AERSS €

WA
W
VERSITY OF WATERLOO C

TMENT
EPARTMENT
EPARTMENT

BEPAE
b

QOQO

3

1L
I
ITY

VERS

i

A First Course in Simulation

G. R. Sager
J. W, Wong

January 1978
(S-78-03

A First Course in Simulation

G. R. Sager
J. W. Wong

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

General Comments on the Evaluation of
Simulation Assignments and Projects

The following comments are intended to serve as a set of guidelines for the
student to use in the preparation of assignments. The outline may not be appropriate
in all cases, but it will indicate the general content expected of all assignments.

TOOLS: First and foremost, discover and use the tools available. In particular, a
text editor such as QED or the CMS editor will be useful in preparation of program
source, data files, and the report text. A simulation language such as GPSS or
SIMSCRIPT is helpful, but in their absence one may use FORTRAN-based sub-
routine packages (GASP, for example) or one may find it worthwhile to invest time
in developing a few general tools before actually embarking on the project. For the
report itself, a document preparation tool (ROFF or SCRIPT) allows one to
prepare and easily revise a report. The resulting report will have quite a professional
appearance. Statistics packages can aid one in the evaluation of data, and plotting
packages can supplement a report with neatly prepared summaries of the data and
results. (In fact, the ST package on the H66/60 is quite well suited to this
application for the purposes of this course, and is extremely easy to use.)

GENERAL OUTLINE OF A REPORT

Abstract: Start the report with a short (50 - 150 words) subjective
resume of what the simulation study has to say to the reader. That is,
he should be given an idea of what to look for while reading the
report.

I. External Documentation

A. Describe the system being studied. If necessary, educate the reader in the ter-
minology and other important aspects of the system.

B. State the objectives of the study. These may usually be classified into one or
more of the following:

1. Prediction of system performance for a given set of inputs.
2. Evaluation of alternate system design strategies.

3. Control of input for a given level of performance.

C. Describe the model of the system.

Abstract into environment, subsystems, entities, attributes, events and
activities. Give tables of entities and their attributes. Make block
diagrams to illustrate the interrelationships of the subsystems, entities,
events and activities. [f the abstraction makes any simplifying assump-
tions (i.e. it may leave out some things which are normaily present in
the real system), bring them to the reader’s attention and justify the
omission.

Describe the model in words. the description should reflect the struc-
ture of the model as a logical and coherent organization of fundamen-
tals - i.e. the model is built as a structure of interacting subsystems us-
ing either a top down or bottom up approach.

Validate the model. This may not be feasible in all cases. When
possible, try to make direct comparisons between the model and the
real system. This may involve the use of statistical methods to evaluate
the acceptability of the model’s results.

D. Interpret the results or Illustrate use of the model

1.

Present the results in the form of graphs, Kiviat graphs, histograms,

tables, etc. Note that selection of a good graphical technique to

emphasize the results can be difficult; try several, but use only the best.
Important: label axes and give units!

Explain the outcome: give arguments to show that the outcome is
reasonable. If exact analyses can be applied, use them. Perhaps exact
results of similar systems can be used as approximations. Demonstrate
that results lie within any derivable upper or lower bounds. As a last
resort, make arguments based on intuition.

Evaluate the results: it isn’t enough to say that something is "better” or
"different”; there must be some confidence estimate attached to the
statement. This involves the experimental technique of formulating
hypotheses and accepting or rejecting them on the basis of statistical
formulae applied to the results.

Document the measures and statistics: if a measure or statistic appears
in the study, it must be used and it must be discussed. Do not over-
power the reader with charts, graphs and tables full of useless
numbers. If the measure or statistic is unfamiliar to the reader or if
special pains are required to gather the data, be sure to include an ex-
planation of the technique.

Warn the reader against potential misuses of the model. In particular,
if certain ranges of the input may cause inaccurate or less accurate
results, give adequate cautions.

1

I1. Internal Documentation

Note that the computer program is not the “model” in a simulation study; it is a

realization of the model. Thus, a customer interested in the system and the model
may care little for the "hacking” required to realize it as a program. Moral:
document the program separately.

A

Program listing

Use paragraphing to emphasize the structured flow of control. Use sub-
routines not only to reduce the coding but also to isolate logical components.
Comments should be inserted to aid clarity to the flow of control. Declaration
and typing information for variables should be grouped for quick access to all
necessary information. Use mnemonic variable names.

Supplementary to the listing

1. Data Structures: give all typing information and a verbal description
of the uses of all variables and data structures. Indicate which sub-
routines change the data and which make decisions based on the data.

2. Subroutines: describe what each does and what its formal parameters
are. Indicate which formal parameters and/or common variables are
inputs, which are outputs and which are both. List all local variables
and their uses.

3. Key all variables and subroutines to the model as described in section
I.C.

Certify the program

Since the program is a realization of the model, we must assure ourselves that
the realization is free of bugs. There are a great number of ways of increasing
our confidence in a program. In addition to the ones which apply to standard
programs, the following techniques should prove useful:

1. Run the program with known inputs to produce easily predicted out-
puts. For example, some models have analytical solutions under
certain conditions; verify that the program will yield those results.
Note that this may require inputs which would make no sense in terms
of the real system (for example, unrealistic distributions for in-
terarrival time and service time).

2. Perform redundant calculations. Especially in the case of many per-
formance measures there will often be two or more fairly independent
ways of obtaining the same result. For example, the "utilization fac-
tor” can be computed as the total busy time divided by the elapsed
time as well as by mean service time divided by mean interarrival time.
Verify that such redundancies agree.

3. Validation of the model of course says something about the program,
but don’t use this as the first and/or only attempt to certify the
program; validation by itself is difficult enough without trying to
debug at the same time.

W

I11. Bibliography

You should have done some looking around in various journals or perhaps you
asked questions of persons involved in the system you are studying; if so, you should
reference these articles or "private communications” in a bibliography. Failure to do
this is considered to be the most heinous of sins in academia.

CHAPTER 1
Systems, Models, and Simulation by Computer

1.1 Introduction

Many situations we encounter in everyday life are readily characterized as a
queueing system: namely, there are customers who require a service which can be
provided only by a server. Sometimes the queueing situation is so bad that we get
frustrated and disatisfied with the manner in which the system is operated. For ex-
ample, in a busy supermarket, we may consider ways in which the service might be
improved such that customers do not spend as much time waiting in line for the
cashier. As customer, we may employ selfish strategies: in a supermarket with
separate queues in front of each cashier, if we notice that another queue is shorter
than our own, we reduce our wait time by switching to it. Also, when we find that the
queues are too long, we may leave without service. Perhaps we can argue that it is
more fair that customers with only a few items should be allowed to use an express
checkout. If the management provided more cashiers, the length of the queue (or
queues) would be shorter, thereby decreasing every customer’s waiting time.

On the other hand, as the manager of the supermarket, we would realize that the
addition of cashiers increases the cost of operation. We are confronted with con-
flicting problems: poor service may lose customers, but the price of improved service
may cause customers to take their business elsewhere.

In either role, we may feel that we either know or could discover a better way of
doing things. The problem is: how do we convince ourselves (and others) that we are
right? Undoubtedly some experimentation is required, but we may not be in a
position to experiment with a queueing system on a large enough scale to try out our
ideas. Given that we can conduct experiments, we must be relatively certain that the
experiments are true reflections of what will happen when the system is operating in
a less controlled, real-life environment. Moreover, to simply say that our experimen-
tal system is "different” or "better” is not enough; we must determine that the
difference is in some sense significant. These problems are quite similar to those of
researchers in the experimental sciences, who attempt to develop theories which are
better explanations of real-world phenomena than existing theories. When the con-
straint is added that one cannot perform experiments with the system itself, then a
technique known as simulation must be used. With simulation, the researcher per-
forms his experiments on a model of the system rather than on the system itself.
Although this avoids problems which may have been insurmountable with the
system, it makes the task of convincing more difficult, for now the question arises
whether or not the experiments on the model are equivalent to similar experiments
on the system.

In the remaining sections of this chapter, we will introduce some terminology
used in simulation, and outline the basic steps that one would typically go through in
a simulation study.

1:2

1.2 Systems

Informally, a system is a collection of interrelated entities; and each entity is
characterized by a set of possibly interrelated attributes. We thus define an entity to
be a component of the system; it may in fact be a system if considered by itself, but
interests us only as a subsystem of the system we are studying. An attribute is then a
property of the system or of an entity in the system. As an example, consider a single
checkout counter in a supermarket. We might identify the following entities and
their attributes:

entities attributes
checkout counter arrival rate of customers
(system) distribution of items purchased

length of queue

cashier income
rate of work

customer number of items purchased

Attributes may be expressed as constants ("the cashier’s income is $10,000”) or as
distributions ("10% of arriving customers purchase 1 item, 20% purchase 2 items,
15% purchase 3 items, etc.”).

In a queueing system, the arrival rate is commonly denoted by the symbol A; the
units of this attribute are customer arrivals per time unit. The inverse of arrival rate
is interarrival time, measured as time units per customer arrival (i.e., the elapsed
time time between arrivals) and denoted by 1/X. The rate of work, or service time is
denoted by the symbol 4 and is measured as customer services per time unit. The in-
verse of service rate is service time, measured as time units per customer service and
denoted by 1/u.

In this system, we suspect that cashier’s rate of doing work may be related to his
or her income. The interrelationship of the cashier and customer entities is straight-
forward: the amount of time a customer spends with the cashier is directly related to
the rate of work of the cashier and the number of items purchased by the customer.
The rule which determines the order of customers in the queue is known as the dis-
cipline of the queue. The queueing discipline, along with other information such as
the rate of work of the cashier, the number of customers in the queue and the
number of items purchased by each customer determine the waiting time customers
experience.

If we consider that this system is actually one of many “checkout subsystems” in
a larger supermarket system, then we note that the subsystems are subject to in-
terrelationships; in particular, the queue lengths of the subsystems tend to be equal
because customers will usually join the shortest queue and will perhaps move from
one queue to another as the lengths change.

The state of a system is an instantaneous description of the system based on its
entities and attributes. At any point in time, the state of the system is the set of infor-
mation which would be sufficient to “restart” the operation of the system without ill
effects; that is, by simply setting the system to that state, it should continue to

operate as though it had arrived at that state by natural means. In our supermarkct
checkout counter example, we can define the state to be the length of the queue and
the number of items purchased by each customer in the queue. The values of the
other attributes do not change during the operation of the system and therefore do
not constitute state information. These attributes are known as system parameters
and determine how the system will respond to a given state.

We have perhaps been overzealous in identifying the entities and attributes of the
checkout counter; the income attribute is quite well characterized by the rate of do-
ing work alone unless we intend to study the trade-off between using more skilled,
higher paid cashiers versus less skilled, lower paid ones. On the other hand, if our in-
tentions are for a much more detailed study, the entities and attributes suggested
above may not be adequate. Thus, the identification of entities and attributes re-
quires a bit of forethought about the goal of the study.

A system may be considered to be discrete or continuous, depending upon the
way it changes from one state to another. In a discrete system, the state changes by
discrete values and at discrete instants. Our example of a supermarket checkout
counter is discrete: for example, the number of customers in the queue increases by 1
when a customer joins the queue, and decreases by 1 when a customer finishes ser-
vice. In a continuous system, the state changes continuously and smoothly. Some ex-
amples of such systems are:

l. A dam: state is water level.

