Preface

In "Unstructured Systematic Programming' [4] I gave an exposition of
programming with verification conditions without, however, giving more than
a few cursory remarks comparing this method with others. As might have
been expected, I did not get away with that. The present paper is an
extensively revised version of '"Unstructured Systematic Programming",
containing in addition a more complete discussion of the comparisons

mentioned above.

M.H. van Emden
Waterloo, 11 September 1977

ABSTRACT

This paper contains an exposition of the method of programming with
verification conditions. Although this method has much in common with the
one discussed by Dijkstra in "A Discipline of Programming', it is shown to
have the advantage in simplicity and flexibility. The simplicity is the
result of the method's being directly'based on Floyd's inductive assertions.
When programming with verification conditions one is able to express
partialiy correct programs which fall short of total correctness by giving
rise to "failed" finite computations. This possibility gives rise to the
peculiar flexibility of the method which allows one to construct the required
program as the final stage in a sequence of programs of which the first
stage is directly obt;ined from the specification and in which each next
stage is the result of a step towards total correctness while maintaining

partial correctness with absence of infinite computations.

Index Terms: correctness-oriented programming, structured programming,

verification, control structure, bottom-up programming,
invariant assertions.

ii

1. Introduction

The fact that programming is expensive and error-prone has been in the
past decade a source of surprise, alarm, or even despair;'it became the
target of a large amount of activity now known as "software engineering'.
What is so special about programs that they give us that much trouble?
Even if we can do no better thaﬁ to say that it has to do with their complexity,
then we can already distinguish two ways in which this phenomenon arises.
In the first place there is the amount of complexity which large programs
typically contain by virtue of sheer size. Then there is the possibility
of concentration of complexity: even a very small program can be difficult
to understand and to verify.

The first phenomenon, that of a large amount of complexity, may be
tackled by the "top-down' method described by Dijkstra [2], which is based
on a process of abstraction where the solution to the original problem is
conceived as a simple algorithm using, possibly very powerful, actions of
a virtual machine. These actions are usually not implemented on the available
machine: hence the implementation of each of them represents a programming
problem in itself. In a successful application of the method it is a
self-contained problem of a considerably lower degree of complexity. This
cycle represents the construction of one of the several layers in the
ultimate, hierarchically structured program, where the bottom layer 1s the
one where the actions are finally implemented on the available machine.

The 'top-down method attacks the problem of complexity by attempting a

hierarchical decomposition of it: the total amount of complexity can be

regarded as being somehow additively distributed over the layers, so that

at each stage in the design process one only has to tackle a simple task,

i.e. one has to handle only a small part of the total amount of complexity.
These advantages have to be paid for both by the programmer and by the machine.
The programmer has to HBesign the interfaces between the virtual machines |

and the machine has to work the streams of information through the interfaces
when executing the program. This means that one should try to keep the

number of layers small and that one should have within a single layer as

great a chunk of the total amount of complexity as one can safely handle.

In other words, each action of a virtual machine should have as great
an amount of complexity as one can safely handle without taking recourse
to decomposition. To increase this amount we need a method that works in
a direction opposite to the one of top-down programming, that is, we need
"bottom-up" programming as well. The terminology of top-down versus
bottom-up is not sufficiently informative, being based on the way we usually
draw trees, which happens to be upside-down. What matters is that the
top-down method decomposes, and that the complementary bottom-—up method
can be said to proceed by aggregation.

This paper contains an exposition of programming with verification
conditions and a discussion of its methodological implieations. The method
allows decomposition in much the same way as other methods doj; it is
distinguished by the ease with which it allows step-wise aggregation under
preservation of partial correctness. A discussion of other methodelogical
aspects 1s to be found in sections 6 and 7 because we prefer to have an
example to refer to. We review the required tools in sections 3 and 4, and

give an example in section 5.

2. Related Work

OQur method builds upon, simplifies, and extends Dijkstra's work [1,2,3].
Reynold's transition diagrams [13] are closely related to our flowgraphs.
Hehner's paper [8] contains a critique of Dijkstra's do...od construct and
some valuable hints on finding invariants. In [4] we gave a description
and an example application of programming with verification conditions, but
hardly any comparisons with other methods of systematic, correctness-oriented
programming. In [5] we elaborated the relationship between programs and
their verification conditions in the framework of first-order predicate
logic. In [6] we characterized the meaning of both flowgraphs and verification
conditions by means of minimal fixpoints.

Kowalski's paper [16] argues that it is possible and useful to
decompose an algorithm into a "logic' component and a "control" component.
One application of this decomposition is to explain the basic principle of
our method: that a set of verification conditions is both a logical
statement true independently of any sequence control, yet also a flowgraph

program with a practically useful sequence control.

3. Flowcharts, Floyd's method, and flowgraphs

Consider the following example of a flowchart for an exponentiation

algorithm.
1
ey
=g ~ P
F T
v=¢
Ij'\ oy 2, %
“L < !
H ¢
«
(eveniv A
pea P
}3 ® ¥ i:-i::
2 s
; | ! |
brzvery ety | Pt w il ;e sp)
L } {
Box 2.1

The "labels" S,P,Q,P3,P4,H are names of program points. A "state" is
determined by the contents of the registers u,v, and w. Execution of the
flowchart can be regarded as the construction of a computation, which is,
for the purposes of this paper, the sequence of (label,state)-pairs
recording which labels are successively encountered during execution and,

for each label, the corresponding state. For example,

(P3’(8’5’1))’ (P’(8’4’8)), (Q’(8’498))’ (P4’(8’4’8))’ (Q’(64’2’8))

is a subsequence of a computation of the flowchart.
According to Floyd's method [7,12] of praoving correctness, an "assertion"
is associated with each label, with the intention of ensuring that whenever

execution reaches a label, the state satisfies the associated assertion.

For example, Box 2.2 lists useful associations.

