A LOCALLY OPTIMAL SOLUTION OF THE
FIFTEEN PUZZLE PRODUCED BY AN AUTO-
MATIC EVALUATION FUNCTION GENERATOR

by
Larry Rendell
Research Report CS-77-36

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

December 1977

ABSTRACT

An outline is given of a system which automatically generates
evaluation functions for state-space problems., Initially, the
system must be presented with a set of features (functions over
states) as input. After a graph traverser attempts a set of
problem instances, the system procedes to cluster probability
estimates in the feature space, via an effective splitting
algorithm. From the clusters, parameters for a (not necessarily)
linear evaluation function are computed. 1In post-initial itera-
tions, the system's graph traverser utilizes an evaluation func-
tion generated by the preceding iteration, and, in these later
stages, the system refines established clusters both by revising
previous probability estimates, and alsc by further splitting, to
effect successively better evaluation functions.

The clustering algorithm is approximately linear with respect
to the number of features, so larger sets of features can b=
handled.

At present the system incorporates a one-way graph traverser,
and typically, with useful feature sets, creates evaluation func-.
tions which solve every instance of a random sample of fifty
fifteen puzzles with an average of fewer than four hundred nodes
developed. In experiinents to date, the system generally has
selected the more useful features from the input set.
Futherimore, in the cases which have been examined in detail, the
system has chosen values for the parameters which are locally

optimal or very nearly so.

INTRODUCTION

This system automatically generates evaluation functions for
state-space problems whose Instances can be selected or generated
according to (roughly) increasing difficulty, Initially, at
least one problem instance must be solvable breadth-first. Also
at the outset, the system must be presented with an ordered set
of features (functions mapping states into integers) as input,
This ordered set of features defines a feature space. The space
can be extended at the beginning of any complete iteration, but
in this paper we shall simplify and deal only with feature sets
which have been fixed for an entire series of iterations.

The system Is an iterative one, and each iteration consists
of three steps: a solving step, a region (cluster) handling step,
and a regression step, After a graph traverser attempts a set of
problem instances (solving step), the system procedes to <cluster
probability estimates in the feature space, via an effective
splitting algorithm (region handling step). From the clusters,
parameters for a (not necessarily) linear evaluation function are
computed (regression step). In post-initial Iiterations, the
system's graph traverser utilizes an evaluation function
senerated by the preceding iteration, and, in these later stages,
the region handling step refines established clusters both by
revising previous probabilitv estimates, and also by further

snlitting, to effect successively better evaluation functions.

SOLVING STEP

The first step (presently) incorporates a one-way graph
traverser and attempts to solve an input set of problem
instances, Initially, this is done breadth-first, but after the
first iteration, solution attempts proceed according to an
evaluation function which has been created by the previous itera-
tion. (The specific form of this evaluation function will be
described in a later section),. An attempt is halted if a
preselected maximum number of states is generated; but whether or
not a solution 1is found, a flinal description tree of states
results, which is just a record of the solution attempt. Nodes
(states) are 1linked by immediate ancestor/offsnring arcs. As
will soon become apparent, there must be a successful solution to
at least one of the input problem instances, if the iteration is
to be useful,

Ignoring arcs, each node of everv final description tree is
mapped into a point in the feature space. Although the total
number of possible points in the space might be very large, the
density of points which comprise a current set may not be high;
obviously there can be no more points than nodes in all the
description trees, Each point in the current set has a pair of

integers associated with 1it. The total count (for a point) is

the number of developed nodes in all the final description trees
that map into that point. The other integer is the good gount,
which Is 1like the total count, except that it 1is further

restricted to include only those nodes which appeared on a solu-

tion pathn (if any). Notice that the purpose of the trees is to
allow discovery of these solution path states. In the practical
implementation, the trees are released right after a solution is
traced and the counts have been determined. Jdnly the feature
space points and their associated counts are required from here
on.