1)

The suspension of an automobile wheel: state is distance from rest
position and velocity (up or down).

3. An airplane in flight: state is altitude, attitude and velocity (in 3 dimen-
Sions).

The state information suggested above is minimal: it is likely that in any detailed
study, the states would be far more complex.

In this text, we will restrict ourselves Lo systems whose state changes are best
described as discrete.

1.3 Models

The first step in studying a system is to build a model. Informally, a model is an
abstraction of the system under study. This abstraction is obtained by capturing the
essential characteristics of the system, i.e., characteristics that would affect system
performance the most (obviously this requires some judgment).

There are different types of models. A physical model is a scaled down replica of
the system, e.g., a model airplane. A mathematical model is a characterization of a
system by a set of well-defined relationships (i.e. equations, algorithms and/or
operations on data structures). If we can deduce from this set of equations an ex-
plicit solution to the performance measures of interest, we have an analytic model.
An example for this is Newton’s laws of motion. If it is not possible to get an explicit
solution but numerical methods can be used, then we have a numerical model.
Numerical models are typically used when a continuous system is modelled by a
system of differential equations or when ua discrete system is modelled by inter-
connected queues which are difficult or impossible to solve analytically.

1:4

Models can be further classified as to whether they are deterministic or
stochastic. In a deterministic model, any valid input will have a precisely determined
effect on the state of the model (as in the logic circuits of a computer). In a stochastic
model, any valid input will result in one of many possible effects on the state of the
model, due to some randomness which is built into the model. Generally, this ran-
domness is introduced into the model to account for some aspect of the system
which either cannot or need not be modelled in a precise deterministic way. For ex-
ample, were we to attempt to model in every detail the events and activities involved
in the ringing up of a single item at our grocery store checkout counter, the range of
possibilities quickly becomes unmanageable: perhaps the price is not marked or
smudged so a price check is required, perhaps the item is produce and the price must
be looked up on a sheet at the register, perhaps the checker must turn the item over
several times in order to find the price, etc. It is much simpler and undoubtedly quite
effective for most purposes to simply note that the checker requires sometimes more,
sometimes less time for an item and account for this as a stochastic element in the
model. These stochastic elements typically appear in the abstraction as attributes ex-
pressed as distributions.

Another possible breakdown is whether the model is static or dynamic. In a
static model, state changes are not related to time; for example, the operation of a
lever is determined by physical laws which do not involve time. In a dynamic model,
state changes are related to time; in a model of our checkout counter system, for ex-
. ample, we must account for the time spent waiting in the queue and the time spent
with the cashier.

In this text, we will concentrate on mathematical models which are numeric,
stochastic and dynamic.

There are many reasons for experimenting with a model instead of the real
system. Some important ones are:

1. The system may only be in the planning stage and is therefore not
available for study.

2. A model often leads to improved understanding of the system.

3. Once a model is developed, we may get results faster. Experimenting with
the real system may take months or years to get the desired results.

4. A model enables us to identify the problem areas before any real change is
made to the system, this is especially useful when the change involves a
substantial amount of capital investment.

S. A model is easier to manipulate than the real system; we can efficiently try
out various design strategies and compare performance.

6. The real system may be too risky to experiment with, e.g., an air-defense
weapon, or a nuclear reaction.

The fact that we experiment with a model rather than the system itself leads to
another problem: we are assuming that experiments on the model are equivalent to
experiments on the system, and must therefore supply evidence to support this
assumption. Thus, we must conduct experiments and use statistical methods to show
that the model and the system are equivalent to a degree which will justify the
further conclusions we draw from the model; this is known as validation. Of course,
in cases where the system is not available for experimentation, validation is not
possible.

1:5

1.4 Simulation by computer

Once the model of a system has been developed, the experimenter must obtain
result from it for comparison with the original system or with other versions of the
model. One method of doing this would be to use a pencil, paper and dice (for the
stochastic elements) and run through the steps called for by the model by hand. This
technique is quite acceptable for a small study, or for preliminary tests of model
validity; it can avoid a great deal of waste spent in writing and debugging a computer
program. However, most simulation studies will require a large number of
operations and a large number of variables, so the experimenter will find that the ac-
curacy and speed of a digital computer is necessary. There are two dangers to this
course of action: first, large computer programs require a large investment of time
and effort to implement and, second, the program is not the model. The second point
is rather important, for it means that there is yet another potential source of error; if
our model will not validate, for example, is it because the model itself is improperly
conceived or is it because the program we have written does not implement it cor-
rectly (1.e. a bug)? Thus it is important as much as possible to separate the model
from the program in order to prevent confusion between validation and debugging.

1.5 Basic steps in a simulation study

We conclude this chapter by giving the steps that one would typically go through
in a simulation study. It should be noted that these steps refer to material which will
covered in later chapters. It is recommended that this section be frequently reviewed
as progress is made through the later chapters.

l. Outline the objectives of the study. This will usually consist of one or more
of the following:

() Prediction of system performance for a given set of inputs.
(b) Evaluation of alternate system design strategies.
(c) Control of input for a given level of performance.

2. Have a clear understanding of the system under investigation and identify:

(a) The essential characteristics
(b) The system parameters
(©) The measures which best characterize "system performance”

3. Design a model for the system. This includes the abstraction of the system
into its environment, subsystems, entities, attributes, sets, states, events,
and activities and the characterization of their interrelationships. Any
simplifying assumption made should be mentioned and justified. The
effect of these assumptions on the accuracy of the model should also be
discussed. For a complex system, a structural approach should be used:
e.g., a top-down refinement of the system into subsystems and then to en-
tities, attributes, events, etc., or a bottom-up approach of modelling sub-
systems, and then combining subsystem models into a total system
model.

4, Design and implement a simulation program for the model developed.

1:6

Run acceptance tests on the program. Quite often it will be possible to
apply inputs to the program which will result in predictable results, even
though these inputs may not be representative of the inputs to the real
system. One should also apply the standard program debugging techni-
ques, such as testing individual modules of the program for correctness
and being sure to try the limiting conditions on loops and data structures.

Estimate the system parameters for the model. A common method is to
observe the real system and characterize the system parameters as con-
stants or probability distributions. In case that the system is still in the
planning stage, we can estimate the parameters from observations made
in existing systems that are similar in nature.

Validate the model. It is important to note that the model is only an
abstraction of the system. It must be validated before it can be used as a
tool for studying system behavior. Validation is the process of checking
the consistency of the model with the real system under the existing con-
dition. If a model cannot reproduce the system behavior as is, one can
hardly expect it to give meaningful results under new conditions. During
the validation process, one might discover that the model does not
represent correctly a certain aspect of the system. This often provides in-
formation for the analyst to refine his model. The development of a useful
model is therefore a repeated process of model refinement, and it is not
likely that one can get a good model after the first pass.

Design the experiments. It is not sufficient to run the model once; since
random numbers are used in the execution, one may rerun the program
with a new set of random numbers and expect to see results which differ
from other runs. If the results differ greatly from one run to the next, they
may reflect similar “erratic” behavior in the real system or perhaps in-
dicate that the experiment is not being conducted properly. In either case,
one must be prepared to redesign the model, program and/or the ex-
perimental technique as the situation indicates.

Run the simulation program (which is an implementation of the model)
with selected values for the system parameters, and collect data for the
desired performance measures. Present the output data in the form of
graphs, Kiviat graphs, histograms, tables, etc.

Analyse and interpret the output data. The graphs and tables which
present the results should be discussed, and statistical methods used to
support the conclusions of the study.

These steps should not be persued strictly in sequence; it is possible to do several
steps in parallel. For example, one may begin collecting data (step 6) while still
observing the system to gain understanding (step 2). However, one should always be
ready to discard false starts and start over. Even the most experienced analyst will
make mistakes, and if he has any advantage over the beginner it is undoubtedly a
willingness to recognize his errors and correct them rather than stubbornly attacking
the problem from the first approach taken. For the beginner, a bottom-up design is
usually best; this is perhaps because it allows one to conduct "mini studies” on the
subsystems as they are developed, thereby gaining some experience before the entire
study is undertaken.

CHAPTER 2
Discrete Event Simulation

In this chapter, we introduce the terminology used in discrete event simulation by
describing in detail the basic structure of a simple discrete event simulation
program. We will base our discussion on the example system of a supermarket
checkout counter introduced in Chapter 1.

2.1 Terminology

We define the environment of the system to be the important entities, the im-
portant attributes of those entities, and the range of values that these attributes can
take on. By the term "important” we mean that the entity or attribute was not
eliminated in the process of abstraction. An analyst often fixes the values of some
attributes and conducts experiments to determine the effect of varying other
attributes. These other attributes are called input parameters. In queueing systems,
two typical selections for input parameters are interarrival time or arrival rate
(denoted by 1/X or A, respectively) and service time or service rate (denoted by 1/u
or u, respectively). In our example system, the interarrival time is the time which
elapses from when one customer joins the queue until the next customer joins (i.e.
the attribute arrival rate of customers); the service time is the total time a customer
spends with the cashier, this time is a function of the rate of work of the cashier and
the number of items purchased by the customer being served.

Consider the modelling of a single checkout counter in a supermarket. A table of
entities and attributes for this system can be found in section 1.2. In designing our
model, we remove the cashier’s income to simplify the model. We thus have the
following table for entities and their attributes:

entities attributes
checkout counter arrival rate of customers
(system) distribution of items purchased

length of queue
cashier rate of work

customer number of items purchased

Set is a term used to denote a queue. Each set has an owner and contains
members. The owner and members must be entities. For our example of a checkout
counter, there is only one set:

set owhner members

queue cashier customers

tv
[]

In discrete simulation, an event 1s an instantaneous operation which changes the
state of the system; an activity is started and terminated by related events. Note that
by definition, an event takes no time, therefore it is theoretically impossible to stop
the system during an event; to do so might result in a state which would be con-
sidered illegal. A useful heuristic for identifying the events and activities of a system
is to imagine a trip through the system from the viewpoint of a customer entity. For
our checkout counter example, the manner in which customers move through the
system can be characterized by the following sequence of events and activities:

events activities

arrive at counter

wait in queue
start service at cashier

receive service from cashier
depart from system

Note that we have interleaved the table entries such that every activity is bracketed
by events; this is done to emphasize the fact that activities begin and end with events.
This method of presentation is effective when the sequences of events and activities
occur serially and in a well-determined order. Later, we will encounter systems in
which events may start and/or end more than one activity and events may "decide”
which of several activities to begin, based on the state of the system at the time of the
event. It is important to realize that this presentation is from a single customer'’s
viewpoint, and that many customers will be at various stages of the activities, as in-
dicated in figure 2.1.a.

Even in the highly simplified system we are considering, the table of events and
activities hides two phenomena which will become apparent when we later code the
program for the simulation model:

1. If the system is empty when the customer arrives, the 'wait in queue’ ac-
tivity takes zero time and the events ‘arrive at counter’ and 'begin service
at cashier’ occur at the same time.

