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Graph Generation

Abstract

Exhaustive generation of lists of graphs is discussedos
The presentation is given primarily as a survey of previous
work ; appropriate f(urther research is proposed. The state
of the art in exhaustive generation is that no algorithms
requiring less than exponential time per output graph have
been given, with the exception of generating restricted
classes such as treess Fmphasis in this study is placed on
the relation of graph generation to other fields of studye.

The relation bhetween enumeration and generation i

n

considereds this yields a technique for isomorph rejection
in some generation me thod se The relation between
existential and exhaustive generation is also discussed; a
proposal for a constructive correspondence is set fortetr
which may supply an efficient family of algorithms for

restricted classes of graphse.

A recent etficient method due to Read can be modified
to genera te roo ted treesy graphs, digraphsy multigraphs,
tournaments, connected graphs, graphs with a given
subgraph, set systensy, or hypergraphs. This specialisation
of methods has a functional dual, generalisation, which is
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examinede. Similar improvements to the graph generator
proposed by Heap, and the generation method for locally
restricted graphs origlnally set forth by Farrell, are alsco

discussede

The importance of graph generation within the wider
context of combinatorial generation is considered,
Throughout this work, a survey of the state of the art is
provided, with especial reference to the interrelations of

the many independent investigations in the 1ljiteraturee.
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Chapter 13 Introduction

1.1 The proplemsi: 2he aims

Ve examine the known methods of exhaustive generation
of graphs, especially the production of a list of all
nonisomerphic graphs on n verticese. The investigation of
these methods is closely related to many other graphical
generation problems. We therefore incorporate an
investigation of the wider toplc of generation of graphs
with given prarameters. The relation of diverse topics such
as enumeration and existential generation to exhaustive

generation is showne.

Our initial goal was to provide both theoretical and
practical improvements to existing algorithmse. 1n the
study of graph generation methods, we felt this aim was
best served by considering candidates for isomorph
rejection strategiess We desired to bypass the isomorph
elimination phase which is the dominant cost of the
practical methods in use today-s In the course of the
investigation, we searched in vain for an adequate survey
of graph generation techniques. Cur primary goal from then

-1
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on was to nproduce both a comprehensive and comprehensible
survey of these techniquese. Our initial aimy, although now

secondaryy, is still important.

The reader being introduced to this discipline may be
unprepared both for the number and guality of the available
methods . Qur aim ttus incorporates the requirement that a
logical structure be imposed on the format of this study to
enable the reader to group methods into similar classeses
The strategy for this logical structure will be explained

as a preface to the thesis, in section 1.3.1.

Our final aim is to highlight at all stages the common
general techniques rather than specific implementations of
methods. The techniques to which we refer are used both
for building new me thods, and for adapting old methods tc

other classes.

One constraint is that the thesis avoids the detailed
exarmination of particular methods which would inhibit our

emphasis on general techniquess
1.2 Current use and iuture application

The reader ray e unfamiliar with a numhe r of
applications for these methodse The need for catalogues of

graphs arises in such diverse studies as chemistry, network
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designy numerical analysis, and graph theorye.

1«2.1 Graph theory

Many authors ([ Read76b], [Baker74], for example) have
observed that it is <common practice to hypothesise a
relation concerning structures, and then verify that this
relatior holds for all small structurese. One generally
proceeds to a proof or disproof of the con jecture based in
no small way on this verificationes The verification of
con. jectures requires a catalogue of the appropriate class
of graphs. This approach to research is used extensively
in graph theory due to the existence of many long standing
conjectures. Two famous examples are the Four Colour
Conjecture (now Theorem), and the Reconstruction Conjecture
([ Bondy76]). This motivation is best expressed in
{ Faradzev76], where Faradzev states that ‘"combinatorial
theory as a scientific discipline finds itsels in a
bvotanical stage of development and therefore has a strong

need for a large quantity of facts (a herbarium)".

One can make a stronger statement concerning the use
of catalogues. Harary has stated that the existence of
these catalogues often suggest conjectures to the
mathematician, who then applies tﬁeoretical me thods in

investigating the conjecture ([Harary77 ]).
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Ma ny other graph theoretic anplications of catalogues
have apreared in the literature; the reader should refer

to [ Weinberg71] for an appreciation of thems
1.2.2 Networks

The network designer'®s problem is to produce Zzood
networks given constrained resourcese. He may wish to
maximise some parameter of the network over all available
networks. If the designer can specify a mandatory set of
criteriay, he can maximise over the graphs in an available
catalogues He may wish to dc this in preference to
accepting a heuristic suboptimal solution; if s0oy he will

require a catalogue ({Weinberg71 ]).
1.2.3 Chemistry

The chemist's problem can be viewed as the dual of the
network designerts, The network designer is concerned with
synthesis, the chemist with analysis. The chemist will be
interested in the analysis ot the structure of a molecule
based on some information obtained experimentally in the
laboratory. There will typically be a few graphs which
satisfy the known informations An exhaustive list of these
graphs will «g¢ften enable the ‘chemist to deduce the
structure of his molecules These observations were made by

Lederberg in his pioneering papers [Lederberg64] and
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[ Lederbergb6S]e

This application is a currently active one; the
artificial intelligence program DENDRAL employs just suct
techniques ([Feigenbaum71]). Another active application
area is the wuse of catalogues of blocks in physical
chemistry ([Sykes6¢], [Domb67]1)s The need for exhaustive
catalogues in chemistry is compellinge. It was expressed in
[ Dysona?], and was rapidly under investigation
([ Gordond8]). A text on chemical information systems,
[Lynch71], supplies the following impressive figurese. In
1971, over 404,000 chemical Jjournals were in print,
referencing over 500,000 chemical compounds a year, over

75,000 of which were first synthesised in that years

1.2.4 Numerical aspalysis

It has been shown that rooted trees find application
in the production of Runge Kutta formulae for numerical
solution of differential equat ions ([Lawson70]).
Catalogues of roo ted trees will be required for the
derivation of higher order Runge Kutta methods; moreover,
the existence of such catalogues will facilitate the

automation of this rrocesss.

1.2.5 A compendium of other applications
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In the design of algorithms, one often wishes to
analyse the expec ted time complexity of a methode In the
event that one does not wish such a formal analysis, it is
still useful to test the program on a representative data
sample. It is an unfortunate truth that, with graph
algorithms in particular, many authors have made
unreasonable conjectures about the performance of their
method following testing on a sample of their own choice
rather than a truly random sample. A case in point is the
graph isomorpghism problem, which has taken on the character
of a Mdisease" as a result ([Read76a]). One way of
avoiding this problem is to employ a random data sample

from existing catalopues as test datae

Another application arises in the study of
electroniecs, the circuit layout probleme. Some criteria for
the characteristics of a circuit layout will he expressed;
a search of a catalogue of planar graphs will reveal an

exhaustive set of candidates with the desired structuree.

1+3 An goverview of the research

Ve next outline the format which the survey and
results will follow. We present this in preparation for
the survey work itself to acquaint the reader with the

basic underlying observations on which the work is baseds
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The field of graph generation has previously been examined
as a collection of specialised methods whose interrelations
were unknowny, or at best not widely Kknowns The net result
has been a duplication of research and methods, each

specialised to one gparticular applicatione

The usefulness of this study will be increased if the
reader can view these interrelations and maintain them |In
the foreground in the remainder of this workes We therefore
present a strategy which is both a justification for the

study and a method of interpreting 1ite.

1431 A strategy for examinipg grapb geperation

Mathematicians employ two fundamental techniques in
the investigation of problems. ¥e refer to them as the
dual techniques of generalisation and specialisatione. The
method of generalisation is to examine methods for a
restricted subproblem of the original probleme. One then
attempts to apply a more general form of the method to a
less restricted subprobleme The dual process;,
speclal isation, is to consider general methods and exhibit

efficient restrictions of them to subproblemss

Another approach is to employ observations in related
topics to assist in the analysis at hande One may, for

example, cons ider parallels hetween enumeration and
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generaticn problems. Cne may also employ existential

generation methods as partial solutions to their exhaustive

counterparts.

1.3.2 Ap overview of the chapters

In this chapter we have informally introduced the
field of grarh generation and some applications of its
methods. We have proposed some techniques which will be
used to motivate a unified presentatione Here we present a
brief look ahead to show h ow our strategy is used to

subdivide the area into manageable segmentss

The second chapter introduces prerequisites to the
understanding of the worke 1t will also consider where
this study lies in relation to the wider field of
combinatorial generatione. The third chapter focuses on the
generaticn of a restricted class of graphs, trees. A
logical progression of ceneration me thods from very
restricted to less restricted classes is traced out. The
strategic motivation for the examination of tree methods is

the anticipation of generalising them to larger classes.

The fourth chapter provides a short introduction to
the related field ot existential gpenerations In the latter
portion of the chapter, a correspondence is developed

between existential and exhaustive technigues. The tifth
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chapter examines the successes and failures of the direct
approache Observations from graph enumeration are employed
to devise a scheme for isomorph rejectione. Some novel

observations due to Read are shown to generalise to other

methodse.

The sixth chapter involves the specialisation of
direct wethods to restricted classes. A representative
sample of restricted classes together with a statement of
the success of specialisation methods for the classes is
included. The latter portion is dedicated to exhibiting
the relation of this work to other active research in
generation nf configurations, The seventh chapter
concludes the thesise It is a statement of our success in
realising our avowed goals, and a suggestion of further

topicse

14343 New results

This thesis is primarily, but not exclusively, a
survey of known resultse. We have supplied small extensions
to previous worke. All me thods discussed which are not ours

are referenced in the appropriate places
1.4 Histarjical potes

A quick reading list has been compiled for the reader
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interested in tracing the deve lopment of graph generation

methods.

Cayley, a ploneer in the field of tree enumeration,
seems tc have been the first researchere. His classic work,
[Cayley1857], alludes to the relation between generation
and enunmeration | and offers insight into deriving
enumeration formulae from generative approachess This work

is continued in [Cayleyl1859], where he investigates binary

treesa.

Cayley also rublished the first known catalogue of
trees in [ Cayley1875]. Trees on fewer than ten vertices

are listed.

In an investigation of polyhedra, Bruckner catalogued
3—-connected trivalent planar graphs for n < 16
({BrucknerlSOO]); (much later, this list was extended by

Grace using a computer { [Graces5 ])).

A hiatus in research then occurred, lasting until
18946. In that year, Kagno published the first catalogue of
graphs aon fewer than seven vertices ([Kagno46])e Research
did not commence in earnest, however, until the appearance
of a catalogue of digraphs on fewer than six vertices,
produced Ly computer ([ Reacdb66]})s At the same time,y, Heap

succeeded in extending Kagno's catalogue to include the
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seven and eight vertex graphs, also using a computer
({ Heap72]). In 19€6y the generation of regular graphs by

computer »as al so introduced in the literature

({ Izbickib7]).



Chapter 23 Lefinitions

In this chapter, we shall introduce terminology and
prereqguisite materijial required throughout the thesise. Ve
also supply a .list of references concerning related

materiale.

2.1 Prereguisites

The terminology of graph theory has traditionally bheen
complicated by an abundance of sSynonymous terms despite
the current trend toward standardisation, the area of grapt
generation still suffers from a lack of universally
accepted terms, We endeavour to remedy this problem by

employing a standard nomenclature throughoute.

The structure of solution met hods is alsag
characterised so as to avoid undue repetition when methods

are introduced,

2.1¢1 The tasic tynes of problems

In combinatorics as a mathematical discipiine, one i
concerned with problems of existence and epumerations E R

P I 2
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former asks if there is a structure with certain parameter
values; the latter asks how many such structures exist.
There is a strong parallel with problems in <combinatorial
computinge. The first class of methods we call existeptial
Bepnerations The se problems require, given a set of
parameter valuesy the production of at least one structure
satisfying the parame ters, if any such exist. The second
class is called exhaustive geperation {(or simply
generatign) me thods. These problems require an exhaustive
list of the nonisomorphic structures which meet the given

constraintse.

The area of generation has been referred +to by many

namess A few ares coustructive enuperation

([ Paradzev76 ]), gnumeration ([Evans67]), and gconstructions

A further procblem is the topic of probabilistic
methodse. The theoretical aspects of probabltisflc methods
are discussed in { Frdos74 ]. This dynamic area of
combinatorics treats the problem of determining how likely
a certain structure is to have a specified gpropertye The re
is an algorithmic counterpart to these methods, but the
parallel is nct as direct in this cases Probabilistic
generation algorithms address themselves to the problem ot

supplying some graph G from a list of all nonisomorphic

graphs with given parameter values such that the selection
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of every graph on the list is equally likelye

Fach of these methods will surface in some
investigations within the thesis, especially in relation to

exhaustive generations

241+2 TIhe gstructure of existing methods

Existing methods for combinatorial generation problems
have a reasonably fixed format despite many surface
differences. The typical algorithm is a two step processe.
Starting with an initial list of some structures, one
applies some operations on the structures from the list to
produce new structureses. One then eliminates jsomorphs
{also called dyplicates) from this new list of structures.
This process is rerformed repeatedly until no new
structures are producede. This second step is called
isomorph elimipation, and is performed so as to maintain
only one representative from each isomorphism classe This
desire is discussed in [ Golemb60 }; we quote in preference
to attempting to state it more clearly:

YEvery collector?'s basic des ire is
to have 'one of each's This is true
not only in philately and numismatics,

but almost anywhere that classification
into categories applies."

These methods subdivide naturally into two classes of
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algorithmses One can define the coptent of a structure in
some convenient manner; for graphs, this will typically be
the number ot edges, or verticess In the inductive
algorithms, the operations either uniformly increase or
decrease the contente. Algorithms which preserve content
are called jncrementale Incremental algorithms appear to
be new candidates for graph generation methodse. An
operation in an incremental alzorithm is one by which a
local (or incremental) change is made in the structure to

produce a new struc ture.

213 Isgmorph elimipation ¥vs. reljection

As we noted, the second step of the generation

procedures is i somorph eliminations Elimination of
isomorphs requires the testing of graph isomorphisnw
pairwise with every other graph in the list. This can be

accomplished by direct application of graph isomorphisn
testing on each possible pair of graphs, or the graphs can
be coded and the list secarched for this codees The isomorph
elimination step is generally divided into two phasesy one
of coding the graphy, and one of sorting or searching the

output listse.

Poth the isomorphism and the coding problem have been

recently surveyed in [ Read76a]. The selection of coding
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me thods in preference to pairwise isomorphism testing

is
discussed in [ McKay76]. Recent heuristic studies on the
coding problem can be found in { Proskurowski774],

[Overton75], and [McKay76]. It is instructive to observe
that early investigations of canonical forms for graphs

appear in the investigation of chemical systematics

([ Gordon431]).

In the early development of combinatorial algorithms,
it was observed that backtrack did not cope well with the
problem of producing isomorphic coutput configurations
([Swift60])e. This led Swift to propose a method called
isomorph re.jection; it was +to be used in conjunction with
backtrack, introduced in [WalkeréO]. The philosophy of
isomorph rejection is fundamentally different from that of
isomorph eliminatione. Elimination methods are run as
independent steps to remove isomorphs from the output.
Isomorph rejection, on the other hand, rejects computa tions
which rroduce isomorphic results prior to executione
Isomorph re jection techniques have been employed with
sueccess an combinatorial problems ([ wells71],
[Whitehead73]). The application of rejection in graph

generation has not yet been fully examineds.

We will not <concern ourselves with the details of

elimination methods,. One must simply remember that the
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elimination step divides naturally into two phases] one
phase codes the graph, the other sorts or searches t he

output list to check whether duplications existe.

2+2 An apnotated guide to background material

With few exceptions, the graph theoretic defini tions
used in this study can be found in [Harery69], and the
combinatorial ones in [Hall67]. An excellent discussion of
related enumeration problems can be found in [Harary73].
For definitions concerning the isomorphism and coding
problems, see [Read76a]y, and [Read76b]. The Polya
enureration theory is somewhat more difficulte The initial
paper hy Polya, [ Polyad? ], is a strikingly clear

presentation of both theory and applicationse. Polya theory

has been developed well in the expository paper
[deBrui int4]. Some further investigations appear in
[ deBrui jn71]. A gentler treatment of the subject is given

in the introductory text [ Liu68].

Trees demand a more detailed introductions The
appearance of trees in many computational problems has left
a wealth of restricted classes of trees; an appropriate
understanding of this fact can be obtained from [Aho74],
for example. In keeping with traditiony we shall introduce

our own subset of the available definitionse
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A tree, or ftree trees is a connected graph with ngo
cycless. A rooted tree is a tree in which one vertex has
been distinguished; this vertex is called the p te The

e ht of a rooted tree is the length bf the longest path
from the root to a Lleaf; the height of a vertex is the
length ¢f the path from that vertex to the root. A planted
tree is a rooted tree in which an ordering has been applied
to the vertices adjacent to the roots. A plane plapted tree
is a planted tree drawn Iin the planee. This is equivalent
to applying an ordering to the adjacencies of all vertices,

not just those of the roote

A k-ary ztftree is a plane planted +tree with the
restriction that each vertex has k distinct polnts of
attachmept for sonsy, not all of which must be in uses Thus
a vertex having a single son has k different possibili ties,
each of which produces a unique treee. When k=2, the tree
is binaryvs A complete k—ary tree is a k—ary tree in which

every vertex has exactly 0 or kK sonse

The requisite algebra for this study is minimal; see

[Birkhotf65] or [ Ligson75].