S with u = u, &v=v_,
P with wtu' = u, o,
Q with P & (vz0),

P, with Q &=1even(v),

3
P4 with Q & even(v), and
H with w=u 'O
o
Box 2.2

In Floyd's method, a flowchart is considered 'verified" if execution
reaching a label L with state s implies that the assertion associated
with L is true of s. The proof that a flowchart is verified proceeds
by induction. The basis of the induction is that the initial state satisfies
the assertion associated with the start 1abei, which can, in this example,
always be satisfied by a suitable choice of u, and Ve The induction
step consists of proving a number of "verification conditions", namely

statements of the form

{ precondition} action { postcondition}

where the precondition and the postcondition are assertions. The meaning

is that

if state x satisfies '"'precondition" and
"action''transforms x to y

then state y satisfies "postcondition"
P

The verification conditions required for the flowchart in Box 2.1 are the

following:

{s} w:=1 {P}

{ P} successful execution of '"v=0" {H}

{ P} successful execution of '"wvz0" {Q}

{Q} successful execytion of "even(vw)" {P,}

4

{Q} successful execution of '"seven(v)" {P,}
3

{P4} u:=uxu; v:=v/2 {Q}

{PS} vi=v-1; wi:=uxw {P}

Box 2.3

where the assertions are as given in Box 2.2. The induction of Floyd's
method proves that execution reaching H implies that w=u0V°, that is, the
result of the exponentiation algorithm is found in w. The induction has
not proved that execution will reach H, which is indeed not always true;

for example not when v, < 0.

A result of the form

- if the initial state satisfies assertion S
and the flowchart terminates

then the final state satisfies assertion H

is called partial correctness because termination is assumed, not proved.

Note that a verification condition is itself a statement of partial correctness

for an action. A result of the form

if the initial state satisfies assertion §
then the flowchart terminates

and the final state satisfies assertion H

is called total correctness.

According to Floyd's method termination is proved separately from
partial correctness by showing that in each possible computation an integer,
which is bounded from below, i8 decremented a sufficient number of times
for an infinite computation to be impossible. This general principle can be
used in several different ways. We shall return to termination later and
explore first the connection between programs and their verification
conditions.

From a mathematical point of view, an action can be a binary relation

between input states and output states. Expressed in terms of sets, such

a relation R is the set of pairs (x,y) such that (x,y) in R 1iff

y 1s a possible state after executing the action represented by R, when
x 1s the state before. We will admit indeterminate commands, so y 1is

a possible output state rather than the outfut state. Mathematically
speaking, we may have that (x’yl) € R and (x,yz) € R and Y1 * Yy

Relations can express another important computational phenomenon: it
may be that for some x there exists no y such that (x,y) in R. This
expresses the fact that for some input states the action of a command is
"not defined". For example, if the input state x 1is such that w = 0,
then for the action u:=u/w there is no corresponding output state Y.

It will be useful to have a dummy action (so called after Algol 60's
"dummy statement'): an action which does not change the state. These are
modelled by the identity relation I: (X,x) € I for every state X.

If a; and a, are actions (represented by the relations Rl and Rz),
then al;a2 is the action obtained by first executing a; and then a,.
The action a;sa, is represented by the product of Rl and R2: (x,vy)
is in the product iff (x,z) € Rl and (z,y) € R2 for some state z.

Because every relation is a set and every set of pairs of states is a
relation, every subset of a relation is a relation again. We are especially

interested in relations which are subsets of the identity relation, such as

{(x,x)IB is true in state x}

where B 1s some assertion.

An action which is represented by such a subset of the identity is
called a guard. If the input state to a guard satisfies the assertion, then
the output state exists and is the same; otherwise no output state exists.
If we write an assertion where one expects an action, then a guard i1s meant.
For example

(vi=v/2); integer (¥)
is an action and it has the same dnput-output behaviour as

even(v) ; (vi=v/2)

With these conventions we write the verification conditions of Box 2.3 as

{8} w:=1 {pP}
{P} v=0 {H}
{P} v=0 {q}

{Q} even(v); ui=uxu; v:=v/2 {Q}

{Q} ~=even(v); vi=v-1l; w:=uxw {P}

Box 2.4

These verification conditions are more succinct than the ones in Box 2.3
and they no longer have the same direct relationship to the flowchart in
Box 2.1. We now define independently of flowcharts a representation of sets
of verification conditions as labelled directed graphs, which we call flowgraphs.

These turn out fo be very similar to flowcharts.

10

For every assertion in a set of verification conditions there is a node
in the corresponding flowgraph. For each verification condition there is
an arc in the flowgraph directed from the precondition node to the postcondition
node, labelled with the action of the verification condition. Let us also
suppose that specifications for programs are given in the form of an input
assertion and an output assertion. The input assertion is an assertion which
the initial state may be assumed to satisfy. The output assertion is an
assertion which the final state must satisfy. The node in the flowgraph
corresponding to the input assertion (output assertion) is called the start
node (halt node). In this paper we use the letters S and H, respectively.
We assume that no verification condition has the input assertion as post-
condition or the output assertion as precondition.

The flowgraph in Box 5.5 1s the one corresponding to the verification
conditions in Box 2.4.

Although flowgraphs are defined as a graphical representation of
verification conditions, they also define sets of computations, hence, they
are algorithms. The execution of a flowgraph can be pictured as a token
tracing a path from the start node to the halt node through the graph, with
the following constraint: the token carries a state and it may enly pass
through an arc if the action labelling the arc is defined for the state. As
a result of passing through the arc the state on the token is changed as
required by the action.

For a more precise definition of computation we first define the successor

relation among (node,state)-pairs: (N',x') 1is a successor of (N,x) iff

11

there is an arc from N to N' and (x,x') 1is in the action labelling

this arc. A finite computation is a finite sequence of (node,state)-pairs.

