A Data-Directed Approach to
Program Construction

D.D. Cowan*, J.W. Graham, and J.W. Welch

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

c.J.P. Luéena

Departmento de Informatica
Pontificia Universidade Catolica
Rio de Janeiro -~ Brazil

Research Report CS-78-02

Revised June 1979

*
Research supported in part by Canadian
National Research Council Grant AZ2655.



A DATA-DIRECTED APPROACH TO
PROGRAM CONSTRUCTION

D.D. Cowan, J.W. Graham, and J.W. Welch
Computer Science Department
University of Waterloo
Waterloo Ontario Canada
Carlos J.P. Lucena
Departmento de Informatica

Pontificia Universidade Catolica
Rio de Janeiro - Brazil

ABSTRACT

The present paper discusses a method of program:
construction based on the specifiéation of the data types.
The input and output data types and the mapping between them
are specified at a high level of abstraction and this non-
procedural specification is used to deveiop a program schema.
The data type and mapping specifications are modified to
include a concrete representation of the data and these are
used to expand the program schema into a program. A graphical
representation for data and program specifications is also
introduced and it is shown how this can simplify the techni-
ques and be very useful in program construction. The method
is illustrated by developing two programs - the line justifier

program described by Gries and the bubblesort.

KEY WORDS: Program construction, procgram derivation,
program specification, program schema, data

types.



1. INTRODUCTION

There are large collections of programs, particu-
larly in industry, which have a long lifetihe but which
are frequently being modified. In fact a large percentage
of the programmers currently emﬁloyed are working on this
"maintenance' task. Since modifications are so important
it is reasonable to develop a disciplined approach to
programming which makes modification as easy as possible.
Various‘attempts at such methods are exemplified by Dijkstra's
Structured Programming [1], Wirth's Systematic Programming
[2], and Jackson's téchniques [3], to mention just a few -
of the practitioners and proponents.

It has been observed that many of the changes in
typi;al data processing programs are caused by changes
in the structure of the data to be processed and by the
accompanying actions which must occur when there is a
change in the structure. Hence, if a program or system
of programs can be made to resemble the data that is
being processed, then modifications to the data might
be easily reflected in the program.

This paper describes a disciplined approach to
programming which leads to programs which can be
systematically maintained. This approach resembles
the approach used by Jackson [3]. This paper tries to
put in a more formal perspective many of the concepts
suggested by Jackson,and introduces a graphical representa-

tion of data and programs which we have found to be very



2.
helpful in their design, construction and documentation.
Specifically this representation allows the design of
programs in which there is a one-to-one correspondence
between portions of the input and output data structures
and the program structure. This class of programs as
mentioned before, covers a wide variety of applications.

In developing our approach to creating programs,
we take two specific views of the programming process.
First we adopt the approach which has been described by
Hoare [1, 4], namely that the structuring of data should
be handled by the following three mechanisms: direct or
Cartesian product, discriminated union and sequence.
Types are either unstructured (or primitive) or structured
in many levels through the use of these three mechanisms.

Second we use the approach first described by
Jackson [3] that a program is a transformation, mapping,
or set of productions which transforms the input data
as described by a data type specification into the out-
put data which can also be described by a data type
specification. 1In other words any input data which fits
the definitions prescribed by the input data specifica-
tion will be transformed by the program into some output
data which fits the output data specification. Figure 1

illustrates this second view.



W

Input Data Output Data

Program as a
Specifications /)7 M - P Specifications
Transformation

Figure 1

Both Jackson [3] and Hoare [4] observe that the
control structures which are required to handle data
structures of types record, sequence and discriminated
union are precisely the simple sequencing of statements,
a looping construct such as the while gg,and the case

or if then else statement respectively. This observation

will also be used in the development of our programs.
In order to present our ideas in a clear manner
we shall work two exampies. The first example, presented by
Gries [5] is used to illustrate the notation and also
to introduce the concept of levels of data abstraction
into our method.
The second example, a sort program, 1s used to
illustrate further how the method might be applied to
a more complex program.