Racktrack is a popular generation techniquee. 11t has
shown many promising applications in graph algorithms

({Tarjan?72], [ Read73], for example)s The application of
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backtrack as a generation technique appears in connection
with block designs ([Gibbons76 ). Another related
generation application has appearcd for semigroups
({Plemmcns67]); many other applications are listed in the
excellent survey {Corneil?74]. The use of backtracking 1in
graph generation problems is small, but it should he kept

in minde.

One promising existential technigue, bill climbing,
has had s ome success in the generation of set packings,
Latin squares, and block designs ([Colbourn?77], [ Tompa75],

[Shaver73]).



Chapter J3 : Trees

Efficient methods for restricted classes of graphs
often generalise in a nice way to larger families. Two
examples of interest are the use of tree isomorphisn
algorithrs to produce both a planar graph isomorphism
algorithm ([ Hopcroft72]), and an interval graph isomorphism
algorithr ([ Booth76 }])s This is sufficient motivation in
itself; one initial benefit in the search for good methods
is that efficient generation methods for planted trees and
roo ted trees have been examined in much more detail than
the general problems. For these reasonsy we discuss both
classical and novel methods for +tree generatione The only
previous surveys of tree generation methods known to us

appear in [Scoins67 ] and [ Scoinsé6k].
3«1 Ihe enumeration of trees

There is a strong relation between problems of
generation and enumeratione. The scope of this
correspondence is perhaps realised most dJully in the
generation of various forms of treesy notably binary treess
We introduce enumeration methods for binary trees and

-20-
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related familiese. Althougzh other enumeration methods for
trees are somewhat constructive, the resulting construction
methods are inductive algorithms reguiring an inordinate
amount of isomorph eliminations The pa th by which
efficient algorithms for general classes of trees are
obtained is via the efficient methods for plane planted and
binary treese. For the enumeration methods of the other

classes, the rcader is referred to [Harary73].

Jelel The Catalan pumbers and binary treses

One advantage of having exgrlicit enumeration formulae
for structures in a given class is that when two apparently
different classes have the same enumerator, often a
posterigri a cne—one constructive correspondence can be
showne Such a procedure was used to show that a subclass
of the trivalent plane planted trees are in direct
correspondence with a subclass of the plane planted trees
([Harary64 ]). Many more intuitive correspondences were

then found between the two classes {[deBruijn67]).

We are here concerned with the most famous (and,
apparently, most common) enumerator of treese. This
enumera ting function produces the Catalan numbers (some
authors, notably [wellsT71 ], refer to them as the Sezner

numbers ).
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The n'th Catalan number is C(2nynl)/(nt+l1). Some of the
many structures enumerated by the n'th Catalan number are:
binary trees on n vertices, stack sortable rermutations on
n elements, rallot sequences and difference sequences with
n terms, complete binary trees on 2n+l vertices, plane
trees rooted at an endvertex with nti edgesy, and trivalent
plane trees rooted at an endvertex with n vertices of
degree three ([ Rotemr75)], [Rotem77]y [Knott77], [Harary64],
[deBrui,jn67], [wells71 ], Similar observations have been
noted for k—ary trees ([ Klarner6%]). The importance of
this is that when an efficient constructive correspondence
is shown, one can geéenerate aone type of structure by
generating the other. These methods bave been applied with
great success; some of the resulting generation algorithms

will be discussed nexte.
J¢2 Ihe planted plape iree

In this section, we discuss the generation of plane

planted trees, and some restrictions of this classe.
3+2.1 Bipary trees -— more definitiops

Every interjor vertex v has two adjacencies X and ¥y of
greater distance than v from the roote. The vertex v is the
father of x and y;3; the vertices ) 4 and y are the left and

Xight sgcps of ve
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3¢2.2 Pinary Irees 1

One obvious generation proqedure for binary trees is
the vclggsiggl methode To find all binary trees on n
verticesy, one first finds the lists for all smaller numbers
of vertices. Fach binary tree 18 created by taking a root,
and attaching an i~vertex tree to its left attachment, and
a (n-i-1)-vertex tree to its rizht for all i-vertex and

(p=i-1)=-vertex treese.

This algorithm is representative of the inductive
algorithms, with the exception that no elimination is
requireds The initial list L(0O) is the null graphe Each
tist can then be obtained given that all smaller lists have
been founde Producing comple te binary trees 1s equally
straightforwarde. We modify the base step to let L{(1) be
the trivial tree on one vertex, and require that t he root

have both suttrees non—-nulles

There i one drawbacke In order to generate lists on
n vertices, the generation of lists on all smaller number
of vertices |is requiredes. This may create insurmountable

time and storage overheadas

3.2.3 Bipnary Trees 11
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The method we discuss here is developed in [Rotem75]

and [ Rotem77].

A sStack sSortable permutation is a permutation which
does not have a suktsequence aybyc such that b 2 a 2> ce. A
sequence B = b(i) is a bpllot seguence iff b(i) £ n - i and
B(i) 2 K(i-1)s Each stack sortable permutation corresponds
to a ballot sequence in the following wayve. If we let b(i)
be the number of elements in the stack sortable permutation
P which are to the right of I in P and are greater than i,

B is a ballot sequence. This correspondence is one—one

({Rotem77]).

Ve define a difference sequence as TfTollowse A
sequence D = d(i) is a difference segquence iff the sum of
its elements is ny, d(1) > 0, and each d(i) 2 0. The
relation with ballot segquences is directe. The first
element of D is n - b(l)se For 2 £ i € ny d(i1) is simply

b{i—1) - (i) This correspondence is one—cnee.

Many sequence types have heen introduced which have
the sare enpumerator as binary treese. Can we exhibit a
one—one correspondence bhbetween one of these classes and the
class of binary trees? The answer is shown to be positive
by the following alzorithm. This method will take =&

difference sequence D = d(i)y and produce a binary ireegs
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Maintain an initially empty stack S of vertices during
the execution 0of the algorithme. For the first entry in D,
d(1)y create the first vertex, and append a path of d(1)-1
left sons to ite The last vertex in this path is labelled

1y and the other vertices are stacked in turn following the

path away from the roote Then for 2 X i € n we do the
following. If d(i) = 0, we pop the stack and label the
popped vertex i, and returne. Ctherwisey, a right son r is

appended to the vertex labelled i-1, and a path of d{i)-1
left sors is appended to re The vertex furthest from r on
this path is labelled i The other vertices are stacked

startineg at r and following the new path to its end at 1.

The generation of ballot sequences <can be done in
linear time, and the transformations to difference
sequences and binary trees are also linear (Note that each

element is pushed and popped at most once on S).

The algorithm is an improvement over the classical

method. The storage requirements are linear in no.

A similar derjvation of this method appeared after

Rotem?'s work in [ Ruskey77a ].

3+2.4 Binary Irees 111

In an investigation of numbering schemes for binary
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trees [ Knott77] develops a generation algorithm for binary

trees.

A itree permutatiop is Qeiined to e a permutation
which can re wrlitten in the form xXxBA where X is a single
element, A i a tree permutation of the elements x+1jyese9n,
and B is a tree permutation of the elements 1y2jyeeeygx—1.,
Given a tree permutation P, one can produce a binary tree
as follcwss The permutation on (0 elements is the null
graphe Otherwise, label the root of the tree x, find the
left son by producing a hinary tree from Ay, and the right
son from B. A binary tree produces a tree permutation
simply by traversing it in preorders The tree permutations
of [Knott77] are precisely the stack sortable permutations
of [Roten77]e Knott's algorithm for generating the list of
tree permutations is order n?, We conclude that Rotem's

algorithe is the appropriate generation me thod for binary

treese.

Js+2¢5 Connlete Binary Irees

An improvement on the classical algorithm for comple te
binary trees has been published in [ Wells71],. A
correspondence has been shown between complete binary trees
and partitiops without crossings The definition is qui te

complicated, but the concept is straightforwarde. One
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partitions the elements {142, seey n} into classes which
contain only even, or only oddy, numbers,y, and no class
contains all the even (odd) numberss Draw a circle with
points 1 through n on +the perimeter, such that i is
adjacent to i-1 and i*+1 (using ntl as 1). Edges are added
outside the circle connecting pointses Connected points are
in the same classe The partition is a partition without
crossing if no two lines cross in the drawing and no
additional line coan be drawn without crossing an existing
one.s Given a partition without crossing P, a complete

binary tree is constructed as followse.

The left son of the root is a vertex labelled 0, the
right scn a vertex Llabelled 1o Then, for the lowest
numbered 'unscanned? vertex v, it it is in a class of
cardinality greater than one, we do the followinge. Let s
be the next highest number in v¥'s classe. Let t he the
number closest to v which is not yet in the tree. (The
absolute value of v and t differ by one)ds The left son of
v is the even number of 5 or t; the right son the odde.

This is done until all vertices are in the tree.

This correspondence is shown to be one-one in
[wells71], and a construction algorithm for partitions

without crossing is presented.
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Je246 K=ary e S

In the obvious wayy the classical algorithm for binary
trees can be modified tu generate k—ary trees by taking all
partitions of n-1 into &k parts (parts may be empty)de. This
methcd compounds the difficulties noted for binary trees.

We discuss an alternative algorithme

Given a k—-ary treey, we defire an augmenting set for
the tree as v(1),v(2), ey vil) where v{(1) is the root,
v(i) is the rightmost son of v{i~1) for 22if€l, and v(1l) is
an endvertexs Recall from the definition that in a k-ary
treey the edges are strictly ordered, and therefore adding
to the right of an empty subtree is allowed {( that is, say Vv
has one sons there is a distinction between the son being
in the it th position ra ther than the Jl'th for 1 # j)e
Thus, we define the aguumepting bounds of a vertex in the
augmenting set as followse The augmenting bound of vl(l) is
[Ltyx]; for 12i<1, the augmenting bound of v{(i) is
[v(i+tt)+1,x]. Ve generate K—-ary trees on n vertices as

follows

L1ST L(l)' L(Z), o9 oy L(n);
L(1) := {the trivial tree};

for i 2= 2 until n do
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for each t € L(i-1) do
Let v(1)y »esy v(l) be the augmenting set for
t3
for J = 1 until 1 do
Let [myk] be the augmenting bounds for
vi jds
for posn = m until k do

R

]
o+
-e

In sy append a son to vij) as its
posn'th sone

Add s to L({1i);

Fach k-ary tree is generated at least onces To see
that each tree is generated exactly once,y, note that there
is a unique tree from which it could be producede This is
combined with the uniqueness of the trees in L(n-1) to give

uniqueness in Lin).

Recently, new methods for k—-ary trees based on the
methods at Rotem and Knott have been announced

([ Ruskey?Tn], [Trojanowski77a], [ Trojanowski77t]).
3.2.7 Plapnted plane trees

The problem af generating rlane " planted trees is
essentially different from generation of k—ary trees. We

pust now cope with isomorphism; many selections in the
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generaticn of k—ary trees are not availabley since they
produce isomorphic resul ts, In particular, augmenting

bounds do not have relevance in a plane planted trees

The generation of plane planted trees is a topological
problem, in that only non-null subtrees are considered in
the 'ordering?! of a vertex's descendants. Thus, a trivial
modification of the me thod for k-ary trees suffices to
generate theme. Ve define an augmenting set as before, but
only allow additions in the leftmost augmenting positione.

The algorithm to generate plane planted trees proceeds as

follows:

LIST L(I)' sem 9y L(n):
L(1) 2= {the trivial tree};

for i = 2 until n do

for each t € L(i-1) do

Let vi1)s5¢ee9sy9vil) be the augmenting set for t3

1 until 1 do

for J

te

s ts
In s, append a vertex to vij) as its

rightmost branch;

Add s to L{i)3

Note that, as before, there is a unique predecessor in
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L(n-1) for each graph in L(n)y hence each plane planted

tree is gproduced exactly once.

A recursive implementation of this method is given in

[Scoins68].

Je2.8 Angther cloass of plapnted nlape trees

A generation method for a subclass of the planted
plane trees is discussed in [deBrui jn67]. De Bruijn and
Morselt restrict the class of planted plane trees to those
rooted at an endver texe. They show a correspondence hetween
planted plane trees rooted at an endvertex and bhinary trees
in which the root has degree oney and all interior vertices
have degree three (a trivalent plane treel. we discuss the
ros t intuitive of the correspondences, the 'geometric?!

correspondences

Fach trivalent plane tree is drawn in the plane so
that for each vertex of degree three, its two sons are
drawn one upward, one to the righte The downward line is
the direction to the rootes From this representation, a
planted plane tree is constructed as followsa The vertices
of the plane tree are all the vertices of degree three, the
rooty, and a new vertex v which will be the root of the new
planted plane tree. It is connected to the root of the

trivalent plane treee. Every other vertex x 1s connected to
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its ‘'up? sSon  yy and all vertices reachable from y by
following branches to the right onlye Note that the plane

embedding of the resultant tree is determined by the plane

embedding of the originale. A diagram is given here to

illustrate the constructions. The trivalent tree is in

dashed lines; the planted plane tree in dotted lines. A

numbering is supplied +to show the correspondences The

vertex 1 is the root of the trivalent tree; the vertex 0

is the rooty v, added in the ccnstructione
g 9 12
I |
[ |

S=——6—~=17 10—--11 Figure 1

R 3--4
|
|
1
8
5 0 11
9'.6..2..1..4.'10‘. 12
3

3.3 Ihe rogted and the plapted tree

We generalise the methods for plane planted trees to

the more difficult cases of planted and rooted trees.
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Je«3.1 Rooted trees apnd plapnted plane trees

There is a (sur,jective) map from the set of planted
plane trees onto the set of roojed trees, such that two
prlanted plane trees map to the same rooted tree iff they
are isomorphic without the ordering (plane) restrictions
Ve wish to' generate only one of the planted plane trees
from each partitian of the set of planted plane trees
induced by this mapringe. An ordering may be applied to a
rooted tree toc make it a planted plane tree (in fact, the
planted plane tree with the 'largest! code of all planted
plane trees which map to the given rcoted tree) as
described in [ Read72]s A linear time algorithm to code

trees has appeared in the literature ([Hopcroft72]).

We will not discuss the classical algorithm for rooted

trees here; for a description of it, see [Read69].
J«3.2 Rooted Trees 1

An algorithm for t he seneration of rooted trees is
developed in [ Read76b] which is similar to the algorithnm
for plane planted trees. The only modification is that as
a tree is produced, one must verify that it is in canonical
forme In [ Read76t], it is shown that each canonical rooted
tree is generated exactly once. The algorithm is nonlinear

in the number ot output graphs; we are¢ motivated to tind
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an algcrithm which does not produce the 'extra’ trees
(those not in canonical form)e Head?'®s method is a classic
isomorph elimination algorithme The qguestion we pose
concerns the existence of an isomorph rejection algorithn
which bypasses the elimination step. The answer, discussed

later, is affirmatives

3+3«3 Rgoted Trees 11

We next outline an algorithm for rocoted trees from

{Scoinssr], The algorithm employs a representation of
trees called the height representations This
representation can re defined alporithmicallye. Perform a

depth first search on the tree, commencing at the roote As
a vertex is scanned for the first time, output its heighte
A rooted tree is { here) said to be in canonical form when

its height representation iIs lexicographically maximale

An irplementation of Scoins' algorithm is given in
[Scoins68]. The algorithm performs in time at worst linear
in the size of the output list, and is therefore in some

sense optimale.

A very recent improvement has been discovered by Bayer
({ Read77 ). We describe this method, since it generates
trees while making no mention of trees. It generates a set

of vectors in lexicographic order; it turns out that this
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set of vec tors is precisely the set of height
representations of rooted trees. This is the first example

of a general technique ot representing graphs as vectors,

and generating vectorse.

We now introduce the vector production methods.s From a
given n—vector from {1, 2, eeey n}, one produces the 'next!?
vector (if possible) as follows, Scan the vector right tgc
left until an element is found which is at least three.
Call this element rs, Continue scanning until an element is
found whose value is one less than that of ry, and call this
element 1. A vector s is found by reading off the elements
left to right starting at 1 until one reads the element
before rs Cne then deletes all entries from 1 on in the
original vector, and replaces them with sufficiently many
copies of 8§ to make the vector length ne The last copy of

$ is truncated, if necessarys.

