Lucid: Scope Structures and
Defined Functions

E.A. Ashcroft
Computer Science Department
University of Waterloo

and

W.W. Wadge
Computer Science Department
University of Warwick

CS-78-01

Lucid: Scope Structures and Defined Functions
E.A. Ashcroft
Computer Science Department
University of Waterloo
and
W.W. Wadge

Computer Science Department
University of Warwick

Abstract

In the paper we describe how Lucid can be extended to allow
user-defined functions and scope conventions, i.e. conventions for limit-
ing the range or scope of the validity of definitions. The new constructs
added (they are called clauses) are similar in form to the blocks and
procedure declarations of Algol-Tike Tanguages, but are nevertheless
strictly non-imperative, because a clause is actually a compound assertion,
i.e. an assertion formed,as a program is, by combining a collection of
assertions.

Each type of clause (there are four) has a straightforward
mathematical semantics together with its own characteristic "manipulation
rules" for general program massage. In addition, the infdrma] operational
view of (some) Lucid programs (described in a previous paper) can be
extended to give an (incomplete) operational understanding of the effect
of the clauses. In this framework a "compute" clause defines a block; a
"mapping clause" defines a conventional (pointwise) function; a "produce"
clause defines a block with persistent memory (an anonymous 'process' or

‘actor'); and a "function" clause defines a general kind of coroutine.

INTRODUCTION

Lucid is a nonprocedural or denotative language; a
Lucid program is an assertion or set of assertions defining
its output, rather than a set of commands which some machine
must obey in order to produce the output. Lucid is by no
means the first such language; the distinction between
imperative and den;tative languages, and the advantages of
the latter, have been well understood for at least a dozen
years (see Landin [/]). Up until now, however, denotative
languages have been almost universally regarded as elegant
curiosities, the playthings of academics,unfit for "real"
programming. The Lucid project is an attempt to demonstrate
that this view is unwarranted, that denotative programming
can be practical, and that in some respects it need not be so
radically different from conventional "well sfructured"
programming.

The first version of the Lucid language, (as'aesérib—
ed in [], and henceforth referred to as "Basic Lucid")
refuted some of these objection by showing that a "well-
structured" form of iteration can be expressed very naturally
in a denotative framework. But even more, we showed thatiit
is indeed possible for denotative programs to have operational
interpretations. The operational semantics for Basic Lucid
(actually for a subset thereof) can be used informally as a

guide to the programmer, but it can also be made precise, and

used as the basis of an implementation, for example a
compiler.

Of course, a programming language needs much more
than a facility for iteration if it is to be practical, and
in particular it needs facilities which allow programmers to
restrict the scope of variables, and to define their own
functions. In this paper we present an extension of Basic
Lucid which has these features. The new constructs added
(they ére called clauses) are similar in form to the blocks
and procedure declarations of Algol-like languages, but are
nevertheless strictly non-imperative, because a clause is
actually a compound assertion, i.e. an assertion formed, as a
program is, by combining a collection of assertions.

Each type of clause (there are four) has a straight-
forward mathematical semantics together with its own
characteristic "manipulation rules" for general program
massage. In addition, the informal operational view of" (some)
Lucid programs (described in [A&A.]) can be extended to give an
(incomplete) operational understanding of the effect of the
clauses. In this framework a "compute" clause defines a
block; a "mapping clause" defines a conventional (pointwise)
fgnction; a "produce" clause defines a block with persistent
memory (or an anonymous 'process' or ‘'actor'); and a "function"
clause defines a sort of procedure with own variables (or a
general kind of coroutine).

The treatment of these constructs naturally divides

3
itself into two aspects, the formal and the informal, and this
time we present both in the same paper. In the first part of
the paper we introduce these new constructs, and informally
describe theilr semantics, and indicate, through:several examples,
their use in programs. In the second, formal part of the paper

we give the formal system and its semantics somewhat more

precisely and present the manipulation rules for the clauses.

These last are rules of inference, justified by the formal

semantics, which allow us to transform programs or assertions
which use clauses. We also show how these rules can be used
to settle questions of calling conventions and variable bind-

ing for defined functions.

CLAUSES

Lucid has "constructs" for structuring programs
analogous to the block, while-loops and procedure declarations
of Algol-like imperative languages. These constructs are
called clauses. Clauses are used in programs to define data,
function or mapping variables, but, in the more generai'fréme—
work of the formal theory, a clause is a 'compound' assertion,
i.e. an assertion built up by combining a collection of
assertions.

Produce clauses

The simplest type of clause is the produce clause.

A produce clause is used to limit the scope of certain
variables so that the same variable can be used in different
places with different meanings. A produce clause has the form
produce <data term > using <variable list>
<set of assertions>

end

Here is a simple example
produce root using A,B,C
' D = 82 - 4+A-C
output = (-B + /D) /(2+Aa)

end

The < data term> at the head of the clause is the
subject of the clause, the <variable list> 1is the global
list, and the <set of assertions> is the body of the
clause.