2. If the cashier is busy when a customer arrives at the counter, that
customer’s "begin service at cashier’ event occurs at the same time as the
event ‘depart from system’ for the customer preceding him according to
the queueing discipline.

2.2 Event scheduling approach

In writing a program to implement the model for a discrete event simulation
model, we take advantage of the fact that the state of the system remains unchanged
between events (or during activities), so it is only necessary to consider times at
which events occur. A clock is used to keep track of simulated time, which cor-
responds to real time in the system being modelled. When we speak of time in dis-
cussions which follow, we mean simulated time unless otherwise specified. The basic
technique is to advance the clock to the time of next event and modify the state as in-
dicated by the event.

2:3

There are several "world views” in use by simulation packages available today.
One is the event scheduling approach used by packages such as SIMSCRIPT. A
simple explanation of this approach is that the underlying structure provided by the
package attempts to invoke the event routines at the appropriate simulated times.
Thus the user writes his simulation program as a group of subroutines which define
how state changes occur at each event. An alternative world view is called process in-
teraction and 1s typified by the GPSS package. In the process interaction approach,
the underlying structure provided by the package attempts to move the “transac-
tions” (or entities) to the completion of their activities. The user then writes his
simulation program as a list of statements which describe the activities of the
system.

For this chapter, emphasis will be given to the event scheduling approach of dis-
crete simulation. In order to better understand some of the underlying structure
provided by packages using this approach, we consider a FORTRAN program
designed to implement the checkout counter system developed in previous sections
and summarized in section 2.1. The program listing appears at the end of this sec-
tion.

The main program of the accompanying FORTRAN program is responsible for
setting the variable CLOCK to the current simulated time and calling the event
routines. Its operation is as follows:

I. Initialize (to be discussed later).

2. Select the next event (indicated by CUREV) from the event list; all events
scheduled to occur at some future time appear in this list, ordered by the
time at which they are to occur.

3. Advance CLOCK to the time of this event (indicated by EVTIME) and
delete the event from the event list.

4 According to the event type (indicated by EVTYPE), call the event
routine to perform the state modification. Here, we have chosen type 1 to
specify the ‘arrive at counter’ event and type 2 to specify the 'depart from
system’ event. These event routines may add events to the event list,

5. Go to 2 (statement label 10).

The events outlined in Section 2.1 are implemented as subroutines which change
the state of the model by changing the values of variables and/or data structures.
We first define how the model changes state when a customer arrives:

Subroutine for ’arrive at counter’ event (ARRIVE):

l. Increment count of number of customers in the system (NSYS).

2. Schedule an ‘arrive at counter’ event to occur at a future time.

3. Determine the number of items purchased by the arriving customer
(ITEMS).

4, Enter the customer into the queue, remembering the number of items
purchased.

3. If the cashier is not busy (IDLE) call the event routine for ‘start service at

cashier’ (SERVE).

4

Note that at step 2, the arrival event schedules the next arrival event; this practice is
known as bootstrapping. It is a very natural way to schedule arrivals when we use
the customer arrival rate or interarrival time as an input parameter. Given a dis-
tribution for the interarrival time, a random number generator can be used to deter-
mine the time of the next arrival event by first generating an interarrival time and
then adding it to the current time (which is in CLOCK). For the present, we will use
the uniform distribution which has the property that all possible values in an interval
(a,b) occur with equal probability. The mean of this distribution is (a+b)/2. In our
example program, the desired mean interarrival time is stored in the variable
IATIME. We use the subroutine URANDM to obtain random numbers which are
uniformly distributed between O and 1, and then multiply these numbers by
2*IATIME to get values uniformly distributed between 0 and 2*IATIME (with
mean value IATIME). With this distribution "built in” to the program, we need only
specify the mean interarrival time as an input.

The alternative to bootstrapping wouid be to schedule all of the arrival events at
the beginning of the simulation (in the subroutine INIT, called by the main
program) or to read the next arrival time at each arrival event. The first method is
undesirable because it requires a great deal of space to store the events in the event
list. In addition, we would either have to collect very detailed records from the
system in order to schedule the arrivals just as they occurred in the system, or we
would generate the interarrival times randomly in a manner similar to that used for
bootstrapping. The second method requires the preparation of a large amount of
detailed data about times of arrival events collected from the system. If this data is
available, it can be very valuable for a trace-driven simulation. One of the main ad-
vantages of trace-driven simulation is that it provides assurance that the input to the
model is precisely what happened in the system; this increases confidence in the
results and improves the chances for validating the model. However, we will see later
that when a human is observing a system directly, such detailed information may be
difficult to obtain; the main use of trace-driven simulations has been in simulation of
computer systems, where detailed accounting records provide the necessary inputs
to the model already in computer readable form.

It is not apparent from our program what the unit of measure for time is. This is
in fact arbitrary; judging from the nature of the system, it seems reasonable to
measure time in minutes. Some simulation packages, such as SIMSCRIPT, allow
the user to specify the time units and provide conversions to seconds, minutes, hours,
days, weeks, etc. Other packages, such as GPSS, use a single unidentified "time unit”
and require the user to do his or her own conversions. We will take the latter
approach, though it is easy to imagine how subroutines could be written to do the
conversions if we desired such luxuries.

At step 2 of the arrival event, we have arbitrarily chosen to decide the number of
items purchased by the arriving customer as uniformly distributed between 1 and 9.
As with the interarrival time, this should be considered to be a temporary measure;
after we have studied the program sufficiently and convinced ourselves that we un-
derstand it and that it works, we can replace these arbitrary distributions with ones
observed in the real system.

When a customer has finished receiving service from the cashier, he departs from
the system. The state change for this event is defined by the following subroutine:

[{9]
N

Subroutine for 'depart from system’ event (DEPART):

1. Decrement number of customers in system (NSYS).

Mark cashier idle.

[S%]

3. If there is one or more customers in the queue, call the 'start service at
cashier’ routine (SERVE) to get one started.

Note that in both the arrival and departure events, we have called the subroutine
which corresponds to a customer starting service at the cashier (SERVE). As noted
in section 2.1, under certain conditions, this event occurs simulataneously with the
‘arrive at counter’ or 'depart from system’ events. In fact, since the cashier will
always provide service when there are customers, the 'start service at cashier’ event
is never explicitly scheduled (i.e., using SCHED). We refer to this as an implicit
event (or conditional event).

Subroutine for ’start service at cashier’ event (SERVE):

1. Mark cashier busy (not IDLE).

2. Remove a customer from the queue, recalling the number of items
purchased by that customer.
3. Schedule a "depart from system’ event to mark the termination of the ser-

vice activity about to begin.

In a typical simulation, one would provide, as input, a distribution for the service
time: but we have fixed this in the program to be uniformly distributed between 3
and number of items purchased + 3.

For completeness, we include here a description of the routine SCHED, which
makes entries into the event list. In order to keep the event list in a form from which
the main program can easily determine the next event, SCHED does what is best
described as the insertion step of an insertion sort; each record consists of a key
(time at which the event is to occur) and a datum (the type of event). As SCHED
looks up the relative position to place the new event record in, it also moves along
the sfot into which it will place the event record. The algorithm used also insures that
in case of ties, the event which was scheduled first in real time will occur first in real
time (although the tied events will occur at the saume simulated time). This is a fairly
primitive approach, as it would be fairly inefficient for large numbers of events
whose time of occurence would require the insertion sort to look far into the event
list. It also precludes the possiblility of passing arguments to the event routines.
Simulation systems such as SIMSCRIPT and GPSS often use more sophisticated
techniques to insure efficient event scheduling and to allow the passing of arguments.
They also allow facilities for the user to determine what will happen in the case of
Lies.

2:6

C MAIN PROGRAM - CHECKOUT COUNTER SIMULATION

REAL CLOCK
COMMON /TIME/ CLOCK

INTEGER CUREYV, EVTYPE(10)
REAL EVTIME(10)
COMMON /EVENTS/ CUREV, EVTIME, EVTYPE

INTEGER TYPE

CALL INIT

10 CLOCK = EVTIME(CUREYV)
TYPE = EVTYPE(CUREYV)
CUREV = CUREV - |

I[F (TYPE EQ. 1) CALL ARRIVE
IF (TYPE .EQ. 2) CALL DEPART
GO TO 10

END

SUBROUTINE SCHED (TYPE, WHEN)

REAL CLOCK
COMMON /TIME/ CLOCK

INTEGER CUREYV, EVTYPE(10)
REAL EVTIME(10)
COMMON /EVENTS/ CUREV, EVTIME, EVTYPE

INTEGER CUR, TOP, TYPE
REAL WHEN

CUR = CUREV

CUREV = CUREV + 1

IF (CUREV .GT. 10) GO TO 30

[F (WHEN LT. CLOCK) GO TO 40

C FIND INDEX FOR THE NEWLY SCHEDULED EVENT
TOP = CUREV

10 IF { CUR. LE. 0) GO TO 20
IF (WHEN .LT. EVTIME(CUR)) GO TO 20

EVTYPE(TOP) = EVTYPE(CUR)
EVTIME(TOP) = EVTIME(CUR)
TOP = CUR

CUR = CUR - |

GO TO 10

C INDEX FOR THE NEWLY SCHEDULED EVENT IS IN TOP
20 EVTYPE(TOP) = TYPE

EVTIME(TOP) = WHEN

RETURN

30 WRITE (6,901)
STOP
40 WRITE (6,902) CLOCK, TYPE, WHEN
STOP
901 FORMAT (' EVENT LIST OVERFLOW')
902 FORMAT (" ATTEMPT TO SCHEDULE EVENT IN PAST AT/ ,F10.2/
& ' EVENT TYPE',13/" TO OCCUR AT’ F10.2)
END

SUBROUTINE ARRIVE

REAL IATIME
COMMON /INPUT/ IATIME

REAL CLOCK
COMMON /TIME; CLOCK

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE, NSYS

NSYS = NSYS + 1

CALL SCHED(I, CLOCK + 2.0*URANDM(0.0)*IATIME)
ITEMS = 1.0 + 9.0*URANDM(0.0)

CALL ENTERQ(ITEMS)

IF (IDLE) CALL SERVE

RETURN

END

SUBROUTINE SERVE

REAL CLOCK
COMMON /TIME/ CLOCK

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE, NSYS

IDLE = FALSE.

CALL DELETQ(ITEMS)

CALL SCHED(2, CLOCK + ITEMS*URANDM(0.0) + 3.0)
RETURN

END

SUBROUTINE DEPART

REAL CLOCK
COMMON /TIME/ CLOCK

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE, NSYS

NSYS = NSYS - 1

IDLE = TRUE.

IF (NSYS .NE. 0) CALL SERVE
RETURN

END

2:7

2:8

2.3 Organization of a simulation program

Typically, a simulation program can be divided into 3 parts:

1. Initialization.
2. Event subroutines.
3. Output routines.

In the initialization part, variables used in the program are set to the appropriate
values to reflect the state of the system at simulated time 0. One or more events are
also scheduled to start the events going. The main program is concerned with calling
the event subroutines at the appropriate simulated times. In order to terminate the
simulation, it is necessary to divert control to the output routines. There are three
common methods for doing this:

1. When the number of events has exceeded some prespecified amount, call
the output routines. This may be done from inside an event routine or
from the main program. This technique is appropriate when we want to
observe a certain number of events; in the checkout counter system, for
example, we might be interested in observing a given number of arrivals
(for statistical control, as will be explained in later chapters) and therefore
call the output routines from the 'arrive at counter’ event routine when the
number of arrivals has exceeded the specified amount.