Now, the ratio good count / total count is the probability
that a corresponding state was used in a solution of some problem
instance. Unless both the extent and the dimensionality of the
feature space are very small, the points will tend to have low
counts, but let us ignore this fact for the moment. Basically,
we shall assume that this probability, good count / total count,
is a measure of the "goodness" of a feature space point for other

problem instances, and we shall call it the glementary usefulness

(of a point, for a particular problem instance set and gvaluation

function). The assumption of general applicability is
presumptuous, since we shall in fact be generalizing from simpler
to harder problem instances; however, as the reader will see
later on, constant feedback and revision tend to correct biases.
In the section which follows, we shall elaborate on this
elementary wusefulness, considerably, as we consider how to
cluster points and their counts according to their feature space
proximity, similarity of usefulness, and a reliability estimate.
Furthermore, we shall develop methods of revising clusters, use-
fulness, and error estimates, as part of the entire "bootstrap"

operation which wuses the evaluation function to increase

efficiency of solution, and the solution results to improve the

heuristic.

REGION HANDLING STEP

This second step of an iteration uses the feature space
points and their associated counts of the solving step either for
clustering (first. iteration), or for revising previously
established clusters (succeeding iterations). In either case,
the definitions of the good and total counts are generalized to
refer to all points lying within a particular feature space area,

rather than just to a single point. Thus the glementary useful-

ness of a cluster (for a particular problem instance set and

evaluation function) 1is its good count divided by its total

count. And so, within its boundaries, a cluster represents a
constant usefulness; it indicates the probability estimate of a
corresponding state's being "good for a solution'. (Because of
this, the variation of usefulness with a feature should perhaps
not be too erratic in practice).

In addition to the usefulness itself, it will be desirable
to know how reliable the value is. One source of error is a
random element which vrelates to the magnitudes of tihe counts.
For example, a usefulness of 0.1 might be calculated from a count
ratio of 1/10 or 10/100 but the latter is more dependable. As
well as an error term derived from this source, there are others

which will not be detailesd here, including a systematic bias in

later iterations. For our present purposes it is enough to know

that we can estimate a combined (usefulness) egrror (for a

cluster). Generally, the combined cumulative errors can be

quite large, sometimes several times the usefulness itself. The
errors are expressed as factors of the usefulness.

Clusters are vrestricted to be rectangular, with edges
parallel to the axes, so little information is required for their
specification (just the extreme corner points). The actual
algorithm wused for the clustering is a splitting algorithm [see
Hartiganl. It inputs some set of points with their associated
counts, as well as a rectangle which is aligned with the axes and
surrounds all the points. Next, the algorithm tentatively splits
the whole cluster into two rectangles, in every possible way
(using every division in each feature space dimension), and picks
out the "best" of these splits. The best split is the one whose
rectangular clusters have the greatest distance from each other;
this distance is non-metric and defined in terms of the ratio of

their usefulness, taking into account the usefulness error:

E}/(1+el)

distance(rl,r P)

2’ ————]
def u2.(1+e2)

where P is the set of points with their counts, ry U ro

is the rectangle enclosing P, u. is the usefulness of

o 1 .
rio &; is the error factor for u, (i=1,2), and Uy Uy

Thus, the best tentative split is the one such that the two
rectangles are "most assuredly dissimilar" with regard to useful-

neass.

If this 1largest distance is less than unity, then the two
rectangles are recombined. If, however, the distance is greater
than one, the tentative split becomes permanent; and the whole
process is repeated for each of the two new clusters, in turn.
The splitting continues until no further discrimination occurs.
(Obviously the algorithm must halt).

The output from this <clustering algorithm 1is a set of
clusters whose rectangles constitute a partition of the input
rectangle, and whose count functions define both an el ementary
usefulness and an error estimate for their rectangle.

Notice that the count functions play a multiple role. They
define the usefulness, partially determine the error, and thus
govern the extent of splitting. The final number of clusters is
largely determined by the count functions (data), not by the
algorithm alone.

Generally, to the extent that a feature is '"useful', there

will be splitting in that dimension.

Now that we have examined the splitting algorithm, let us
see now it is used.