The variables occurring in the global list are the

global variables of the clause. The special variable "output"”

(which must not appear on the global list) and any other
variable not on the global list, but occurring free in an
assertion in the body of the clause, is called a local
variable. All other variables are unused by the clause.
Semantically, a produce clause is an assertion about the
subject and the globals* of the clause. Inside the clause 'the
special local data variable "output" refers to the subject.
The clause, considered as an assertion, is true iff there are
values for the local variables which make all the assertions
in thé body true when "output" has the value of the subject
term.

In the example given, "A", "B" and "C" are the

global variables and "output" and "D" are the local variables.

* More precisely, it is an assertion about the values of the
subject and globals.

If this clause occurs in a program, the definition of "D"
in the clause is not valid outside it, although the definitions
of "A", "B" and "C" are available inside the clause.

A produce clause is used in a program as a pseudo-

equation defining its subject. When used this way, the body
of the clause must (as in the example) be a subprogram, i.e.
a set of equations and clauses defining output and other
local variables in terms of each other and the globals (for
more details see the next section). 1In particular, local
variables can in turn be defined by other produces, i.e.
produce clause can be nested, as in the following example

produce (X,Y) using al,a b ,b2,c

2’71 1’2
det = al-b2 1

produce rootl using b

- a2~b

lrbzrc lczldet
9 = Cyrhy = eythy

g/det

1

il

output

end

produce root2 using al,az,cl,cz,det
g B R R RS |
g/det

output

end

output = (rootl,root2)

end.

This program solves the simultaneous equations

alx + bly

a2x + b2y

= C

fl
Q

Although the definition of "det" is not valid outside the

main produce clause, it is valid in the two inner clauses,

because “"det" is on the global list of each clause.

The meaning of a produce clause is independent of
the choice of local variables. For example, we could have
used "e" instead of "g" in one or both of the inner clauses.

The definition of the meaning of a produce clause
given above works (makes sense) even when the body is not a
subprogram. This is very important because it allows us to
continue the Lucid practice of freely mixing program text
with assertions in the course of verifying a program.

Function clauses

Function clauses are compound assertions about

function variables, and are used in programs to define

functions.
A function clause is of the form
function <function term> (<data variable list>)
using <variable Tist>
<set of assertions>
end
Here is a typical function clause taken
program:
function Root(A,B,C)
BZ

(-B + vD)/(2-A)

D - 4-A-C

output
end
The function term (in this case, "Root") is called
the subject of the clause, and the data variables enclosed in

parentheses are called the formal parameters. The global

variables are those in the global list (which in this case is
empty, and the word "using" is dropped) and the locals are
those occurring free in the body which are neither globals
nor formal parameters. Formal parameters must all be dis-
tinct, and may not occur in the global list.

A function clause is an assertion about the subject
and tﬁe globals. It asserts that, for all values of Fhe
formal parameters, there exist values of the local variables
which make every assertion in the body of the clause true
when "output" has the value of the subject applied to the
formal parameters values.

When used in a program, a function clause is a

definition of its subject, which must simply be a function
variable, and the body of the clause must be a subprogram
consisting of definitions of the localsi

A function(or mapping)variable can, like a data
variable, appear on the global list of a clause, and thus a
function(or mapping)definition appearing outside the clause
can be valid inside. 1In particular, a function variable can
appear on the global list of its own definitioﬁ; this allows
recursive function definitions. Here is the factorial

function*:

* A definition of which, by law, must appear in any paper in
which recursive functions are discussed.

function F(n) using F
output = if n < 1 then 1
else n*F(n-1)

end

Both these constructs are quite general and do not
involve any of the functions in Lucid. They could be added
to any assertional language to give facilities for restricting
the scope of variables, and for defining functions.

Lucid has, in addition, two special versions of
produce and function clauses, which allow the definition of
subcomputations. They achieve this by implicitly applying
latest to the global variables and Aggggg-l to the result
(see [A]). These analogs of the produce and function clauses
are the compute and mapping clauses respectively. In form
they are identical to their analogs, except that the word
"compute" replaces the word "produce", the word "mapping"
replaces the word "function" and the subject of a mappihg
clause is a mapping expression. The terms "subject", "global",
"local", "formal parameter" etc. are defined as for produce

and function clauses. These clauses are used in programs to

define their subjects, which in the case of a mapping clause
must simply be a mapping variable. When used in a program,
the body of compute or mapping clause must be a subprogram

defining not the variable "output" but the special variable

"result", which is synonymous with "latest output".' Since
the latest value of anything is quiescent (see [3]),"result"

must be defined to be quiescent)e.g., by an expression of the

*
form X asa P .

Semantically, these clauses, like their analogs,
are assertions about their subjects and their globals. A
compute clause is true iff there exist values for the. local
variables which make all the assertions in the body true when
each global has its latest value and "result" has the latest
value of the subject. A mapping clause is true iff for all
values for the formal parameters there exist values for the
local variables which make every assertion in the body true
when every global and formal parameter has its latest value
and "result" has the latest value of the subject applied to

the latest values of the formal parameters.

An Operational View

The mathematical semantics of clauses is simple and
precise, even when stated formally, and is used to justify
the rules of inference for reasoning about programs and to
préve implementations correct. However, it is not the best
guide for writing and understanding programs, because there
is no notion of computations taking place or of anything

"happening" at all. We therefore present an alternative,

* In this paper we will abbreviate as soon as by asa and
Lollowed by by fhy. |

operational view of the semantics of clauses in programs,

which extends the operational view of Basic Lucid programs in

terms of loops, described in [21. This operational view is

informal and is derived from the more basic mathematical

semantics.