2. Schedule a special event of type ‘end of simulation’ during initialization
with event time equal to the desired termination time. The main program
will then call this event routine at the appropriate time and that routine
can call the output routines. This technique is appropriate when we are in-
terested in simulating a given amount of real time.

3. When there are no more events in the event list, the main program can call
the output routines. This technique is typically used to model systems
where there are "hours of business” such that arrivals are shut off at clos-
ing time, but customers in the system at closing time are served. In the
checkout counter example, we can easily implement this technique by
changing the "arrive at counter’ event routine such that it will not do the
bootstrap after “closing time”, and having the main program check for
CUREV = 0.

In some cases, it may be desirable to use a combination of the above techniques.
For example, when the same simulation program is to be run many times with wide-
ly varying arrival and service rates, techniques 1 and 2 can both be used to terminate
the simulation when at least a certain number of events or a certain amount of time
has been observed, whichever comes first.

2.4 Data collection

Data for performance measures are collected in the event subroutines. We will
use our check-out counter example to illustrate how this can be done. We consider
three of the most commmmmmmmmmmmmon performance measures: waiting
time, utilization factor, and number of customers in system. A modified program to

2:9

gather these performance measures for our checkout counter model appears at the
end of this section. The reader may wish to refer to this program listing during the
discussions which follow. The mode of termination is as described in technique 2
above: an ‘end of simulation’ event (WRAPUP) is scheduled during initialization to
occur at time 1500.

2.4.1 Waiting time
The waiting time is defined to be the time a customer waits in queue, it is given
by:
waiting time = time service begins - time of arrival

The steps required for the computation of waiting times are:

1. When a customer is entered into the queue (in the ’arrive at counter’
event), his time of arrival (the value of the variable CLOCK) is saved. An
extra argument has been provided to the subroutine ENTERQ for this
purpose.

3%

When a customer is deleted from the queue (in the 'start service at cashier’
event), his time of arrival is retrieved and his waiting time is computed
from:

CLOCK - time of arrival

These steps allow us to compute the waiting time for each customer starting service
at the cashier. It is perhaps best to think of the "time of arrival” as being an an
attribute of a customer; it is an attribute which we should have added for our own
convenience in collecting data for waiting times. We omitted this attribute in the
development of the model to avoid complexity. Had we been experienced analysts
following the procedure outlined in section 1.5, we would have anticipated the need
for this attribute. In some simulation packages, attributes commonly used in gather-
ing statistics are added to each entity by default!

There are several ways to summarize the waiting time data, the most common
ones are mean, variance, and histogram. (Of course, these apply equally well to
other measures, but we will phrase our examples in terms of waiting time).

Vean and variance:

To collect data for the mean and variance of waiting time, we need the following
variables in our example program:

NWAIT - accumulates the total number of waiting times collected
SWAIT - accumulates the sum of waiting times
SQWAIT - accumulates the sum of squares of waiting time

Initially, NWAIT, SWAIT, and SQWAIT are all set to 0. Every time a customer is
removed from the queue, a waiting time can be observed and the following steps are
added to the program:

NWAIT = NWAIT + 1
SWAIT = SWAIT + waiting time
SOWAIT = SQWAIT + (waiting time) ** 2

2:10

At the end of simulation, we calculate the following for output:

mean = SWAIT / NWAIT
variance = (SQWAIT - SWAIT ** 2 / NWAIT) / (NWAIT - 1)

Intuitively, we interpret the mean as the "best possible guess” for an arriving
customer’s waiting time (given that we know nothing about the state of the system
when he arrives). The variance is an indication of how accurate that guess is (the
smaller the variance, the better the guess).

Histogram:

Although our example program does not collect histogram data, we include this
discussion here for completeness. If we divide the axis for waiting time into a
number of equal length intervals, then a histogram is a plot of the relative frequency
of waiting times falling into each interval. Let K+1 be the total number of intervals,
and h be the interval length. We define an array W and assign the element W(i),
i = 12, .., K, to accumulate the total number of waiting times that fall between
(i-1y*h and i*h. The element W(K+1) is used to accumulate the total number of
waiting times that are larger than K*h. It is usually wise to provide this "overflow
bucket” in case we make a bad choice for K and h. In fact, it would be wise to also
keep track of the largest overflow value so that a good choice of K and h can be
made with only one more run.

Initially, W(i) = O for all i. Every time a waiting time is computed (step 1 in sub-
routine for ‘customer starts service at cashier’ event), the interval into which it falls
is determined, and the corresponding element of array W is incremented by 1. At the
end of simulation, the relative frequencies are obtained by dividing each W(i) by
NWAIT (which contains the total number of waiting times collected).

We may generalize the collection of data for a histogram with a third parameter
b, to indicate the base value of interest. We need an additional element W(0) in the
W array. In this case, we accumulate the total number of waiting times that are less
than b into W(0), those in the range (i-1)*h+b to i*h+b into W(i), and those larger
than K*h+b into W(K+1). In this way, we have provided both an underflow and an
overflow bucket. Again, it is probably wise to record the smallest underflow value in
case the choice of K, h and b are poor. We must emphasize here that we cannot in
general predict the "best” values for the histogram parameters which wiil be most
effective in illustrating the facets of model behavior, so it is quite often necessary to
make a "dry run” of an experiment to arrive at the best values to use throughout the
experiment,

It is worthwhile to note that we can compute approximations to the mean and
variance of waiting time from the data collected for the histogram. The advantage of
this method is that it avoids the necessity of collecting the data for both and it may
also avoid truncation error encountered when we accumulate the sum and sum of
squares of waiting times. The method is as follows:

SWAIT = W(1)*(0*h+b) + W(2)*(1*h+b)
+ ... + W(K)*((K-1)*h+b)

SQWAIT = W(1)*(0*h+b)**2 + W(2)*(1*h+b)**2
+ ..+ W(K)*((K-1)*h+b)**2

)

The values of SWAIT and SQWAIT may then be used in the previous formulae to
caleulate the mean and variance. This method only gives us an estimate because it
(a) ignores the underflow and overflow values and (b) assumes that the values of all
waiting times falling into an interval are equal to the value of the left end of the in-
terval. The latter problem might be alleviated somewhat by assuming the values to
be equal to the mid-point of the interval.

2.4.2 Utilization factor

The utilization factor is the fraction of simulated time that the cashier is busy.
We thus have:

utilization factor = total busy time / total simulated time
Since the cashier is either busy or idle, we can also write:
utilization factor = 1 - (total idle time / total simulated time)

We have chosen to accumulate the total time that the cashier is busy. The busy times
are accumulated in the variable SBUSY. In this simple model, the service times are
calculated at the point where the scheduling of the ‘depart from system’ event oc-
curs: therefore we need only accumulate the service time into SBUSY. In a more
complex system, we would have to use variables to remember times at which the
server becomes busy or idle and use them to determine the busy and/or idle times.

Since the total simulated time is given by CLOCK, we can get the utilization by:

SBUSY / CLOCK

2.4.3 Number of customers in the system

Mean and variance:

In our supermarket check-out counter example, the number of customers in the
system changes when customers are entering or leaving the system. The mean and
variance of number in the system are statistics taken over the total simulated time,
rather than by making discrete observations (as in the case of waiting times). Thus,
if we let T(N) be the total simulated time that the number in the system is N, N =
0,1.2. ..., then the mean number in the system is given by:

(T(0)*0 + T(1y*1 + T(2)*2 + ...) / total simulated time

Note the similarity to the manner in which the histogram frequencies were used to
reconstruct the mean in section 2.4.1; however, here we divide by the total simulated
time rather than a count of the number of observations because we are multiplying
the observed values (i.e., 0. 1. 2,) by times rather than by frequencies. The sum of
squares is given by:

(TEOY*0**2 + T(H*1**¥2 + T2y*2**2 +)

2:12

To collect data for the mean and variance, we need the following variables:

SIN - accumulates (T(0)*0 + T(I)*1 + ...)
SQIN - accumulates (T(0)*0**2 + T(1)*1**2 + ...)
LASTCH - accumulates time at which NSYS was last changed

Initially, SIN, SQIN, and LASTCH are all set to 0. In the event subroutines, every
time before NSYS is changed the following calculations are performed:

SIN = SIN + (CLOCK - LASTCH) * NSYS
SQIN = SQIN + (CLOCK - LASTCH) * NSYS ** 2
LASTCH = CLOCK

At the end of the simulation, the total simulated time is given by the value of
CLOCK, thus the mean number in the system is given by:

mean = SIN / CLOCK
and the variance by:
variance = SQIN / CLOCK - (mean) ** 2

Histogram:

This is a plot of the relative frequency of simulated time that the number in the
system is i, i = 0,1,2, Data for the histogram can be collected by using an array T
and accumulating in T(i) the total simulated time that the number in the system is i.

Initially, T(i) = O for all i. Every time before NSYS changes the following
calculations are performed:

T(NSYS) = T(NSYS) + (CLOCK - LASTCH)
LASTCH = CLOCK

At the end of simulation, the relative frequency of simulated time that the number in
the system is i is obtained by:

P(N) = T(N) / CLOCK
Note that the array T we have discussed here is similar to the array W in the dis-
cussion of the mean and variance. We can therefore use P(N) to compute the mean
and variance of number in system. In particular, we have:
mean = P(0)*0 + P(1)*1 + PQQ)*2 + ...

and

variance = (P(0)*0**2 + P(1)*1**2 + P(2)*2**2 + ..)) - mean ** 2

C

MAIN PROGRAM — CHECKOUT COUNTER SIMULATION
REAL CLOCK
COMMON /TIME/ CLOCK

INTEGER CUREV, EVTYPL(10)
REAL EVTIME(10)
COMMON /EVENTS/ CUREV. EVTIME, EVTYPE

INTEGER TYPE

CALL INIT

CLOCK = EVTIME(CUREYV)
TYPE = EVTYPE(CURLYV)
CUREY = CUREV — 1

IF (TYPE .EQ. 1) CALL ARRIVE
[F (TYPE .EQ. 2) CALL DEPART
IF (TYPE EQ. 3) CALL WRAPUP
GO TO 10

END

SUBROUTINE ARRIVL

REAL IATIME
COMMON /INPUT/ IATIME

REAL CLOCK
COMMON /TIME/ CLOCK

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE. NSYS

INTEGER NWAIT
REAL SWAIT. SQWAIT. SBUSY. SIN, SQIN, LASTCH
COMMON /STATS/ NWAIT, SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

SIN = SIN + (CLOCK — LASTCH)*NSYS

SQIN = SQIN + (CLOCK — LASTCH)*NSYS**2

LASTCH = CLOCK

NSYS = NSYS + |

CALL SCHED(1. CLOCK + 2.0*URANDM(0.0 *IATIME)
ITEMS = 1.0 + 9.0*URANDM(0.0)

CALL ENTERQ(ITEMS, CLOCK)

IF (IDLE) CALL SERVL

RETURN

END

SUBROUTINE SERVE

REAL CLOCK

COMMON /TIME/ CLOCK

LOGICAL IDLE

INTEGER NSYS

COMMON /STATE/ IDLE. NSYS

INTEGER NWAIT

REAL SWAIT. SQWAIT. SBUSY, SIN, SQIN, LASTCH

COMMON /STATS/ NWAIT, SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

REAL ATIML. STIML

2:14

IDLE = .FALSE.