(NO on) LIS] (Nk’xk)

such that No is the sgart node
and (Ni+l’xi+1) is a successor of (Ni’xi) for 1=0,...,k-1
and (Nk,xk) has no successor.
If Nk is the halt node then the computation is successful, otherwise

it is failed; xo is the start state of the computation.

An infinite computation is an infinite sequénce of (node,state)-pairs

(NO’XO) s (Nl sxl) s

such that N0 is the start node

and (is a successor of (Ni’xi) for 1i=0,1,...

Ny41o%541)
Flowgraphs are more general than conventional programs in two respects.

A (node,state)-pair may have more than one successor; in that case the

flowgraph is indeterminate. A finite computation may be failed; because of

this possibility any set of verification conditions corresponds to some

flowgraph.

12

4, Correctness of flowgraphs

Any set of verification conditions corresponds to a flowgraph, and any
flowgraph is a program in the sense that it defines a set of computations.
0f course, the flowgraph may have, apart from successful computations, also
failed or infinite ones; it may not even have any successful computations at
all! This close correspondence between verification conditions and flowgraph
programs is essential for the method described in thi#s paper.

The following theorem shows that, i1f a flowgraph is viewed as a set of
valid verification conditions, then it is this set that proves partial

correctness according to Floyd's method.

Theorem: If, for a verified flowgraph, a (node,state)-pat¥ (L,x) occurs
in a computation with start state X, satisfying the assertion associated

with the start node, then x satisfies the assertion associated with L.

Proof: A flowgraph is verified when its verification conditions are valid.

Let (Ni,xi) and (N be successive pairs in a computation. By the

141 %141

definition of computation, (xi’xi+l) € C, where C 1is the action 1labelling
an arc from Ni to Ni+l° Let the corresponding verification condition be
{P} c{Q}, where P(Q) is the assertion associated with Ni(Ni+l)' The validity

of {P} c{Q} implies that, if x;, satisfies P, then x, . satisfies Q 0
Note that the theorem applies to computations of all kinds: successful,

failed, infinite. A special case of the theorem for successful computations

proves partial correctness with as precondition (postcondition) the assertion

13

associated with the start node (halt node). To prove in addition total
correctness it is often useful to prove separately the absence of infinite
computations and the absence of failed computations.

For a proof of the absence of infinite computations the following
method (adapted from Floyd [7,12]) is often useful. The maifn idea is to
introduce a function of the state, named the "counter". 1If we can show that
the counter can only assume nonnegative integral values, is never incremented,
and is decremented sufficiently often, then the absence of infinite
computations follows. '"Sufficiently often" is made more precise by requiring
that the counter be decremented whenever a path in a given 'basis get" of
paths is traversed in a computation; a set B of paths is a basis set if
and only if each infinite path starting at the start node has infinitely
many occurrences of paths in B.

The requirement that the counter is always a nonnegative integer must
be proved. The verification conditions are useful here because their truth
proves something about every state in every computation (starting from
somewhere in S), no matter whether the computation is successful, failed,
or infinite. In particular, if every assertion is included in the set of
states where the counter 1s a nonnegative integer, and if such assertions
verify the flowgraph, then we can conclude that for each state in any
computation starting from S, the counter is a nonnegative integer.

To summarize, the absence of an infinite computation starting in S

may be concluded from the following premisses:

14

1) each node is associated with an assertion included in the set of states
where the counter is a nonnegative integer

2) these assertions verify the flowgraph

3) no arc is labelled with a command that increments the counter

4) there is a basis set B such that every path in it decrements the
counter when executed; more precisely: counter(x) > counter(y)
whenever the pair of states (x,y) € Cl;...;Cn, where Cl,...,Cn

are the actions labelling the successive arcs of a path in B and

where x 1s in the assertion labelling the initial node of the path.

In other words, the paths of the basis set '"cut all loops".

For suppose, on the contrary, that an infinite computation
(S’xo)""’(Ni’xi)""
would exist and suppose X, € S. Because of 1) and 2) X, € Ni and
counter(xi) 1s a nonnegative integer for i = 0,1,... . Because of 3)
the sequence of counter(xi) is monotone nonincreasing. Because of 4)

counter(x,, ,) < counter(xi) for infinitely many i, which contradicts the

i+l
fact that counter(xi) is a nonnegative integer for all 1,

Obviously, a verified flowgraph cannot have a failed computation with
a node N in its final pair if for every x ¢ N there exists a y and an
action C labelling an outgoing arc from N such that (x,y) ¢ C. Hence,

if this fact holds for every node of a flowgraph except the halt node, we

may conclude the absence of failed computations starting from S.

15

5. Example I: Systematic construction of an exponentiation algorithm

The method of stepwise aggregation may be summarized as follows.
Given as initial approximation to the required program only the specification
in the form of a precondition and a postcondition, we successitely add
assertions and walid verification conditions, using the heuristic that
failed computations be extended in the mext approximation under the constraint
of maintaining partial correctness and not introducing infinite computations.
A statically ascertainable criterion, in this case the conditions for total
correctness in the previous section, determines when the process of program
construction by stepwise aggregation has been completed.

In this example the problem is to raise a number u to the power of
a nonnegative integer v We assume that states are triples of contents of
registers called u,v, and w. The specification calls for a program which

is totally correct with respect to precondition

S = {u=uo & v=v_ &,nnl(vo)},

.

where nni says whether its argument is a nonnegative integer, and postcondition
H ={w=u_ "0},
o
At this stage we have as approximation to the solution the following flowgraph,

which is already partially correct. We maintain partial correctness with

absence of infinite computations throughout the entire sequence of approximations,

16

and attempt to get closer to total correctness at each next step.