O0f the four types of Lucid clauses, the simplest

operationally (or at least the most conventional) is the

compute clause. In a program, it is like an Algol block in

that its subject is defined to be the result of a subcomputa-

tion carried out in a single step of the enclosing iteration,

during which time the globals are considered to be 'frozen'.

If the body of the clause has inductively defined variables,

the subcomputation can be thought of as an iteration. For

example, the following program statement

compute 1ogl0X using X
I

P
first(A,B,109A,10gB)

compute C using A,B

i

first R = A-B/2

pext R

result

end

0 fby I+1
I fby P-i0
(P.next P,I,next I) asa pext P > X

(R + A-B/R)/2
R asa |A-B - R%] < .00001

logC = (logA + logB)/2

next(A,B,T1ogA,10gB)

result

end

if X < C then (A,C,T09A,T0gC)
else (C,B,109C,l0gB)
TogC asa |A - B| < .00001

10

11

has a compute clause which defines each value of C to be

(an approximation to) the corresponding value of vA+B . This
inner compute clause can be considered to be a nested loop
which is run through completely on each step of the enclosing
iteration. The compute clause replaces the Basic Lucid

'begin—-end' construct.

The other clause with a fairly conventional opera-
tional interpretation is the mapping clause. In a program, a
mapping clause defines a function guaranteed to be pointwise
in its arguments and globals, i.e. a function whose value at
a given point in time depends only on the value of its argu-
ments and globals at that time. It does this because it
freezes its parameters as well as its globals. Here, for
example, is é definition of a mapping variable "trans"

mapping trans(L) using trans,dict

result = if null(L) then NIL else
if 7 atom(L) then
cons (trans (car(L)) ,trans(cdr (L)))
else L'
D = dict fby cdr (D)
E = car (D)
entry = E gsa car(E) eq L V null(E)
L' = if null(entry) then L

else cdr(entry)

end

12

which, when applied to the S-expression L returns the S-
expression formed by replacing each atom by a corresponding
S-expression, the correspondence being given by the pairlist
dict. Because the definition of "trans" is recursive the
function variable "trans" must appear on the global-list.

Terms involving mappings can be thought of as giving
rise to Algol-like "mapping calls", where the parameter-passing
mechanism is "call by need", as will be shown when we consider
the manipulation rules for clauses.

The two types of clauses defined give the programmer
roughly the facilities of Algol's blocks and proéedures, with
certain restrictions on side-effects. One of the reasons that
these two clauses have a fairly conventional operational
interpretation is that that in addition to restricting the
scope of definition, they also freeze their globals and
parameters so that they can be thought of as describing self-
contained subcomputations. The produce and function clauses
do not use this freezing effect and therefore their opera-
tional interpretation is completely different, because inner
computations can interact with those of the enclosing
iteration.

Operationally, the difference between a compute and
a produce is that a produce clause must be considered either

as an ongoing process which continuously produces values of

13

its subject; or, alternatively, as a block of code which is
repeatedly executed but with persistent internal memory in
the form of inductively defined local variables.

For example, the following clause

produce Y using X

N = 1 fhy N+1
T = first X fby T + next X
output = T/N

end

defines the values of "Y" +to be the "running averages" of
the values of "X" up to that time, e.g. the third value of
"y" is the average of the first three values of "X". The
local variable "T", for example, keeps a running total of
the values of "X" . We must imagine either that the
iterations of the body of the clause are running in parallel
but in step with those of the enclosing iteration, or, alter-
natively, that the clause body is executed once oh each,step
of the enclosing iteration, but the values of the local
variables "I" and "T" are remembered between executions of
the clause body.

Function clauses can be thought of as templates for
processes, with each textual occurrence of a function call
corresponding to the process which is the appropriate
instance of the template. These processes must, like those
defined by produce clauses, be thought of as operating in

parallel, but synchronized with the enclosing iteration, and

14

as updating internal variables even if, on some steps of the

enclosing iteration, the output values are not required.
Alternatively, the function body can be thought of as a

conventional Algol-like procedure body which is called and

returns a result, provided in addition that (i) the inductive-

ly defined local variables are thought of as own variables

whose values are remembered between one call and the next;

(ii) different textual occurrences have separate copies of

these variables; and (iii) the procedure is called on eacl

step of the iteration containing the function call, even when

the value is not needed, for "housekeeping purposes", namely

to keep the own variables up to date.
For example, the fcllowing piece of program

N = 1 fby N+1

function Avg(X)

I =1 fby I+1
T = first X fby T + pext X

output = T/I
end
2

Y = Avg(N) *Avg(N") asa N eq 5
defines Y to be 33, the average of the first five positive -
integers times the avervage of the first five squares.
Whether we interpret this program in terms of processes or in
terms of procedures with own variables the formal semantics

requires first of all that the two occurrences of "Avg" make

use of separate copies of "I" and "T", and secondly that the

15

values of these variables be kept up to date even though no
actual averages need be computed until the fifth step of the

main iteration.