CALL DELETQ(ITEMS, ATIME)

NWAIT = NWAIT + 1

SWAIT = SWAIT + (CLOCK — ATIME)
SQWAIT = SQWAIT + (CLOCK — ATIME)**2

STIME = ITEMS*URANDM(00) + 3.0
CALL SCHED(2, CLOCK + STIME)
SBUSY = SBUSY + STIME

RETURN

END

SUBROUTINE DEPART

REAL CLOCK
COMMON /TIME/ CLOCK

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE, NSYS

INTEGER NWAIT
REAL SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH
COMMON /STATS/ NWAIT, SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

SIN = SIN + (CLOCK — LASTCH)*NSYS
SQIN = SQIN + (CLOCK — LASTCH)*NSYS**2
LASTCH = CLOCK

NSYS = NSYS -1

IDLE = . TRUE.

IF (NSYS .NE. 0) CALL SERVE

RETURN

END

SUBROUTINE WRAPUP

INTEGER NWAIT
REAL SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH
COMMON /STATS/ NWAIT, SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

REAL CLOCK
COMMON /TIME/ CLOCK

REAL MEAN, VAR

MEAN = SWAIT/NWAIT
VAR = (SQWAIT — SWAIT**2/NWAIT)/(NWAIT-1)
WRITE (6,901) NWAIT, MEAN, VAR

MEAN = SBUSY/CLOCK
WRITE (6,902) MEAN

MEAN = SIN/CLOCK
VAR = (SQIN — SIN**2/CLOCK)/CLOCK
WRITE (6,903) MEAN, VAR

STOP
901 FORMAT (' WAIT TIME SUMMARY’/
& * NUMBER ='l110/
& " MEAN ='F13.2/
& ' VARIANCE ='F132)

902 FORMAT (/' UTILIZATION FACTOR ='F5.2)

903 FORMAT (// NUMBER OF CUSTOMERS IN SYSTEM'/
& " MEAN ="F13.2/
& " VARIANCE ='F132)
END

SUBROUTINE INIT

REAL CLOCK
COMMON /TIME/ CLOCK

INTEGER CUREV, EVTYPE(10)
REAL EVTIME(10)
COMMON /EVENTS/ CUREV, EVTIME, EVTYPE

LOGICAL IDLE
INTEGER NSYS
COMMON /STATE/ IDLE, NSYS

INTEGER FRONT, BACK, NITEMS(100)
REAL ARRVTM(100)
COMMON /QUEUE/ FRONT, BACK, NITEMS, ARRVTM

REAL IATIME
COMMON /INPUT/ IATIME

INTEGER NWAIT
REAL SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

2:15

COMMON /STATS/ NWAIT, SWAIT, SQWAIT, SBUSY, SIN, SQIN, LASTCH

CLOCK = 0
CUREV = 0
NSYS = 0
IDLE = .TRUE.
FRONT = 0
BACK = 0
IATIME = 6.0
NWAIT = 0
SWAIT = 0
SQWAIT = 0
SBUSY = 0
SIN = 0
SQIN = 0
LASTCH = 0

CALL SCHED(1, 0.0)
CALL SCHED(3. 1500.0)
RETURN

END

2:17

2.5 Gathering data by sampling

The methods of data gathering outlined in section 2.4 are called complete obser-
vation since we collect data at each point where any state variable of interest changes
value. Both the exact form of the statements to be inserted and the exact location at
which they should be inserted is readily decidable; in fact, it could be done
mechanically by a computer program. We will later see that much of this type of
data gathering code is inserted automatically by the GPSS and SIMSCRIPT
packages.

The fact that data gathering code can be automatically inserted is important
because it reduces the likelihood of human error in this task: erroneously omitting
one or more of the code inserts could result in believable but incorrect statistics
(which is worse than being obviously wrong!). Moreover, the automatically inserted
data gathering code does not clutter up the program listing: the analyst is therefore
less distracted from the code which implements the model.

Another method of gathering data is to have a special event, say SAMPLE,
which is initially scheduled to occur at some non-zero time and which bootstraps
itself to occur periodically throughout the simulation. The SAMPLE event
"observes” the values of the state variables being measured. This technique has the
advantages mentioned above: we do not have to worry about missing a data
collection point and the code which implements the model is not cluttered with the
data gathering code. However, this method of sampled observation is not as ac-
curate as complete observation, since the sampling does not necessarily coincide
with state changes. Furthermore, there is a danger that sampling may occur with a
periodicity which matches some periodic behavior of the the system, and will
therefore give a biased view of the system state. This latter problem may be
alleviated by having the SAMPLE event bootstrap itself with randomly spaced in-
tervals rather than fixed intervals.

2.5.1 Sampling the utilization factor

Since the utilization factor is the fraction of time the server is busy, we sample
the system state to see how often we catch him busy. Starting with variables BUSY
and NSAMP imtialized to zero, we perform the following steps in the SAMPLE
event:

NSAMP = NSAMP + 1
IF (.NOT. IDLE) BUSY = BUSY + 1.0

Then, in the WRAPUP routine, we calculate:
utilization factor =~ BUSY / NSAMP

We may convince ourselves that this is the correct approximation by the following
argument: if SAMPLE occurs every At time units, then when WRAPUP is called

At * NSAMP = CLOCK

We assume that each time the cashier is seen to be busy. he has been busy since the
last sample event. Hence

At * BUSY =~ SBUSY

where SBUSY is the busy time calculated by complete observation (see section
2.4.2). Likewise, when we find that the cashier is idle, we assume that he has been
idle since the last SAMPLE event. Thus

SBUSY / CLOCK = (at * BUSY) / (At * NSAMP) = BUSY / NSAMP

The errors introduced by our two assumptions tend to counterbalance if many
samples are taken; in fact, as At becomes small, the error vanishes. However, the
amount of CPU time spent executing the SAMPLE event will also become greater
as At becomes small, so there is a trade-off involved.

2.5.2 Sampling the number in system

As in the previous section, we make the assumption that whatever state prevails
at the time of the SAMPLE event has been in effect since the Jast SAMPLE event.
We use the variable SYSN, which is initialized to zero, to accumulate samples of the
value of NSYS in the SAMPLE event:

SYSN = SYSN + NSYS
In WRAPUP we may then calculate the mean number in the system as:
mean =~ SYSN / NSAMP

where NSAMP is accumulated as in section 2.5.1.

Histogram:

As in section 2.4.3, we use an array T to accumulate the number of samples for
which the number in the systemisi, i =0,1,2, ... Initially, T(i) = O for all i. In the
event SAMPLE, we accumulate:

T(NSYS) = T(NSYS) + 1.0
In WRAPUP, we calculate the approximate relative frequencies as:

P(i) (approxeq) T(i) / NSAMP for all i

where NSAMP is accumulated as in section 2.5.1.

2:19

2.6 Snapshots and resetting

2.6.1 Steady-state and transient behavior

The mean values for utilization factor and number in system as calculated by the
methods of sections 2.4 and 2.5 represent a “good guess” at values of state variables.
For example, a given utilization factor (0<p< 1) indicates that if we were to random-
ly select a time at which to observe the system, the probability that the server is busy
is p. Likewise, knowing from previous experience that the mean number in the
system is 1, then n will typically be a good guess for the number of customers in the
system at our randomly selected observation time.

However, a quick inspection of the program presented in section 2.4 will show
that if our randomly selected time happens to fall within the first few units of
simulated time, the server is undoubtedly busy and the number of customers in the
system is one. This is because an arrival is scheduled for time zero, the server im-
mediately becomes busy and the next customer is bootstrapped to arrive at a later
non-zero time. In fact, the system state variables may require a great deal of
simulated time to settle to the "average” values from a long run; moreover, we may
well wonder if they really ever settle 1o any sort of representative values at all. We
refer to the time during which the system state variables may be expected to assume
values whose mean, variance and distribution reflect those gathered from a long
period of observation (or predicted by analytical techniques) as the steady state of
the system. The time during which the state variables are not well described by these
measures is referred to as transient response. A system cannot reach steady state un-
less the arrival distributions, service distributions, queueing disciplines, and network
topology remain constant. Also, the length of the transient response will depend
upon the state of the system at the beginning of the transient, the arrival dis-
tributions, service distributions, queueing disciplines and network topology.

The transient response which occurs at the beginning of a simulation is referred
to as the start-up transient. There have been some analytical results derived for the
transient response of simple systems, but very little is known about this phenomenon
in precise terms. In qualitative terms we may observe that the transient reponse
tends to:

1. increase as p —> | (l.e., A = pu).

2. increase as the complexity of the network increases; for example, if the
system is a series of single server queues (as in a cafeteria), each individual
server cannot reach steady state until the server preceding him does.

3. depend in complex ways upon other factors such as the exact distributions
of interarrival and/or service times and upon the queueing disciplines.

4. May be infinite if p > 1 (i.e, A > p).

Obviously, our results are affected by the fact that we collect data during the start-up
transient; therefore we find it desirable to avoid this if possible.

2.6.2 l.ocating and avoiding start-up transients

There are three basic methods for negating or avoiding the effects of the start-up
transient:

1. run the data gathering so long that the transient reponse is a negligible
portion of the the total simulated time.

2. initialize the system state to values which are very near those expected
during the steady state, thereby eliminating the transient response.

3. do not accumulate data for statistics until the start-up transient is past.

All three methods have merit: for simple systems (no series connections) method 1
may suffice, while complex systems (having many series connections) may have such
long transients that method 2 is necessary; in systems of medium complexity (one or
two series connections) method 3 can be less costly in computer time than 1 and
easier to manage than 2.

Snapshots:

In all methods outlined above it is necessary to locate the end of the start-up
transient. One technique of doing this is to take "snapshots”. A snapshot is a
statistical summary limited to a subinterval of the simulation. This is easily done for
our example checkout counter system model using the routine WRAPUP introduc-
ed in section 2.4; by changing the STOP statement to a RETURN, having the
routine call SCHED to bootstrap itself and changing INIT to schedule the first oc-
curence of this newly created "SNAP” event at an early point in the simulation. The
example system is too simple to exhibit transient response convincily unless p > 1. If
steady state is attained, one will note that the successive outputs from SNAP tend to
change by smaller and smaller amounts. It is difficult to quantify what constitutes a
small enough change in the outputs to constitute a basis for deciding that the steady
state has been attained: the analyst must exercize judgement here. These dry run
outputs may then be used to estimate a good initial state, or to decide when data
gathering should start.

