elimination of variable X; in Gi—] in general generates a clique in

Gi . In finite difference and finite element applications, the initial
graph GO of the matrix can be viewed in a natural way in terms of its
clique or "element" structure. For these reasons, it is natural to

model the factorization process in terms of the clique structure in the

elimination graphs GO, G], v GN-] . This approach has been useful

in both theoretical and computer applications [1, 2, 7].

As before, let GA = (XA, EA) be the labelled graph of a
“matrix A , and let K0 = {K?, Kg, cees KE } be a collection of (not
k
0
necessarily maximal) cliques of G such that XA = U Ki . Now we
i=1

want to define a sequence of clique sets K' , 1 =0,1,2,...,N-1 such
that K' correctly reflects the structure of the elimination graph Gi
of Section 2.4. It is straightforward to show that k' s obtained

from K1'] according to the following recipe:

1

. . i- - . . i
a) Cliques in K not containing X; remain unchanged in K .

1

b) Cliques ip K" containing X; merge to form a new clique,

containing the union of their nodes, except for X; which is removed

from the resulting new clique.

Note that in step b) , X; may belong to only one clique, say

K;'1 , and the net effect of the transformation from i1
to remove X from K;_] . Note also that if Xs belongs to more than

i-1

to K1 is

one clique in K , then |K'| < IK1']|
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Implementations using this model are efficient, compared to
those based on the elimination graph model, when the elimination graphs
have relatively large cliques, and when the intersection between the
cliques is relatively small. Finite element matrix problems, appropriate-

1y ordered, typically have these properties [7].
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2.5 Characterization of Symmetric Elimination in Terms of Reachable Sets

Again let GA = (XA, EA)

of = xF, N

- be the graph of A , and let

be the graph of L + LT . We call GF

of GA , where XF = XA and EF

the filled graph

consists of EA together with those
edges added during the factorization. The relationship between EA and

EF is contained in the following lemma due to Parter [8].

Lemma 2.2 The unordered pair {Xi’ xj} € EF if and only if
{Xi’ xj} € EA , or there exists some k < min{i,j} for which

F F
{Xi’ xk} e £ and {xj, xk} e £ .

]

The above lemma is somewhat unsatisfactory because it is
recursive in EF . The following result, which is essentially a restate-
ment in our notation of a lemma due to Rose et. al. [10], relates EF
directly to EA . Let Si = {x], Xos +oes xi} , 1 =1,...,N , with

SO = ¢ .

Lemma 2.3 [4] Let j > i . Then the unordered pair {xi, Xj} € EF if
and only if X5 € ReachG(xi, 51-1) .
0
Thus, the sets Si together with the Reach operator precise-
1y characterize the adjacency structure of the elimination graphs G

In particular, we have

Lemma 2.4 [4] Let y be a node in the elimination graph Gi = (Xi’ Ei)‘

The set of nodes adjacent to y in Gi is given by ReachG(y, Si) .
0
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Note that in Lemma 2.3, and Lemma 2.4, the Reach operator is

applied to the original graph G .
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3. The Quotient Graph Model

3.1 Notation and Definitions

Let G = (X, E) be a graph with X the set of nodes and E
the set of edges. For a subset S < X , G(S) will be used to refer to

the subgraph (S, E(S)) of G , where
E(S)={{u, v} € E | u,v e S}

The central notion in the new model is that of a quotient graph
[3], which we now review. Let P be a partitioning of the node set X :
P = {Y], Y2, R Yp} .
p

That is, U Y
k=1

of G with respect to P is defined to be the graph (P, &) , where

= X and Yi n Yj =¢ for 1 # 3 . The quotient graph

k

{Yi’ Yj} e & if and only if Yi n Adj(Yj) #¢ . This graph will be
denoted by G/P

Consider the example in Figure 3.1. If
P = {{a, b, ¢}, {d, e}, {g}, {f, h}} 1is the partitioning, the quotient

graph G/P  is given as shown.