The operational view just described can be extended
to cover recursive functions, but we must imagine that each
recursive call sets up a new process, Or generates new copies
of the own variables. Some existing coroutine languages are
capable of this, for example that of Kahn and McQueen [Q-].

The follo&ing are more subtle examples, using
recursive functions. The examples are programs for computing
with infinite formal power series with real coefficients. We
consider a Lucid history P as representing the formal power

series p whose coefficients are the successive values of

2 3
P ; for example, if p 1is the power series 1 + x + %T + %T + ...

for e* , then the value of P at time t = 3 is 1/6.
Now suppose that the functions "Prod" and "Div" are

defined as follows:

function Prod(A,B)

A0 = first A
BO = first B
output = A0-BO fby (A0-pnext B + BO-.pext A +
(0 fby Prod(pext A,next B)))
end

function Div(A,B)

q = Lixst(a/B)
Al = A - gq+B
output = q fby Div(next Al,B)

end

16

If A and B represent power series a and b
respectively, then Prod(A,B) and Div(A,B) represent power
series a-b and a/b respectively.

If we want to understand these programs operational-
ly (and this is not necessarily a good idea) we must imagine
that during execution more and more new activations of Prod
or Div are produced. Of course, no Algol procedure, even

with own variables, is capable of imitating such behaviour.

FORMAL TREATMENT OF CLAUSES

We now present a more precise treatment of Lucid
considered as a formal system. We define the formal language
of assertions and a special subclass, the class of legal
programs, and we outline the formal semantics of assertions.
We then consider questions of free and bound occurrences of
variables, the substitution of terms for variables and so on,
and present some important rules of inference which can'be -
derived from the formal semantics.

Our emphasis will be on rules of inference, but not
so much from the point of view of verifying prdgrams as from
the point of view of analyzing and manipulating them. In
fact, the manipulation rules can be used,at least informally.,
to convey the meaning of Lucid's new constructs, and in
particular to settle questions of 'calling conventions' and

variable binding in regard to the evaluation of functions.

17

The Formal Langquage

The main extension to the formal language itself (i.e.
the set of well formed terms and assertions) are (i) the
addition of clauses; (ii) the addition of mapping and function
variables and terms; (iii) the addition of tupling. By an
assertion we will mean something that is either a term or a
clause.

Clauses can be formalized using standard methods of
abstract syntax, e.g. as in Landin [4].

Our mapping and function variables are used much as
in first order logic. Technically speaking, they should be
typed to indicate the number of arguments, but in practice
we will omit any indication of type. Function and mapping
terms are also typed and can appear anywhere a corresponding
function or mapping variable could be used except in a global
list. There are no higher order operations (operations which
take functions or mappings as arguments) except for the
polymorphic "latest" which can be applied to any term and
yields a term of the same type. (Thus a mapping or function
term must consist of a function or mapping variable with zero
or more "latest"'s applied.)

The addition of tupling means that for each positive
n we have in our language an n-ary tupling operation, and
for each such n- and each j 1less than n a projection

operation pp which selects the j-th component of a tuple of

18

length n . Only data terms (i.e. not mapping or function
terms) may be tupled, the result being a data term. We will
use the bracket and comma notation for tupling, and not use

the tupling operations explicitly.

Interpretations

As far as the semantics is concerned, the main changes
are ghat we must allow tuples and also give meaning to mappings
and functions.

If S is a standard structure (see [3]) we first

close S out under tupling by taking the initial solution D

of the domain equation
o 7
D=5+ UD".
B —_'n=l

The operations on D (other than equality and'iﬁ?tggg—glgg)
are extended to D by defining their results to be 1 when-
ever any of their arguments are tuples (there are therefore
no coercions). Equality, ii—gﬁgg—glgg;and the tuple
constructors and projectors are interpreted in the obvious
way (if-then-else yields 1 wunless its first argument is a
Boolean and not a tuple).

The domain D plays the role previously played by
S . Data variables and terms denote elements of Comp(D) ,
i.e. streams of objects which are possibly tuples of elements
of S . N-ary mapping variables and terms denote elements

of Comp(Dn + D) , i.e. streams of functions from Dn to D

19

N-ary function variables and terms denote elements of
Comp(D)n > Comp (D) , i.e. functions from streams to streams
(which do not change with time).

Application of function terms to argument lists is
interpreted in fhe usual way, but in applying a mapping term
to its arguments we first take the values of the mapping and
of the arguments at the point of time in question. For
example, suppose that the 3-ary mapping term M denctes the
element m of Comp(D3 + D) and that data terms A, B and
C denote elements a, b and c¢ of Comp(D) . Then
M(A,B,C) denotes that element of Comp(D) which at time t
has the value mE(aE’bE’CE) . In other words, mapping
application is the pointwise extension of ordinary function
application over D .

The function "latest" when applied to data or mapping
terms is interpreted as described in [3], and when applied
to function terms is interpreted as the identity operation
(because functions do not change with time). Functionuterﬁs
(other than variables) are therefore in fact superflouous
but are included for the sake of uniformity.