2. THE LINE JUSTIFIER PROBLEM: CONSTRUCTION OF A
PROGRAM SCHEMA

As mentioned previously, our view of program

derivation will be presented through the construction



4.
of two programs. This section discusses the derivation
of a program for an example suggested by Gries [5]. We
first illustrate all the techniques by deriving a program
which 6perates on an abstract specification of the input
and output data. After that, one concrete representation
of the data will be used to illustrate how one can move
through levels of abstraction and develop an operational
program.

2.1 The Problem Statement

A line-justifier is the part of a text editor which
inserts blanks between the words in a line in order
to avoid having blanks at either the right or left-
hand end of the line. We wish to construct a line-

justifier program according to the following specifica-

tions:

(1) The program accepts a numbered left-justified
line having more than one word in which
there will be just one blank between words
and possibly several blanks after the last
word.,

(ii) The program will produce as output a justified

line, that is a line in which the extra blanks.
to the right of the last word will have been
distributed in the spaces between the words

on the line. The difference between the
number of blanks in two arbitrary intervals
between words will be at mcst one. When

there is a difference the number of blanks
between words will be the same up to a given



word in the line; and after this word the
number of blanks between words will again

be uniform, but there will be either one
more or one less than the previous number

of blanks. For aesthetic reasons the even
lines will have more blanks at the beginning
of the line and the odd lines more blanks
toward the end.

2.2 Data Type Specifications

As indicated in the problem statement in the previous
section the line-justifier pr&gram manipulates objects
called lines. Specifically it manipulates even-lines
and odd-lines. At a high level of abstraction these
lines will be the lowest level entities manipulated
by our program and hence will be used as the terminal

symbols in our input data specification.

In a corresponding fashion the lowest level entities
produced by our abstract program are lines with justifica-
tion performed from the left or the right. These lines
will be called just-left line and just-right line
respectively and will be used as terminal symbols in

the output specification. The input specification

can be described as a text which consists of repeated
instances of line which is either even-line or

odd-line. A definition of the input specification

is given in Figure 2. Similarly we can define the

output data as a justified text which consists of




repeated instances of justified-line which is either

a just-left line or a just-right line. A definition

of this output specification is given in Figure 3.

type text = sequence line

type line = (even-line, odd-line)
Note: The comma designates a discriminated

union Hoare [1].

Figure 2

type justified-text sequence justified-line

type justified-line (just-left-line, just-right-1line)

Figure 3
text + Jjustified-text
line + justified-line

even-line -+ just-left-line

odd-1line + just-right-1line

Figure 4

2.3 Programs as Transformations

Many programs can be conceived directly as transforma-
tions. Specifically they transform elements of the
input data type to elements of the output data type.
In the current example the abstract program which

justifies lines transforms text into justified text,



line into justified 1line, evgn-line into just-left

line, and odd-line into just-right line. This trans-
formation process cdan be described by a set of mappings
between domains of the input and output data types

to be used in the program and the set of mappings

for this example is shown in Figure 4. Not all programs
yield such a straight forward set of productions but

the second example will illustrate other situations.

2.4 Construction of the Program Schema from the
Type Specifications and the Mappings

The data definition and the set of mappings suggest'
the organization of the abstract program for line
justification of text and the actual programs can

be produced in a straight-forward manner. We shall
now describe an informal procedure which we use to
produce a program from these specifications. The
mappings in Figure 4 show that there is a one-to-one
correspondence between all domains of the input data

types and the output data types.

Using this mapping we can construct our program in
several steps:

(1) At the highest level of the mapping the
domain of text is mapped into the domain
of justified text. At the lowest level
the mapping must be realized by two functions
which convert even-line into just-left-line



2.4

(1)

(ii)

Construction of the Program Schema from the

Type Specifications and the Mappings

cont'd.

and odd-line into just-right-line. These
two operations or functions are called just-
left (line) and just-right (line) respectively.