°3

S={u-= u &v = v, & nni(vo)}

=
]
_—
g
L]
=1
<
o]
et

nni(x) iff

x 1s a nonnegative integer

Box 5.1

The flowgraph in Box 5.1 needs improvement because it has no successful
computations. Inserting a non-empty action X such that {S} X {H} méy glve
an improvement, especially when X is w:=u0V°, but let us assume that no
such action is possible. Therefore at least one other node, with associated
assertion, will have to be introduced. In order to obtain at least one
successful computation, it is necessary that the assertion P be such that
nonempty commands X and Y can be found such that {S} X{P} and
{P} ¥ {H}.

As it turns out, the invention of the right P is almost all there is
to invent in the algorithm ultimately obtained. If there would be a way of
formally deriving P from S and H then it would be conceivable that the
entire algorithm is constructed automatically. In the absence of such a

formal derivation we assume P to be given as the assertion

17

]
=1
Q

v
wWwXu

as, for example, in Dijkstra's proof [3] of an exponentiation algorithm.
We do not claim to have anything to contribute to solving the important
problem of obtaining intermediate assertions. But even with this problem
unsolved, reasoning in terms of assertions to find the required intermediate
assertions is a much better method for constructing a correct program than
directly manipulating program components, as seems to be the altermative.
Therefore we will in this example bring some of the existing folklore
[14,3,8] to bear upon the problem of at least making plausible the choice
of P, so as hopefully to facilitate invention in future similar situations.
The fact that there is no useful X such that {S} X{H} suggests
that H 1s too hard to achieve directly. A commonly used heuristic is to

divide (so as hopefully to conguer) into two easier goals, say Hl and HZ'

In easy cases, H1 and H2 are independent in the sense that H can be

achieved by first achieving Hl and then H2. When Hl and H2 are not

independent, achieving H, spoils the already obtained solution to Hl’

2

and vice versa. But if we are lucky, and patient enough not to require H2

to be achieved in a single step, we can take a step towards H2 and then

adjust the solution so that it still satisfies H In that case we have

1

the familiar iterative scheme where H is an invariant and H

1 , @ stopping

criterion.

The choice of P can be made somewhat plausible by regarding { H} = {w=u0

as a conjunction of two assertions ‘le} = { wxu'® = uovo} and -{HZ} = { v=0}.

18

Hl can then be the intermediate assertion P which can be achieved initially

by w:=1 and H2 is achieved by passing the guard wv=0., This gives not

only as next approximation the flowgraph in Box 5.2, but itnalso suggests
that v be used as counter for proving termination because a decrease in
"

v 1s an obvious interpretation of "a step towards achieving H2 Hence the

conjunct nni(v) which henceférth appears in all nonhalt assertions.

{s} ={u-= u &v=v & nni(vo)}
{P} ={wxu = uovo‘& nni(v)}
{H} ={w=u Yo}

o

{s} w:=1 {p}

{P} v =0 {H}

Box 5.2 .

The flowgraph in Box 5.2 is again partially correct but only slightly
less vacuous than the previous one: there are still not enough successful
computations. We have not yet used the possibllity of taking a step towards
achieving H2 under iavariance of Hl' Let us first try a single command
X satisfying {P} X {P} and such that no infinite computations are
introduced. For a simple proof of termination we try a basis set of single-arc

paths, which must then include as a path the arc labelled X. The identities

wxu' = w X (uxuv-l) = (wxu) x uv_1

19
are useful for preserving P while decrementing v: they suggest trying
for X the command v:=v-l; w:=wxu., However, in P v has to be nonnegative;
this must also hold after X. The straightfbrward way of ensuring this is
to put

X = (vi=v-1; wi=uxw; v = 0) v (5.1)

But actions with a guard following an assignment will give trouble in

translating to a conventional language. So it is better to use the equivalent
X= (v >0; vi=v-1; wi=uxw) e (5.2)

Because P implies nni(v) we might as well take v # 0 instead of v >0,

as in the flowgraph in Box 5.3.

{s} ={u

(P} ={wzxu = roO & nni(v)}

]
[=f

& v = \A & nni(vo)}

{H} ={w =u Yo}
{s} w:=1 {P}
{P} v=0 {H}

{P} v = 0; vi=v-1; wi=uxw {P}

Box 5.3

20

The flowgraph in Box 5.3 is partially correct with respect to S and
H, énd has no failed or infinite computations sharting from S. Efficiency
can be increased by using the identity
v/2

u’ = (uxu)

which usually decreases v flaster. This suggests that another arc from P

to P be introduced, labelled by the action

ui=uxu; vi=v/2

The requirement that v remain integral is taken into account by elaborating

the action to

ui= u X u ; y:=vy/2; integer (V) . (5.3)

The desirability of having guards before assignments is the reason for

using instead the equivalent action

even(v); u:i= u X u; vi= v/2
The requirement that the new arc be included in a basis set, as a path of length
1, and that v must therefore be decremented by the action labelling it,

forbids that v = 0. Hence the new arc must be labelled with

v 2 0; even(v); u:=u x u; vi=v/2 e (5.4)

21

{s} ={u-= u &vs= v, & nni(v)}
{P} ={wxu = uovo & nni(v)}
. {H} ={w=u 0}
Qv=0 ;eWnlv}; °
Uizl aU ;V::.!{é&:,
{s} w:=1 {P}
{P} v=0 {H}
rv=0os ‘{P} vz 0; vi=v-1l; vi=u x w {P}

Vinpep; s ns,

{r}

0; even(v); u:=u x u; vi=v/2 {P}

<
N

Box 5.4

Note that the resulting flowgraph in Box 5.4 is indeterminate: efficient
computations have been added to the set of computations of the previous
flowgraph, but they have not replaced them. In order to exclude the
inefficient computations it must be enforced that the usually more effective
reduction in the counter is performed whenever possible. To achieve this

the guard neven(v) is inserted into the action
v#0; vi= v=1l; wi= uxw
to give

v # 0; "even(v); vi=v-1l, wi=uxw

22

Two flaws remain: omne is the fact that we have two actions beginning
with the same guard v # 0 and starting from the same node P. An improved,

equivalent flowgraph in Box 5.5 is obtained from the one in Box 5.4.