All other operations (they are data operations) are
interpreted as in [3], so that, for example, the tupiing
operations over Comp(D) are interpreted as the pointwise

extensions of the tupling operations over D .

Following these outlines, it is straightforward to

20

define [ElI , the value associated with term E by the

interpretation 1 . If E 1is a data term, IEII is in
Comp(D) , if it is an n-ary function term it is in
Comp(D)n + Comp(D) and if it is an n-ary mapping term it is

in Comp(Dn -+ D)

Satisfaction

We can now say exactly what it means for an inter-
pretation I +to satisfy an assertion A (in symbols, what it
means for % A to be true). Our definition merely makes
precise the informal description of the semantics of clauses
given in part 1.

Suppose that S i3 Comp(D) , I -is an S-inter-
pretation and that A is an assertion.

If A is in fact a term, then % A iff IA[I " is
T; . (TP is true for all- T < N°.)

".If A is a produce clause with-subject E and

globals Gy, Gys ««uy G _q -, “then -% A - iff there exists an
S-interpretation I' such that » - .

(l} - (Gm)l' = (Gm)I for any m 1less than n ;

(ii) output;, = [E[; ;

(iidi) % ¢ for every assertion ¢ in the body of A .

If A 1is a compute clause with subject E and
globals Gy, G/ v G,_; « then % A iff there exists an
S-interpretation I' such that

(1) (C)i = |latest Gm’I for any m less than n ;

21

(i) outputI, = IEII ;
(iii) % c for every assertion ¢ in the body of A .

If A 1is a function clause whose subject is F ,

formal parameters are VO' Vl’ ooy Vk—l and globals are
Gyr Gyr wnes Gn—l then % A iff for any sequence
VO’ vl, ey Vk—l of the universe of S there exists an

S-interpretation I' such that

(i) (Vi)I' = v, for any i 1less than k ;
(ii) (Gm)I' = (Gm)I for any m less than n ;
(iidi) output;, = IFII(VO,vl,...,vk_l)

(iv) % c for every ¢ in A .

Finally, if A 1is a mapping clause with subject M ,

formal parameters VO' v \Y% and globals

LR |

Ggr Gyr -+-r G _y + then % A iff for any sequence

Ve Vl’ ceey Vm—l of elements from the universe of S there
exists an S-interpretation I' such that

(i) (Vi)I' = Latests(vi) for 0 < i <m

(i1) (Gj)IP = |latest Gj]I for any j less than n ;
(iii) (outputy)¢ = ([MIZ)E((VO)E, viger ---0 (v)9

for all t « N ;

(iv) % ¢ for every assertion ¢ in the body of A .

If ' 1is a set of assertions and A 1is an assertion,
as usual % I' is true iff % B for all B in I and
T ? A is true iff % I' implies % A for all Comp(D)-

interpretations 1 .

22

Occurrences and Substitutions

Substitution plays a very important role in most
formal systems, and Lucid is no exception. In order to
define the result of substitutions, and the conditions under
which they may be sensibly performed, it is necessary in
addition to define the concepts of free and bound occurrences
of variables.

The free occurrences of a variable V in a term T
are as defined in [3]. The free occurrences of V in a

clause ¢ are either free occurrences in the subject, or, if

V is in the global list of ¢ , free occurrences in assertions
in the body of ¢ . A bound occurrence of V 1is an occurrence

which is not free, and the free variables of a term or clause

are those variables which have at least one free occurrence.

a

We can now define the result A[V/T] of substitut~
ing a sequence of terms T for an equal length sequen;e o%
variables V., of corresponding types,in a term or clause A .
Wg will assume V = Vgr Vir «+.s V and T = Tor Tyr eoer T -
The terms "local”, "global" etc. are as defined earlier.

If A is a term the result is as defined in [3].

If A is a clause, A[V/T] 1is the clause formed by
replacing the subject E of A by E[V/T] and in addition,

if V' is the sequence of those variables in ¥ occurring

23

in the global list of A , by deleting V' from the global
list of A , by adding all the free variables of T' to the
global list of A , and by replacing every assertion B in
the body'of A by B[V'/T'] .

The substitution just described will give unexpected
results if some of the free variables of T are also ‘locals
of A , or if terms involving nonpointwise functions are
substituted into the bodies of compute or mapping clauses.

We must define what it means for variable V to be free for

term T in assertion A

If A 1is a term "freeness for" is as described in
[31].

If A 1is a clause then V must be free for T in
the subject of A , and in addition, if V 1is a global of
A , none of the free variables of T can be locals or formal
parameters of A and V must be free for T in every
assertion iﬁAthe bodyibf A ., lFurthermofe; if A 1is a
compute or mapping clause, and V 1is a global of A , then

T must be a pointwise term, i.e. must be built up from

pointwise operations and mappings and not contain any function
variables or Lucid operations.

For V a sequence of variables, T an equal length
sequence of terms of the same types and A a set of assertions,

we say that V is free for T in A provided each v, is

free for the corresrconding T, in every assertion in A .