OO0 )L

Om0 (9

Figure 3.1 A quotient graph
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An important type of partitioning is that defined by connected
components. Let S be a subset of the node set X . The component
partitioning C(S) of S 1is defined as

¢(s) = {Y < S | G(Y) is a connected component in the subgraph G(S)} .

When S = X, C(X) simply contains the component sets in the graph G .
Therefore, the corresponding quotient graph G/C(X) consists of |C(X)]
isolated nodes.

The structure of the quotient graph G/C(X) is not particular-
1y interesting. However, we now study a closely related type of parti-
- tioning, which turns out to be quite relevant in the modelling of

Gaussian elimination. Again let S be a subset of X . The partitioning

on X induced by the subset S s defined to be

T(s) = ¢(S) u {{x} | x ¢ S} .

That is, the partitioning C(S) consists of the component partitioning
of S and the remaining nodes of the graph G .
Consider the graph in Figure 3.1. Let S be the subset

{a, b, d, f, g} . It can be seen that
c(s) = {{a, b}, {d, g}, {f}} ,
so that C(S) has six members and is given by
C(s) = {{a, b}, {d, g}, {f}, {c}, {e}, {h}} .

In this case, the quotient graph G/C(S) is given in Figure 3.2. Here,

we use double circles to indicate those partition members in C(S) .
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Figure 3.2 The quotient graph G/C(S)
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3.2 The Model

In Section 2, we have reviewed the various existing models of
symmetric elimination. These models are used to study the Gaussian
elimination process. In this section, we introduce a new model using the
notion of quotient graphs. Its relationship with those in Section 2 will
also be discussed.

Consider the symmetric factorization of a matrix A into LL'.
Recall from Section 2 that the elimination process applied to A can be

interpreted as a sequence of elimination graphs

6 Gy» ov» Gy

The graph Gi precisely reflects the structure of the matrix remaining
to be factored after the i-th step of the Gaussian elimination.
The new model represents the process as a sequence of quotient

graphs, which may be regarded as implicit representations of the

elimination graphs {Gi} . Let G = (X, E) be the graph and
Xps Xgs wees Xy be the sequence of node elimination.

N

A

As in Section 2.5, let S; = {x], cees Xi} for 1 <1
and SO = ¢ . Consider the partitioning U(Si) induced by Si , and
the corresponding quotient graph G/C(Si) . We shall denote this
quotient graph by Gi . In this way, we obtain a sequence of quotient

graphs

G G » G

12 72 "> "N
Figure 3.3 contains an example. Partition members in G(Si) are

marked in double circles.
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Figure 3.3 A sequence of quotient graphs
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As we stated earlier, the quotient graph Gi = G/C(Si) can be
regarded as an implicit representation of the elimination graph Gi H
they are related by the following result.
Lemma 3.1 For y ¢ Si s

Reach; ({y}, C(Si)) = {{x} | xe ReachG(y, Si)} .

i
Proof Consider x e ReachG(y, Si) . If x and y are adjacent in
G , so are {x} and {yl} in G, - Otherwise, there exists a path
Yps Sy +ees Sys X in G where {51, cees St} c Si . Let C be the
component in G(Si) containing {s], cees st} . Then we have a path
{y}, C, {x} in G, so that
{x} e Reach, ({y}, c(S;))
i i
Conversely, consider any {x} ¢ ReachG_({y}, C(Si)) . There

i
exists a path

{y}, C1, cees Ct’ {x}

in G, where each Cj € C(Si) . If t=0, then x and y are
adjacent in the original graph G . If t > 0 , by the definition of

C(Si) , t cannot be greater than one; that is, the path must be

{y}, C, {x}

Since G(C) 1is a connected subgraph, we can obtain a path from y to

X through C c Si in the graph G . Hence

X € Reache(y, Si) .
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We can obtain the structure of the elimination graph Gi from

Gi as follows.