From iteration to iteration, we shall find it appropriate to
keep track of the usefulness of a cluster, rather than to retain
the count functions. So we define a region to be a rectangle
(aligned with the axes), together with a pair of real numbers,
tne usefulness and the (usefulness) error. A set of regions
(from past iterations), together with the set of feature space

points and associated counts (from the solution step of the

current iteration) constitute the input for the region handling
step.* For the very first iteration, there is only one input re-
gion -- that whose rectangle minimally encloses the points, and
whose wusefulness and error are undefined. For all later itera-
tions, the input region set is that from the preceding itera~-
tion.

For an initial iteration, the clustering algorithm is called
just once, with the point enclosing rectangle as input. The
solution searches from which the point/count set is generated are
breadth-first for a first iteration, so the elementary usefulness
values from the output clusters of the splitting algorithm become
absolute wusefulness values for a corresponding region set (and
similarily for the error values).

For post=-initial iterations, the clustering algorithm is
called once for each input region. Suppose that a region Iinput
is R=(r,u,e) where r Is its rectangle, u its usefulness, and e
its error. And suppose that the algorithm splits r into m
rectangles Flelor oo L0 whose coun; functions are
(gy,.t10, (8%, t3), ... ,(8y,ty). Then each new region R, (i<m)
spawned from R will have a wusefulness (gz;/t;).k where k =
u/(Zgi/Zti). (Often k<<1, as we shall discover soon). The new
error values are also derived from e and these count functions;
the details will not be given here; however it can be seen that
the errors will be greater than e.

x There is also a set of feature space parameters which is input,
generated from the yet to be discussed third, or regression

step. This parameter set plays a minor role, and will not be
further mentioned here.

If we were to focus attention on the region handling step
and regard the entire system as existing for its purposes, we
would notice that over the series of iterations, some regions
become subdivided because of newly perceived differentiation in
usefulness, and some remain intact, reflecting continuing
uniformity of usefulness. The whole iterative process could be

considered as an ongoing resolution of feature area usefulness.

The region handling step, for iterations after the first,
not only refines established regions by further splitting, it
also updates the usefulness estimate for each region.™ To revise
established regions is not perfectly simple, as the following
discussion attests.

Suppose that two regions of the input set are R; =
(ry,uy,e;) and Ry = (rp,us,e2). Suppose, also, that for the most
recent solving step the counts for feature space points lying
within r; and r, are (g,,t;) and (go,t2). Now, especially if
ul,u2<<1, generally g./t. > wu,, or else the heuristic is not

1

working properly; for the wu; supposedly represent absolute
probabilities whereas the counts reflect probabilities which are
conditional on the particular search used. If g;/¢t; were equal
to or less than u;, then the number of states developed in order
to find one used in a solution would be equal to or greater than
the number if a breadth-first search had been used; thus harder
problems could not be solved.

So, to vrevise u we cannot (say) take the average of uj

il

x Actually, this takes place before any splitting occurs.

and g;/t;, but we can use the information Iindirectly., If, for
example, 1S4 but g /ty > 8s/ty then u; should be adjusted
upwards and/or u, downwards. The exact manner in which the
system accomplishes this revision will not be explained here, but
for our purposes It is enough to know that a revision does take
place, and that the new value of usefulness becomes a sum
(weighted according to errors) of the old value and a corrected
current elementary usefulness value. Usefulness Is a product of
experience over all the ifterations. This revision has an effect
of decreasing error estimates and, of course, allowing some

readjustment of earller usefulness estimates.

REGRESSIOM STEP

After the number of regions increases beyond the dimenstion,
n, of the feature space, a third, regression step becomes part of
each iteration. For this, the center point of each region
provides the values for the n independent variables (feature
values), while the associated usefulness 1is the dependent
variable,. These n+l1 tuples are weighted according to the
accompanying usefulness error. (Recall that a rectangle, plus
the wusefulness and its estimated error constitute a region). A
stepwise regression algorithm [see Draper & Smith]l is used, and
the models have (to date) been restricted to be linear, so the
resulting number of non-zero terms or parameters can be from one

(constant) to n+1,

10

EVALUATION FUNCTION

The evaluation function for iteration i+1 uses both the re-
gions from Iteration i, and the regression model from iteration
i. If a state maps to a feature space point x, then the valua-
tion is a weighted combination of u and m(x) where R = (r,u,e) is
the rectangle enclosing x, and m is the regression model. The
weighting depends on the estimated errors. For the final evalua-

tion function, m(x), alone, has been used.