The method will compute a next vector unless r cannot
be found,y, in which case no next vector exists. As initial
vector, one supplies the vector whose i'th entry is ie. One

then applies the method until no next vector existse

An illustration is he lpful here. The following

vectors are produced for the case n=5, in this order:

2345
12344
12343
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We have underlined the '1°? and 'r' in each vector (tree).
One can easily verify that this iIs the 1list of all height
representations of rooted trees on five vertices. This
algorithm is the most efticient known; its worst case
complex ity is linear, but its average case complexity

remains unknocwne

Je3+4 Rooted ITreeg 111

Twao algorithms have been presenteds. One is the
classic isomorph elimination algorithme. The second is an
isomorph re jection algorithme, Although it is wvery
efficient for trees, it does not seem to be a generally
applicable method in the generation of graphse One is
interested in a method which performs efficient isomorph
rejection as a means of characterising the kinds of

algorithes agpropriate for more difficult cases.

As with enumeration nroblems, the difficulty arises in
coping with symmetrye. The problem of exploiting known
symmetries in enumeration is met by an elegant theorem of

Polya ([ Folyald7])e 7The preblem in generaticny however, has
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no generally efficient method of solution. This area is

largely uncharted, despi te the impetus provided in
[swifte0], Cften the reason ygiven |is that computing the
symmetries is more costly than a brute force solution tc
the basic problems This, however, is not the case with
treese. The automorphism group of a tree can be found in
time 1linear in the number of vertices. (This will be

proved in Je«4).

We define a numbering of the vertices of a canonical
rooted tree as that numbering in which the root is numbered
1, and the adjacency matrix is maximal subject to this

constrainte.

Maximality implies that for any vertices v and wy, if
the height of v is less than the height of w, then v is
numbered before we The sons of any vertex are numbered
such that the sons numbered later have degree no targer

than that of the sons numbhered earliere.

Be fore erprloying these observations in the design of
an algorithmr, we introduce two partitions of the vertex set
which will be requirede. The automorphicsm partition is a
partition in which two vertices are in the same class iff
they are similare. Ve also introduce a coarser partition

than this, the degree partitions Two vertices are in the
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same depree class Iiff they are at the same height, have the

same degreey and their fathers are in the same degree

classe

We propose the following algorithm for the generation
of rooted trees. Let L(n-1) the the list of all rooted
trees in canonical form on n=-1 verticese.

For each tree t in L(n—1) do

Compute the automorphism partition of te.
Comgute the degree partition of t.
Let H be the highest numbered interior vertex.
For i 2= H until n do
set 8§ = te
if i is the lowest number in its automorphisn
class, and in its degree <class, append a
vertex labelled n to i in sy and add s to
L{n)e
We claim that this algorithm produces each canonical tree
exactly oncey and further that it produces only canonical

trees.
We now prove that this algorithm performs as requireds.

Theorem 1: Fvery tree produced is canonicals

Prootf:
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We suppose (to the contrary) that a tree t is produced
which is not in canonical forme In ty we let xy ¥ be the
first instance of two brothers whose interchange is
required in placing t in canonical forms We now examine
tWO CaseSs
Case 1: deg x < deg yy but x is numbered before ye
Consider the tree which has been constructed up until the
step where the first vertex is to bhe appended 1o Xe Let
this tree be t'. In t?', x and y are similar vertices since
they are endvertices with the same father., In the next
({deg x) - 1 stepsy, exactly (deg x) - 1 vertices will he
appended to Xe (If this were not the casey X would not
have been the highest numbered interior vertex, and then no
further vertex could be appended to it)e In a later (deg
x) - 1 steps, (dezg x) - 1 vertices will be appended to ¥,
for the same reasons Let this tree be sa» In sy x and y
are again similar,. LD 4 deg y is t0o be greater than the
degree of X, the addition to y must be per formed in this
step (otherwise, y will no longer be the highest numbered
interior vertex)e. An addition to y is impossibley however,
since x is numbered before yy and x and y are similar.

Contradictione.

Case 23 deg x = de

i

Y X is numbered before y in t, but y

is numbered before x in the canonical forme
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Let h(ryl) be the number of vertices in the subtree
rooted at r of height 1 (from r), and let S(r,1) be the set
of these vertices listed from left to right {(according to

the labelling of t)., Since deg x = deg ¥y h(x,y1) = hly,s1)e

Let <c¢yd bte the first two vertices (ie, at lowest
height and leftmost in the S at that height) in the
subtrees rooted at x and y respectively such that they
occur in the same pcecsition in their S5, and deg c ” deg de
(1f no such pair exists, t is in canonical form). Let a be
the father of ¢4y and b the father of de At some stage in
the algcrithmy when vertices are being appended to d, deg c
= deg de In this tree ¢ and d are placed in the same class
by the 'degree constraint! algorithme. Now ¢ is numbered
before dy so the degree constraint disallows the addition
of another vertex to the adjacenclies of de. But then deg d

L deg cs

Contradictiones

Then for every pair of sons of any vertex in t, the
order in t agrees with the order in canonical forme. This
contradicts the assumption that such a tree t in

non—-canonical fcrm is produced. o

Theorem 23 Every rooted tree is gproduced exactly oncee.
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Proof:

we will show that each tree has a unique addition
sequence of vertices to produce a rooted tree to. Let T bhe
the set af roo ted trees in canonical form which the
algorithm fails to produces Let t be a member of T with
fewest vertices. Let the father of the vertex labelled n
be the vertex v Since t is not produced, either v isg not
the lowest numbered vertex in its automorphism partition at
the previous step, or Vv is degree constrained to have
degree less than that of some vertex X. it the first is
true, then let y be the lowest numbered vertex in the
automorphisme partition of v Consider the tree t?
constructed by appending the vertex n to y rather than Ve
This tree is isomorrhic to t, yet has larger code. This is

a contradiction since t is canonicals

In the second case, let v be degree constrained so
that deg v € deg x for some vertex Xa Now x is numbered
before ve All ancestors of v and x are of the same degrees
at each height. Therefore,y, by increasing the degree of vy,
a larger code could be constructed for t by numbering v
before X This is true since the code will remain
unchanged until the point where the sons of v {or x) are tao
be listedy, and v has more sons than Xe Thus, t is not in

canonical form; contradictione
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Thereforey, no such t exists, and T = de

Each rooted tree is produced no more than once since
each tree can oply be produced by the addition of the

highest numbered vertexe. n

3+3.5 Planted irees

Recall that a planted tree is a rooted tree with an
ordering imposed on the adjacencies of the roots A simple
modificaticn of the rooted tree algorithms suffices ta
generate all planted treese. We will discuss briefly the
modifications ta our algorithm ( from 3¢3+s4)a In computing
the automorphism partition of an input tree, we disallow
automorphisms mappinz one adjacency of the roct onto
another. This is equivalent tc labelling wuniquely all
adjacencies of the roote In the computation of degree
classes, all wvertices at distance 1 from the root form a

singleton class.

Each subktree at height two will be a rooted tree in
canonical form, and thus the tree itself will be a planted

tree in cancnical forme

J.4 Ihe autoporpbisy grour of a tree
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It was noted earller that the automorphism group

(partiticn) of a tree could be computed in time linear in
the nunrher of verticese. Although this appears to be
straightforward in lizht of the existence of a linear tree
isomorphism algorithm, the details of such an algorithm
appear not to have Lteen published. Corneil has published
an autcmorphism partition algorithm for trees; we begin

our study there.
3.4e1 Ccrneil’s alagorithm

The algorithm in {Corneil68 ] takes a partition of the
vertex set, initially the partition induced by vertex
degrees, and produces successive refinements of this
partiticone. Fach reflnement is defined in terms of the
previous,y by placing two vertices (which are currently in
the same class) in different classes iff the set of classes
of the adjacent vertices of one is not the same as the set
of classes of adjacent vertices of the others This is done
until no finer partition is obtained (that is, fewer than n

times ).

This method, which is the basis of the more generatl
automorphism partition algorithm of [Corneil72], is not
sufficient for the general class of graphs; however,

Corneil has shown that it js sufficient for trees,y in that
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the finest partition produced is the automorphisn

partitiona. The algorithm operates in order n2 timee

The extension of this algorithm to rcocoted trees is
appealingly straightforward; all one is required to do is
place the root in a singleton <c¢lass at the start of the

success ive refinementse.

3.4.2 ITree isomorphism

Corneil?'s algorithm constitutes a solution to the tree
isomorphism gproblem. Cne is motivated to inquire whether
this is the best one can doe An alternative algorithm has
appeared in many disguises for tree isomorphism (for
example, [ Scoins68] and [Lederberct4])e A proof that this
tree isomorphism method is linear was given in
[ Hopcroft72]. We briefly discuss their algorithm herej

for details see Hopcroft and Tar.jan's worke.

One first uniquely roots the tree at a central vertex
in linear time. One then assligns heights from the root to
éach vertexe. Starting at the highest level, one wWorks
progressively down towards the rooty, numbering two vertices
at level kK the same iff they have the same degreey, and the

numbers assigned to their sons are the samees

Je4+3 Ihe putomorphism partition ¢f a tree
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wWe first present an example, demonstrating the
labelling produced by ttre algorithm cf [Hopcroft72], to

observe how the numbering is performede.

o{ 1) '
|
|

{1)do——0(1)
| o(1) Figure 2
i |
i |

(1)0=——=——p=—=—=0( 2)
(2)

When one further partitions according to height, one€

obtains:

o( 1)

|
I
(2)o—=o(1)
] o(1)
i ] Figure 3
| |
(4)o-~-—0o====0( 1)
1 (2)
|
i
|

(6 )0————0——==0o( 3)
(3)
This numbering produces the automorphism partition of the

tree for this example. One is led to ask if this 1is always

the casee. Many small examples refute this suspicione
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Consider, for example:
(1)o
|
|

{2)o—~=-0(1) Figure 4

Since the algorithm doesn't produce the antomorphisn
partition, what can we say about similarity? Let x, ¥ be
any two similar verticess They are at the same height, and
either x=y, or the father of x is similar to the father of

Yo

Starting with Hopcroft and Targjan's labelling (in
which vertex i has label 1;(i)), one relabels from the root
upwards; we call this the 1, lahellingy, in which vertex i
is given label 1,(i)e. The root is given the label 1. we
start processing at height 1. In processing height i4 two
vertices xy, y are given the same 1, label iff their fathers

have the same l, label and 1;(x) = 1;(y)se The lp labelling

isy by the above observationy the automorphism partitione.

This step is ilsplemented in a similar manner to the
iteraticn of the isomorphism algorithms At each height, a
bucket sort is done to place similar nodes in the same
classy, and then one assigns the same label to each label in

that classs, The bucket sort sorts label pairs of the form
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{(l3({x)y, 12(f)) where t is the father of x. Two vertices

will have the same label pair iff they are similar.

This computation is linear time; to see this, simply
observe that this added iteration performs the same sorts
as the firste This result extends to the linear time
computa tion of the automorphism partition of interval
graphs ([ Booth?77 ). The extension to planar graphs is
open; the reader interested should take note of the linear

time planar graph isomorphism algorithm ([Hopcroft74]).

3e4.4 fhe automorphism group gof a iree

In light of the previcus positive result, one is led
to inquire whe ther the automorphism group of a tree can
also be computed in linear time. This problem for graphs
is kXnown to Dbe polynomially equivalent to the graph
isomorphism problem ([ Read76b ])s For trees, however, the
automorphism partition algorithm can be extended to list

the generators of the automorphism groune

Having completed the 1l labelling, one proceeds as
follows. Perform a bucket sort of the 1 labels of the
vertices adjacent to the roote. For each class of vertices
with the same 1, label, select one representative, xy from
the classe For each other member of the class in turn,

output a permutation mapping the subtree rooted at x onto
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the subtree rooted at this vertexo. Delete the root from
the original tree, and retain only subtrees rooted at
vertices which were selected as representatives of their 1,
classs Reéeat this procedure recursively can each of the

retained subtrees in turne.

The output with the standard rerresentation of
permutations may be of greater than linear length
(consider, for examnle, an n vertex tree of height 1).
Instead, one Just oputputs that part of the permutation
which maps the subtrees, ignoring all vertices which are
left fixede At most n similarities will be shown; thus

the output is oY linear length in ne

Hencé the computation of the automorphism group of a
tree can be performed 1in time 1linear in the number of

vertices.

3¢5 Eree trees

Read and Scoins have independently observed that the
methods for rooted trees do not seem sufficient for free
trees ([ Read76t], [ Scoinsb68])s Scoins noted, however, that
central trees appear easy to generate from rooted trees and

that bicentral trees are not significantly more difficult.

3e5+1 Central ireecs
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For any tree of odd diameter, we can find a unique
vertex (the centre) at which to root the trees To generate
all central trees, it then suffices to generate all rooted
trees «c¢cf odd diameter whose centre is the root. We can
construct all rooted trees of given height by Read's
algorithme For each tree of given height hy we can
construct all central trees of radius h+tl by simply
appending a path of length ht2 to the root of the rooted
treey and then shifting the root of this tree +to its
centre. We constrain vertex addition so that no vertex is
added at height greater than t+t+l1, Read?!s method ensures
that if an addition is made in the original tree, the
result will ke discarded since it will not be canonical.
The rooted trees obtained by applying this modified
algorithm are exactly the central trees desirede. Note that
no duplicates will be produced since Read'’s method verifies

that each output graph is canonicales

Je5.2 Bicentral trees

We can generalise the above construction method to the
bicentral case. Given a rooted tree t of height hy a path
of length h+t+1l is appended to the root. The root of this
tree is that vertex In the bicentre which is on the 'new!?

pathe Cne then applies the moditied rooted tree algorithm
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to produce subtrees of height at most h, to produce all
bicentral treess. Ve must ensure, in order to avoid
isomorphic results, that the code of the suttree rooted at
the root but excepting t he subtree containing t is no
larger than the code of t. (Otherwisey the +tree will bpe

produced with the other vertex of the bicentre as the

root)e.

3453 Some negative results caopcerning the automorphisnm

partition

One wishes to consider an isomorph rejection algorithm

to generalise the rooted tree metho«ds without
distinguishing the central and bicentral treese. The
following inductive algorithm may be proposede. Let a

(free) tree be in canonical form if the labelling of the
vertices produces a maximal adjacency matrixe Let L{n-1)
be the list of all nonisomorphic trees in canonical form on

‘'n=1 verticese.

Set Lin) = o.
For each tree t in L{(n~-1) do

Compute the automorphism partition of the trees
Let 1 be the highest numhbered interior vertexe
For ¥ 2= 1 until n-1 do

1f kK is the lowest numbered vertex in its
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automorphism classy then let s = t; add the
vertex n to the adjacencies of vertex Kk, and

add s to Lin)e

One duplicate produced by this method is

o o o
I | |
| | |
e R ¢ e g s Satbde Badadnd o Figure 5
| |
| I
0 o

where the two numberings allowed by the algorithm are
3 8 9
] | |
! ] |
Qe = =T ——=1]}

] | Figure 6
5 11
and
11 7 3
| | |
| ] |
Gmmm §mm—m hmm = 2= =1 ~==4
| ]
| I
i0 5

This in itself does not appear to be an insurmountable
difficulty since it seems from experience that relatively
few noncanonical trees are producede. The major drawback of
this algorithm is that no linear procedure is kKknown for
placing a tree in this canonical form; the hest known

upper bound is C(n? ).
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3e5+.4 Locally restricted free trees

James and Rita have presented an algorithm for the

generaticn of trees with a given degree sequence { isesy

locally restricted irees) ([ Rina74a], [Riha74n ],
[James74]). An algorithm for producing all partitions of

the integer 2(n-1) into n parts must be supplied, such as

that in [Riha76 .

All such partitions are the degree seguence of some
graph ([Menon64]), and those that are uniquely realisable

as trees are characterised in [Hakimi63].

The method presented in [ Riha74a] is applicable to the
more general problem for graphse. The modification for
trees will be discussed after a brief overview of the
algorithm. James and Riha define an p—selection from a
partiticon as a selection of m elements from the integers in
the partifion (this is more often called a subcomposition,
esge fFarrell?t D). In assigning the edges from a vertex
of degree dy, d-selections of the remaining vertices in the
partiticn are chosen as the candidate adjacencies, and the
chosen entrles are decrementede. This 1Is done until the
partition is all zeroe. This selection of edges is a graphs
An isomorph elimination algorithm is then executed to

remove duplicates from the output Llist.
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The modification ftor trees is straightforward; one

simply ensures that no cycles are produced; the result is

certainly a tree.

Although James and Riha state "in this case (trees),
the output is jrredundapt! {({Riha74a])y they note in
[Riha74b] that an elimination algorithm is requireds
Computational experience shows that this elimination phase

is mandatorys

In summary, observe that the algorithm will produce
{possibly many) infeasible m—-selections, and further will
produce iscomorrhic cutput trees requiring eliminatione The
elimination method is a simple extension (see [Riha74b]) of
the autcmorghism partition algorithm discussed earlier.
The elirmination step is nonlinear, and therefore the method

does not agpear to be as effective as the alternate

methods.