24

To illustrate these ideas, consider the example

mapping clause given earlier. The free variables of the

clause are “"trans" and "dict". The variable "dict" is free
for cons(I, cdr(J)) , but not for "car(D)" or "cons(Q,L)”
or ‘cons(pext I, cdr(J))", in the clause. The result of

substituting "cons(I, cdr(J))" for "dict" is the following:
mapping trans(L) using trans,I,J
result = if null(L) then NIL else

i£ 71 atom(L) theQ

cons (trans (car (L)) ,trans(cdr(L)))
else L'
D = cons(I,cdr(J}) fby cdr(D)
E = car (D)
entry = E gsa car(E) eq L v null(E)
L' = if null(entry) then L else cdr{entry)
end

Simple Programs

A Lucid program is an assertion about the data
variable "output" which can be understood operationally as
describing an algorithm which, given values for the programts
designated input variables, allows one to compute a value for
"output" which makes the program a true assertion. To avoid
indeterminancy, we consider only programs that are strictly

definitional, i.e. those which are built up from definitions

25

of variables. In this case, the algorithm described by the
program is determinate, and leads to a single value of the
variable "9utput" which constitutes the least defined solution.

A definition program is simple if every definition
in it is direct, i.e. an equation whose left hand side is a
data variable, or a clause whose subject is a variable.

To define simple programs more precisely, we need a
few subsidiary definitions.

The subject of an equation is its left hand side;
its globals are all the variables occurring freely on the
right hand side.

A simple subprogram is a set of simple statements,

no two having the same subject. The subjects of the sub-
program are those variables which are subjects of statements
in the program, and the global variables are those, other

than the subject variables, which are globals of some state-
ment in the program. One of the subjects must be the variable
"output”.

A simple statement is

(a) an equation whose subject is a data variable and
whose right hand side is a data term
or (b) a clause whos? subject is a variable and whose body
is a simple subprogram P such that
(i) every global variable of P is a formal para-

meter or a global of the clause

26

and (ii) no subject variable of P is a formal parameter
or a global of the clause.

A simple program is a simple statement whose subject is the

data variable "“output".

The fact that every simple program has a unigue
least defined solution follows from the following lemma; given
any simple subprogiam P and values for the global variables,
there are unique least-defined values for the subjects of P
which make all the assertions in P +true. This lemma i.
proved by induction on the structure of P , using standard
fixpoint techﬁiques.

Thus we see that very simple program is "meaningful"
in that it has a unique least defined solution. Some of these
programs, however, are very ill-behaved in that the time-para-
meters get so intermingled thai we cannot separate out levels
of nesting of subcomputations. This happens either because some
compute or mapping clauses fail to unfreeze their output, or
because Jlatest and Jlatest | are used indiscriminately.

We can guarantee that a simple program is well-
behaved provided (i) in every compute or mapping clause
output is defined by an equation whose right hand side is of
the form éggggg—l E ; and (ii) there are no other occurrences
of ;ggg§§_l and none of Jatest at all.

We can ensure that a program is well-behaved without

using L@gggg—l by requiring that "output" in any compute

27

or mapping clause be defined by a statement whose subject is
"latest output" (this will involve checking, as described
below, that the right hand side is quiescent, because the
latest vaiue of anything must be quiescent). We can also
eliminate Jlatest from programs by introducing the special
variable "result" which is defined to be synonymous with
"latest output” and using it instead of "output" in mapping
and compute clauses. Programs which use only "result" in

compute and mapping clauses are called orthodox, and thev are

quaranteed to be well-behaved.

General Programs

Simple programs are very restrictive because each
definition directly defines exactly one variable. Thus, they
do not allow indirect or multiple definitions.

An indirect definition of a variable consists of
possibly several definitions of various aspects of the
variable. The simpiest example is the definition of a’
variable X , say, by defining £first X and pext X
separately.

A multiple definition is the use of tuples to define
two or more variables simultaneously, for example,

(p,B) = if X > Y then (C,D) elsc (E,F)

Both sorts of definition can be combined, as in

28

(X,Y)

fl

£ixst(M,N)
next (M,N)

if M > N then (M-N,N)

else (M,N-M)

rrograms with such definitions can be "massaged" into simple
programs by using the projection operations and the function

fby, for example

£irst X = E, .
pext X = E;
becomes X = E, fby Eqy ‘
and (X,¥Y,2) = W
becomes X = pg(W)
Y = p> (W)
z = pj (W)

fﬁe-éroblem is that the simple program AP' which results
from massaging a progrém P is guaranteea fo have‘a unique
miniﬁal solution (siﬁcé the pféjection oéérétioné aﬁd by
afe'continuous) which may not be a sblutioﬁ of P (because
P might have no solution at all). The reason is that the
more general sorts of definitions can only be valid under

certain conditions, whereas no conditions are imposed on the

existence of a solution for simple programs. In particular,
first X = E; implies that E, is quiescent (see [(2]), and
(Xl’ “ ey Xn) = E2 implies that the value of E2 is an

n-tuple. We cannot simply take the minimal solution of P'

29

to be the meaning of P regardless of whether or not it is a
solution of P because we wish to prove properties of P
from assertions in P . If P has no solution, it is there-
fore inconsistent and we would be able to prove anything from
it. For the same reason, we must deduce the conditions for
the existence of a solution for P from P' rather than from
p igself.* This can be done by a sort of type-checking on
P' , pushing our original conditions back through P' ,
generating new conditions in the process. For example, if A
must be quiescent, and A = B + C then both B and C must
be quiescent. For details of the general process, see Wadge
and Ashcroft [7]. Using this technique, we can allow
general programs to have tuples of tuples etc., and even
self-referential tuples, as in

X = (a, X) .
Surprisingly, it can nevertheless be shown that the projection
operations in P' can be pushed through other operations
until both projection operations and tuples are completely
removed, unless the output of the program is itself defined

to be a tuple.