The above description of the system omits some details.
Particularly for the region handling step, there are a number of
subtletles. For example, after splitting occurs, the rectangles
are allowed to shrink to enclose the feature space polints just
minimally. Also, there Is a bias correction for the elementary
usefulness whenever the rergession model Is part of the evalua-
tion function, and there are a number of contributions to the
usefulness error. Another fact not previously mentioned is that
the clustering algorithm can restrict the allowable number of
splits in any one dimension to a specified maximum (spacing

evenly), But the major aspects have been outlined.

SYSTEN EFFICIENCY and COMBINATORIAL PROPERTIES

A logical aquestion at this point is: Is the system
efficient enough to be very useful? The answer is definitely

ves, In the solving step, keeping track of feature space values

11

and then mapping states to feature space points requires a low
overhead, which Increases no worse than llnearly with the number
of features. Also the number of points is manageable; there can
be no more than the total number of developed nodes, and a couple
of thousand present no difficulty,.

The region handling step is fast, compared with the solving
step. It requires 1less time unless the number of features and
possible values for‘each are quite large. For a typlical case
with ten features, the region handling step takes roushly as much
time as the solving step.”

Because regions are rectangular and aligned with the feature
space axes, the clustering algorithm has to deal with a very
1imi ted number of tentative splits. Furthermore, the number of
partitions increases just linearly with the sum, over each fea-
ture, of the number of values each feature can take. Thus the
time increases only linearly with the feature space
dimensionality (althougsh increasing the dimensionality also tends
to Increase the actual number of points present, so the net
effect can be somewhat worse than linear).

As the number of reglions increases with repeated iterations,
there are two or three factors affecting the change in speed of
execution of the vregion handling step. 0On one hand, the time
might be expected to increase, since the combined total number of
possible partitions Increases (but possibly not as fast as

linearly, since the size of an averarse region tends to become

* These figures are based on experiments with the fifteen puzzle,

12

smaller as their number increases -- although the harder problem
instances presented for solving later on tend to expand the
space). On the other hand, however, the number of points
enclosed by any one region tends to decrease, so this factor
tends to Improve the speed. Again, though, the total number of
points often Increases, since the space tends to expand. All in
all, the speed seems to decrease, but just slowlvy (sometimes
there has even been an Increase), as the regions proliferate.
For cases in which a larpe number of features, some with many
values, are used, the clustering algorithm can space its tenta-
tive partitions more sparsely, This generally has little or no
detrimental effect, and increases the speed markedly.

The regression step reauires a completely insignificant

amount of time.

TG EXAMPLES with the FIFTEEN PUZZLE

The first chalenging state-space problem that has been
tackled is the fifteen puzzle. The two example iteration series
which will be described used similar feature sets; the six fea-

tures Involved were:

fl - distance score (sum of distances of each tile from
"home'')

f2 - gnomon blocked score (Consider the left column and upper
row as a single seauence, with the
upper left tile in the middle, and
count one for each occurrence of
one or two allen tiles intervening
between correctly placed tiles.)

13

fz - order wrong score (Examine each 1line, i.e. row or co-
Tumn and count one for each occur-
rence of two tiles belng in their
proper line, but out of order.)

fqy - line wrong score (Examine each line and count one if
all the tiles of the line are 1In
in their line, but not in the cor-
rect order.)

fs - blocked score (Examine each line and count one
for each occurrence of two tiles
being in their correct place, but
with an alien tile iIntervening.)

fe - reversed score (Count one for each occurrence of

two tiles being correctly placed
in a line except for a reversal.)

f the distance score, is a feature which has often been

1l
used for the fifteen puzzle [Milsson] and fg was used in [Doran &

Michiel. f was Inspired by the results of a program designed

2
for the fifteen puzzle which first placed the upper left gnomon
tiles correctly [Chandral. The other features were chosen to
measure some '"things that can go wrong" attribute, like fge f3
is a generalization of f5 and of f,. f, is essentially a special
case of fs.