Chaonter 4: Fxistential Generation

One might with Justification ask why existential
generation is relevant in a study of exhaustive techniques.

One motivation is that existential methods may suggest a

fruittul area of researchs. Another is that, since
existential methods solve part of their exhaustive
counterpart, we may be able to extend them to the

exhaustive casey, by a 'divide and conquer?! approache

We propose an interesting relation between these two
fields, which we call completenesse. This opens a new area

of study for exhaustive me thodse.

4«1 Some defipitions

We review the basic terminology of existential
generaticn metheds ([Boesch76]). Given a sequence of
integers, it is graphical iff it is the degree sequence of
some graph; multigrephjcal iff it is the degree sequence
of some multigraph,. A graphical seguence is upnigquely
realisable if there is exactly one graph (up to
iscmorphism) with that degree sequences The unigquely

—-54~—
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realisable sequences are characterised in [Huklmi63]; more
easily tested necessary and sutficient conditions for

unique realisability have since appeared ({L175],

[ Koren76]).

A yertex removal construction of a graph from a
sequence is one in which some entry, x, in the sequence, is
deleted, and x other entries are decremented by 1. This
corresponds to the assignment of a set of x adjacencies for
the deleted vertexe. The remaining sequence is dealt with
inductively. An edge removal algorithm is one in which two
entries in the sequence are decremented by one at each
step; these methods properly include the vertex removal

methodse.

Most of the problens discussed here we re first

introduced in the classic paper [Senior31].

4.2 Graphlcal seguepces

Two characterisations of graphical sequences appear in
the literaturee. The firast is a nonconstructive
characterisation due to Erdos and Gallai ([Erdoss0]). Ve

consider the second characterisation in more detaile.

4.2.1 Ihe characterigsation of Havel-Hakimi

A constructive theorem published in [Havel55], and
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independently in [Hakimi62], supplies the fundamental
algorittm of existential generatione Ve let dod = (d(1),
ceny d{n)) be an integer sequénce in nonascending ordere.
Let d' be a sequence of length n-—-1, obtained from d by
deleting the first entry, and then decrementing by 1 the
first d(1) entries in the resulting sequence. Hakimi
proves that d is graphical iff d' ise The sequence d' must
be reordered into nonascending order to inductively test jf
it is graphicale. The production of a realisation if the
sequence is graphical is done in the following waye Each
vertex has a tabel associated with ity S0 that in
reordering the sequencey the vertex labels remain with the
correct entrye. We proceed as follows given a seguence doe
Order d in nonascending order. Produce the sequence d?t
from d, and produce the edges between the label of the
vertex in position 1 with the vertices in positions 2
through d(1)+1., Repeat the algorithm on d* until Jd'| = 0.
1f at any stage a negative entry appears in the sequence,

then the original sequence is not graphical.
4,242 A geperalisation

One is led to ingquire whether an effective
generalisation of the Havel-Hakimi algorithm exists which
produces other (nonisomorphic) realisationss. The answer is

affirmative ([wang73 D)o The Havel—-Hakimi algorithm
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performs vertex removal on the entry which appears first in
the sequence. Yang and Kleitman have shown that at any
stepy any vertex can be removed in the following waye Let
J be an integer between 1 and ny and let d be an integer
sequences Create d! by first removing the Jj'th entry from
dy then decrementing the first d( j) elements in the

resulting sequence, and finally reordering the result.

The generalisation of Hakimi's result is that d is
graphical ift d? ise In this way s nonisomorphic

realisations may be created.

4+2+3 A glue for exhaustive techpigues

One may inquire whether whether every graph can be
produced by Wang and Xleitman's algorithm by Judicious

choice of the vertex to remove at each step.

The solution to this inguiry, which does not appear to
have been considered, is negative. One graph which cannot

be constructed by the algorithm is drawn here:
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This strong negative result lends credibility to the belief
that the algorithms for locally restricted graphs presented
in Chapter Six, especially that of [Farrell71l], are in some

sense the best that we know how to doe.

4«3 Conpectivity and reliable networks

The proklem which we consider in this section is one
of prime importance; it is without question the most
compelling motivation for the study of the generation of
graphse. The aim is to produce reliable networks, or in
graph theoretical terms, highly connected graphse. In an
article on the construction of reliabhle networks

({ Hakimi73]), Hakimi and Amin discuss the intimate relation
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between graph theore tic formulations and network

considerations for the probleme

4+3«1 Ihe hasic problem

Given a number of vertices ny, and a number of edges m,
what is the maximunm {(minimum) connectivity of any graph
with n vertices and m edges? These important questions

were first sclved in [Harary62] by the following two

theoremsa»

Theorem 13

The maximum connectivity of a graph with n vertices

and m edges is 0 If m € n-1, 2m/nd if m 2 n-1. o
Theorem 2:

The minimum connectivity of a gragh with n vertices

and m edzes is nfn—1)/2 - my or 0, whichever is largere.

i

The importance of these results to network design is
immediately apparent. They provide bounds on the
reliability (unreliability) of the networks which can be

constructed from gciven resourcess.

4e3.2 Ccnnectied graphs
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In the version of the problem usually stated, one
regstricts the class of graphs to a given degree sequencees
The Havel—-Hakimi algorithm specifies no constraint on
connectivitye. In the construction of networks, however, it

is mandatory that a network be connectede.

To construct a connected network on a given degree
segquence, one can employ Wang and Kleitman's algorithm with
the stipulation that the j chosen be one corresponding to
an vertex which has not yet heen selected as the end of an
edge, if there is onees In this way, vertices not yet in
the comgponent being constructed will be added to ite This

will preduce a connected network if one existse.

4.3.3 Biconnected granhs

In the design of networks, one major c¢riterion is

reliability, or redundancys If one path fails, it is
desirable to have an alternate pathe Thus, ne twork
designers have attempted over the years‘ to produce
algorithms which construct highly connected ne tworkss A

minimum reguirement for most network'applications is that

the network bhe 2—connectede. We consider that case here.

The problem of generating biconnected realisations of
a sequence 1is discussed in [Boesch74]. The existence

problem was solved by the following theorem due to Hakimi
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({Hakimi62])y and independently by Boesch and McHughe.

Theorem: An integer sequence d in nonascending crder
has a biconnec ted realisation iff
{1) d is eraphical, and
(2) d(n) 2 2, and
{3) the number of edges in the resulting graph is no
less than n—2+d(1). E |

4.3+4 J-copnected granhs

The existence gproblem for 3-connected realisations was
later solved in [Rac70]e Rao and Rao’s characterisation of
those sequences having 3-connected realisations is given by

the following theoreme.

Theorem? Let d be an integer sequence in nonascending
order. Then d has a J-connected realisation iff

(1) d{(n) 2 3, and

{2) d is graphical, and

{(3) the number of edges is at least n-4 + d(1) + d(2).,

| »]

43¢5 K—-canpnec ted graphs

The thrust of the research in this area is to produce
conditicns for the existence of k-connected recalisations

for arbitrary k. This is important to the network designer
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In that it answers a question of paramount importance:

what reliability can one expect +to attain given the

available degree sequence?

The characterisation of k—=connec ted Zraphs was
discovered independently by Hakimi ([Hakim174]). and Wang
and Kleitman ([ Wang73])e The results are of great interest
here since they are constructivé. The characterisation, as

formulated by Hakimi, is as followss.

Theorems

Let d be an integer sequence in nonascending orders
The sequence d is realisable as a k~connected graph ( for Kk
2 3) ife

(1) d is graphical, and

(2) k £ n-1, and

(3) d(n) 2 x, and

(4) the number of edges is at least ({(k-1)(n-1))/2 +

2d(1). 1

¥e will discuss the construction method in {Hakimi74 ],
rather than the construction of [Wang73]. The algorithm
proceeds as folloys. The vertex set for the graph to be
constructed is {?(1) | 0%i<n-1}. A graph Gi=(V,Ey) is
construc ted by the following three ruless

1. it i"J = 1'2' LI ) ‘-k/2-‘ mod n, and 0 < i’J < n~1, the
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edge (V(i),V(J)) € Elo

2¢ It Kk is odd, and j = i ¥+ Y n+1)/24 mod n and 0 < i £
tn/24 — 1, (v(idyv(j)) € Ez.
Je If k is oddy and n is odd, (v n/24), vin-1)) € E,,

n

The graph constructed in this way is Kk—connected
([ Hakimi69]). The segquence obtained by subtracting the
degrees 1in G; from those in G is graphical ([Hakimi74]).
The construction of the remainder of the graph can be done

by the Havel-Hakimi algorithme.

4436 Meximally gonpected graphs

The network designer is often concerned not simply
with attainingo sScme connectivity Ky but rather with
attaining t he max i mum connectivity achievable with the
given resourcess This problem was considered in

[ Hakimi 69}, and later in [ Hakimi74].

The problem of maximum connectivity with a given
degree sequence can be solved simply by finding the largest
K for which (by the theorem given) we can construct a
k=connected realisatione Hakimi?'s algorithm |is then

applied to give us such a real isatione

Yap states thaty in network designy a more restricted
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class is wusually requirede. Often, all nodes mus t be
similar; thus he has compiled a list of vertex transitive

graphs for n < 13 ([Yap73]).

4+3+7 k-edpe connpecied graphs

A characterisation of degree Sequences with k~edge
connected realisations is given in [ Edmondsé4 J. For k21,
the only criterion is that the lowest degree be at least ke
For k=1, the further stipulation required is that there be

at least n—1 edgese

4.4 Edge removal algorithms

The methods discussed to this point characterise the
degree sequence based on the effect of the removal of a
vertex on the seguences Boesch and Harary, in [Boesch76],
examine edge removal me thods. The main theorem of their

paper is as follows.

Theorem? let ¢4

(da(1), eeey din)) be an integer

sequence in nonascending orders Let j be an integer (1 € j
£ n)e Assume 0 < d(j) < ne Let d' be the sequence
obtained by decrementing the j'th element and the d{( j)'th

element not counting the j'the

Then d is graphical iff d?' is. En ]

Boesch and Harary show that some { seemingly intuitive)
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edge removal algori thms faile. The motivation for examining
edge removal me thods is agaln the anticipation of finding
exhaust ive methodse. {f¥f one could characterise which edges
may be deleted while still maintaining the graphical status
of the sequence (and which cannot)y, one could exhaustively
venerate all locally restricted graphs by simply deleting

all edges, in turn, which leave the seqguence graphicale

One would proceed inductively.

4.5 QOther parameter resirictions

The emphasis both in this thesis and in the literature
has been on connectivity considerationse. This is

understandable due to the practical applications.

Other rarameter restrictions have been investigated to
a minor extent, notably the work of {Xleitman73] on
characterising seguences which admit a realisation with a
k—factor. Another characterisation |is that of planar
graphical sequences, sequences which can te realised as a
planar graph ({chvatal69 ], [Schmeichel77]). Further
examples are the characterisation of sequences which admit
only realisations which are line graphs ([ Rao77]}), and the
partial characterisation of sequences for which all
realisations are hamiltonian ([Nash-Wwilliams70]). The

discussion of these is beyond the scope of this work, as
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the work inherent in discussing such a comprehensive

sub ject would truly require a volume o0f its owne

4.6 Switchipg and completepess

Ve next introduce a novel and largely unexplored
connection be tween the problems of existential and
exhaustive generatione Cne anticipates being able to
employ the powerful and well charted existential results,
introduced briefly here, in solving their exhaustive

counterparts.

4.6+1 Switching

The concept cf a switching in a araph has been
introduced in [ Eggleton75], as follows. Let ay hy c, d €
Vs {ayb)y, (cy,d) € F; (ayc)ly {byd) do not belong to E. A
switchipg of G is defined as deleting the edges (a,b) and
(cyd) and adding the edges {ay,c) and (by,d) to obtain G?%.

The degree sequence of G' and that of G are the sames

The concept of switching was earlier introduced in a
different setting in {Shaver73]. Shaver introduces the
concept Tfor matrices. Llet M be a {0,1} matrixe An
dnterchange on M is defined to be the transformation of any

2 by 2 submatrix
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or vice versa (where i < j3 k < 1) The interchange as a
switching on graphs is applied to the adjacency matrix of
the graph, with the caveat that isdek,l be distinct
integerse. 1f this constraint is not specified, the (more
general ) operation will be referred to as matrix switching.
Shaver employs this method of matrix switching in the
generaticn of block designse. The method is examined

further in [ Tompa75 J.

We introduce the notion of the coppleteness of an
operations let ryc be integer vectors of length n,; let
X(ryc) be the set of matrices over {0,1} for which the row
sum of row i is r(i) and the column sum of column j is
cl(j)e Further, let MS({M) be the closure of the matrix M
under the operation of matrix switching (the set producible
from M by matrix switching)e. Finally, let R(M) be the
vec tor of row sums, and C(M) the vector of column sums in

Mo

The operation M5 is complete if for any My MS({(M) =
X(R(M),C(M))e The operation S of switching is complete if

the clagsure of M under S is equal to that subset of



Existential Generation -—-68-

X(R(M)yC(M)) which are adjacency matricese.

If the operation § of switching is completey one can
exhaustively generate all locally restricted graphs in two
stepse. Cne employs an existential generation algorithm to
create ane graph Gs The closure under S of G is computed,
and this comprises the se t of all graphs with the same
degree sequence as Ge Ryser has shown that the operation

of matrix switching is complete by the following theorem.

Theorem: Given two matrices My and Mp, if R(M,;) =
R{M2) and C(My) = C{(M2) then there is a finite sequence of
matrix switchings which produce Mz from Mj.

Proof: ({ Ryser57 1))

The extenslon of this proof to (simple) switching on

graphs is immediates

4+6.2 Cgogpleteness

Ryser's proof is the extent of the known relation
between existential and exhaustive generationes The
resulting algorithm is not efficient, since expensive
isomorph elimination is requireds. Ve introduce another
operationy, cgnstraiped switching, on graphse. Let P be any
property which a grapbk may exhibit (k—connectivity,

k—-colourability, k—rparticity, et ceteral. The operation
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CS(G,P) produces ¢ If G does not have property P
otherwlse it produces those graphs which have property P

obtainable from G by a switchinge The set 7Y(d,P) is the

set of graphs with degree sequence d and property P

The operation CS is gcomplete for property P iff for
any graph G (having degree sequence d{(G)), the closure of G
under CS is equal to Y(d(G),P). Property P is gcomplete if

CS is ccrmplete for Fe

The importance of completeness is this: if property P
is complete, one can generate all locally restricted graphs
with property P if |Y(d(G),P)] is small, the generation

algoritkm will be practical.

As a concrete example, consider the problem of
generating all 15-connected graphs on 20 vertices., There
are relatively few such graphse. If CS were complete for
15-connectivity, we could curtail the computation so as to
generate (by constrained switching) and thus store only

15-connected graphse

With these powerful incentives in mind, we are led to
search for prroperties which are completes It comes as no
surprise, given the paucity of previous investigation, that
for for most properties, we do not know whether they are

complete or not.
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4+6.3 Negative results

We now examine some properties known not to be

completes,

One property which comes to mind is the property of
exact k-connectivity (G is exactly k—connected iff it it is
k—connected, but not (k+1)-connected)e. The first property
we examine is exact O-connectivity. The following two
graphs are both disconnected, but switchling constrained to

exact O-connectivity cannot produce one from the other:
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Exact l-connectivity provides another false instance?

Figure 9:
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A construction of counteramples for the general case of

exact k-connectivity has not been givens

Another progperty for which couapleteness fails is

2-colourability (or, equivalently, biparticity).

Figure 103

One can easily verify that any switch produces an odd cycle

in the graphe.
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The example furnished for exact O-connectivity alsgc
constitutes a counterexample to the instance in which P is
the property of having 2 componentse This can be
generalised in the obvious way to the property of having k

components.

4eb+4 Positive esults, condegctures, and suggestions for

further research

The negative results, once obtained, do not show the
non—existence of good algorithms; rather they show that
this me thod does not produce theme A positive result, on
the other hand, reveals an algorithm which may compare
favourably to known methodse. We discuss the few positive

results known, and settle on some conjectures for future

researche.

Many graph theoretic properties of a trivial nature
come to mind as candidates for completeness suc h as

regularity, a nd other properties determined by the degree

sequences

One dismisses such instances immediately since they
are in truth simply Ryser's theorems One should not
overlook the facty however, that eulerian graphs are
characterised Lty degree sequence and hence constitute an

important family on which the algorithm may be eoffectivea



Existential Generation -73-

Similarly, many degree sequences have only planar
realisa tions ([ Chvatalé69]), and thus there is a restriction

to planarity which is completee.

These trivial instances are insufficient to warrant
investigation cf completenesse. A nontrivial example is the
class of trees. The property of *heing a tree!? is
comple te, as shown by the following theorem and

observatione.