Resetting:

Once we have located the end of the start-up transient, we would like to ignore
data collection until it is past. Of course, it would be rather inconvenient to preface
each set of data gathering statements outlined in section 2.4 by an IF statement
which checks to see if it is yet time to gather data. The solution to this problem is to
reset the data collection at the end of the start-up transient; we do this by scheduling
an event RESET at that time. The RESET event should reset the variables used to
accumulate data as follows:

NWAIT = 0
SWAIT = 0.0
SQWAIT = 0.0
SBUSY = 0.0
SIN = 0.0
SQIN = 0.0

LASTCH = CLOCK
RTIME = CLOCK

2:21

Setting values back to zero destroys all information gathered during the transient. It
is most important to note how variables which “remember” times are handled: they
are set equal to the current time, so observations using them will ignore time which
precedes the beginning of steady-state observation.

Note that we have aiso provided a new variajble, RTIME. This variable is add-
ed to the common block /TIME/ and is set to zero in the INIT subroutine. It is used
to remember the last time a RESET event occurred. In the WRAPUP event, we
now must divide by (CLOCK~RTIME), which is the new period of observation.

Moving window:

We may combine the techniques of snapshots and resets to obtain a moving win-
dow snapshot. As described above, each snapshot includes data which was used in
previous snapshots. However, if the event routine SNAP calls RESET before retur-
ning, the next snapshot will summarize data gathered since the last RESET. One
problem with this technique is that there will be a transient due to the state the
system was left in at the time of the SNAP and RESET; thus each output will be
"tainted” by the previous output. This phenomenon is known as dependence, and will
be discussed in chapter 6. This is much the same problem as the start-up transient,
and can be solved by the same technique: the SNAP should bootstrap itself to occur
at time

CLOCK + Ar + As
and schedule a RESET at time
CLOCK + Ar

where Ar is large enough for the system to reach a state which is independent of the
state at the time of the SNAP. The next SNAP will then summarize the
measurement data collected in the previous As time units.

3:1

CHAPTER 3
Development of Models

In this chapter, we discuss a number of variations of queueing systems one might en-
counter. Several detailed examples of systems are abstracted into models.

3.1 Some frequently encountered queueing situations

Our examples thus far have concentrated on systems which can be modelled by a
single server queue. There are many other possible variations of queueing systems
which are encountered frequently in everday life. The following examples are not in-
tended to be an exhaustive list of possibilities; rather, it is a list of some of the more
common situations. Neither do the examples represent a firm categorization of
possibilities: one may expect to see many systems which have characteristics of two
or more of the examples.

3.1.1 Infinite-population models

This is the class of queueing models where the customer interarrival time dis-
tribution is independent of the state of the system. It is often used to study service
facilities which serve a large population of customers, e.g., bank, supermarket, gas-
oline station, and post-office. The usual assumption is that the interarrival time is
exponentially distributed (this will be explained in later chapters).

3.1.2 Finite-population models

This model is often called the Machine Repairman Model. It represents a finite
(and relatively small) number of customers requesting service from a service facility.
It is useful for modelling interactive computer systems where customers are in-
teracting with the system through their terminals. The typical behavior of each
customer is to go through alternating periods of thinking at the terminal and waiting
for the system response. It is intuitively clear that the arrival rate to such a system is
a decreasing function of the number in system; and when all customers are in the
system, there will not be another arrival until a departure has occurred.

In a machine repairman model, each machine is analogous to a customer at ter-
minal, the time during which a machine is in operation is analogous to the think
time, and the time a machine spends in the repair shop is analogous to the system
response time.

3.1.3 Multiple servers

In a service facility with multiple servers, customers can form a single FCFS
queue, with the person at the head of the queue proceeding to the first available
server (often referred to as a quickline) or form separate queues in front of each
server. The single queue system has the advantage that a customer entering the
system before another customer is guaranteed to start service earlier. The variance
of the waiting time may also be reduced, since customers do not get trapped behind
other customers having long service times, nor are they sometimes fortunate enough
to be behind customers with small service times. On the other hand, it has been
observed that human servers sometimes slow down with the single queue
arrangement, perhaps due to a decreased pressure to empty their own queue.

32

3.1.4 Jockeying

In a system with multiple servers, customers sometimes discover that they have
selected a queue which just happens to have one or more customers with a large ser-
vice requirement at the head. As a result, other queues become much shorter than
their own, so they leave their queue and join a shorter one. This "Jjockeying for
position” will have significant effect on the wait times observed in most systems.

3.1.5 Classes of customers

We may classify customers according to their interarrival time and/or service re-
quirement. A typcial example is the distinction between interactive jobs and batch
Jobs inside a computer system. In a supermarket, we might divide customers into
two classes: those having more than eight items and those with eight or fewer items.
With classes of customers, we can implement a priority queueing discipline based on
class membership, or apportion different numbers of servers exclusively to each
class.

3.1.6 Discriminatory queueing disciplines

This is a generalization of the “classes of customers” situation described above.
Very often, it is desirable to give priority to customers with small service re-
quirements. For example, we might have our supermarket cashier select the next
customer to be served on the basis of the number of items each customer in the
queue has. It is generally true that giving priority to shorter jobs would result in a
smaller mean waiting time. In fact, it has been proved that with an exponential in-
terarrival time distribution, the shortest-job-first discipline gives the smallest mean
waiting time.

3.1.7 Preemptive disciplines

For some servers, it is possible to preempt the job is service, put the job back to
queue, and start service on another job. Such disciplines are often used in queueing
systems with priority classes. It is also useful in computer systems where each job is
given a quantum of CPU time; if the job is completed before its quantum expires, it
simply leaves the system, otherwise it is preempted from service and put back to
queue. Common examples of quantum-based preemptive disciplines are Round-
Robin and Foreground-Background. Both disciplines are designed to give implicit
priority to short jobs.,

3.1.8 State dependent service rates

Often we will see a case in which the server is aware of the state of the system and
will adjust his service rate accordingly. In particular, he may serve more quickly or
refuse to serve big customers during periods of peak demand. Later, in the dis-
cussion of a moving head disc system, we will see a case in which each customer’s
service time depends upon the state (i.e. arm position) in which the previous
customer left the system.

3.1.9 Reneging

When queues become too long, we find that there is either no more room for
customers to wait or that customers are unwilling to wait for a long time. Customers

3:3

will either not join the queue at all or will join for a short time, then leave without
service. Either case is referred to as “reneging”. In a model for which reneging is felt
to be an important factor, one should keep track of the amount of reneging which
occurs in order to estimate the trade-off between lost business versus expansion.
Note that if one adds a server to avoid the lost business that the increased cost of the
server may exceed the gain in business.

3.1.10 Servers with varying capabilities

This may take one of two forms: first, some servers are capable of the same ser-
vice at a different speed (i.e., an IBM 360/40 versus a 360/75); or, second, some
servers may be reserved for “special” service (i.e., cashiers who serve customers with
eight items or fewer).

3.1.11 Multi-stage service

In some systems, such as a cafeteria, a customer may require several stages of
service. When a customer terminates service at one server and joins the queue for the
next stage, he allows the customer behind him to enter service. If there is only a finite
waiting space between the servers, it is possible that the customer behind cannot
enter service because the queue for the next server has become too long. This
phenomenon is known as ”blocking”; in a system of this nature, the experimenter
should measure the idle time induced in each server by interference from the next
server’'s queue.

We can generalize the case of multi-stage service to a network of connecting
queues where customers move from one server to another according to a probability
distribution. A common example of this is the scramble system cafeteria, where the
servers are stationed at separate counters according to the food item provided;
customers then proceed in any order to the stations as necessary to get the meal
components they want,

3.1.12 Group arrival and group service

Many times we may observe a system in which customers arrive and/or are serv-
ed in groups. In a restaurant, for example, customers tend to arrive in groups and
are served in groups, while in a ferry, customers tend to arrive singly but are served
in groups.

3.1.13 Multiple resource requirements

In some systems, we may observe a situation in which more than one "server” is
required simultancously. We have seen an example of this within the Tellers Sub-
system of our bank model. In a computer system, jobs may require use of card
readers, memory, the central processor, tape drives and/or line printers at various
stages of their service. Multiple resource requirements sometime result in a con-
dition known as "deadlock”; this is a state in which two or more customers are
holding resources requested by another and requesting resources held by another in
such a way that none can proceed. This condition is sometimes referred to as a "cir-
cular wait”. As an example, if our computer system has a single card reader and a
single line printer, we may observe a sequence of events in which one job begins ser-
vice on the card reader, the second begins service on the line printer. The first then

attempts to begin service on the line printer without releasing the card reader while
the second attempts to begin service on the card reader without releasing the line
printer. Unless some higher level allocation strategy detects the condition, these two
Jobs will never leave the system and will prevent other jobs from using their
resources. There are of course many solutions to this problem, but they are outside
the scope of this course. We refer the interested reader to most good texts on
operating systems (Shaw [1974] has a very comprehensive treatment). We simply
warn the reader that this problem can develop and that simulation packages such as
GPSS and SIMSCRIPT I1.5 do not detect it!

3.1.14 Time dependent arrival rates

In some queueing systems, there exist peak hours where customers arrive at a
rate higher than normal. Typical examples are a cafeteria at lunch time and a
highway during rush hours. We can model such systems by scheduling two events of
type “change” during initialization. The first event is to occur at the beginning of the
peak hours and it changes the arrival rate to a higher value. The second event is used
to change the arrival rate back to normal at the end of the peak hours. If possible,
complex time-dependent arrival rates should be avoided. Quite often, it will be ade-
quate to run several simulations, each with a fixed arrival rate, with arrival rates
selected to cover the range of interest. If it is necessary to observe the system under
changing conditions, it may be interesting to initialize the simulation by filling the
queue and observing the length of time required to empty the system with no
arrivals. This latter technique might be used to evaluate strategies for clearing traffic
quickly when a large sporting event is held.

3.2 Moving head disk

3.2.1 System description

A moving head disk is a device for secondary storage in a computer system. A
picture of this device is shown in Figure 3.2. The storage medium is a metal disk
coated with magnetic materials, and information is stored in tracks. Each track has
a number of sectors, and information transfer between the disk and main memory
always starts on a sector boundary. There is a single read/write head which can
move towards or away from the centre of the disk. This head must be positioned in
the right track before information in this track can be accessed. The disk is rotating
at a constant speed, and read/write operation is performed as the desired sector
rotates into position under the head.

In Figure 3.2, we have only shown the top surface of a single disk system. In
general, both surfaces (top and bottom) of the disk are used, and there is a
read/write head per surface. In a multi-disk system, there are a number of disks
arranged in a stack, and the tracks at the same radial distance from the centre form
a cylinder.

In a computer system, 1/O requests are generated when data transfer to the disk
is required. This can happen when a user (or system) program requires access to a
data file; or in the case of a paging system, a page fault has occurred and the
referenced page is to be moved to main memory. The operating system keeps track

3:5

of a hist of 1/O requests to the disk, and these requests are served according to some
queueing discipline. Common disciplines are FCFS and Shortest-Seek-Time-First
(SSTF). Typically, service is started by a "Start 1/O” instruction to the disk, and
when the 1/0 operation is completed, an interrupt is generated.