{s}={u=u &v=v &uoni(v} {s} w:=1 {P}
{P} ={wxu =u "0 &nni(v)} {P} v=0 {H}
{Q} ={P&v=o0} {p} v=0 {q
{H}={w=uov°} { Q} 7even(v); vi=v-1; wi= u x w {P}

{Q} even(v); u:=u x u; vi=v/2 {Q}

Box 5.5

The other flaw, which persists in Box 5.5 is that whenever in a computation

(Q’xi>s (P’xi+1)s (ani+2)s (sti+3)

23

are successive (node,state) pairs, v is even in state x and

i+l

therefore v 1is also even in x = x . But then activating the guard

i+2
even(v) 1s superfluous. This situation is caused by the fact that

i+l

{Q} veven(v); vi= v-1; wi=u x w {P}
can be replaced by the stronger verification condition
{Q} neven(v); vi= v-1; wi= u x w {R}

where R = P & even(v). Becausé we have { P} (v = 0) {H}, we certainly
have {R} (v = 0) {H}. Because we have {P} (v # 0) {Q} we certainly have
{R} (v = 0) {Q}, but we even have {R} v # 0; u:= u x u; v:=v/2{Q}. It is
only by including this last verification condition that we avoid the
superfluous test. These changes give the flowgraph in Box 5.6 which is
easily seen to be equivalent to the one in Box 5.7. Which of the two is
preferred is largely a matter of taste.

All of the flowgraphs in Boxes 5.1,...,5.7 are partially correct and
lack infinite computations. Those in Boxes 5.3, 5.5, 5.6, and 5.7 are
determinate as well, lack failed computations, and their actions have a
trivial translation to a conventional programming language. As an example,
let us translate into Algol 60 the verification conditions of Box 5.7.

The following translation rules are applicable for a useful class of
verification conditions of which the flowgraphs must be without blocked

computations.

24

{s}={u
{p} ={w
{Q} ={w
{R} ={w
{u} ={w

even(v);
L HEEY /)

td
=1
!

u &v=

v, & nni(v)}

(=
[l

roO & nni(v)}

uovo & nni(v) & v = 0}

[=
]

uovo & nni(v) & even(v)}

u vo}
o)

{8} w:=1 {P}
{P} v=0 {H}
{Ptv=z0 {q}

{Q} even(v); u:=u x u; vi=v/2 {Q}

{Q} 7even(v); vi= v-1; wi=u x w {R}

v/2 {q}

{R} v = 0; u:= u X uj vi=

{R} v = 0{H}

Box 5.6

25

seven(v]; "\
Vizl=t,; w2 =L ¥/}

{s} ={u=uo&v=vo&nni(v°)}

{P} ={wxu =u’0smi(v)}
{Q} ={P & v =0}

{R} ={P & even(v)}

{Qr} ={Q & R}

{H} ={w= uo"o}

{s} w:=1 {P}

{p} v=0 {8}

{Pp} v=0 {q}

{Q} meven(v); vi= v-1; wi=u x w {R}
{ Q} even(v) {Qr}

{QR} u:=u x u; v/2 {Q}

{R} v =0 {Qr}

{R} v=0 {H}

Box 5.7

26

Let the verification conditions be ordered in such a way that those with

the same initial assertion are contiguous (and call the resulting subsequence
a segment). Within a segment the order is insignificant. The translation

of a set of verification conditions is a sequence starting with the
translation of the segment with S as initial assertion, followed by the
translations of any other segments, and ending with a dummy statement
labelled H, the label translating the assertion H.

A segment of verification conditions

{p} cl{Ql‘}

{ p} ¢ {ql

translates to

where the 0's are determined by the translation rules:

If C is a guard then 04 is

if Ci then goto Qi

If C is an assignment then Oi is

Ci; goto Qi
If C is a guarded assignment Y; o, then Gi is

if vy then begin a;goto Qi end

27

For example, the verification conditions for the flowgraph in Box 5.7

translate to the following fragment of an Algol-60 program:

S: w:=l; goto P;
P: if wv=0 then goto H;
if v=0 then goto Q;
Q: if ~even(v) then begin v:i=v-1; wi:=uxw; goto R
end;
if even(v) then goto QR;
QR: wu:=uxu; v:=v/2; goto Q;
R: if wv=0 then goto QR;

if wv=0 then goto H;

The application of some simple optimization rules gives:

1f v=0 then goto H;
Q: if Teven(v) then begin vi=v-l; wi=uxw
3 if wv=0 then goto H
end;

ui=uxu; v:=v/2; goto Q;

28

6. A methodological discussion of emample I

Dijkstra [1] argued ﬁhat it is necessary to prove programs correct and
he suggested that the difficulties encountered in attempts at program
verification are caused by the peculiar approach where a program is completed
first and a proof is attempted afterwards. He showed that it is possible
and advantageous to develop a program and its proof in parallel. He argued
that in this way the necessity to provide a proof does not need to be an
additional burden on the programmer, but can actually facilitate the tabk of
program construction. In his more recent work [3] Dijkstra showed that an
algorithm can be developed more easily by reasoning about assertions than
by manipulating program components. Here the proof éomes, in a sense,
before the program.

The basic proof method relevant here is due to Floyd. Subsequently
Hoare [9] used Floyd's method in a formal system for proving partial
correctness with a rule of inference for each basic construct of the
programming language. Ditkstra [3] expressed correctness in terms of
"predicate transformers'. Where Hoare applies rules of inference to obtain
partial correctness, Dijkstra manipulates expressions denoting assertions
and obtains total correctness. Each construct of the programming language
is characterized by a predicate transformer which is a functional combination
of the predicate transformers of the constituents of the construct.