Theorem: Let T, and T be two trees, rcooted at
vertices of the same degree, and which have the same degree
sequences T can be produced from T» by a finite number of
switchese.

Proof: Let r; be the root of Ty, r2 the root of Tze Let
a{r) be the 1list of vertices adjacent to ry, listed
according to degrees let a(i,r) be the list of vertices at

height i frcme re.

Le t k

1}

Jalrygd)} = jalrz)]e. For 1%i€k, we do the
followinge let v be the i'th member of oao(ry)y, and let d =
deg(v)e. Tt the i*th member of a(rz) has degree d, then do
nothing this iteration; otherwise, select some vertex, =z,
of degree dy at helght no less than the height of vy and if
at the same height, after the i*th position in af{rz).

Switch the edges (vyry) and the edge from z to its father.
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At the end of the iterationy the degrees of the

vertices in a(r;) and al rp) agree in the first i positionse.

The next step proceeds simply by replacing a(24r3) for
alrz) and a(2,rg) for al ry)e. Thus in turn the vertices at
distance i are modified so that the j'th member of ali,r;)
has the same degree as the j'th member of a(i,rade. Upon
completion, the tree T, will have been modified into T; by
a finite number c¢f switches. It is crucial to note that
the vertex of degree d does exist, since the degree

sequences are the samee. a

This <can be extended to show that switching is
complete for the property of "being a tree', To produce a
finite set of switches for two arbitrary free trees tiy tp
with the same degree sequence, one simply chooses any
vertex v; Trom ti1y ancd then selects a vertex vy from t»
such that deglv;) = deglvy). Cne roots t;3 at vy, and tp at

vz and performs the algorithm above to produce ty from toe

The extension of this result to l-connectivity remains
an aopen questione The extension to k-connectivity is also
opene We have verified by hand that any minimal black on
fewer than eleven vertices (as 1listed in [Hobbs73])
produces all blocks with the same degree sSequence by

2=-connectivity constrained switchinge
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Other properties for which the question of
completeness renmains open are:

(i) planarity

(ii) hamilton;city

{(iii) pancyclicity

(iv) strong regularity

(v) k;colourablllty {(k 2 3)e
These are of interest to both the graph theorist and the
theoretician in algorithmic complexity. Althougzh there is
some evidence that k—connectivity and planarity are
complete, there is scant evidence for the others, In the
case of k-colouratility, in facty it seems likely that it
is false, since there is a counterexample for

2-colourability.

An inquiry into these questions is desirabley, since in
many cases the closure of a sSmall set under constrained
switching is feasible, wtereas a brute force backtrack
approach will prove intractablece. This inquiry is hampered
for two reasonse Firstly, Ryser's proof, although
constructive, makes no statements about graph propertiese.
Therefore, unless the property depends on degree sequence
aloney the switchings produced may pnot be legitimate under
constralined switchinge. Thisy unfortunately, does pnot show

that nc set of constrained switchlings exists, but rather
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that this set is not legitimately constrained; there may

be a set which is.

Secondly, although experimental verification can be
doney, one must for each property give a constructive method
ot producing a set of legitimate constrained switches from

one arbitrary graph tc another, as was done with treess

It is our sentiment that if further work is done,
algorithms based on comple teness will be widely usede. We
do not mean to suggest that there is no use for switching
methods at presente. Cne feasible technique is to generate
the closure of a single graph with the property requireds
Ify by enumeration of the classy this closure set is known
to be an exhaustive listing, terminate successfully.
Otherwise, find another graph with the desirert property
which is not in the closure sety, and generate its closure.
Take the unicen of the two sets and retests Eventually, the
algorithme must te rmina te in SUCC eSS This type of
algorithe has been employed with success in dealing with
block designs ([Gibbons76]), [Mathon77b). 1f the first
graph does not generate the exhaustive list, we are assured

that the graph property is not complete.



Chapter 5: Graph generation

In this chapter we consider one problem specifically
and in detail., The problem is a request for a list of all
nonisomcrphic graphs on n vertices., Some generalisations
of tree methods will be shown. It was intimated in the
fourth chapter that switching appears as the basis of an
inefficient exhaustive methode The impact of this
statement will be fully realised upon the introduction of

alternate techniquese.

This chapter shall be concerned also with the relation
between generation and enumeratione. This close
correspondence was noted g posteriori with trees in some
sense; the correspondence was noted after the generation

method was discovereds Here, we shall employ enumeration

results a prjori in producing generation methods.

The results of this examination shed new light on the
problem ¢f graph generation; nevertheless, the improvement

over existing algorithms is not asymptotically significante

51 Epuperationp

-7
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Perhaps the most fundamental question in graph theory
is: how many graphs are there? Tt is conceivable that the
second question might be: what do they all look like? 1In
light of the answer to the first question, only those with

great audacity and a computer persist in asking the seconde

Considering the difficulty of the second question
leads one to ask how we can determine the number of graphs
without producing a list. The techniques involved have
been called Y“counting without counting"; a less confusing
term might be "enumerating without gsenerating". Two
primary techniques employed in graph enumeration are the
method of generating functionsy and the Polya theory. Both
approaches are employed in a fundamentally nonconstructive
manneres The generating function approach often produces a
constructive counterparte. This relation is immediate in
the case of binary treess. The recurrence observation for
the Catalan npumbers was used in producing an algorithm for

generaticne.

The Polya theory, on the other hand, has not been
adapted to successful use as the foundation of generative
approachese. In preparation for possible attacks on the
problem via the Polya theory, we present a brief solutiocn

to the first question; for the details, the reader is
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advised to see [Harary73 ].

The vertex set V of the graphs to be enumerated has
cardinality ne The domain in Polya's theorem is defined to
be the set of 2—subsets of V. The range, or set of
colours, is {0,1}. The interpretation of the mappings as
graphs is as follows: if (x,y) is coloured 1 under the

mapy then (x,y) is an edge; 1if 0y, then it is a nonedgee.

1t remains to specify a group acting on the domaine
Ve first consider a trivial applications I1f every vertex
is distinguishable, we will produce labelled graphse. The
group on V in this case is the identity groupn; S0y
therefore, is the group on the domain D. The cycle index
of this group is x1%%C(n,2)e Substituting [R] = 2 for x,,
we are Iinformed that there are 2%%C(n,2) latelled pgraphs on
n vertices. This concurs with the simpler observation that
there are 2%%C{ny2) nonidentical {0,1} symmetric, zeroc

diagonal n by n matricese.

The case of unlabelled graphs is equally
stralghtforward. The agroup acting on V is the symmetric
group af order n, since each vertex is indistinguishable
from all otherse. The group on V induces a group acting on
Dy which Harary and Palmer call the pair groupes The

symmetric pair groups can he computed in a reasonable
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length of time} tables exist for n € 10, and formulae are
known for larger n ({Harary73])e Upon substitution of |R]
for each x(i)! the number of graphs is found; ity, instead,
the symbolic polynomial (1+x)%%*i is substituted for x(i),
the resulting polynomial gl x) can be interpreted in the
following way: the number of graphs with n vertices and
edges is the coefficient of x**m in g{x)e The symbolic
polynomial (1+x)**ji is obtained by assigning weights to the
elements of the rangee. Nonedges are given weight 13 edges
welight x. Thus a graph with m edges is counted in the

coefficient of x%*m.

We next trace the history of direct approaches to the
graph generation problem; the Polya theory will then be

consided as an approach to isomorph rejectione
5¢2 Ihe glassical algorithpm

In comtinatorial computing, generally the initial
algorithm investigated is brute force and employs 1iftle
knowledge of the theoretical foundations for the problems
Often the algoritrms are considered to be inefficient;
nevertheless, there are many NP-complete combinatorial
problems ([ Cook71]), {Rarp72]) which one suspects are not
solvable by good (polynomial) algorithmse. One generally

then adopts heuristic approachese. in this context, we
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intend by the term heuristic that the methods avail
themselves of some knowledge concerning the problem to

reduce the sizey if not the asymptotic complexity of the

problems

Resd has called these brute force solution me thods the
BF1 (Brute Force and [gndrance) algorithms. He has
graphically described them in the following quote: "These
are algorithms, devoid of any subtlety whatever, whict
simply Kkeep thumping the problem on the back until it

disgorges an answer® ([ Read70]).

The classical, brute force me thod remains
asymptotically the best known method of solutione Grapt
generation falls into this class of problems: although
powerful heuristic methods are known, no algorithm to date

is asymrtotically better than the brute force ones

5¢2+1 The algorithm

The classical algorithm is simply te generate all
nonidentical adjacency matrices (labelled graphs) and then
perform an isomorph elimination step, retaining only a
canonical example from each isomorphism classe The coding
for this elimination step is an expensive task; no known
algorithm exhibits 8 worst case of better than exponential

time conplexity ([Read76a ]y [Overton75 ], [Proskurowski74])e
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Moreover, the outrut 1list of exponential length must be
sorted prior to elimination, or a search must be performed
for each graph in tre liste. This further computation will
involve significant overhead in the implementatione. The
full importance of this ordering (search) step is realised
when one considers that the lists are of such a magnitude
that auxiliary computer storace devices must be usede. Cn
the largest machines available today, for a moderate number
of vertices (say 10 or 11)y the scrt or search with these

output lists will be the dominant coste.

5¢2.2 Heuristic Improvements

An inordinate amount of work is expended in the
performance of isomorphic computations with the classical
algorithme. Cne simple restatement of the me thod reduces
duplica tion substantially. The algorithm is restated as an
inductive algorithne. Every graph with gqt1 edges can be
produced from a canonical graph with g edges by a process
of changing scme nonedge to an edgeo. This operation,
augnentations can be applied in general in many ways to a
given graph on g edges. The resulting graphs may or may
not be canonical, and may or may not be duplicates aof

graphs already generatede.

The inductive implementation is then:
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Let L(0) = {the void graph on n vertices}e.
for v 3= 1 until C(ny2) do
set L{v) = 4d.
for each G in L(v-1) do
for each nonedge (x,y) of G do
set H = Ge
add the edge (xyy) to He.
add H to L(v)e.

perforn isomorph elimination on L(v).

In some sensey, this implementation is performing isomorph
rejection rather than elimination, since it 1is discarding
isomorphs during the computatione. This the initial brute
force algorithm did not doe Nevertheless, one correctly
views this method as C(ny2)-1 invocations of an algorithnm
employing isomorph eliminatione Isomorph rejection entails

the noncreation of duplicatess

One need only create the lists on at most rCine 2)/ 24
vertices. The remainder can be obtained by complementing
lists; the graphs in the list 1indexed by C{(ny2)-i are
obtained by coaplementing the graphs in the list indexed hy

i, for OﬁiSC(n,Q)-

The classical method is the appropriate generalisation

of the classical me thod for treess. The edges added in the
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tree algorithm required the addition of a vertex as well;
here that is not the casee The parallel excepting this one
fact is accurate, as one notes by examining the structure
of the algorithmse. The analysis of the complexity does not
'*carry cver', however. ¥e have generalised a tractable

method far trees to an intractable method for graphss.

5+2.3 Heap's method

Historically, the next development wa s to discard
temporarily +the classical algorithm and employ ansother
method which is also brute force, but, according to
{Heap72], is more efficient for practical casese. The
fundamental observation in the algorithm is that each grapkh
with n vertices and m edges can be produced from some graph
with n—-1 vertices and m—j edges by the addition of a vertex
of degree j adjacent to sSome j of the original verticese.
Given a list of all graphs on n-1 vertices, one produces
all graphs an n vertices by the following algorithm. The
list LAST(i) is the 1list of all graphs with n~-1 vertices
and i edgese

for e 1= 1 until C(n,2) do

set L(e) = g
for j 1= 0 until minle,n-1) do

for each grapt G in LAST(e~j) do

for each selection of j vertices from ¢ da
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let H = G

connect a new vertex to this selection
of j vertices in H.
add H to Lie)es

perform an isomorph elimination on L(e).

The algorithm ewmploys no intelligent heuristic, but

sufficed to generate the eight vertex graphs {[Heap72]).

Se2e¢4 An improvemepnt on Heap's method

Heap, in his pioneering papery overlooked an important
method of improving his algorithme Considery for a moment,
a sequence of graphs G(1)y G(2)y eeey G(n)=G in which
G(i+1) can be produced from G(i) by Heap's methods. In
general, there will be many such sequences of graphs
producing G which are valide At 1least one of these
sequences must satisfy the property that for each
production of G(i) from G(i-1), a vertex 1is added in the
producticen of G(i) which has minimal degree in G{(i)s Ve
know, then, that it suffices to examine only production
sequences in which the vertex added has minimal degree in
the result. We therefore modify Heap's algorithm to select
only graphs from LAST(e-,j) whose minimum degree is at least
J=1e We turther require that the added vertex of degree J

be connected to all vertices of degree j—1 in the original
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graphe

The modified version can be no worse than the original
Since it performs no computation that the original did not:
moreover, it does not perform much of the computation from
the original, and constitutes therefore an improvement.
Asymptotically, the ratio of the number of duplicates
produced by the modified version to that produced by Heap's

method tends to zerocs

S+2.5 Practigal rovements

For the sake of completeness we include the algorithm
of [ Baker74] employed in the generation of the nine vertex
graphss This implementation employed the clagssical
algorithm. Baker, Dewdney, and Szilard introduced two
practical improvements which made t he production of a

catalogue possibtle.

Both techniques are of minor importance here, since
they are intended to be employed only in the case of the 9
vertex graphse Tre first was the use of scatter storage
technigues tc search the list in the elimination phase.
The second technique was the inplementation of special

purpose coding algorithms.

S¢3 Read's algorithm
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The first major breakthrough in the generation problern
occurred with the investigation of a new class of
algorithmsy the orderly algorithms, in [Read76b]. The
structure of the classical algorithm involves an augmenting
operation which praeduces graphs in L{it+1) from those in
L{(i)y and a canonicity definition which enables one to
discard all but ‘the canonical representative for an
isomorphism classe. The implementation requires a coding
routine to place graphs in canonical form, and a routine to
search the output list to determine if this is the first
production of the graphoe. In the event that the graph is
found on the ocutput list, one copy must be discarded. This

graph Is called a losers
53+1 Ihe general method

Read's method adds one ingredient tc those required by
the classical algorithm. A list order is imposeds This
order is a total order on canonical formse. The algorithm
is defined to operate on vectors with a given definition of
an augmenting operationy a canonicity definition, and a
list order; the form of the algorithm is as follows:

1« Let I{i) be a list of canonical vectors which is

in list ordere. Let L(i*1) bhe initially empty.

2 For each vector in L(1i) in turny, apply the

augmenting operation to produce a set of vectors which
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are candidates for inclusion In the list L(it+1)e Each
vector produced is added to L(i+1l) iff it is in
.canonical form and its addition to L(i*1) would leave
the list in ordere.
There exist definitions of augmenting and canoniclity for
which this algorithm will produce incomplete listse.
Constraints must re stated to ensure that the algorithms
operate as desired,. Read has stated three conditions and
proved their sufficiency for correct operation of the
method; they arez
(1) Each canonical vector in L{i+1l) can be produced
from some canonical vector in L(i).
(2) An operation f is defined on canonical vectorses
The function f applied to a canonical vector of L{i+l1l)
has as result the first graph in L{(i) from which it
can be produced by the augmenting operationes The-
function £f must be weakly monotonic (if x precedes y
on L{it+1), then f{x) does not follow f(y) in L(i)).
{3) Wwhen the augmenting operation is applied to a
single vector in L{1i), the many vectors produced are
glven in list crdere.
If the conditions are satisfied, the search through the

output list is unnecessary.

SeJds2 Ihe applicatiop to graphs



Graph generation -89~

The application of orderly algorithms to the
generation of grarhs requires the existence of suitable
definitions of augmenting, canonlicity, and list order;
furthermsore, one is required to supply a vector
reﬁresentatlcn ot graphse Consider a graph G. We will
produce a vector with C(n,2) elements which represents the
graphs One simply lists row by row, commencing at the top,
the rows of the upper triangle of the adjacency matrix of
Ge In other words, one lists in order the elements above
the principal diagonal., This wvector formulation can be
generaliseds One can list all the elements in the upper
triangle in any order, with the stated provision that the
order selected is used for all graphse The row by row

formulation is called the gtapndard vector form.

Our canonicity definltion is that the
lexicographically largest vector in a given isomorphism
clagss is canonicals The list order chosen is8 the vector
relation Tgreater than?t, The augmenting operation on a
vector v produces many vectors which are the result of
changing some 0 to a i in the vectore This change is
performed from left to right, starting at +the 0 whict
immediately succeeds the rightmost 1 In the vectore. This
last stipulation in the definition is a major improvement

over the augmenting aoperation in the classical algorithm.
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1t can be enforced since if a zero preceding the rightmost
1 is changed, the result cannot satisfy the list order
requirement for L(itl1)e . These definitions satisfy the

three conditions ([ Kead76b ]).