* To paraphrase a famous logician, it would otherwise be
like having the defendant at a perjury trial testify on
his own behalf.

30

Rules of Inference

When reaSoning about programs we do not use the
formal semantics directly but rather use rules of inference
whose validity follows easily from the semantics.

Following the natural deduction style of [3], there
are two basic rules for each type of clause, one for intro-

duction and one for elimination.

Produce Clauses

(PI) For L a sequence of distinct variables including the
data variable "output", E an equal length sequence of
terms of the corresponding types,with S correspond-
ing to "output", A a set of assertions such that L
is free for E in A , and G a sequence of variables
disjoint from L

AML/E] E P
where P is
produce €9 using G
A

end

(PE) If T and A sets of assertions and A an assertion,
and "output" is free for data term S in A and G
is the set of all variables occurring free in A and

also in either T' or A

31

if F,A[output/eo] E A
then T,P kA

where P 1is

produce e, using G

0

A

end

.

Function Clauses

(FI) If X is a sequence of data variables and G is a
disjoint sequence of variables, and r is a set of
assertions in which no variable in X occurs free, and
f is a function term

if TF P thenT EF
where P is
produce f(X) using G,X
A
end
and F is
function £(X) using G

A

end

(FE) Let X and G be disjoint sequences of distinct
variables and F be
function f£(X) using G *
A

end

32

and P be
produce f(X) using G,X
A

end

For E a sequence of terms of the same length and type

~as X such that X is free for E in P
F E P[X/E] .

Compute Clauses

(c1) For L, E, e,r 4 and G as in (PI),

AlL/E, G/latest Gl E C
where CC is
using G

compute eO

(CE) For ', A, A, ey G as in (PE)
if T, Aloutput/e,, G/latest G] F A

then I', CF A

where C 1is

compute e using G

A

end

33

Mapping Clauses

(MI) and (ME) are identical to (FI) and (FE)
respectively, with the word "mapping" replacing the word

"function" and the word "compute" replacing the word "produce".

Program Transformation

The rules just given are elegant and concise but are
not the most practical. For one thing they force the verifier
to explicitly introduce and reason about the function Jlatest.
For another, proving even simple properties usually involves
taking the program apart using the elimination rules and put-
ting it back together with the introduction rules. Fortuna-
tely, there is a collection of derived rules which allow a
"nested proof" technique as described in [3]. These rules

are transformation rules, rules (like the (FE) rule) of the

form A EF A' where A' is ;he result of making some "small"

chéﬁge to A, for exaﬁple adaing a variable to a global 1list

or moving an assertion out of some subclause. One conseguence
is that a correctness proof of a program P can proceed by

linear reasoning [5], i.e. it consists of a sequence

AO, Al' ey An of assertions where AO = P , each Ai+l
follows from Ai by using some rules and Al is the desired
sfatement of correctness.

The first two rules allow us to carry on normal
reasoning within clause boundaries. It says that we can add

to any subclause any assertion that follows logically from

34

the assertions in the subclause. Conversely, the second rule
says that we can throw away any assertion from any subclause.

There is also a set of "movement rules" which allow
us to move across clause boundaries assertions whose free
variables are all globals of the clause. Any such assertion
can be moved in or out of a produce or function clause, and
any such assertion which is pointwise* can be moved in or out
of a compute or mapping clause. Furthermore in the case of
a produce clause, assertions which refer to "output" can be
moved out of the clause provided "output" is replaced by the
subject of the clause, and conversely, assertions which
refer to the subject can be moved in provided the subject is
replaced by "output". Similarly, the same is true of compute
clauses, if we consider "result" rather than "output".

These are the most important rules because they
allow both small and large changes to an assertion in a single
step ~ the assertions being moved can themselves be clguses.
In order to "prepare the stage" for the application of these
rules we also need rules for adding global variables to a
clause and for renaming its local variables. These rules can
be easily derived from the rules of inference.

While these rules are natural and easy to use, we

know of no small well-structured symmetric subset of them

* An assertion is pointwise if it is a pointwise term or a
compute or mapping clause whose subject is a pointwise
term or a function clause with no global variables.

35

which are in some sense complete.

"Computational Behavior" of Functions and Mappings

The formal definitions of clauses and the manipula-
tion rules above are sufficient to answer questions of an
operational nature about functions and mappings.