In contrast with the above, our method of programming with verification

conditions is directly based upon Floyd's original method [7,12], bypassing

29

any subsequent elaborations. This directness is made possible by the use
flowgraphs, a form of program identical to a set of verification conditions.
Results from our method are as provably correct as those from Hoare's or
Dijkstra's, but we need no counterpart for Hoare's rules of inference of
Dijkstra's calculus of predicate tfanéformers for dealing with language
constructs, simply because what little of language constructs we use, enters
only in the translation phase from a flowgraph already proved totally correct.
In particular, we claim that the problem-solving power of Dijkstra's use of
the "wdec" predicate can be achieved in an easier way by informal reasoning
of which the transitions from (5.1) to (5.2) and from (5.3) to (5.4) are
examples.
We have argued above that programming with verification conditions is
a simplification with respect to previous comparable methods. We now argue
that our method has a larger scope: it allows the '"divide and conquer"
principle to be applied in more dimensions than previous methods do. Let
us first review various ways in which the principle is useful in programming.
In programming (and eisewhere) confusion results when one tries to do
more than one thing at a time, as happens for instance, when one werries about
efficiency before the design of the basic algorithm is completed. It helps
to do as much as possible one thing at a time; yet being able to do so
depends on a suitable decomposition of the task at hand. The first decomposition
is suggested by Kernighan and Plauger's maxim [10]: 'get it right before
you make it faster". And the goal of getting it right can again be

decomposed, with similar advantages.

30

There is much to be said for getting the program right before one makes
it determinate: see the fiowgraph in Box 5.4 which is correct, but not
determinate., This decomposition, the second, we owe to Dijkstra [3]. And
we suggest a third decomposition, namely to get the program right even
before making it do anything at all: the partially correct flowgraphs in
Boxes 5.1 and 5.2 have no useful computations. Flowgraphs can have failed
computations; they may even faill to have any successful ones. This degree
of freedom makes programming by stepwise aggregation possible: our initial
program is the vacuously partially correct one directly obtained from the
input-output specificatién; in each step an assertion or verification
condition is added with the purpose of allowing failed computations to
continue on toward success., The addition must maintain partial correctness
and must not introduce any infinite computation.

Each of the above decompositions is useful. Programming with verification
conditions uniquely contributes the third decomposition, while being equally
suitable as other methods for the first and second decompositions.

Dijkstra's sequencing primitives [3] are unsuitable for the third
decomposition; this is because of the, in our view unfortunate, way termination
for do...od is defined. Note that if...fi can give rise to failed computations
(Dijkstra refers to failure as '"abortion"). The do...od construct cannot,
by (Dijkstra's) definition, fail: the criterion for successful termination
is implicitly, by default, determined by the guards, as the conjunction of
their negations. We have argued elsewhere [6] that an explicit criterion
for success, independent of the guards, is an improvement for goal-directed
programming. Our proposal in [6] would make Dijkstra's primitives more

suitable for the third decomposition.

31

7. Example II: A trade-off between complexity and efficiency of a program

The algorithm described by the flowgraph in Box 5.5 can be expressed in

Dijkstra's language [3] as

do v=#0 - do even(v) ~ wu,vi=uxu,v/2

odl

——— 9

V,wi=v-1,uxw

It is significant that this algorithm is chosen rather than the more
efficient one described by the flowgraph in Box 5.7. The latter is more
complex in the sense of having more program points, which provide a sufficient
"memory' for results of tests, so that no test needs to be duplicated.

In this section we will discuss the trade~off between having few program
points (hence a simple algorithm which looks elegant in a "structured"
language) and avoiding superfluous tests, which requires a certain minimum
number of program points, in our method nodes of the flowgraphs. The fact
that such a trade-off exists is typically swept under the rug in discussions
promoting ''structured" programming, where there seems to be a bias towards
elegant algorithms performing superfluous tests.

We are aware that it is not usually worth the complexities of eliminating
superfluous tests because anyway most programs are used only a few times (if
at all). But in those rare cases where optimal efficiency is important, a

systematic method must also help in discovering a satisfactory algorfthm.

32

And the most important advantage of programming with verification coaditions
is that it allows one to cover fluently the entire spectrum between an
efficient algorithm without duplicated tests and a simple algorithm of
which the flowgraph has few nodes. The example discussed in this section is
chosen because the spectrum is rather wide.

Let us condider the problem of merging two sorted input files of

numbers (a left file called 1ft and a right file called rht) into a single,

getl(x)} to

sorted output file called tpt. We are allowed to use calls
getr (x)

1ft

rht} and yield tpue if the

boolean procedures, which attempt to read {
input file is nonemepty, and false otherwise. If the input file is nonempty
then there is a side effect: x becomes the first number in the file. A
call put(x) transfers the first number x of one of the input files to the
output file and advances both the input file concerned and the output file
one position.

One solution is to envisage the merging process to consist of two
stages. In the first stage both files are nonempty. The second stage
begins as soon as at least one input file is empty (assertion =8l V =sr
below), because then all that remains to be done is to copy the entire
remainder of the other input file onto the output so that both input files
become empty (assertion =—1sl & -1sr below). The following solution may
well be a typical outcome of an exercise in Disciplined Programming. It

clearly marks the two stages; the assertions marking these are literally the

terminating condition for the corresponding do...od.

33

sl,sr:=getl(u), getr(v);
do sl & sr + if u < v > put(u); sl:=getl(u)

Ou

v

v > put(v); sr:=getr(v)
o .
od;
{=sl v =1sr}
do sl »> put(u); sl:i=getl(u)
0 sr = put(v); sr:=getr(v)

od;

{=sl & =sr}

The above algorithm performs superfluous operations in many situations.
For example, in the first stage both input files’are tested for nonemptiness,
whereas it is only necessary to do so for the one from which a number has
just been taken. If a few extra tests don't hurt, then we might as well use

the following algoyithm, which is closer to the Ultimate in Elegance.

sl,sr:=getl(u), getr(v);

do s1 & (sr & u £ v V =1sr) » put(u); sl:=getl(u)
Usr & (sl &u=2v V sl) > put(v); sri=getr(v)
od

where the terminating condition, falsity of all guards,

simplifies to —1sl & —ysr.