The reader should note that the word "line"
has been used in three different ways in this
paper; '"line'" has been used to designate a
data type, the domain of the data type line
in the mapping, and to represent a variable
of type line. We hope that the reader is not
confused by these multiple uses of the same =
name for different but related concepts; it
was done in order to minimize the number of
different names used throughout the paper.

Both line and justified-line are expressed

as alternations (discriminated unions) and
there is a direct mapping between them.

Hoare [4] and Jackson [3] observed that data
structures defined in this way are controlled
in a program by the if then else construct.

Hence, if we define the mapping

line » justified-line
as

process-1line (line)
then we can follow the structure implied by
the type definitions to produce



(iii)

process-line (line)

if even (line)

then

just-left (line)
else

just-right (line)
fi
end

Of course, elaboration of the type definition
required the invention of a Boolean function
.even: (line) to determine if the number associ-
ated with a line is even.

Similarly we write the production for text as
process-text (text). Using the type defini-
tions and the mappings and observing that
repetitions are controlled by while do

r

l

iconstructs [3, 4] we can attempt to construct

‘the next step in our program. This becomes

process text (text)
while
do

process-line (line)
od

end

The problem arises when we attempt to construct
a predicate for the while statement. This
predicate should contain a mechanism for trans-
forming text into a sequence of lines and

then testing when there are no more lines



10.

to be processed. We invent a function

read (text) where read removes one of the
repeated elements from text and returns it

as a value. If text is empty then the value
nil is returned. The predicate for while then

becomes
line: = read (text) # nil

These sequencing functions become somewhat
more complex in other advanced examples but
this is beyond the écope of the present dis-
cussion. Our program now becomes

process-text(text)
while line: = read (text) ¥ nil
do
process-line (line)
od
end

(iv) Using a direct substitution for process-line
we arrive at the following program

process-text (text)

while line: = read (text) ¥ nil
do
if even (line)
then
just-left (line)
else

just-right (line)
fi
od
end

3. INTRODUCTION OF A DATA REPRESENTATION:
CONSTRUCTICON OF THE ACTUAL PROGRAM.

So far in the discussion we have used a very

abstract description of line. In this section we are



11.

going to associate a specific model of a line with our
more abstract program schema.

By definition,our program receives as input a line
expressed in a given representation and produces as
output a line expressed in the éame representation. We
shall think of a line as a 6-tuple of natural numbers
having the following components:

p - number of blanks in the left-most intervals
of the line.

q - number of blanks in the right-most intervals
of the line.

t - index of the word after which the number of
blanks changes.

n - number of words on a given line.

s - number of extra blanks at the end of
the line.

z - line number.

Note that the program will not handle the text
but rather a representation which contains only the
information relevant to the specific problen.

We can now define an extended set of data specifica-
tions to express the lower-level information in this
representation. We shall use the symbols p,q,t,n,s and z
to represent the six components of the Cartesian product
for six-tuple. These new extended data specifications

and mappings are shown in Figure 5, 6, and 7.



12.

type text = sequence line

type line = (even-line, odd-1line)
type even-line = six-tuple

type odd-line = six-tuple

type six-tuple = (p;q;t;n;s;z)

Note: The semi-colon(;) designates the Cartesian
product.

Figure S

sequence justified-line

type justified-text =
type justified-line = (just-left-line, just-right-line)
type just-left-line = six-tuple
type just-right-line = six-tuple
Figure 6
text > justified-text
line > justified-line

even-line -+ just-left-line
odd-1line > just-right-line

six-tuple > six-tuple

Figure 7

Using the extended set of definitions we can now

construct a program from the original program schema.



(1)

Boms
i
.

At the lowest level there must be assignments
which convert the various components of the
six-tuple for even-line and odd-line into the
components of the six-tuple for just-left-line
and just-right-line. The record structure
(Cartesian product) suggests the structuring of
control through a sequence of statements. The
sequence of assignments are shown next; the
details are left to the reader. The names used
in the data definitions are also used as the
names in the assignment. All the elements of
the six-tuple can ultimately be defined as being
of type integer (primitive in most programming
languages).