The three tab]es' below summarize the results for example
one, a series of seven lterations which uses all six of these
features. Table 1 lists information about the particular sets of
puzzles which were Input in each solving step. The '"'maximum
depth' column gives an upper limit for the depth, or minimal path
length to the poal. The exact minimal path length is not known,
but a maximum value 1is, because these problem instances were

generated randomly to a preselected depth (and 1later re-

caterorized if a shorter solution arose), At the outset, the

1y

hardest puzzles which can be solved have a depth of about nine.
Except for the first iteration, a maximum of 1500 nodes was
allowed. In the "average number developed" column, only a lower
limit is sometimes known, since some of the puzzles are not
solved before the systen gives up; and accordingly, the "average
path length" is approximate where indicated. From a couple of
hundred to a thousand feature space points resulted from the

solving step (increasing in later iterations).

TABLE 1 SERIES UNE SOLVING STEP

Puzzles in Input Set

el e $ b b1 b DA

Iter- ! ma x ; . Number é Avg Nodes‘ Average

ation _ Depth = Total § Solved megfygl?ped Path Length

b1 8,9 . 6 6 580 8,9

2 15 w7 e ~18
3 75 % 15 | 12 | >s32 ~88 |
v 75 12 2 9 | >705 | ~96 §
5 75 0 12 11 ; >462 | ~95 g
6 | 100 12 ‘ 9 : >717 ~98 §
7 \ 100 12| 8 ‘ >740 ~111 g

Table 2 summarizes the results of the region handling step.

most of tne splits which occurred were "expected" and a few were

15

"unexpected", or contrary to the general linear trend. These two
categories are listed separately. Below each '"feature number",
the '"expected" splits are to the left, and the "unexpected" to

the right. A blank indicates zero.

TABLE 2 SERIES UNE REGIUN HANDLING STEP

Record of Splits for each Iteration

r Feature Number
ration 1 2 3 l 4 5 6 1 total
g.‘..__iw.__, P l, N:'Z.,“*. e o s e ! S . ;
| 2 .3 b2 1 6
s] 2 1 2 11 7

b ! 1 ! 1 2 1 5
{5 3002 1 1 i 1 8
e |1 | 1 5 1 8
: 7 ; 1 1 2 2 | % 5 11

Rather than a linear model, a log-linear one was selected
for the regressions, so that (neglecting any direct contribution
from the regions) the usefulness estimate is exp(py + ‘Zpifi) ’
winere n is the feature space cardinality, and p; is the parameter

for feature f,, Table 3 lists the parameters which the regres-

16

sion step calculated. Blanks denote zeroes, and the entries are
bracketed where the number of regions has not yet reached the

number of features (so the parameters are in fact not used). The

"error" column lists the regression errors. For each iteration,

a confidence level of 0.85 was used.

TABLE 3 SERIES UNE REGRESSION STEP

Parameters Computed

i

I WWMEgrameter Number
! I ter- o e e bt s e s t ceneim tm s e et o] E rror
ation| 0 1 2 3 0 5 6
SN IS S [” o
1 | (1.46) (-0.88) : ! (0.07)
2 | w.3 | =070 -1.92 | | -2.24 0.13
3 2.16 | =0.79 . -2.61 - 1.17
b 0.92 | -0.57 -0.84 | -2.43 2.30
5 | -1.46 | -0.52 | -0.65 ; 3.12
6 | =0.90 | -0.49 -1.77 -0.52 1.96
7 -1.03 © -0.41 | -0.83 | =1.67 | -0.47 1.65 |
5 U S e f e

Notice that the non-zero parameters calculated by the system
do not necessarily conform strictly to the number and dimension
of the splits of the corresponding region handling step. 1In

fact, a parameter can Dbe non-zero despite no split having

17

occurred in the corresponding dimension (e.g. iteration 2). This
is because some of the features are interrelated, and the

shrinking that takes place after the splits reflects this fact.