34

Let us now construct by stepwise aggregation a program at the other
extreme: no information will be thrown away and not a single superfluous
test will be tolerated in the result.

The state is determined by the values of 1ft, rht, énd tpt. The input

specification is

1ft = Ifto & rht = rhto & tpt = ¢

where lfto and rhto are arbitrary, given, sorted files and ¢ 1is the
empty file.

The output specification is

tpt = merge (lfto,rhto)

An intermediate assertion is again obtained by a judieious decomposition of

the output assertion H as the conjunction of Hl and H2

Hl:

H2:

merge (1ft,rht) <> tpt = merge (lfto,rhto)

1ft = ¢ & rht = ¢

where <> 1is the operation of appending one operand to the other. The

algorithm tries to achieve H1 and H2 by repeatedly taking a step towards

H2 under invariance of Hl. This suggests using as counter the sum of the

lengths of 1ft and rht.

35

Because we want to retain all information concerning the status of
1ft and rht, we will use several assertions each having the form of a
conjunction of Hl together with an assertion butting a constraint on 1ft
and rht. Let us use the shorthand {a,R} for Hl in conjunction with an
assertion stating that 1ft had the form o and rht has the form R. For

0 or £ we may have

? stating that the file is possibly empty
x:0 stating that the file is nonempty and that, moreover, x
is the first number and that the remaining file has the form o

¢ stating that the file is empty

Box 7.1 shows in terms of verification conditions the properties of the

commands.

{x:7,B} put(x) { 7,8}
{ 7,8} getl(x) {x:?,B}
{ 7,8} 1getl(x) { ¢,B}
{a,?} getr(x) {o,x:2}

{a,?} agetr(x) {a,d}

Box 7.1

The problem of finding the merge algorithm is now to get from {?,?} to

{¢,0}.

36

The counter is decreased by a call to put. This can only be done under
invariance of H, if {u:?,vi?}, {u:?,0}, or{ ¢,v:?} hold, and then it
must be done. In the remaining cases it is for at least one of the files
unknown whether it‘is empty, and then the appropriate chodce of getl or getr

is called for. We therefore have initially the following verification

conditions.

s 4f {7,?2} getl(u) {u:?7,?} df P,

g 4f 2,7} mgetl(u) { ¢,?} df P,

Box 7.2

Now there are no arcs going out from nodes P1 and P2. In order to
avoid failed computations we must add such arcs. We already know that the

commands in those arcs must resolve the "?" in the right-hand position. We

therefore add

37

P1={u:?,?} getr(v) {u:?,v:?} dg P,

P, = {u:?,?} ~vgetr(v) {u:?,¢} df

4
7} df P

P2 ={¢,?7} getr(v) {é,v: 5

P, = {¢,?} =getr(v) {¢,0} df H

and get the flowgraph in Box 7.3.

S

Box 7.3

We have now introduced even more 'dangling nodes', namely P3, P4, and

P5. It is determined by our heuristic which commands label the arcs going

out from them:

38

P3 ={u:?,v:?} (u < v); put(u) {?,v:?} af P,
Py = {w:?,vit} 3 (u £ v)5 put(v) {ui,2} = P
P, = {u:2,0} putw) (2,0} *¢

P5 ={¢,v:?} put(v) {¢$,?} = P,

See Box 7.4.

Box 7.4

For the first time now we have not introduced more dangling nodes than

we eliminated; in fact, only P6 and P7 remain, We now add:

39

P, = {?2,v:?} getl(u) {u:?,v:?} = P
P ={?,vi?}qygetl(u) { ¢p,v:?} = Ps

P7 ={7?7,0} getl(u) {u:?,¢} = P4

P7 ={7,0} "getlCu) {¢,0} = H

This time no dangling nodes have been #ntroduced. In other words, there are
no failed computations. It is easily checked that the arcs with a "put"
command are a basis set, so there are no infinite computations. The flowgraph

in Box 7.5 1s therefore totally correct.

Box 7.5

40

The translation from a set of verification conditions to an Algol 60
program, as given with example I, is only one of several useful translations.

In this example we translate a pair of verification conditions such as

={2,?} getl(u) {u:?,?} = Py

S ={2,?} "getl(u) {¢,?2} = P,

to

S: if getl(u) then goto P1 else goto P2

In this way the set of verification conditions of this example translate

to the set of statements in Algol-60 shown in Box 7.6.

s

S: if getl(u) then goto P, else goto P,;

Pl: if getr(v) then goto P3 else goto P4;

P,: if getr(v) then goto P5 else goto H;

P,: if u < v then begin put(u); goto P6 end

else begin put(v); goto Pl end;

P4: put (u); goto P7;

P_.: put(v); goto Pz;

P,: if getl(u) then goto P3 else goto P5;

if getl(u) then goto P4 else goto H

Box 7.6

41

Note that the verification conditions are an unordered set. Written
in any order they define the same flowgraph, which untiquely defines a set
of computations. The ordering of the verification conditions has no meaning.
Therefore the statements resulting from translation of verification conditions,
such as those in the sub-boxes of Box 7.6, can be re-ordered without
affecting the meaning of the resulting statement, provided that they are

immediately preceded by

goto S;

and followed by the labelled dummy statement

We will take advantage of the reorderability of the subboxes in Box 7.6
by making use of the programming languages's default transfer of control to
the next statement, thus saving some jumps. Also, some tests have been
inverted to create more opportunities for such an optimization.