~In order to be brief the assignments are written

in terms of the components of the six-tuple. The
components on the left-hand side of the assignment
should qualify either just-left-line or just-right-line
and the components on the right-hand side qualify
either even-line or odd-line.

For just-left-line and even-line we have

q: = s/(n-1); - p: = q*l;
t: = mod(s,(n-1))+1; n: = n;
s: =.0; zZ: = 2z,

For just-right-line and odd-line we have

o N -
gs/(n—l); q: = p+l;

t d
] ]

n-ﬁod(s,tn-i)); - n: := n;

s: = 0; z: = Z;



14.

(ii) The Boolean function even (line) can now be
replaced by mod(z,2) = 0 since we know the
concrete representation of line and hence the
method of numbering it.
Since the progrém schema has already been constructed

we can modify it by including this extra information. We

then produce the following program:

process-text (text)

while line: = read (text) # nil
do

if mod(z,2) = 0

then
q: = s/(n-1)
p: = q+l
t: = mod(s,(n-1))+1
n: =n
s: =0
z: = 2

else
p: = s/(n-1)
q: = p+l
t: = n-mod(s,(n-1))
n: = n
s: =0
z: =z

fi

od
end

Again in this program we have not qualified the
components p,q,t,n,s and z with the names of the

structures to which they apply for the sake of brevity.



In any program they should be qualified in order to
distinguish which variables are actually modified by
the assignments.

4. A GRAPH MODEL FOR THE DATA DEFINITION AND
THE MAPPINGS BETWEEN TYPE DOMAINS

Although the previous method of constructing
programs provides a systematic approach we have found
it more convenient for purposes of visual representation
to draw.the data definitions and mappings between type
domains as a linear graph, specifically a tree. The
construction of these graphical representations will
be described by example.

The graphical format of the data specification
of Figure Z is shown in Figure 8. This form can be des-
cribed as being a construct of type text which contains
zero or more repeated instances of the type line. The
type line is one of two types, it is an even-line or
an odd-line. The asterisk (*) in the diagram indicates
repetition and the two question marks (?) separated by
a dashed line indicate an alternative. Similarly, the
output data specifications of Figure 3 are presented
in Figure 9. They can be described in exactly the
same manner as the specifications in Figure 8.

One can see by examination of the two diagrams

that there is a one-to-one correspondence between the



16,
two definitions and hence the mappings can be described
directly on the input specification. The mappings are
shown in Figure 10. The word '"process' has been written
in front of each type and the asterisk (*) and question
marks (?) have been replaced by letters. These letters
represent the predicates which are to be tested at these
points in the program and are amplified below the diagram.
The type of test 1s shown in the case of a repetition.

Graphical Representation of Input Data
Specifications of Figure 2

Text
Line
) -— - ——
® & !
even- odd-
line line
Figure 8
Graphical Representaticn of Output
Data Specifications of Figure 3
Justified . )
Text Justified Line
Pl /?>._ _—— — (7
J . :
Just- Just-
left- right-
line line

Figure 9




Process-
Text

Process-Line

Process-
even-
line

®-— -~ O—

Process-
odd-
line

while line:= read (text) % nil
‘even- (line)

not. even (1ine)

Figure 10

17.



18.

The program can now be constructed directly |
from the diagram. We shall describe it verbally since
the program was written earlier. The procedure
process-text consists of repeated occurrences.of the
procedure process-line under control of the predicate
line: = read (text) # nil. Process-line is composed
of two procedures process-even-line and process-odd-line;
only one of these procedures is executed under control
of the Boolean function ;évén_(line). Of course process-
even-line and process-odd-line are just the routines
just-left and just-right in the earlier version of thé
program.

5. A SORTING PROGRAM: CONSTRUCTION OF A
PROGRAM SCHEMA

This section discusses the derivation of a
program for an internal sort, specifically we shall
eventually derive the bubblesort. We illustrate our
techniques by deriving a program schema which operates
on an abstract definition of the input and output data.
This will provide us with a program schema from which
we can derive more than one internal sort. After that
derivation one concrete representation will be used
to refine the sort and to illustrate how one can move
tirough levels of abstraction and develop an operational

program.