A second example required fewer Iterations before an
equilibrium was reached. It used just four of the above features
and an entirely different set of input puzzles, The results are
sunmarized in tables 4, 5 and 6 below, which are analogous to

tables 1, 2 and 3.

TABLE & SERIES TWU SULVING STEP

Puzzles in Input Set

Iter- Em na;‘ *?“ ; Number Avg Nodes Average
ation % Depth | Total g Solved Developed Path Length

1 9 &, & 713 | 9

2 % 12-16 12 12 2u38 14

3 g 50-75 . 12 i 8 >637 ~ 8l

s 1 100 | 12 : 7| >660 ~104

5 100 g 12 ; 12 373 104

s 100 1 | 135 | 367 | ~102 |

TABLE 5

SERIES TWO REGION HANDLING STEP

18

Record of Splits for each Iteration

Feature Number

Iter-
ation 1 3 L 5 total
1 2
2 2 1 3
3 1 1 3 1 7
4 1 2 3
5 1 1
6 0
total 6 3 1 3 2 16
TABLE 6 SERIES TWO REGRESSION STEP
Parameters Computed
Parameter Nuriber
Iter- Error
ation 0 1 3 L 5
1 (1.01){(-0.81) (0.02)
i 2 0.73 -0.72 -2.42 0.21
E 3 0.25 -0.51 -2.15 -1.62 1.46
! 4 0.70 -0.56 -2.18 -0.67 1.22
? 5 0.59 -0.52 -2.17 -1.14 -0.52 1.08
6 0.45 -0.49 -2.27 -1.34 -0.53 0.89

19

We shall shortly look into the effectiveness of the evélua-
tion functions generated in these iteration series, but first let
us examine some of the properties exhibited by the system, at
least in the context of these two examples. These two series of
iterations (and others) show the general stability of the system.
Both the usefulness and parameter values tend to <change just
gradually from one iteration to the next. Tables 2 and 5 seem to
indicate that the region handling step does succeed in revising
usefulness figure§ toward their "correct'" values, since the
regression error decreases whenever splitting does not
predominate, This correction amounts to a stabilizing negative
feedback.

There is also a consistancy. Series two gives results which
are very similar to those of the first example. (Compare tables
3 and 6). |

There are some other tendencies: {Uften, when a parameter is
zero for an "important" feature, an iteration causes splits in
that dimension, and the parameter becomes non-zero (e.g. series
one, iteration 6). This is what one would expect. The reverse
also applies: Unimportant or redundant features, for example fg,
are rejected. (For feature sets without the more general f3 and
f4, however, the system accepts fg). (In passing, it can be
mentioned that there seems to be a correlation between how
"important'" a feature is and both the number of splits which
arise and the sparsity of conflicting splits; this will be evi-

dent after examining tables 2 and 5 in the light of the graphs

20

which appear later). As also would be expected, it seems that
more iterations are required when the number of features is
higher.

The following table summarizes results of using some of the

evaluation functions which were generated in both of the two

series (polynomial part only, omitting the vregion component).

show the performance of the functions with a random

The figures

iteration seven, whose

sample of 32 puzzles (except series one

function was given fifty puzzles), allowing a maximum of 2200

nodes to be created (i.e. about 1100 developed). As in tables 1
and 4, any unsolved puzzles count as having >1100 nodes
developed, s0 the average values are sometimes approximate.
TABLE 7 PERFORIMANCE of FUNCTIONS
Series Jne Series Two
A — o ‘ !
Iter- Percentage | Nodes | Path Percentage | Nodes Path |
ation Solved | Devel. . Length Solved Devel. Length
2 97 - >550 ~125 $ 77 L5703 ~116
3 68 - >831 ~120 9t >614 ~118
4 3 >568 ~126 || 100 427 116
s 67 | >770 ~122 | 100 371 118
| : ; |
|6 94 . >570 1 ~1wl 100 371 118
7 100 i 353 113 - - -
I e — L

21

From tables 1, 4, and 7, it can be seen that the performancé
improves very quickly at the beginning, then more slowly. The
solving step of series one, Iiteration 2 had as an evaluation
function only the three discrete categories (regions) from itera-
tion 1; no regression polynomial participated; yet half of the
puzzles with depth fifteen were solved. In series two, the
polynomial provided by just iteration 2 solved three quarters of
the completely ramdom puzzles, while the evaluation function of
series one, iteration 2 solved nearly all of the standard set.
However, excellent performance was not attained until iteration 7

(series one).