3.2.2 The model and its implementation

The simulation model developed in this section is for a disk having a single sur-
face. It can easily be generalized to more surfaces. We will model the moving head
disk by a single server queue. The disk is the server and the 1/O requests are
customers. The entities and attributes are:

entities attributes
system arrival rate of 10 requests
disk number of cylinders

number of sectors per track
rotational speed

current access arm position
characteristics of arm movement

1/O request cylinder number
sector number

The sets, events, and activities are similar to those for the supermarket check-out
counter example in Chapter 2.

We need to characterize the service time for our model. In a moving head disk,
the service time is given by the sum of three components: the seek time, the
rotational delay, and the data transfer time. The seek time is the time required to
position the access arm to the requested cylinder, the rotational delay is the waiting
time for the requested sector to move under the head, and the data transfer time is
the time required to do the actual data transfer. We assume, for simplicity, that a
sector is the unit of data transfer between main memory and the disk. Let ROTSPD
be the rotational speed in rev/sec, and NSEC be the number of sectors per track.
The data transfer time is then given by:

data transfer time = 1 / (ROTSPD * NSEC)

The seek time is a function of the number of cylinders moved by the head. Let
ARMPOS be the current position of the access arm, the number of cylinders moved
is given by:

NMOVE = |ARMPOS - cylinder number of request|

Note that ARMPOS is the cylinder number of the last request. When the seek
portion of the service is complete, ARMPOS will be equal to the cylinder number of
the current request. Some possible assumptions about the distribution of cylinders
are:

3.6

(a) The cylinder number requested is uniformly distributed over all the
cylinders. Let NCYL be the total number of cylinders, then
Pr(cylinder number requested = i) = 1/NCYL
fori = 1,2,.., NCYL.

(b) Pr(cylinder number requested = i) = p(i), where 0 < p(i) < 1. and
p(1)+p(2)+...+p(NCYL) = 1. This assumption allows the representation
of some cylinders being requested more often than others.

(©) Pr(cylinder number of next request = i conditioned on cylinder number of
last request = j) = p(j.i), where p(j,1)+p(,2)+...+p(,NCYL) = 1 for
each j. This assumption allows some dependency between consecutive re-
quests.

We now characterize the functional relationship between the seek time and the
number of cylinders moved. A typical plot is shown in Figure 3.2. The non-linear
nature of the seek time is due to the acceleration and deceleration of the arm. The
most accurate method is to store this relationship in a table. This method requires
NCYL storage locations. To save storage space, one can use the following simplify-
ing assumption:

seek time =0 if NMOVE =0
= Cl + C2*NMOVE if NMOVE > 0

where C1 and C2 are constants selected to make a reasonable linear approximation
to the actual arm move characteristic.

To determine the rotational delay, we need to know the position of the
read/write head (in terms of sector number) at some reference point in simulated
time. Without loss of generality, we can assume that at simulated time 0, the head is
at the beginning of sector 1. At any time in the simulation, we can use the rotational
speed to determine the exact position of the head; and then use this information to
calculate the rotational delay.

This method requires us to characterize the sector number of each request. We
can use assumptions similar to those listed above for the cylinder number.

A less complicated method is to assume that the rotational dealy is uniformly
distributed between 0 and one revolution. This assumption implies that the sector re-
quested is equally likely to be anywhere between 0 and 1 revolution away from the
head.

3.2.3 Input parameters and performance measures

Suppose our objective is to compare the performance of the FCFS and the
Shortest-Seek-Time-First (SSTF) discipline. SSTF is a discipline that gives priority
to the request that is closest to the read/write head in terms of cylinder number. We
need to decide on our model assumptions; from the discussions in the last section, we
see that there are a number of alternatives. A possible (and perhaps simplest) set of
assumptions is listed below:

(a) Interarrival time is uniformally distributed between 0 and 2/X (A = mean
arrival rate).

(b) Cylinder number requested is uniformly distributed over all cylinders.

3.7

(¢) The seek time is characterized by the linear function described above.

(d) Rotational delay is uniformly distributed between 0 and one revolution.

It is important to point out that these assumptions reflect the simplifications that we
are making in our abstraction, and the accuracy of our model is affected by the
assumptions used. In particular, actual experience with computing systems has
shown that each of the above assumptions may be invalid enough to lead to
erroneous conclusions [LYNC 74]. However, by careful design, these assumptions
are easily removed and the model adapted to more realistic assumptions when the
time is appropriate. Until then, the simple assumptions have at least the advantage
of making the model susceptible to analysis [PINK 73], so the results from the
program can be compared with the analytical results to check the implementation of
the model.

In the simulation runs, the input parameters are: (a) the mean arrival rate (A), (b)
the constants C1 and C2 for the seek time, (¢) number of cylinders, (d) number of
sectors and (e) rotational speed. Note that the mean arrival rate is used as an input
parameter instead of the mean interarrival time. The reason is that the mean arrival
rate is a better parameter to show the load on the system. In the simulation
program, however, it is more convenient to use the mean interarrival time.

The basic performance measures are (2) mean service time and (b) mean waiting
time. The data collection and final calculations for these are performed as outlined
in sections 2.4 and 2.5. The mean service time is included because it is a function of
the seek time, which depends upon the location of the previous request; thus, there is
an interaction between successive requests which can cause some interesting service
time phenomena. We expect SSTF to give better mean service time performance
because it is designed to reduce the seek time. In fact, the service time decreases as
the arrival rate increases. This is due to the fact that at heavy load, SSTF is more
likely to find an I/O request with a cylinder number close to the current arm
position. Using FCFS, the requests are served in the same order independent of the
load, so the service time does not change with the load.

For mean waiting time, we expect similar characteristics as the mean service
time, namely, SSTF will perform better, especially at heavy load. However, SSTF
also has the problem of introducing high variance to the waiting time because the
middle cylinders are served more frequently than the outer and inner cylinders. An
interesting way of demonstrating this is to make very large capacity queues in the
simulation program, then run the program several times to find the arrival rate
which will cause the queues to overflow after a long time (i.e., the server would be
slowly falling behind). When the queue overflow ultimately occurs, note the dis-
tribution of cylinder numbers for requests remaining in the queue; for FCFS, they
should be uniformly distributed, while for SSTF, there should be a depression in the
distribution near the point the arm was positioned at the time of the overflow. This
small experiment gives graphic evidence that although SSTF does speed up service
times, it does so by penalizing some requests with longer wait times. One danger of
this phenomenon is that the unwary experimenter may get the impression that the
variance is decreased if the program is run at or above saturation, because the
penalty becomes so great that long wait times do not actually occur (they just sit in
the queue) and therefore are not incorporated into the data collection.

3.8

3.3 A hypothetical bank

3.3.1 System description

The system under consideration is a bank. It can be divided into two subsystems:
table and tellers. The Table Subsystem provides room for customers to fill out
deposit (or withdrawal) slips, and the Tellers Subsystem performs the actual tran-
sactions. Typically, when a customer enters the bank, he first goes to the table to fill
out a slip, and then goes to the tellers. It is also possible that this customer goes
directly to the tellers without using the table.

Both subsystems can be considered as service facilities with multiple servers. In
the Table Subsystem, the number of servers is determined by the number of
customers that can use the table simultaneously. This number is dependent on the
size of the table and on how the customers are positioned around the table. In the
Tellers Subsystem, the number of servers is the same as the number of tellers: that
is, each teller can serve only one customer at a time.

The queueing discipline in the Table Subsystem is not easy to characterize exact-
ly because customers waiting for room on the table simply move around until they
find room. In the Tellers Subsystem, a single queue is formed, and the queueing dis-
cipline is FCFS.

When a customer leaves the Table Subsystem, he enters the Tellers Subsystem
immediately. When a customer leaves the Tellers Subsystem, he also leaves the
bank.

3.3.3 The model and its implementation
The entities and attributes for our hypothetical bank are given by the following
table:

entities attributes

system number of tables
number of tellers
arrival rate of customers

teller skill
table size
customer time to fill out deposit slip

service requirement at teller
There are two sets in this system, the owner and member entities are:
set owner members

table queue table customer
teller queue tellers customer

3:9

We can list the events and activities separately for the Table Subsystem and the
Tellers Subsystem. In particular, we have:

Table Subsystem:
events activities

customer arrives at table

customer waits for room at table
customer starts filling out deposit slip

customer fills out deposit slip
customer leaves table (arrives at Tellers Subsystem)

Tellers Subsystem:
events activities

customer arrives at teller

customer waits for service
customer starts service at teller

customer receives service from teller
customer departs from system

3.3.3 Detailed model for customer receiving service

We now refine our model to include a detailed description of the service provided
by a teller. Typically, he spends some time to go over the deposit slip, check the
signature, etc., and then uses a terminal to update the balance in the passbook. After
using the terminal, he returns the passbook to the customer, and in case of a
withdrawal, he also pays the customer the appropriate amount of money. Since
there are usually fewer terminals than tellers, a teller may have to wait for the ter-
minal he is assigned to to become free (note: for easier accountability, tellers typical-
ly perform all transactions at the same terminal).

The service provided by the teller can therefore be divided into 3 parts:

part 1: Service time before teller uses terminal.
part 2: Waiting time and service time for teller at terminal.
part 3: Service time after teller uses terminal.

To include the terminals into our model, we need the following new entities and
attributes:

entities attributes

system number of terminals
teller assigned terminal
terminal response time

customer part 1 service requirement

part 2 service requirement
part 3 service requirement

3:10

We also need a new set for the terminals:
set owner members
terminal queue terminals teller

Finally, we have the following new events and activities for the service provided by
the teller:

events activities

customer starts service at teller

customer receives part 1 service
teller arrives at terminal

teller waits for terminal
teller starts part 2 service

teller performs part 2 service
teller departs terminal

customer receives part 3 service
customer departs from system

Note that we have replaced the activity "customer receives service from teller” in the
less detailed model by a sequence of events and activities. This represents a top-
down approach to model development. As more detail is desired, we can continue
this top-down development by replacing activities with more complex subsystem in-
teractions. As a further example of this, consider that we have abstracted the service
provided by the terminals into a single attribute called "response time”. We can go
one step further in our top-down analysis and model the behavior of the computer
system with which the terminals are interacting. This detailed model for the com-
puter system will characterize the system response time.

Although this system is an example of the case of multiple resource requirements
wherein we cautioned against the possibilities of deadlock, we note that in this
system deadlock cannot occur because the sequence of events and activities for any
combination of customers cannot interact in any way which will cause any ter-
minal/teller pair to block on a "circular wait” condition.

3.3.4 Input parameters and performance measures

Suppose our objective is to predict system performance as a function of the
number of tellers and/or number of terminals. We can make some preliminary
observations before actually running the simulation. It is rather obvious that in-
creasing the number of tellers would tend to decrease the customer’s waiting time for
the tellers. However, if the number of terminals is not increased as well, the tellers
may have to wait longer for a terminal. This is due to an increase in contention for
terminals within the Tellers Subsystem.

It is also obvious that increasing the number of terminals would tend to decrease
a teller's waiting time for a terminal. The customer’s total waiting time is also ex-
pected to decrease because the total time a customer spent with the teller has been
reduced. It should be noted, however, that in multiple server queueing systems, there
is usually a decreasing rate of return (in terms of improvement in waiting time) as we

311

provide more servers. From the management point of view, it is important to deter-
mine the best combination of tellers and terminals so that the cost to the bank is not
excessive, and the customer’s waiting time is within some tolerable limit.