19.

5.1 Statement of the Problem - Some
Preliminary Analysis

A sort is a program which orders sets. Specifically
we shall construct an internal sort that is a program
which takes some small finite unordered subset of

the integers and permutes it into an ordered subset,
using the usual ordering.

In order to use our techniques successfully on the
sorting problem we must first place it in the correct
context. A sorting procedure takes an unordered set
and gradually converts it into an ordered set. In
effect there is a sequence of partially ordered sets
Ai which are processed by a sequence of programs Pi'
After K applications of the programs the final set
AK+1 will be sorted. This interpretation of sorting
is shown in Figure 11. We immediately recognize that
the programs Pi are identical and we interpret a
sorting procedure which takes a set A of partially
ordered sets and transforms this set into a set B

of partially ordered sets one of which is completely

sorted. If we represent the members of A by Ai and

the members of B by Bj then A has K members Al’AZ"‘AK
and B also has K members Bl’BZ"’BK and further
B. = A With this preliminary analysis we can now

i i+1°
construct a formal description of the input and out-

put for our program in a form similar to Hoare's [1]

specification of data types.



{ ¥
P P p. ! |
1 "_)"A _—)’ 2 __) - - Y —) - P/
5 AS"‘ Ai. 1 i Ai+1"‘ AK+ K »A
Figure 11
5.2 Data Type Specification

As indicated in the problem statement in the previous
section the sort program manipulates a set of sets

of numbers which are partially sorted. Let us call
these sets of numbers arrays of numbers, or more
simply arrays. At this point the word array is not
used in the representation sense, (as implied by most
programming languages) although later in the paper

we shall use it as a representation for the set we

wish to sort.

At a high level of abstraction these arrays will be

the lowest level entities manipulated by our program,
and hence will be used as the terminal types in our
input data specification. In a corresponding fashion
the lowest level entities produced by our abstract
program are partially-ordered arrays. These partially-
ordered-arrays will be used as terminal data-types in
the output-data spetification. The input specification
and output specifications shown in Figures 12 and 13
are in a form similar to Hoare's [1] specification of

data types.



Z1.

type set = sequence of array

Figure 12

type partially-ordered-set = sequence of partially-ordered-array
Figure 13

set - partially-ordered-set
array -~ partially-ordered-array

Figure 14

5.3 Construction of a Program Schema

Many programs can be viewed directly as transformations

of the input data-types to the output data-types. In

the current example the abstract program which sorts

the set transforms the type set into partially-ordeered-set
and the type array into partially-ordered-array. This
transformation is described by the set of mappings

shown in Figure 14. The mappings are mappings from

the domain of one type to the domain of the other type.

We now describe the steps of an informal method for
constructing a program schema from the specifications

of Figures 12, 13 and 14.

(1) . To construct a program we note that there must
exist a function which converts an array into a
partially-ordered-array, since there is a direct
mapping between them. This operation we call
change (array) and it replaces the mapping

array - partially-ordered-array.



(ii)

22.

The reader should note that the name "array'" has
been used for three different but related con-
cepts 1in this paper; "array'" has been used to
designate a data type, the domain of the data
type array in the mapping, and to represent a
variable of type array.

Both set and partially-ordered-set are represented
by sequences and there is a direct correspondence

between them. Hoare [4] and Jackson [3] observed

that structures defined in this way are controlled
in a program by a while-do construct. Hence if

we use sort (set) to represent the mapping

set »+ partially-ordered-set,

then we can attempt to construct the next step
in our program.

This becomés .

sort (set)
’while
do
change (array)
od
end.

A problem arises when we attempt to construct a

predicate for the while statement. This predicate

should contain a mechanism for transforming the set

into a sequence of arrays and then testing when

there are no more arrays to be sorted. However, we

observed earlier that this set of arrays is somewhat

artificial and that really there is only one array

which is gradually transformed into a sorted array.