We will first illustrate how the rules can be used
to perform symbolic execution of a function call. Cdnsider

produce M
function Min (X)

£ixst output

next output

first X

if output < pext X then output

i

else next X

end
Z = 3 fby 1 fby 2
output = Min(Zz)

end

We first use the (FE) rule, with the formal para-

meter X being replaced by Z2 , yielding

produce M
produce Min(Zz) using 2
first output Z2
next output

it

if output < pext Z2
then output else pext Z2

end

36

3 fhy 1 fhy 2

output = Min(Zz)

p

end

Then we use our movement rule to move the definition
of 7 inside the produce clause yielding
produce M
o2 .
produce Min(Z~) using 2

first output = first Z

next output if output < pext 2

D

then output else next 2

Z =3 fby 1 fby 2
end

output = Min(Zz)

end

Then inside the produce we substitute "3 tfby 1 fby 2"
for every occurrence of "Z" , perform some simple calculations
and, after discarding unnecessary statements,we have

produce M
produce Min(Zz) using 2
output = 9 fby 1 fby 1
end

output = Min(Zz)

end

37

The assertion "output = 9 fby 1 fby 1" can be moved
out of the inner produce, yielding "Min(Zz) =9 fby 1 fby 1".
Then substitution of equals for equals yields
"output = 9 fby 1 fby 1" in the body of Fhe outer produce and
this can be brought out,giving "M = 9 gﬁx 1 fby 1".

Any mechanism to implement functions and mappings
must produce effects that are consistent with all properties

that can be proved using the manipulation rules. In particular,

one such parameter-passing mechanism is the call by name :iule

as considered in Vuillemin [£€]. To see that call by value

does not work, consider
produce V
mapping f£(X,Y) using f

result = if X eq 0 then 0 else f(X-1,£(X,Y))

end

output = £(1,0)

end

We can duplicate the mapping clause, and then replace one of
the copies by the corresponding compute clause (setting up the
actual/formal parameter correspondence) giving
produce V
mapping £(X,Y) using £

result = if X eq 0 then 0 else f(X-1,£(X,Y))

end

38

compute £{1,0) using f

result = if 1 eq 0 then 0 else f(1-1,£(1,0))

cutput = £(1,0)

“nelde the compute clause we obtain

result = £(0,£(1,0))

wioh osan be moved out, and the compute clause discarded,

CLVANG

=

»roduce YV

mapping f(X,Y) using £

result = if X eq 0 then 0 else f(X-1,f(X,Y))

end
£(1,0) = £(0,£(1,0))
output = £(31,0)

end

we rvepeat the process with formal parameter X being replaced
by 06 and Y being replaced by £(1,0) . Inside the result-

fél. j33e|

compute clause we get

result = if 0 eq 0 then 0 else £(0~1,£(0,£(1,0)))

Thisg simplifies to

result = 0

39

and when we move this out and discard the compute clause we get

produce V

f(O,f(l,O)) = 0

£(1,0) £(0,£(1,0))

i

output £(1,0)

end

From this we clearly get
output = 0

which we can move out giving

In a call by value implementation of this function,
the program would diverge, which is inconsistent with the fact
that "v = 0".

A more efficient mechanism than call by name is the
"delay rule" or "call by need" of Vuillemin [&], and Lucid
may be the first programming language that can actually use
it.

It is also worth noting that implementing non-
recursive functions and mappings is no more difficult than
implementing produce and compute clauses, since the latter
can be used as 'macro expansions' of "calls" of functions and
mappings.

Finally, the transformation rules can be used to

settle the question of dynamic versus static binding of global

40

variables of functions and mappings. Consider
compute U
mapping f£(X) using Y
result = X + Y
end
Y =1
compute result using f
Y = 2

£(3)

I

result

end

end

The question is whether the walue of U 1is 5 or 4, which
depends on whether the inner or outer definition of Y 1is
used in the evaluation of f£(3) . In a language like LISP
which has dynamic binding, the irner value would be used, in
Algol the outer. It is easy to see that the manipulation
rules imply that Lucid uses static binding. We cannotlﬁove
the mapping inside the inner compute clause until we have
renamed the inner local variable Y . The variable Y can
then be added to the global list of the inner compute, and
the mapping can be moved giving

compute V

Y = 1

compute result using Y

mapping f(X) using Y
result = X + Y

end

Z = 2

result = f(3)

end

end

The definition of Y can be brought down into the mapping,

and it is then straightforward to finally obtain "V = 4".

1.

REFERENCES

Landin, P.J. The next 700 programming languages.
Comm. ACM. 9, 3(March 1966) 157-166.

Ashcroft, E.A., and Wadge, W.W. Lucid, a nonprocedural
language with iteration. Comm. ACM 20, 7(July 1977), 519-526.

Ashcroft, E.A., and Wadge, W.W. Lucid : a formal system for
writing and proving programs. SIAM J. Comptg. 5, 3(Sept. 1976)
336-354.

Kahn, G., and MacQueen, D. Coroutines and networks of parallel
processes. Res. Rep. No. 202, IRIA, France, Nov. 1976.

Craig, W. Linear reasoning, a new form of the Herbrand-Gentzen
theorem. J. Symbolic Logic, 22 (1957) 250-268.

Vuillemin, J. Correct and optimal implementations of recursion
in a simple programming language. Res. Rep. No. 202, IRIA,
France, July 1973.

Wadge, W.W., Ashcroft, E.A. The type checking of recursive
list programs. In preparation.

41

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