Step 1 Remove nodes in C(Si) and their incident edges from the quotient
graph Gi .
Step 2 For each C ¢ C(Si) , add edges to the quotient graph so that all
adjacent nodes of C form a clique in the elimination graph.
To illustrate the idea, consider the transformation of G4 to
G

4 for the example in Figure 3.3. The elimination graph G4 is given

in Figure 3.4.

T TN

Quotient graph 4 Elimination graph G4

Figure 3.4 From quotient graph to elimination graph.

In terms of implicitness, the quotient graph model lies in
between the reachable set model and the elimination graph model, as a
vehicle for simulating the elimination process.

Reachable set
on original —————

graph

Quotient Elimination
graph ™ graph

Since it is more explicit than the reachable set model in the represen-
tation, less effort is usually required to produce the adjacency sets

for the elimination graph. On the other hand, the new model has the
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advantage over the explicit elimination graph model in that it requires
a fixed amount of storage in its computer implementation. This point is
elaborated upon in the next section.

The fundamental nature of the elimination process suggests that
in general the elimination graphs Gi will contain cliques. An advant-
age of using the clique model described in Section 2.4 is that the edges
within each of the cliques are stored only implicitly via the clique
membership. For graphs having large cliques, this can Tead to substan-
tial reductions in storage over an implementation which stores elimination
graphs explicitly. Our quotient graph model is endowed with a similar
- advantage in that the cliques are represented by a single node, so that

a p-node clique in the graph is represented by 0(p) edges, rather than

O(pz) edges.
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4. Computer Implementation of the Quotient Graph Model

4.1 Preliminary Results

In this subsection, some simple but important properties of the
quotient graph model will be established. These will be used to show
that the model can be implemented in-place. We discuss the implementation

in Section 4.2, Let G = (X, E) be a given graph.

Lemma 4.1 Let S <X where G(S) is a connected subgraph. Then

L 1Adi(x)| = |Adj(S)| + 2(|s| - 1)
xeS

Proof Since G(S) is connected, there are at least |S| - 1 edges
in the subgraph. These edges are counted twice in ) |Adj(x)| and
hence the result. e
d
We now show that the edge set sizes of the quotient graphs
Gi cannot increase with increasing i . Let X1s Xos wens Xy be the node

sequence, let

be the corresponding quotient graph sequence.
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Theorem 4.2 For 1 <1 <N,

IT(S; )1 = 1T(S,) 1

and Ié;+]l < Iézl

Proof Since C(Si) is the set of components in the subgraph G(Si) ,

we have

te(S, 4)1 < |c(si)| +1 .

i+1

However, xzxsi)t = 1C(s;)1 + N - i, so that

|3151+1)| = IC(51+1)I +N-1-1
< IC(Si)I + N -1
- 1e(s,)|
For the inequality on the edge size, consider C(Si+]) . If
X549} € C(S4,4) » clearly [é}+]| = |E§| - Otherwise, the node x.,,

is merged with some components in C(Si) to form a new component in

€(S.,,) . But then Lemma 4.1 applies, so that |€}+]| < |é%| . Hence

41

in all cases,

Ié}+]| < lé%l

The next theorem shows that the degrees of some nodes in the
quotient graphs also decrease monotonely with i . The proof follows

easily from the definition of the quotient graphs Gi and is omitted.



Theorem 4.3 For x ¢ Si4q >

|Adj ({x}) < |Adj, ({x})].
‘. o, (01

1
g

The next theorem illustrates the advantage of the quotient
graph‘model over the elimination graph model, and is one of the primary

motivations for our introduction of the model.

Theorem 4.4

ey O<isN |
Proof The first inequality follows from Theorem 4.2, and the fact
that |E0| = |[E] implies the second one.
O
To illustrate the possible difference between the quantities
max]@}] and max IEiI , we consider the example in Figure 4.1. The
corresponding elimination graph and quotient graph sequences are given

in Figure 4.2. If we generalize the example in an N-node graph, we have

max]é}| =N -1
and maxlEi| = (N - 1)(N-2)/2

©,

e
®

1

Figure 4.1 A seven-node star graph



(=)

©

ation graph

mple in Figure 4.1.

sequences for the exa

Figure 4.2 The quotient graph and elimin
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4.2 An In-Place Implementation

A practical way of storing the adjacency structure of a quotient

graph is to use representatives for members of the partitioning P .