(@3]

Hence the argument of sort is array and the only
predicate we need is one that tests if the array

is sorted. We shall use the Boolean function

ordered (array) to determine if the while is finished.
Ordered (array) will return the value '"true" if the

array is sorted.

The program now becomes

sort (array)
initialize
while not ordered (array)
do
change (array)
od
end

The statement "initialize" indicates that some variables
may have to have values before the predicate can be
tested. This statement was not introduced into the
previous example because it was not necessary and

would only provide a complication at that stage.
However, programs do require this statement although

it is often implicit in the construction.

6. INTRODUCTION OF A DATA REPRESENTATION

In this section we transform the abstract program
schema into a procedure by introducing the usual rep-
resentation of an array; this transformation occurs in
two stages. First the array 1s divided into two parts,
an unsorted-part and a sorted-part. Because the unsorted-

part is going to be ordered, it is described in more



detail as a sequence of overlapping pairs (o-pair) ahd

the overlapping pair is expanded as a discriminated

union of good overlapping pair (g-o-pair) or bad over-
lapping pair (b-o-pair). The extended type specifications
and mappings for the first stage are presented in Figures
15, 16 and 17 where the type array is shown as a record
whose components are separated by a semi-colon(;) and

an o-pair is a discriminated union whose parts are separated
by a comma (,). In the second stage the type array will
be defined explicitly as an array of integers. The next
few steps illustrate the method of constructing the

program for the first step.

type set = sequence of array
type array = (unsorted-part; sorted-part)
type unsorted-part = sequence of o-pair
type o-pair = (g-o-pair, b-o-pair)
Figure 15
type partially-ordered-set = sequence of partially-ordered-array
type partially-ordered-array = (unsorted-part; sorted-part)
Figure 16
set + partially-ordered-set
array + partially-ordered-array

unsorted-part -+ unsorted-part
sorted-part -+ sorted-part

Figure 17



(1)

(ii)

(iii)

25.

There is a mapping between each type in the out-
put specification and a corresponding input
specification. There is no correspondence at
the level of overlapping pairs since although
sorted-parts are mapped into sorted-parts

and unsorted-parts into unsorted-parts, each
pass of the process over the set may make the
unsorted-part smaller and the sorted-part
larger.

We now construct procedures for mapping of the

two parts of array. These are decrease (unsorted-
part) and increase (sorted-part). With these

new procedures the program becomes

sort (array)
initialize
while not ordered (array)
do
decrease (unsorted-part)
increase (softed-part)
od
end.

The unsorted-part is composed of a sequence of
overlapping pairs and must be a program under
control of a while-do construct. The predicate
must check whether the end of the unsorted-part
has been reached. Hence the code for

decrease (unsorted-part) 1is

decrease (unsorted-part)
initialize
while not end (unsorted-part)
do

process-o-pair
od.



(iv) The type o-pair consists of a discriminated
union of two types and is processed using the
if-then-else control structure [3, 4].

Process-o-pair becomes

if bad (o-pair)
then
process-b-o-pair
else
process-g-o-pair
fi,
The program we have constructed now has the

following form:

sort (array)

initialize
while not ordered(array)
do
initialize
while not end (unsorted-part)
do "
if bad (o-pair)
then

process-b-o-pair
else
process-g-o-pair
fi
od
increase (sorted-part)
od
end.

At this point decisions must be made about the
actual form of the procedures and predicates thus forcing
us into a final choice of sorting method, namely the

bubblesort.



]
~}
.

To make sure the next level of program is
equivalent to the higher level presented previously,
we need to re-state the concepts used in the higher
level in terms of the new notation. This has been
done in Figure 18 where type array is effectively
defined as being structured as an array. Note that
the name "array'" is used as the name of a type and

also as the structuring mechanism.