The effectiveness of Read's algorithm in a practical
sense is clear; the search through the output lists is
removed, and fewer graphs are producede. One rnus t be
careful to avoid unreasonable conjectures heree. Placing a
vector representaticn of a graph in canonical form isy, in
general, NP-hard ({Hirschberg73 ). Verification of

canonicity is not Known to be easier than thise.

53+3 Heap's method revisited

One wishes to improve other methods by the intelligent
use of simklar observationses Heap's me t hod is
fundamentally different from Read's in one important sense
- it is a wvertex addition method rather than an edge
addition method. In Heap's method, one adds a vertex toc
create an n vertex graphe %e assume that in an
isplementa tion, the input graph will have its vertices
labelled with the integers {142y eeesy n—1}. The added

vertex will be labelled n.

We will attempt to revise Heap?s method so0o that, like

orderly methods, it must simply check a graph produced for
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canonicitye. Consider the vector form of a graph obtained
by 1listing the entries of the upper tfiangle of the
adjacency matrix of the graph column by column starting at
the left. We «call this the transvose stapndard forme
Conslder a graph G which is canonical in transpose standard
forme The deletion of the vertex labelled n and its
incident edges will produce an n-1 vertex graph G?; we
contend that the labelling of G' induced by its labelling
in G is canoplcal in transpose standard form. Assume to
the contrary that this labelling is not canonical} let the
transpose standard code of G!' be c. The vertex labelled n
in G can be placed adjacent to the vertices of G' to which
it was adjacent in G, but which have subsequently been
renumbered in placing G° in canonical forme The labelling
of G induced by this process produces a larger code for G
than the vector form produced by the original labelling of
Gy since G* is pot <canonical and ¢ is larger than the
vector form for GY as it was originally 1labelled. This
contradicts our assumption that G is in canonical form.

Therefore, G-{n} is canonical if G ise.

The implication of this observation is that all
canonical graphs on n vertices can be produced from some
canonical graph on n-1 verticese. We therefore modify

Heap?s algorithm to verify as a graph is produced that it
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is (transpose standard) canonicalj we write it onto the

output list iff it ise.

It is a depressing side effect tha t the suggested
minimal degree modifications are pnpo longer valid heree.
This is one instance where one as yet cannot have the best
of both worlds, Cne can elther reduce the number of output
graphs dramatically, or reduce the time investment per
graphe We have failedy, however, to produce a method which

benefits frcm both techniguess

5.4 Possible approaches via the Polya theory

The breakthrough supplied by Read'!s method motivates
one to design an efficient algorithm for non-canonicitye.
The penultimate goal, however, is to avoid the production

of non-cananical graphs al togzether.

Se4e1 Isomorph rejegtion

We direct our attention to the problem which we
suggest is the final aim of this work, that of never

producing a non-~canonical output graphe Prior to this
pointy, the methods discussed have been essentially two step
methods, one of productiony, and one of elimination. The

methods sought for here are isomorph rejection techniquese.

The only mention of efficient isomorph rejection in
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the li terature appears in enumeratione Although some
formulations of the Polya theoretic enumera;ion of graphs
do not employ true isomorph rejection, the enumeration can
be stated in such a way that rejection, rather than
elimination, is teing performede. We consider a formulatiaon
of the Polya theoretic enumeration of graphs as a starting
point for the examination of isomorph rejection in graph

generations

The enumeration of graphs on n vertices can be phrased
as follows. Let D be the set of unordered pairs of
elements frowm the set {1,23see9n} e« The range R is just the
set {0,1} The group A is the pair group of the symmetric
group of order ne. The isomorph rejection 1s implicitly

performed by the actions of the group A on De.

What is the group A with reference to D? We let the
elements of D be all coloured (mapped to) 0. The group A
is the automorphism group of the resulte. A constructive
irplementation of the Polya theoretic formulation existse
One initially flags all possible {0,1} vectors of length
C(ney2) 'unseen’, One repeatedly selects some unseen graph,
Gy and outputs it Fach permutation of A is applied to G,
and the resulting labelled graph 1s marked seens The
actlions of A are employed to MYreject" all possible

isomorphs of a graph when 1t is outpute. This process of
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selection, output, and "rejection'" |is repeated until all
graphs are marked scene Upon completion of this process,
one grarh from each isemorphism c¢lass will appear on the
output list. This procedure can bhe easily modified so that
the output graphs satisfy a given canonicity definitione
The major drawback of this method isy surprisingly, not one
of time. it isy, instead, one of storage. The entire groug
A 1is stored, as are 2%%C(ny2) flagse Some minor
improverents can he effected (tor example, storing just the
generators of the group); nevertheless the practical use

of this algocrithm is smalle.

One might reasonably hope for a method which enjoys
the best of both worlds, a refinement of Read's algorithm

employing isomorph rejectione

5¢4+.2 Autgomorphism xartitions

In the algorithm from the Polya theory, isomorph
"rejection™ is performed by remembering the actions of an
automorphism groupe. One might question our use of
“re ject ion", since the method is SO0 inefficient;
nevertheless, it never produces a graph which mus t be

tested for inclusion in the output liste.

In the quest for an efficient algorithm, we must

necessarily avoid use of such extravagant quantities of
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storages OUOne solution to this dilemma is to perforn

isaoamorph rejection piecewises The following technique
appears to be a reasonable approximation to the original
method; this modification is storage efficienty, however.
Cne computes the automorphism partition of each input code,
by any standard method (for example, see [Corneil72],
{ Mathon77a ], and [Dymond76]). One then performs the
augmenting oreration iftf for a given zero in the code, it
is leftmoat in its similarity class as well as satistying
the conditions in Read's methode The justification for
this rejection technique is that if two augmentations are

done in similar pasitions,; the results will be isomorphics

One is led to inquire whether, for general vector
forms cf graphs, this rejection is sufficient to Dbypass
elimination of duplicatese. The answer to this is negative,
as shown by the following graphe The nonedges e3 and e
are not siwmilary, but the effect of adding e; is isomorphic

to the effect of adding ep:
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We therefore restrict our attention to the standard vector
form for graphs. Cnce again one ingquires whether the
rejection is sufficient with the standard vector forme It
is unfortunate that the answer is again negative. The
duplicates arise precisely from not remembering enough

information to perform the required re_jectione.

Say xy z are indices of two zero positions in the same
similarity class in Gy and further say y is the index of a
zero in a different similarity class such that x<y<z.
Suppose that an augmenting operation is performed in
position y +to pfoduce a new graph He In Hy the nonedges
indexed by x and z are not necessarily similare. This would
allow the selection of positioﬁ z as a candidate for an
augmenting positione. The result of augmenting in position
z would be isomorphic to the result of augmenting in G in

position X and then in a position similar to ye



Graph generation -97-

Se4.3 Efficlent isomorph re.ectiop

One mus t recall some information from previous
automorghism partition computationse This can be done as
followse. Cne selects a position for augmentation as

beforee A rejection vector is output as well which has a 1
in those positions similar to a zero with smaller index in
the vector than the current augmenting index. This wvector
is output with each graphe. Having selected an augmenting
positiony one employs it +to augment iff +the rejection

vector does not have a 1 in the corresponding posi tione.

S5.4+.4 Guidelines for further work
The extent of the isomorph re,jection is massive: is
it gsufficient? The answer is once again negative.

Nevertheless, the duplicates produced by this method have
been found experimentally to violate simple canonicity
requirementse. The non—-canonicity algorithm of 5.5 which
is of peclynomial time complexlity, suffices to eliminate all
Known duplicates produced by this algorithm. This
observation is significant since it implies that a
polynomial elimination method may suffice to replace the
{currently vused) exponential routinese. One duplicate

produced by the method is3
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where two numberings produced by the algorithm are:l

1 5
. . . Figure 13a
2.“‘.3 6".40'.7
and
5 2
* e *
. - . Figure 13b
6...‘7 4‘..;10..3

The algorithm may rproduce a duplicate which fails the
non—cancnicity teste We know of no such graphes The
polynomial elimination method can be replaced by a degree
constraining algorithm as was used for rooted trees; such

an algorithm would preprocess the graphe

Further research is required to determine whether
duplica tes are produced by this glgorithm‘ If no
duplicates are produced, the method is the first which
employs isomorgh rejection solely in the generation of
graphse In rracticey, computing automorphism partitions is
approximately as difficult as verifying canonicity. The

number of duplicates requiring elimination is drastically
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reduced. The net result is an improved method, whether or

not elirmination is required.

S.4.5 Ilsomorph reljection and Heap's method
We turn next to Heap's method to examine the
feasibility of iscomorph rejectione The application of

isomorph rejection In vertex addition methods such as
Heap's has been considered by McKay ([McKay77]). He
modifies Heap's method to produce graphs with maximum
degree de. This is done by adding a vertex of degree d in
all possible ways to (n-1l)-vertex graphs such that the

largest degree in the result is d.

Iscmorph rejection is performed by finding the
automorphism partition of the {n—1)-vertex graph, and only
performing vertex addition in nonsimilar wayse. McKay shows
that this does not suffice to prevent production of
duplicates. He therefore computes the automorphism
partition of each output graph as well, and writes it on
the output list iff the added vertex is in the canonically
first automorphism classs In this wayy no duplicates are

produced.

The elimination step is remarkably like the
verification of canonicity in Read'!s methods Once againg

the rejection {is powerful, but does not make the
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elimination unnecessary.

55 Notes concerning implementation

The routines reguired  are standard, available
programsy except for some heuristic improvements to gquickly
verify non—canonicity “"most of the time", We once again
restrict ourselves to standard canonical forms, and examine
rules which, in yolynomial time, will test a code for
canoniclity, and will ysually succeed in showing the code to

be non—canonical {if it is.

The first test proposed is simply to ensure that the
vertex labelled 1 has maximal degree Ke If, to the
contrary, vertex 1 has degree 1 < ky then there is a larger
code prefixed by k 1's {(which is larger than the current
code prefixed by 1 1t'g), Thus the code is canonlcal only

if the vertex numbered 1 has maximal degreee.

We next define the prjority of a vertex I with respect

to another vertex J as followse. Let pl{i,j)

(2%%{n=1))%a(1) + ce0 + (2%%( n-j))*al j) where a(k) is 1 if
the edge (iyk) 1is present, 0 otherwise. The <code is
canonical only if for all 2 £ j < vl < v2 £ n,y, p(vl,j) 2

p{v2y.ide If this were not the case, then there would exist

vliy,v2 whose interchange would produce a larger codes
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These necessary conditions are polynomial tests; they
do not sutfice to always show non—canonicity, but do

exclude the vast ma,jority of non-canonical output graphs.



Chapter 63 Graphs restricted to given parameters

In applications regquiring catalogues, the user is
often interested only in graphs with given parameter
valuese. The network analyst may be interested only in
k-connected pgraphs, and the chemist only in graphs with a
given degree sequences The electronics engineer may be

interested in planar graphs as layouts for a circuite. in

the timetakling of lectures and examinations, the
university administrator will be concerned with
k-colcurable graphis. Even if the particular restricted

class of concern is not studied here, it is likely to fall
into a similar class with one of the methods introduced.
in preference to presenting a complete study of restricted

classes, we present a potpourri of problems with dissimilar

solutionse.

There is a further importance to this investigation.
We earlier observed that the generalisation of techniques
for restricted classes furnish valuable clues to more
general methodse. There is a dual observation to this:
often a general method can be specialised to the probhlem at

-102-
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hande

v

The generation of related combinatorial structures
will be considereds A few of the examples mentioned will
be digraphsy multigraphs, set systems, hypergraphs, set
packings, and block designss Read¥s method is shown to be
sufficiently general to deal with most of these
configurationse. EFach application of Read?!s method <can be

improved via isomorph rejectione.

6e1 Locally restricted graphs

In preparation for a presentation of methods for
locally restricted graphs, we make note o0f an obvious
ftgeneralisation? of these techniques to the problem of
listing all n vertex graphs. The production of possible
degree sequences of graphs with n vertices and m edges is
performed by listing all partitions of the integer 2m into
n parts, with no part larger fhan n-1le. Ve may require that
the components of each partition are listed in nonascending
order. An algorithm for this aprears in [Rina76]. Each
partition thus generated is tested by the Havel-Hakimi
algorithme If it is not graphical, it is discarded from
the liste. Each remaining partition has some realisation as
a graphs An algori thm to generate locally restricted

graphs is then invoked with each remaining partition as the
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degree sequences In this way, all graphs with n vertices

will be generatede

6s1e1 Farrell's mpethod

The first methcd known to us which attempted to solve
the prcblem of generation of locally restricted graphs
appeared in [ Farrell?71l]. The method is Iin sSome ways
similar to the revised version of Heap?'s method. The main
difference is that, at each stepy, rather than adding
vertices from a range of degrees, a vertex of specifled
degree is addeds This is implemented as followse. Let d be
the degree of the vertex numbered 1. For each
d-subcomposition of the remaining vertex partition in turn,
connect vertex 1 to the d wvertices corresponding to the
lowest numbered vertices in the classes of the partition
represented in the subcompositione. The remainder of the
graph is censtruc ted recursivelye. This selection of
subcompcsitions operates with a partitioning imposed on the
verticess. Two vertices are in the same class iff they have
the same degree and are connected to the same set of

vertices already placed in the graphe

612 Farrell's method -- an example

Farrell's algorithm is more complex than earlier

methods . We therefore supply illustrative example.
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Consider the degree sequence (343524291,1). This sequence
is graphical. At the first step, find the
3=-subcomposi tions of (3,2,2y1,1)e They are:

(342,2)

(3,2,1)

(3,1,1)

(245241)

(2,1,1)
Fach of these will be selected in turn as candidate
adjacencies for the first vertexe. ¥We consider here the
case when the first subcomposition (3,2,2) is selected.
The remaining sequence after adding these three edgpes will
be (2,1%41%,1,1)e The vertices marked 1! are distinct from
those marked 1 since they are connected to the vertex
already added We now find the 2=-subcompositions af
{1*',1%',1,1)¢e They are:

(1%,1')

(1'%, 1)

{1,1)
Selecting each of these in turn, we construct three graphs

with labels (2,17,1%,1,1)s They are:
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The addition of the vertex of degree J in the
appropriate way produces 3 of the praphs with the sequence
(393924241 ,1) The vertex yet to be added will be added to
the graprhs drawn so that I1ts adjacencies will be the
vertices labelled 2, 17, and 1%'. When each subcomposition
of the coriginal sequence is processed in this way, all

graphs on that degree seguence are producedes

6+1+3 Farrell's mettod —— improvements

We consider a canonical form for graphs which is
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particularly suited to the generation of locally restricted
graphs,. Define a numbering of the vertices to be canonical
ife the induced vector form is maximal subject to the
constraint that vertices of higher degree are numbered

before vertices of lower degreee.

Examination of Farrell?'!s algorithm shows that at least
one production of a graph gives the graph in this canonical
forme This thecrem appears as a corollary to a more

general result presented in the next sections

We can therefore modify the algorithm as follows.
Verify as a graph is generated that it is canonicalj write
it on the output list iff it ise. We arain bypass the
searches in output listsa. Ve cany moreover, modify the
met hod to avoid the production of clearly non—-canonical
graphse. Wwe define a sjigpnal of non—-canonicity as an
instance of two vertices x, Yy with the same degree where x
is numbered before yy, but in the leftmost position of a
vertex to which ane of Xy ¥ is not adjacenty then y is
adjacenty, and x non—adjacents. In this event, if y were
numbered before Xy a larger code would resulte. We
therefore ensure in the operation of the algorithm that
when a signal is encountered, this branch of the

computation is discardeds.
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Read' s observations have been appropriately
generalised to handle a new class of problems; verifying

canonicity agpears to be a general concept indeede.
6:1.4 A pew method

Farrell?s method has one important difference from the
direct methods. The difference is that input lists are not
supplied; all graphs are created from scratchs One
important observation is that after i vertex additions, the
partial graph created will, in succeeding vertex additions,
spawn many graphse Observe that if the partial graph
crea ted is not in canonical form, all graphs derived frow
it will fail to be canonical., One should therefore veritfy

the canonicity of partial results as well.

A modification of Farrell?s method to deal with this
additional observation has departed to such a great extent

from the originaly, that it can rightfully be considered a

new methcd.

The verification of partial canonicity has been
employed in other generation problens, for example the

generation of the six vertex digraphs ([ Read77]).

we have shown that the standard canonical form,

appropriately modified, allowed the implementation of an
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orderly version ot Farrell?s methode We will generalise
this theorem to a family of vector formsa. Define a partial
order on the set of all 2-subsets of {132y, eeey n},
satisfying:

(1) (14J) precedes (i.k) if j < k, and

(2) (i,k%) precedes ( jyk) if 1 < jeo
We restrict ourselves +to vector forms in which the entries
of the upper triangle of the adjacency matrix are listed in
the canonical form in an order which violates neither rule
for the partial order, This relaxes the earlier
restriction to specific vector formse It includes both the
standard and transpose standard forme. Having selected an
orderingy, we define canonicity as maximality within
isomorphism class subject to the degree conditions; to
avoid ambiguity, we refer to vectors in this canonical forns

as b-canonicale.