To design a simulation model for the above objective, we don't need to include
the Table Subsystem. The input parameters are:

(a)
(b)
()
(d)
(e)
(H

Customer interarrival time.
Part 1 service time.

Part 2 service time.

Part 3 service time.
Number of tellers.
Number of terminals.

In the simulation runs, parameters (a) to (d) are assumed to be fixed, and data for
performance measures are collected for different combinations of tellers and ter-
minals. The performance measures of interest are:

(a)
(b)
(c)
(d)

Customer’s service time at teller.
Teller's waiting time at terminal.
% of time each teller is busy.

% of time each terminal is busy.

An interesting way to deomnstrate the effect of additional terminals would be to plot
the ratio of customer’s service time at teller to teller’s waiting time at terminal ver-
sus the number of terminals.

6:1

Chapter 6

Statistical Tests

6.1 Terminology

Now that we have developed some techniques for building simulation
models, we must consider how to make use of the results. Generally, we will
want to do two things:

1. Show that two results are the same - for example, we would like to convince
people that the results from our model are representative of the real system
(this is known as validation), so we compare the performance measures
output by our model with those obtained by observing the real system.

2. Show that two results are different - for example, when we make
modifications to the model, we would like to see if the performance
measures are affected.

It should be obvious that simply comparing two results will not be convincing;
results may look “the same” or "different”, but we cannot be sure that this is not '
simply a chance happening. This becomes apparent when the same simulation
program is executed several times, each time with a different seed for the
pseudorandom number generator (see chapter 4). The performance measures will
differ, even though the different sequences of pseudorandom numbers have
essentially the same properties. The different “arrangement of arrivals and
departures caused by the differing sequence perturbs our performance measures
in such a way that our conclusion could be erroneous if we were to rely on the
results of a single execution. Thus, we must rely on a well-organized plan of
executing the various versions of our simulation program and evaluating the
results of these executions. This well-organized plan is the heart of a simulation
study. For the purpose of discussing the techniques used in this important phase
of a simulation study, we introduce the following terminology:

run: a single execution of a simulation program, or, the output from one moving
window snapshot (see section 2.6.2).

factor: a difference in one or more input parameters and/or in the logic of the
simulation program (e.g., the logic that implements a system design strategy)
which may produce observably different values of the performance measures.

experiment. several runs, each with the same factors, but using a different
subsequence from the same psuedorandom number generator.

study: two or more experiments with varying factors, but with similar
performance measures for statistical comparison.

observation: a single value of a performance measure resulting from a run.

sample: the set of observations of a performance measure gathered from the
runs of an experiment.

In the discussions which follow, we will assume that observations are

6:2

independent; that is, there is no extraneous factor which will contribute to
making our observations in some way directly or inversely dependent upon each
other. This problem was mentioned in section 2.6.1, where we warned that
outputs from successive moving window snapshots could be dependent; this
problem was avoided by separating each snapshot with a period during which
data collection was ignored. Note that we may use each moving window snapshot
as a run: this avoids the overhead of submitting the program for execution many
times.

6.2 Calculation of confidence intervals

Let x) X o0y X be independent observations of a performance measure X
from an experlment If we could make an infinite number of observations of X,
or if an analytical solution is available, we could know the theoretical mean,
E(X), and the theoretical variance, VAR(X) of X. However, we must limit
ourselves to a finite number of runs for practical reasons, and often no analytical
solution will be known. Given an experiment consisting of n runs, we may

calculate the sample mean as:

.M=
>4

i
= |

This statistic is said to have n-1 degrees of freedom because if x and the value of
n-1 of the X. 's are known, the value of the remaining X, can be calculated. With

less mformatlon this cannot be done, hence the degrees of freedom of a statistic
is a measure of its "information content”.

From the observed xi's, we can also calculate the unbiased variance:

2 1—11 (Ex)/n

G’:
n-1

Assuming that the n observations are from a normal distribution, we may
calculate the probability of a given X if we know E(X). The procedure is:

1. Calculate x and 2.

X - E(X)!
2 Lett = X-ECGOU
s Ve© /n

3. Look in a table of Student's t distribution in the row for n-1 degrees of
freedom.

4. Look across the row until the largest value less than or equal to L from step
2 is found.

5. At the top of the column found in step 4 is a probability which indicates how
frequently this X (and more extreme values of x from E(X)) would occur
given that our assumptions and sampling techniques are correct.

6:3

The value obtained from this procedure is called the significance level (or
significance), and is the probability of such a result occurring by chance alone.
We will indicate the significance level with the symbol «.

The main problem with the above procedure is that one usually cannot
know E(X), so it is of very limited use. It is possible, however, to solve for E(X)
and calculate a confidence interval which allows us to say: "the interval (a,b)
contains E(X) with probability (or confidence) ¢”. Note that the concept of
confidence and significance are related:

a=1-cand c=1-«
We illustrate the use of a confidence interval by the following example:
Suppose we have 17 observations with x = 9.24 and \/az /17 =20.1f

we desire confidence 0.95, or significance 0.05, then from the table of t, row 16,
column 0.05, we obtain the value 2.12. This means that

(19.24 - E(X)l) / 2 < 2.12

with confidence 0.95, which is the same as:

19.24 - E(X)! < 4.24

or
424 < 924 - E(X) < 4.24
or
-13.48 < -E(X) < -5.0
or

50 € E(X) € 1348

with confidence 0.95. There are two alternatives for reducing this range. First,
we could reduce our confidence requirements, or second, assuming that the
confidence must be maintained, we may try to make more runs or increase the
length of each run. Increasing the number of runs should result in a smaller

value for ‘/02 / n, which would decrease the range; longer runs typically
reduce the variance 02, which will also decrease the range. The amount of
computer time required for an experiment is roughly proportional to the number
of runs times the length of the runs, so there may be an optimum choice for the
number and length of runs for a given experiment; that is, we may find that
increasing the number of runs and proportionally decreasing the length if the
runs (or vice-versa) will yield a smaller confidence interval. Unfortunately, there
is no way to know in advance what the best choice is. In a large simulation
study, it may be worthwhile to conduct some "mini studies” to determine the
best trade-off between number and length of runs.

In summary, we calculate the confidence interval for confidence ¢ as:

X - Tan-1)Ve? /0 < EX) < X + T(an-DVe? /n

where « = 1 - ¢ and T{a,n-1) is the value from the Student’s t table for n-1
degrees of freedom and significance « (confidence ¢).

6:4

6.3 Use of the null hypothesis

The above procedure may be generalized to obtain a measure of "how
different” two experimental results are. This difference will of course be phrased
as the probability of observing results that are different under certain
assumptions. The major assumption of interest is that the two experiments being
compared consist of samples drawn independently from the same normally
distributed random variable; that is, they should estimate the same E(X) and
VAR(X) and should approximate the same normal distribution.

In the interest of scientific honesty, it is important that we proceed
according to a method which will prevent improper conclusions. We begin by
phrasing a null hypothesis about the distribution of the observations in the two
samples. We also choose a level of significance « which we feel appropriate for
our application. Depending on the null hypothesis, we then compute a statistic
and compare it with the entry in a table. If our statistic is less than the one in the
table, we conclude that our observations do not show evidence against the null
hypothesis. On the other hand, if our computed statistic is greater than or equal
to the entry in the table, we can only reject the null hypothesis. This rejection
could be due to many factors:

1. The two experiments sample from normally distributed random variables X
and X2 where E(Xl) # E(Xz), but VAR(X]) = VAR(Xz).

|

2. One or both experiments sample from non-normal distributions.

3. The two experiments sample from random variables X
VAR(XI) # VAR(X,).

4. Any combination of the above.

| and X2 where

5. Chance (with probability &« we made an erroneous decision)

It is important to note that rejection of the null hypothesis is completely
objective; it does not say, for example: "the means differ significantly because...”.
Ultimately, we would like to attribute rejection of the null hypothesis to some
factor which differed between the two experiments; perhaps a different queueing
discipline was used, or another server was added to the model, or.... But these
arguments must be subjective, with the statistical tests serving as circumstantial
evidence.

6.4 Testing the equality of variances (F test)

It is possible that although the runs of our experiments are samples from
normally distributed random variables, the two random variables have different
variances. We may test to see if the variances differ significantly using the F
ratio; our null hypothesis is: the two experiments are sampling from normally

6:5

distributed random variables having the same variance (though the means may
differ).

Given two experiments, consisting of n, and n, runs, respectively, we

calculate the means, ;1 and 12, and unbiased variances, 012 and 022, 4s In section
6.2; for convenience in the use of tables, we renumber the experiments (if

necessary) such that 012 > 022. We may then calculate:
_ 2 2
Fe =0, / o, > 1

If we desire a level of significance «, we look in the F table for level «, and
compare the computed F_with the F value in column nl—l and row n2-1 of this
table. We reject the null hypothesis if the computed F ratio is larger than the

value found in the table.

6.5 Testing the difference between experiment means (t test)

If we conduct two experiments consisting of n, and n, runs respectively, and
then calculate the mean and unbiased variance of a performance measure for
each (as in section 6.2) to obtain Y], 012’ ;2 and ¢,°, we may compute confidence
intervals for the two as in section 6.2; intuitively, the greater the difference
between the two experiments, the less overlap there will be between the two
confidence intervals. In fact, it may be necessary to use a very small confidence
to have any overlap at all; this is an informal measure of how different the
outcomes of the two experiments are. This intuitive notion is formalized by
adapting the t test of section 6.2 to test the difference between experimental
means. Here, we compute a value of t, as:

tS = |x] - x2| /012

where T, is computed on the basis of the outcome of the F ratio test described

in section 6.4,

Case 1: VAR(X)) = VAR(X,)

If the null hypothesis of the F ratio test was accepted, then use:

7, = V(1o 2+ (ny1ye,)/ +0,2) Vi/n + 1/n,

Should the value of L be greater than or equal to the entry in the Student's t
table at row n1+n2-2 (the pooled degrees of freedom for the two experiments)

and in the column « (where « is the chosen level of significance), then we reject
the null hypothesis which states that the two experiments drew samples from
normally distributed random variables with the same mean and variance.

Case 2: VAR(X,) # VAR(X,)

If the null hypothesis of the F ratio test was rejected, then use:

6:6

v 2 2
7\, o, /nl + 7, /n2
The t test in this case will not be exact. A correction factor for the differences in
variances must be used. We do this by computing a new value of the t
distribution to test against rather than using the values directly from the t table.
This corrected value is:

2 2
T(oz,nl-l)'cfl /n1 + T(a,nz-l)'a2 /n2

T(e) = 5 3
o /n + o, /n,

where T(a,n-1) is the value from the Student’s t table for n-1 degrees of freedom
and significance «. If the computed t, > T(«), we reject the null hypothesis
which states that two experiments drew samples from normally distributed
random variables with the same mean but different variances.

We can get an intuitive feel for this technique by considering the case for
n =n,. The above correction then reduces to T(a) = T(a,n -1) = T(a,n,1).

Thus, the correction has allowed us only n- -1 degrees of freedom rather than the
n,+n, -2 Wthh would have been allowed if VAR(X) VAR(X)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