“type set = sequence of array
type array = (unsorted-part; sorted-part)

type sorted-part array 1l..j-1 of integer

array j..n-1 of o-pair

type unsorted-part
type o-pair

type g-o-pair
type b-o-pair

fl

(g-o-pair, b-o-pair)

(integer; integer)

(integer; integer)

Figure 18

We now decide that if a is of type array then we

have a bad overlapping pair (b-o-pair) if

a. > a.
i i+l

and the values of a; and a1 will be interchanged.
Process-b-o-pair will be implemented by a procedure
swap (x,y). If an o-pair is of type g-o-pair then no

processing needs to occur.
Hence process-o-pair becomes

if a; >a;,4
then

swap (ai,ai+l)
fi.



28.

Since the representation of the array has been
specified, it is now possible to construct the predicate
end (unsorted-part) and its initialization. The bubbdble-
sort starts with an index i = n-1 (the index of the 1last
overlapping pair in the unsorted-part) and terminates
when i < j since the end of the unsorted-part would have

been reached.

Hence while not end (unsorted-part) can now be replaced
with

i:=n
while (i:=i-1)2j

which is equivalent to a for-loop
for i:=n-1 downto j.

The final step in the construction of our bubble-
sort program is the construction of the predicate
ordered (array).

This predicate will be false only when j>n-1
because the sorted-part of the array will be the full
array. The statement

while not ordered (array)
can be replaced by

j:=1

while j=<n-1.

This is not quite enough since there must be a
method of incrementing j, for the procedure to terminate.

This is the function played by the procedure

increase (sorted-part). It is simply replaced by j:=j+1.



29.

Since j is incremented each time through the while loop
the while can be replaced by

for j:=1 to n-1.
The entire program (without declarations and with variable

name "'a'" substituted for array) can now be written as:

sort (a)

for j:=1 to n-1

do
for i:=n-1 downto j
do

if a. > a.
1 i i+1

then
swap (ai’ai+l)
fi
od
do
end.

7. A GRAPHICAL REPRESENTATION OF THE
PROGRAM SCHEMA

The graphical format of the input data type
specification of Figure 12 is shown in Figure 19. This
form can be described as being a construct of type
set which contains zero or more repeated occurrences of
type array. The asterisk (*) in the diagram indicates
repetition. Similarly the output data type specifica-
tion of Figure 13 is presented in Figure 20. It can
be described in a similar manner to the specification

in Figure 12.



One can see by examination of the two diagrams
that there is a one-to-one correspondence between the
two type specifications and hence the méppings can
be described directly on -the input type specification.
The productions are shown in Figure 21. The word
"process'' has been written in front of each type and
the asterisk (*) has been replaced by a letter. This
letter represents the predicate which is to be tested
at this point in the program and is amplified below the
diagram. The type of test in the case of a repetition

is also indicated.

Array
)
Set <£/ *

Figure 19
Partially
ordered- Partially-ordered-array
set (F\

/

Figure 20

Initialize
Process Process-array
set C.AD

A: while not ordered (array)

Figure 21



31.

The program can now be constructed directly
from the diagram. We shall describe it verbally since
the program was written earlier. The procedure process-
set consists of the statement initialize followed by
repeated occurrences of the procedure process-array
under control of the predicate ordered (array).
Process-array is of course change (array). The
predicate was obtained using the same arguments as
we have used previously. With this approach it is
possible to write down the program directly from the
diagram and in fact we normally use the diagram to
specify our program and then code it directly. The
input and output type-specification diagrams are called
data structure diagrams. The diagram showing the mappings
is called a program structure diagram. |

7.1 Introducing A Data Representation into
the Graphical Program Schema

One can easily modify the diagréms of Figures 19, 20
and Zi to include a representation of the afray which
holds the integers to be sorted. The input type and
output type specification are shown in Figures 22 and
23, This input data-type specification can be des-
cribed as being a construct of type set which is a
sequence of instances of type array. An array consists

of a tuple or record which has two components, a



Set

Partially-
ordered-
set

Array
(?\ AN A
J W A
Unsorted- gor:ed-
 Part ar
~ Overlapping-pair
G —_——
Good- ' .Bad-
Overlapping- Overlapping-
Pair Pair
Figure 22
Partially-ordered-array
(?\ () (N
/ 4 &/
Unsorted- Sorted-
+ part part