Conceptually, for each partition member C ¢ P , we select a node x ¢ C
as the representative for C ,and for convenience, we use x to denote
the member it represents. It should be noted that the structure of G/P
is independent of the choice of representatives.

In this subsection, we will demonstrate how we can use Lemma
4.7 to achieve an in-place implementation for the sequence of elimination
graphs. We first describe the quotient graph transformation in a more
general setting.

Let G = (X, E) . Given a subset Y c X and a node x ¢ Y
such that the subgraph G(Y u {x}) is connected. The problem is to
generate the quotient graph by collapsing the subset Y u {x} to form

a new "super-node". The following is a description of an in-place

implementation of the transformation.
Step 1 (Form new adjacent set) Determined the set Adj(Y u {x}) .
Step 2 (In-place implementation) Use the node x as the representative
of the new quotient member Y u {x} . Reset
Adj(x) < Adj(Y u {x}) .

Step 3 (Neighbor update) For z e Adj(Y u {x}) , put

Adj(z) < (Adj(z) - Y) u {x} .
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In Step 2, although |Adj(Y v {x})] may be greater than

|Adj(x)| , we have by Lemma 4.1

I [Adi(y)] = |Adi(Y u {x})| + 2]Y] .
yeYu{x}
Therefore, there are always enough storage locations for Adj(Y u {x})
from those for Adj(y) , y e Y u {x} . In addition, for Y# ¢ ,
there is a surplus of 21Y| locations, which can be utilized, for
example, as links or pointers.

It should also be noted that in Step 3, by Theorem 4.3, the new
neighbor set (Adj(z) - Y) v {x} 1is neighbor update step can also be done
in place.

In modelling elimination by the sequence of quotient graphs
{Gi} » the graph Gi+1 can be obtained from Gi by the execution of
the above transformation. More specifically, we use the transformation

to collapse the node Xi 41 with those C ¢ C(Si) for which x.,, ¢ Adj(C).

i+l
To provide a concrete example to demonstrate an in-place
implementation, we consider the graph of Figure 3.3 and we assume the

adjacency structure is represented as shown in Figure 4.3.
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Figure 4.3 A graph and its representation

Figure 4.4 shows some important steps in producing quotient
graphs for this example. The adjacency structure remains unchanged when
the quotient graphs G], 62 and G3 are formed. To transform G3 to
G4 » the nodes 3 and 4 are to be collapsed, so that in G4 » the new
adjacent set of node 4 contains that of the subset {3, 4} in the
original graph, namely {6, 7, 8} . Here, the last location for Ade(4)
is used as a 1ink. Note also that in the neighbor list of node 8, 3 has
been changed to 4 in G4 since node 4 becomes the representative of the
component subset {3, 4} .

The representations for 65 and 66 in this storage mode are

also included in Figure 4.4.
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Figure 4.4 An in-place quotient graph transformation




30

5. Concluding Remarks

As a theoretical tool for analyzing the symmetric factorization
process, our model does not appear to be either better than, or inferior
to, other models. Its primary advantage, in our opinion, is that it lends
itself to very efficient computer implementation. We have given an
implementation of the model which requires space only for the original
graph of A , and is therefore independent of the fill suffered by A
during its factorization.

We should caution the reader that the implementation we suggest
in Section 4.2 is only an illustration. Although we have found the basic

scheme for representing the Gi in Section 4.2 entirely adequate, the

actual method for effecting the transformation depends upon how the model
is being used. For example, in [5], where we use the model to develop
an optimal algorithm for symbolic factorization, it turns out that Step
3 only needs to be performed for one z ¢ Adj(Y u {x}) . 1In [6], we use
the model in connection with a fast O(|E|)-space implementation of the

minimum degree algorithm.
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