Theorem: Each b-canonical graph with degree sequence d is

produced by the algorithm.

Proof:

iet G be a labelled graph with degree sequence d which
the algorithm fails to produce. Then there exist i < j < k
such that

(1) deg J = deg k,y, and
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{(2) In Gy (iysk) is an edge but (i,,j) is not, and
{1) When adding vertex iy the ‘1abels of the
remaining vertices are 1(i*+1); ooy 1(n)e. Then
Wiy = (k).

if no such i, Jjy and k existy the graph is produced by the

algorithm,

Since 1(j) = H{x), they are adjacent to the same
subset ot {ly eeey i—-1} in the partial graph created so
far; they are gimilar as a result. I£f edge (i,.Jj) were
selected in preference.to (iyk)y, then
(1) the partial graph created by the addition
of (i,Jj) 1is isomorphic to the partial graph
created by the addition of (isk)y since (i,j)
and (iysk) are similar, and
{2) a larger code results since (1,.j) precedes
(iyk) in the partial order, and
(3) after addition of vertex iy the labelling
L' (i%+2)y 269y 1'(n) to be used in the addition
of vertex i*l is the same whether J or K is
selected,.

We have shown a larger code isomorphic to G, and thus G is

not b-canonicale. This establishes the theorems o

One cannot anticipate a more general resulty since the

constraints on the partial order are required in the proofe
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6e1+5 Jomes and Ribae's algorithm

An independent lnvestigaflqn of generation of locally
restricted graphs was undertaken by James and Riha
{({Riha74a])» An ipplementation of their method has
appeared in the literature {({James76])s Their method was a
rediscovery of Faerelll?!s algorithm; thus we do not repeat

the description.

6.1.6 DENDRAL

Generation of locally restricted graphs has also been
considered by chemists for use in a heuristic progranmn to
aid the chemist in molecular analysis; this program is
DENDRAL ([ Feigenbaum711]). A veritable flood of papers
concerning molecule generation has appeared relating to
this application. Other molecule generation methods,
besides DENTRAL, have also appeared, but they are not

formulated by a graph theoretic approach (see [Lynch71 ]).

Ve present a quick index to the work on DENDRAL, and
mention the design of the methods involvede. The generation
algorithms are discussed in {Brown74a], [Brown74b],
[Carhart75]), and [ Sridharan?3]; an excellent overview of
them afppears in [Smith74]. The work in [RBuchanan74] is

concerned with applying the results of generation methods
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to a rrogram for molecular analysise. Another paper,
{Sridharan74], is a catalogue produced by +the generation
methods which extended earlier catalogues of cubic graphs
in the 1literature ({ Balaban66 ], [Balaban70a }). This
catalogue has been superseded by the appearance of larger

catalogues in [ Bussemaker76], and [Faradzev76 J.

More work has appeared in the chemical literatures.
The work in [Sheikh70] and [Masinter74a] is concerned with
generation of special subclasses of molecules. in
{ Masinter74n], the LENDRAL program has first been concerned
with the exploi ta tion of molecular symmetrye. Other
chemists have employed DENDRAL as the starting point for

chemical based infromation systems ([Kudo751).

The methods employed are extremely specialiseds. The
fundamental struc ture of the algorithms derive from the
tree generator of [ lederberz6d4]. This generator produced,
via a technique requiring isomorph elimination, a list of
the saturated hydrocarbons. The technique was generalised
to simple cyclic graphs in [ Lederbergés ]. The current
algorithe involves a two sStep generation phases The
underlying tree of the molecule is generated (in graph
theoretical terms, this is the block—-cutvertex tree of the
molecule?s underlying graph). A superatom,y, or block with

vertices marked as having unused adjacencies, is then used
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to replace a vertex of the tree. This is done in all
possible ways; the result is a catalogue of graphs with
given blocks and block—cutvertex tree. The generators make
selections which guarantee that the results have a given

degree seguence.

The methods involve many hidden assumptions which are
true for molecules, but not true for graphs in generale.
Examples of this are restricted ring size and al ternating

bonds in ringse

6«2 Connected apd K-copnected graphs

A common misconception of the novice is to imazine
that there are only connected graphse. There is some
elegance in this view; in applications to networks and
chemistryy, the concern 1s clearly directed to connected
graphse Disconnec ted graphs can be viewed as a set of
connected graphse There is ample reason from an
applications standpoint to exclude disconnected graphs from

cataloguese.

We therefore cansider generation methods for connected

garaphse.

6+2.1 Algorithms based opn the classigcal method

The generation of all connected graphs can he achieved
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by applying the classicatl algorithm with as initial list
the list L(n-1) of the trees on n vertices. This initial
list is produced by the tree methodse. The verification
that all connected asraphs are produced by this method can
be seen ty observing that every connec ted graph can be
obtained by a finite number of augmentations from a

spanning tree of the graphe

622.2 Algorjthms based op Kead's metbhod

The simplicity of t he extension of the classical
method does not carry over to Read?s methode Cons ider for
example the graph:

O
|
|
o——0——0——0— -0
| R
I
o~—0—"™Q O
| Figure 15
|

e}

There is no (standard canonical) augmentation which is

legitimate by Read'!s constraints which produces this graph

from a tree.

6023 _Eggg dgletlgn

The inductive algorithms introduced have all employed

edge or vertex augmentations We consider here an inductive
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edge deletion me thod.

Fach connec ted graph can be groduced from sSome
connected graph with one more edge by the deletion of an
edges We can therefore start with the comple te graph, and
inductively delete edges to produce graphs. As a graph is
producedy one checks that it is connected, and writes it on

the output list iff it ise

Read'!s method can be employed as wells Instead of
augmentation, we use deletion constrained so that only 1ts
to the left of the leftmost 0 in the code are changed to
0%s. Cne agaln tests each output graph for connectedness,

as before.

6.2+4 Algorithpms based on locally restricted graphs

One simple modification of the locally restricted
generators is tc first generate only sequences which have
connected realisations (see [Hakimi63]), and then generate
praphs with those sequencés, discarding those which are
disconnectede. The method of James and Riha provides a
component counting facilitys therefore, the number of
components in an output graph is known as it is produced,
and very Llittle extra labour is involved in removing
disconnected results. The relative improvement is not as

substantial as with the classical methode.
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6«2.5 K=connected graphs

No specialisation of the classical method or Read's
method is known which generates only k-connected graphs.
The <classical algorithm can be  used, given a list of
minirmally k-connected graphss Although some sSmall
catalogues of minimally k-connected graphs are available
(for example, { Hobbs73]), seneral techniques to produce
these catalcgues are not kKnowne The edge deletion method
is appropriate, however; every connectivity test is

replaced by a k-connectivity test.

The locally restricted generators can Dbe used to
operate with deagree sequences in which the minimal degree
is Ke Infeasible degree sequences will be rejected; on
the other hand, graphs which are not k—-connected will bpe
produced from degree sequences which do have gome

K—-connected realisations

In an application to physical chemistry, the case of
2-connectivity has been considered. . Many essentially brute
force methods based on the classical algorithm have been

discussed in the literature ({ Sykes6b ], [Heapbs ],

[ Domb67 ])e

An imrrovement on these, which appeared in
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[Proskurowski73]y deserves a more detailed introductions

In addition to the usual operation of edge augmentation,

Proskurowski introduces an operation called yertex
splittina, Splitting a vertex v entails dividing the

adjacencies of v into two nonempty classes a; and aze One
replaces v with two adjacent vertices, v; and v} vi is
then made adjacent to the vertices of aj;y and similarly v,
with aze Proskurowski proves that any 2-connected graph
can be produced by vertex splitting and edge augmentation
from K3s The more iInteresting result is that all graphs
produced are 2-connec ted; unfortunately, an isomorph

elimination step is still required.

Tutte has proposed a similar inductive method for
3-connec ted graphs which produces no graphs which are not
3-connected ([ Tuttebl}). He employs edge augmentation and
vertex splittinge. The vertex splitting operation is here
constrained so that only vertices of degree at least four
are split, and the two groups a3 and aj bocth contain at
least two verticess The only 3-connected graphs not
produced by these operations are wheels: these can be

easily added to complete the listse.

In a discussion of Tutte's algorithm, Weinberyg
suggests that one may employ automorphism partition

information to avoid the production of duplicatess he does
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not propose a me thod for doing this, however

([Weinberg?l]).

We recall for a moment the analysis in 4464, in which
we observed that completeness for K-connectivity is
important. If X~connectivity is complete, one can generate
k—connected graphs without generating lists of graphs whict
are not k—-connecteds This would offer a clear improvement

over existing techniquesa.

63 Plapar graphs

The structure of planar graphs was investigated by
considering generation schema for their production
({ Barnette73], [Barnette74], and references therein)e. We
are concerned with these gzZeneration methods not in the
context originally set forth, but rather to exhibit a class
of methods for generation, and to introduce some topologic

considerations into this studye.

The topology of the generaticn method is fundamental:
one deals with planar maps instead of the more abstract
defilniticn of graphse. The work is concerned with
3-connected graphs; as a result, the interpretation of a
araph as a unique map 1is well defined ({¥Wnitney33]).
Barnette introduces three operations on planar mapss The

three operations are splitting a face, subdividing a
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hexagon, and double face splitting. We state here only the
main result. Barnette shows that these operations suffice

to generate the planar 4—-connected graphse.

Cur concern with this method is not with the practical
details or the operations; rather we consider the format
of the methode. Many similarities exist with the method of
constrained switchinge The algorithm here employs an
operatlon set which is constrained to the structures of

intereste,

6.4 Graphs with a givep subgraph

When first considering a method for generatlon of
graphs with given subgraphs, one does not fully comprehend
the generality of such a method; this is wusually due to
one's predilection to fix the sort of subgraph of interest
first, We examine instead a fully general method in which

one sta tes the subgraph of interest as an input parameters.

The method is a constrained version of Read's method.
In the description of Read's method given earlier, we
adopted a standard vector form for graphSe There are many
different forms which we did not introduce at that point:

we shall now introduce a comprehensive definitione

Let EP(n) = [(iy.j) | 1£i<jSn} be the set of possible
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edges of a graph whose vertex set is {142y eeeyn} e A
vector crder is an arrangement VQ of the set EP., A yector
represeptation or form of a graph G is a binary vector, in

which the i'th component is 1 1iff the edpge indexed by i in

VO is present in G There are C(ny2)! vector orders.

Read’s method cperates independently of the vector
order chosen; we may therefore select an arbitrary vector
‘order and apply Read?s mettode There arises no substantial
problem in the canonicity definition: each vector which is
maximal in its isomorphism <class is canonicals. The
canonical labellings of the graph will differ for different
vector orderse. This will cause no difficulties as long as

a given vector order is understood throughout.

These observations will be wused to implement our
general approachs We begin by examining an example. The
subgraph which we choose is a Hamilton pathe Ve consider a
subset of the possible vector orders, in which every
possible edge of the form (i14.i%+1) is listed before all
possible edges not of this forme. This vector order was
introduced in [ Hirschherg73]e. The number of possible
vector orders remains largey, (n—=1)1{C(ny2)-n+l1)l, One
supplies as initial list Jjust the vector consisting of n-1
initial 1's, followed by all O's, This vector is a

Hamilton path in canonical form in the vector order., The
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application of Read®®s method to this vector will produce
all graphs with a Hamilton pathe The fundamental
observation is that no graph will be 1left out due to

problems with list ordering, as would be the case with the

standard vector order.

In spite of this important speclalisation of Read?'s
method, it is desirable to exhibit a specialisation which
avoids the necessity of choosing appropriate vector orders
for the problem at hands ¥e now propose a specialisation
which orerates in the correct manner independent of the

subgraph selecteds

We are given a subgraph S which must appear in each
graph genera ted. Assume that S has n vertices, since {if it
has fewer, we can add isolated vertices to make up Ne
First list the edges of S, e{1)yeseye(a)dy in any order.
Define a vector order O S) of EP induced by S in which tte
i'th element in C(S) is the possible edge e(i) for 1£i<q.
The remaining elements of EP are ordered in any convenient
fashione Input as initial vector the vector prefixed by g
1's followed by 0O%'se. The invocation of Read'®s method using
this initial graph (which is, after all, just S) and the

vec tor corder O(S) will produce all graphs with subgraph S.

The method can be applied directly to the generation
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of Hami ltonian and pancyclic graphs, graphs with a cligue

of given sizey, or graphs with a specified spanning treece.

One further problem included in this general class is
to produce all graphs wjthout a given subgraphe. Consider
the method for generating 2ll graphs with a subgraph S We
again irtreduce the order O(S). Input an initial vector of
all O's. We apply Read's algorithm with one proviso: if
the graph produced has q initial i's, discard it without
verifyling canonicitye The justification for this is plain
enough? a graph has S as a subgraph iff its representation

in O(S8) commences with g initial 1's,

One desirable extension would be to show how to
generate graphes without any subgraph from a set of graphs,
or without a home omorph of a given graph as a subgraphe.

This appears to be a tarder probleme.

6+5 k-colourable graphs

wWe consider an example of a problem for which no
efficient specialisation is Knowne A few aspects of the
generation of k=caoalourable graphs are instructive. Nao
degree sequence conditions are known to existe A relatian
with the subgraph methods is infeasible; those methods are
concerned with graphs with and without a given single

subgraph, net those without a given set of subgraphs {(or,
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more preclisely, homeomorphs of a given graph)e. The
classical method and Read'!s method of graph generation do

not at first appear to be relevante.

A trivial theorem <concerning colourability can be
emp loyed to our benefit here. 1f a graphy Gy is not
k-colourabley no augmentation of C can be k-colourable. An
inefficient method, but nevertheless the best available,
can then be stated. One generates graphs in the usual way;
as each graph is produced, one verifies that it is

k-colourable prior to its acceptances

The major stumbling block with this method is that the
verification of k—-colourability is NP-complete ({Cooxk71],
[Karp72]}. This will consume much time beyond the
elimination to bhe performed. This test can be performed
efficiently when k=23 the class generated will then be the

bipartite graphse

6.6 Other progblems

We have Just scratched the surfaces The examples were
selected as representative of problems in the area. A few
additional problems are mentioned here, wlth appropriate

notes for further studye.

Cne generation problem is of special concern to an
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open problem in graph theory, the Reconstruction Conjecture
([ Bondy76]). The generation problem is the production of
graphs with a given spectrum ( set of eigenvalues of the
ad jacency patrix). The spectrum of a graph is
reconstructibie ({Tutte76])e 1If a generation procedure for
graphs with given gspectrum exists, one could generate
relatively small sets and verify that their subgraphs are
nonisomorphic, to verify that there is noc counterexample
with that spectrume A useful theoretical byproduct of this
would be a characterisation of which sequences are the
spectrun of some graph, and which are the spectrum of
exactly one (for lack of a previous definition, we term

these spectral and ugispectral sequences, respectively).

Another class which has recently caused much interest
(and dismay) for the designers ot graph isomorphisn
algorithms is the class of strcengly regular graphs
([Corneil76]). These graphs have proven in the past to be
difficult cases for known isomorphism algorithms
({ Corneil?2], [ Mathon77a ], [Dymond76 ]). There are
existential me thods for strongly regular graphs. Efficient
exhaustive generation me thods have eluded detection to this
date} a recent survey of resul ts appears in

[Weisfeiler76].

The flavour of the work done cannot be adeguately
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depicted without mentioning some related graph generation
methodse Some extremely specialised classes of graphs are
mentioned to allow the reader to infer the scope and
specialisation in the study of  generation me thods. One
such method is employed to generate the concave vertex
welghted trees, a special type of labelled tree which finds
application in circuit design ([ Tapia67]); another is the
generaticon of minimal triangle graphs, graphs which when
drawn in the plane form a diagram of superimposed diagrams

of triangles ([ Bowen67 ])«

One final graph generation method in the literature is
an excursion into recreational mathematicss In [Teh65],
Teh and Jha describe many techniques which, given one or
two regular graphs, produce some larger graphe Their
methods are existential onlys moreover, their criterion
for construction is not that the graphs be in any way
useful in an applications sensee Their aimy in fact, is
Just t he opposi te: they generate graphs for their

aesthetic value onlye.