Figure 23



Process-
set

(93]
(93]

sorted-part and unsorted-part. The unsorted-part

is further defined as consisting of a sequence of
instances of type overlapping-pair and overlapping-
pairs are discriminated unions or alternatives of

two types good—overlapping—péir and bad-overlapping-
pair. The only extra notation introduced is the

use of the semi;colon (;) to denote components of

the tuple or record. The output type specification
can be described in the same manner. The méppings -
are described in Figure 24 and are obtained by writing
the word process before each input type specification.
The predicates are denoted by letters replacing the
asterisks and question marks in the diagram and are

further described below the program structure diagram.

: while not ordered (array)

A
B: while not end (unsorted-partj
C: bad (overlapping-pair)
Initialize D: not bad (overlapping-pair)
Process-array
. A 7\
A ; - o/
CJ \JInitialize :
Process- ' Process-
Unsorted-| Process- gorted-
Part Overlapping-pair ar

Process-| Process-
good- : bad- |
Overlapping- Overlapping-
pair pair

Figure 24



The procedure process-bad-overlapping-pair is

replaced by the procedure swap and the process-sorted-
part by increase (sorted-part). Of course the pre-
dicates were obtained by arguments similar to those

given previously.

Using these diagrams to represent the input and out-
put type-specifications and also the mappings is
quite advantageous. The relationships among the
various types is more evident in a two-dimensional

diagram than in a one-dimensional string as exemplii-
|£ied by the type-specifications shoun earlier in™
the paper. In our opinion this makes it easier to
recognize relationships, construct predicates and

hence-produce working programs.

The diagrams can also be drawn very quickly; this

has a number of advantages:

(1) It is easy to use them to illustrate data
structures and programs and hence they
are a useful instructional tool.

(ii) It is easy to discard incorrect attempts
at constructing a program rather than
"patching" them since there is a very
small investment in drawing the diagrams.

(iii) It is easier to maintain programs constructed
in this way since there is a small investment

in redrawing the diagram.



CONCLUSIONS

We have discussed the construction of an
Algol-like program by considering it to be a mapping
between input and output data types. Specifically we
have followed a procedure consisting of a number of
well-defined steps.

First we specified abstract input and output
data types and the mapping between them. We then used
this combination to derive a program schema. As a
second step the abstract data types are expanded into -
concrete representations by choosing ones which can
be implemented in most Algol-like languages. Of course

the mapping between the data types is expanded to in-
‘clude the concrete representations. Finally, we expand
the program schema into an actual program by using the
concrete representations and the mapping between them.

Having constructed the program using a formal
model of the types and mapping, we introduce an informal
graphical representation which can be used to construct
this program schema, and the program. The graphical
representation has been found to be quite convenient
for expressing ideas about programs and as a tool to

aid in program development.



(1]
(2]
(3]

(4]

(5]

(6]

[7]
8]

BIBLIOGRAPHY

0-J. Dahl, E.W. Dijkstra and C.A.R. Hoare (1972}
Structured Programming pp 1-174 Academic Press.

N. Wirth (1973) Svstematic Programming: An Introduction
Prentice-Hall. :

M.A. Jackson (1975) Principles of Program Design
Academic Press.

C.A.R. Hoare (1975) Data Reliability pp 528-533
Proceedings International Conference on Reliable Software
April 1975.

D. Gries (1976) An Illustration of Current Ideas on the
Derivation of Correctness Proofs and Correct Programs.
IEEE Transactions on Software Engineering Vol SE-2 No.4.

Dijkstra E.W.(1975) Guarded Commands, Non-determinacy

and a Calculus for the Derivation of Programs. Proceedings

of the International Conference on Reliable Software 2April 197¢

Dijkstra E.W.(1976) A Discipline of Programming Prentice-Hall.

Manna Z. and Waldinger R. (1975) Knowledge and Reasoning

in Program Synthesis. Artificial Intelligence Journal Vol.

No. 2.

6.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