To the knowledge of the writer, no other one way graph
traverser has solved the fifteen puzzle. An early report [Doran
& Michiel, in which the experimenters themselves varied the
parameters, showed the applicabi]ity of features; with the best
choice, the program succeeded 1in solving sixty percent of the
puzzles. A two way traverser has solved the fifteen puzzle
[Chandral, but with about the same number of developed nodes.
Furthermore, - that program was designed specifically for the
fifteen puzzle, whereas this system was created to work
generally, with any state-space problem whose instances can be
gotten according to approximate difficulty, for which a meaning-
ful set of features can be supplied, and for which a goal state
can be explicitly defined.

In addition, the system has calculated parameters which are

optimal (series one) or else very close to optimal (series two).

22

To test this, the parameters from iteration 7 of example one were
varied one at a time (actually those for fs and f4 were varied
together; fz and f, are similar) and the resultfng linear
polynomial was used as an evaluation function with the standard
set of thirty-two random puzzles (again with a cutoff after 2200
states created -- or about half that number developad). The
average path length and number of developed nodes are graphed
below. Both the path lTength and number of nodes devoloped are
plotted on each graph; the numbers to the left refer to average
number of developed nodes, and those to the right, to average
path length. Dots with circles represent nodes developed. (Open
circles indicate the lower limits in cases where not all puzzles
were solvable). And x's represent path lengths. (Typical
estimates of the standard deviations were one to two hundred for
developed nodes and twenty-five to thirty for path lengths).

Al though series twc did not produce parameters which are
identical to those of series one, the only discrepancy arises on
the flat portion of the f5, f, curve, and this is only a 1little
above the minimum.

The figures are not ziven here, but a few program runs with
non-zero parameters for f2 and fg were tried, and no improvement
could be found. In general, there seems to be very good agree-
ment between the features which the system selects, the
parameters it chooses, and the actual performance of the

resulting evaluation functions.

700 —

600 —

500 —

400 —

23

Performance of System-Generated Evaluation Function

(Series One Iteration 7) with NDisturbed Parameter Values

(USing Standard Set of Thirty-Two Puzzles)

Average .Nodes Developed (circled points) and

Average Path Lengths (crosses) vs Parameter 1

(Center Line Represents Value Computed by System)

X0

LT

300

{;; —140
-130
—120
T 110

24

Average Nodes Developed and Path Lengths vs

Parameter 3 (upper graph) and Parameters 3 and 4 (lower graph)

700 — , _)
s
600 — : U -140
O & at ~oo ' n
; "
500 — x,' —130
Tl — [} '
- x - .-—--»«—\—:::e o, ’ .
400 =" " R e / -120
R € at -o0 2 X :
300 | | \T 1 T 110
95/4 P5/2 p5 2p5 4]’)5

700 —

X —140

RS
500 = "~ X —130

& ~
400 — S~ . -120
7 P e phe
\\\5; Y U corstant
= .. l B e

300 | T 1 T ; 110

25

BIBLIJGRAPHY

Chandra,A.K.: (Stanford University program), 1972.

Doran,J. and Michie.: "Experiments with the Graph Traverser
Program'", Proc. Roy. Soc., A, vol. 294, pp. 235-259, 1966.

Draper,N.R. and Smith,H.: Applied Regression Analysis, Wiley,
1966.

Hartigan,J.A.: (Clustering Algorithms, Wiley, 1975.

Nilsson,N.J.: Problem Solving hMethods in Artificial

—n———————

Intelligence, McGraw-Hill, 1971

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