¥e conclude ocur examination of graphs on this light

notee

6.7 Qther graphbical stiructures

In this sectiony, we mention extensions of Read's
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method to digraphs and mul tigraphs; t hese extensions have
heen ignored until this point s0 as to maintain a

manageable scope for this study.
6.7+1 Directed graphs 1

An gorjented graph is a directed graph in which the
presence of an edge (x,y) implies the absence of the edge
(yex)e We mention oriented graphs as an instructive
example of the generation method for digraphs with a given
subgraphe Cne simply generates all digraphs witliout the

(unique ) two vertex digraph with two arcs as a subgraphe.
6742 Djrected grapbs Ii

The generation of digraphs, unlike criented graphs,
has appeared in the literature ([ Read76b]). The problem
has attracted slight practical attention owing primarily to
the astrononrnic growth of the number of digraphse As an
illustration of this, the generation of the silx wvertex
digraphs, which number approximately 1.5 x 10°%, was
recently undertaken ([ Read77]). The extension of this to
the seven vertex digraphs would entail the production of a

list of 8.8 x 108 digraphs ({Harary73]).

The methods from the literature mentioned follow a

similar pattern to the undi rected counterparts Read!s
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method can be employed, and again isomorph rejection via

automorghisms may be used.

673 Tourpaments

A tournament is an oriented comple te graphe The
generation of tournaments can be performed more efficiently
than the generation of oriented graphs in general; this is
once apgaln due to an appropriate application of Read?'!s
me thode. It suffices to use the standard canonical form for
graphs rather than digraphs since the adjacency matrix of a

tournament is skew symmetrice

6+7+4 Posets, semilattices, and lattices

A subclass of the digraphs are posetses A pgset is a
pair <V,R> where V is a finite set of elements [v(1), eeey,
vin)}, and R is a binary relation on V which is reflexive,
transitive, and antisymmetrices The relation R induces a
another natural relation on V, the govering or dagminating
relatione An element x is said to cover an element y#x if
xRy and there is no z#x, y such that xRz and zRy. A grapt
is constructed from the covering relation of a poset as
followse. The vertex sét of the graph i1s V4 and for Xy y €
Vy (xyy) is an arc of the arc set iff x covers y. This is
Just the Hasse diagram of the posete Grapbs of posets are

acyclic by the anticircularity lemma ({Birkhoff67]).
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Birkhoff alsc gives a proof that if there is a sequence of
elements x{1); sesy x(k) such that x(i) covers x(i-1)y, no
element from this sequence can cover x{1) except x(2).

Othervwise,y, the covering relation is violated.

Further, if neither of these conditions is violated
for some digraph D, D is the graph of some posete If a
digraph D violates either of these conditions, any grapt
obtainable by augmenting D must also violate the conditione.
We can therefore employ a method similar to that used for
generation of graphs with a given sunpgraphas One applies
the digragh generation method with the following
modificatione Cn input of a digraphy one finds, for each
vertex vy, the set R(v) of verticeé reachable from ve Then
for each v, and for each x € R(v), one disallows the
addition of the arc (xy,v) and also the arc (vyx)e The
first restraint ensures that the acyclic character of the
graph is maintained. The second ensures that the covering
relation is preserved. Cne thus performs only Yallowable®
augmentations, the reby producing a list of nonisomorphic

posetse.

The generation of posets is of interest since
effective enumeratian formulae are not known {[Jackson77]}).
Semilattices and lattices are subsets of the class of

posets, and lie in a fascinating correspondence with this
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class,. A semilattice is a poset with a greatest lower

boundes A lattjice is a semilattice with a least upper

bounde

The relation among lattices, semilatticesy, and posets
is also described in [Rirkhoff67]e The number of posets an
n elements is the number of semilattices on n+l elemeﬁts;
this number is also the number of lattices on nt2 elements.
Recall from 3.1 that when structures have the same
enumera tory it is reasonable to anticipate the existence of
a generative correspondencee We are therefore not

surprised to find one here.

To generate a 1list of semilattices on n elements, one
proceeds as follows. Generate a list of posets on n-1
elementse. For each poset produced, add an element which
covers no element, and let it be covered by all previous
lower bounds of the poset ( the sinks of the digranph). One
can readily convince oneself that 1if the posets produced
are nonisomorphic, so are the semilatticess This process
is repeated to produce lattices. To generate lattices on n
elementsy proceed as followse.e Generate semilattices on n-1
elementss. For each semilattice, add an element covered by
nothing, and let it cover all previous upper bounds of the
semilattice (sources of the digraph)e. Each lattice

produced 1s unigue up to isomorphisme.
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The generation of restricted classes of lattices can

often be accomodated by the subzraph methodse

A rela ted problem is the generation of quasi-orders.
This class includes the posets] a gquasi—order is reflexive
and transitive, but not necessarily antisymmetrice ¥e will
not attempt the requisite definitions here, but rather give
a quick survey for the reader interested in pursuing the
topics Quasi—-orders are in one—one correspondence with
finite topclogies ([Anderson70 ]), whose generation has been
considered in [ Evansé7]. Topologies are also in one-one
correspondence with transitive digraphse A subclass of the
class of topologiesy, T(O0)-topologles, were also generated
in [Evan567]. by exploiting a one—one correspondence with

acyclic digraphse

6+7+5 Rggted graphs

Rooted graphs do not seem to have been studied in the
literature. Read?s me thod is again applicable; one

changes the group acting on the edge set to a group which

fixes the root.

6eT7e6 Myultigraphs

Read's method applies equally well to multigraphsa
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The autcmorghism partition of a multigraph can be computed

by, for example, Mathon'!s algorithm ({Mathon77a],

{ Dymond76]).

Catalogues of multigraphs have apreared in the
chemical literature; cubic muligraphs on n10 are listed
in [ Balakban70b ], and multigraphs of degree at most four on

n<5 in [ Balaban73].

68 Combipatorial configurations

In a work of full generality on this subject, one
would ideally survey and examine generation me thods for
general combinatorial structures. An effort of this
magnitude and complexity would prove fruitful, in that many
sufficiently general methods could be proposed and
special iseds. It is unfortunate that the breadth of such a
study precludes the possibility of supplying sufficient

detail,

We present a brief overview in the hope of conveying
two observationse The first is that many graph techniques
are appropriate for other structures. The second is that
some generation technigues employed successfully with other
structures may prove practical for the generation of

graphse
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6.8+.1 Set sysiems

A kr-set system is a generalisation of a graph, defined
as follcwse Let P(S) be the powerset of a set S Let P be
a set of setse Let EP(kyP) be the set of k—-subsets of P.
A k—set system is a pair <V,F> where V is a vertex set
(usually {1,2,+ee9yn})y and E, the edge sety is a subset of
EP(k,P{(V)). The nomenclature is natural, cince the simple
graphs are exactly the 2-set systemse. The standard
representation scheme for set systems is via incidence
matrices. Cne can also represent a set system as a
k~dimensional adjacency matrix. fLet i(1), i(2)y 2se9 i(k)
be indices into this matrixe. ¥We concern ourselves only
with index vectors into the matrix in which i{ j)<i{ j*1) for
15j<k, due to the symmetries of the matrixe. One then forms
a vector order for all index vectors which satisfy this
restriction, as was done for graphs. This gives a vector
form for set systems; we define canonicity as maximality
within isomorphism classs Read!s method can again be
appliede. The question of isomorph rejection here is a
tittle more conmnplex; an automorphism partition algorithm
for set systems ha s not to our knowledge appeared in the

literature.

6¢8.2 Hypergraphs
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A further generalisation of set systems and graphs
appears in the ljterature; this is a structure known as a
hypergrarche In a hypergraphy, an edge can be incident with
any positive number of vertices} in a set system this
integer must be k. A formal definition of a hypergraph is
a palr <V,E> where V is the vertex set, and E is a subset
of P(V)-{a}. A k-hypergraph is a hypergraph in which no

edge is incident with more than k vertices.

The generation of k—-set systems can be restated, after
dealing with a few minor details, for k—hypergraphse. In
the corstruction of the allowahle index sets into the
adjacency matrix, we enforced the rule that the entries in
the indices be strictly increasinges This corresponds when
k=2 to considering only the upper triangle of the adjacency
matrixe Consider tte following examples we are to encode
a S—-hypergraphe. Since this is a hypergraph, and not
necessarily a set system, we may have edges of cardinality
less than S, Say we have an edge (1,2,3). We <can here
represent this edge by the index S5-tuple (1,1,1,2,3). We
therefore consider index tuples of the form 1(1)y esey i(k)
where fcor 15j€k, either J1(J)Ki(j3+1) or i(g)=ilj+1)=i(1).
We again impose a vector order on this set of index tupless
Read®®s algorithm is applied using the vector forms induceds.

It is interesting to note that when k=2, kK—-hypergraphs are
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Just simple graphs with loops (that is, an edge from a

vertex to jtself).

The generation of hypergraphs is performed by this

method it isy after all, just the case k=ne

6.8.3 Set packings

Pursuant to successes with ERead?!s method and the
feasibility of i somorph re jection, we may anticipate
success in coping with other combinatorial generation
problems, Cur anticipation has a fallacious assumption
implicit in it, however; not all structures are
fundamentally like graphse. We will consider two structures
on-which much research has been doney block designs, and a

generalisation, set packingse.

A {vykylambda) set packing is a set of subsets bl{ i) of
EP(kyP( {1y2700eyv})), for which the intersection of b(i)
and b(,j) contains lambda elements for i#je A recent
comprehensive survey of generation methods for set packings
appears in [ Colbourn77], The application of a method which
operates well for graphs does not appear to be appropriate
for one primary, reason: there does not appear to be a
good vector representation for set packingse The

straightforward representation is the same as that for set

systems. It does not seem casy to enforce the intersectiaon
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condition with this representation without excessive loss

of efficiencye

6+8.4 Block designs

We will not attempt to give more than a short
introduction tc the peneration of block designse An
investigation has recently appeared which is devoted to
that purpose ([Gikbans76]). The methods for block designs
are based on the fact that one cannot guarantee to build up
large designs from smaller onese All designs on a given
parameter sety, unlike packings, have the same number of
blockse The methods given for graphs were inductive, and
thus cannoct apply heree. The main emphasis with designs is
on hill-climbing ([Shaver?73], [Tompa75]) and backtracking
([ Golomb63 ]). The se techniques seem appropriate for

restric ted structures such as designse

6.9 Conclusions

We have sugpested a small portion of possible
techniques for graph generatione. We conclude that an
efficient me thod to cope both with graphs and vastly
different structures will not be founde. A general method
was recently proposed in [ Faradzev76], which deals with all
the structures mentioned; howevery, the time it saves in

the generation of highly structured configurations, it
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loses many times over when one turns to less struc tured

classes.

The alporithm employs a branch—and—bound method
({ Lawler66]), accepting the output structures for inclusion
on the output list based on the value of a canonicity
predica te, and on the value of a membership (In the class
ot interest) predicates. The implementation of these
predicates is very general; as a result the testing is not
as efficient as specialised routines for the given probleme.
In addi tiony the backtracking involved in branch and bound

is mani festly a poor method for graphse.

Ve must attempt to employ methods which are as general
as possible without sacrificing efficiency to too great an
extent. We contend that Fead's method is one such: as
well as its many graph applications, it is sufficiently

general to generate set systems and hypergraphs as welle.



Chapter 7: Conclusions

We present a final analysis to formulate a concise
description of current day technologyy and to suggest

fruitful lines of researche
7.1 Ihe variety of methods

The most surprising observation is that there exists a
great variety of algorithms. we have attempted to
subdivide them into three classes: direct methods, methods
based on existential methods, and specialisation and
generalisation techniquese. In the past, these methods have
been examined as independent techniques. The methods
involved have been largely treated independently as a
result of the lack of an adequate sSurveye The aim of
further researchy we feel, should pgt require the
examinafion of more and more methods, but should rather
examine unifying features underlying many methods. The
expansion of the class of orderly algorithms is such a
goal, examined briefly with the revised versions of Heap's
method and Farrell?!s methods. The recent publication of

-137-
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Readl's me t hod shows that such zeneral methods exist; it
remains to present further general technigues to cope with

the great diversity of problemse

7.2 Graphs and restricted glasges

In both Chapter 3 and b6, we were larpely motivated by
the investigation of generalisation and specialisationes
The examination of trees in the third chapter concerned us
primarily as a means to produce efficient pgeneral methodse.
Althougt generealisations were notedy our avowed aim remains
unfulfilled. Producing a desirable generalisation remains

an open gproblem.

In the investigation of other restricted classes in
the sixth chapter, we focused primarily on the dual process
of specialisatione. This effort met with more success; the
use of some slight knowledge of the structure of canonical
forms allowed us to specialise some methods efficlientlye.
The main credit for this success should properly be

bestowed on Read'!'s method, for its generalitye.

The primary aim must be the examination of efficient
specialised methods with the goal of producing useful
Zeneral methodse The secondary aim is precisely the duale.
General methods wmust be examined to characterise the

restricted problems for which they are appropriatees
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7.3 Exhaustive and existential geperation

In the generation of graphs, an area of study has been
introduced which is novel;} the foundation of exhaustive
graph generation techniques on existential methods has not
appeared in the literature. This lack is peculiar when one
considers the investigations of this relation with other
combinatorial generation problemse. The algorithms we
investigated are incremental. Some local change in a
structure is performed to produce another structure. wWe
have investigated the use of such algorithms in graph

generatione. In the fourth chapter, we emphasised that the

existence of such me thods provided a critical
correspondence between existential and exhaustive
techniques, This correspondence is critical for two
reasonss On the one hand, the exhibition of incremental

methods opens a new field of investigation; moreover, the
incremental me thods proposed may prove more efficient than
previously known methods. On the other handy this class of
met hods provides the opportunity to employ the well
understood solutions to problems of existential generation
as a partial soluticn in exhaustive generation; this is a

new use for these technigueses

The focus of further research must be on the



Conclusions —140-

demonstration of classes for which incremental me thods are
appropriate, and the demonstration bf applicable
incremental methodse An introduction to this 1line of
research was begun with the investigatjon of completeness;

this appears to be a reasonable starting point for further

worke

7.4 Ihe state of the art

Ve traced the evolution of direct methods from the
classical method through iterative refinement to Readls
method, and beyonde. A careful examination of Read'!s method
supplemented with some obgervations on graph enumeration
provided some clues to performing isomorph rejection in the
rroblem. Once againy we have fallen short of attaining our
expressed goal. The success was,y nevertheless, substantial

in reducing the complexity of the elimination stepe.

Further research 1s requl red to provide methods to

remove the elimination step, if possibles.

The thesis is permeated by yet another technique which
we chose not to emphasisces The technigue is that of
providing a one—one correspondence between the structures

of interest and an easily listed class of structures. This
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technique was employed with the classes of trees with some
sSUCCesSSs The application of this technique to general
problems appears to be of a higher order of difficulty than
that of direct solutione. Despl te this warnlng, the
technique may prove successful;j nevertheless, we do not
advocate its investigation with the same force as other

lines of researchs

Another problem which we have avoided until this point
is the probabilistic generation of graphse. Many
applications of the methods proposed would bhe at least as
well served by t he inveocation of probabilistic graph
generators to produce a sample list,. One may object that
existential generators serve this function alreadye. There
is, however, a decided difference. Existential generators
fail to produce some graphs independent of the number of

times the method is employede.

One may further object that the random graph
generatcrs in the literature ([Kuhn71 ], for example) serve
the function of probabilistic generatorss. We must
carefully examine what is required of a probabilistic
methode. Let there be g nonisomorphic graphs in the classg
of interest, A probabilistic generator will produce one of
the g graphs selected from the list where each graph is

selected with equal probability, 172« Random graph
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generators do not truly satisfy this requirement; in fact,
no probhabilistic generation methods are known to us
excepting the brute force solutione. One "probabilistic?
method for rooted +tree generation, in [Nijenbuis?5],

essentially performs a brute force searches

The probabilistic generation of simple combinatorial
sets has recently been investigated ({Williamson77]);
Williamson shows that any set which can be ranked (placed
in 1-1 correspondence with the integers) efficiently, can
be genera ted efficiently. This supplies efficient
provabilistic methods for simple sStructures such as

permutationsy and binary treess

1t seems inevitable that probabilistic generation
methods will evgive. In fact, Lovasz has posed the problenm
of the existence of probabilistic generation methods for
cubic graphs ([ Lovasz77 ]). The production of exhaustive

lists will not be superseded, but rather complemented, by

theme.

7.6 An eve 19 the future

Our final conclusion is one which we arrived at
through many conversations, many correspondences, and many
paperss ¥e reluctantly note our conviction that the

breadth and depth of g raph generation as a study is
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invariably underestimatede.

Let us never lose the lessons we have learned.
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Index of symiols

XY

I x|

P(v)

XXy or Xy
x/y

x(i)

x%*Xy

-161-

Meaping

is a member of

floor of x.

ceiling of X

absolute value of x
such that

the powerset of a set v
the product of X and ¥y

x divided by vy

the i'th component of a vector x.
x raised to the power y

end of proof

Index of stapdard notation:

Gy H

t

n

m

Vy V(G)
E, E(G)
L(i)

graphs

a tree

the number of vertices in the graphe
the number of edges in the graph

the vertex set of a graph

the edge set of a graph

the list of the structures
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of interest of content i
a permutation group
the domain in the Polya theory

the range in the Polya theory



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