No attempt has been made to obtain a result which is optimal with
respect to program size. In fact, we cut out with scissors the boxed statements
of Box 7.6, shuffled them around a bit, and then deleted unnecessary jumps
and labels, sometimes after inverting a test. Box 7.7 is the result. Note
that it is irrelevant whether this Algol code is understandable (we happen
to think it isn't). Understandability is provided by the verification
conditions in their historical development, with commentary, as given above.
Correctness is guaranteed by the way the statements in Box 7.7 have been

obtained from the verification conditions by translation and optimization.

42

S: if =igetl(u) then goto P2;

Pl: if v getr(v) then goto P4;

Pyt if u >v then begin put(v); goto P, end;
put (u);
if getl(u) then goto P3;

P,: put(u); goto Pss

P : 4if - getr(v) then goto H;
put(v); goto P,;

P,: 1if getl(u) then goto P,

7
H

e

Box 7.7

There are no duplicated tests in the program in Box 7.7 because after
executing an action, execution is already at, or transfers to, the program

point adsociated with an assertion containing all information in the action's

postcondition.

43

8. Concluding remarks

An incomplete understanding of programming with verification conditions

may give rise to the following objections

a) the resulting programs exhibit no structure
b) the resulting code is unreadable

¢) the method requires no discipline (hence must be sinful)

As for the first objection, let us go back to "structured programming",
the harmfulness of goto's, and all that. Dijkstra [2] emphasised that human
intellectual limitations necessitate great care in the choice of primitives
for sequence control. He concluded that, in order to keep sequence control
intellectually manageable, it is wise to abstain from the use of goto
statements and to rely instead on sequencing primitives which simplify
and accurately reflect the flow of control.

Notice that these considerations are relevant only in situations where
sequence control has to be managed by the programmer. Our method consists
of two stages. 1In the first stage assertions and verification conditions
are collected until a flowgraph is obtained which is totally correct and
translatable to Algol. 1In this stage sequence control need not, and should
not, be considered. The next stage consists of automatable applications of
translation and optimization rules. It is only here that sequence control
appears: automatically, guaranteed correct, and, we have to add, almost
entirely in the form of goto's. But even here sequence control should not

occupy the programmer: if there is anything for him to do, it is to apply

44

the translation and optimization rules. The translation rules guarantee
that just before executing a goto a certain assertion holds and that the
goto then transfers to a label associated with that assertion: there is no
harm in a goto if one knows where one is going to.

We conclude that the aspect of "structured programming' dealing with
intellectual manageability of sequence control has become irrelevant now
that there exist sufficiently systematic programming methods, such as in
Dijkstra's own recent work [3] and in our method.

The objectiorn of unreadability is dismissed simply by pointing out that
the Algol programs resulting from our method are only meant for the compiler
to be read, not for the human programmer. It is the set of verification
conditions that is meant for reading, and indeed have to be read when checking
their validity. Moreover, the rules we have given for checking the absence
of‘failed computations are ascertainable from the flowgraph representation
of the verification conditions without reference to sequence control.

The only constraint on the structure of the flowgrapﬁ which we find
useful is that it be easy to find a basis set. A property of "structured"
sequencing primitives is that the program text itself implies a basis set
in the flowgraph corresponding to the program. We see no merit in this
coupling of text and basis set. Consider for example the fairly complex
flowgraph in Box 7.5. Even there it 1s easy to see that there is no infinite
path from S without infinitely many actions put(u) or put(v). In other

words, that put(u) and put(v) "cut all loops".

45

We conjecture that the phenomenon of a high concentration of complexity
is unavoidable for algorithms avoiding superfluous tests. The stepwise
aggregation aspect of programming with verification conditions gives a
satisfactory way of constructing such algorithms.

It has been remarked that programming with verification conditions
necessarily generates "structured" programs in disguise. Even if true we
maintain that our method has the advantages of simplicity and flexibility
as discussed in section 6. However, wé neither know nor care whether the
remark is justified: what is new here is that "structure" has become
irrelevant.

"Think before you do" applies in programming no less than in other
activities. In programming this injunction can be followed by preferring
reasoning about assertions to manipulating program components. Perhaps
the fundamental merit of programming with verification conditions is that
assertions are central, rather than program components. Our method restores
in full the flexibility of the unrestrained use of goto statements, yet
maintains, and improveé upon, the security and problem-solving power of

"structured" programming.

9. Acknowledgements

We have profited from discussions with Peter Roosen~Runge of York
University in Toronto and Keith Clark of Queen Mary College in London.

A grant from the Canadian National Research Council has provided support.

46

10. Literature

[1}] E.W. Dijkstra: Concern for correctness as a guiding prindéiple for
program composition. The Fourth Generation (J.S.J. Hugo, ed.),
Infotech, Maidenhead, 1971.

[2] E.W. Dijkstra: Notes on structured programming. Structured Programming
by 0.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Academic Press, 1972.

[3] E.W. Dijkstra: A Discipline of Programming. Prentice=Hall, 1976.

[4] M.H. van Emden: Unstructured systematic programming. Report Cs-76~09,
Dept. of Computer Science, University of Waterloo, 1976.

[5] M.H. van Emden: Verification conditions as programs. Automata,
Languages, and Programming (S. Michaelson and R. Milner, eds.),
Edinburgh University Press, 1976.

[6] M.H. van Emden: Relational equations, grammars, and programs.
Proc. Conf. on Theoretical Computer Science, University of Waterloo, 1977.

[7] R.W. Floyd: Assigning meanings to programs. Proc. Symp. App. Math.
Vol. XIX (J.T. Schwartz,ed.), American Mathematical Society, 1967.

[8] E.C.R. Hehner: do considered od: A contribution to the programming
¢alculus. Report CSRG-75, Computer Systems Research Group,
University of Toronto, 1976.

[9] C.A.R. Hoare: An axiomatic basis for computer programming. Comm. ACM 12
(1969), 576-581. :

[10] B.W. Kernighan and P.J. Plauger: The Elements of Programming Style.
McGraw-Hill, 1974.

[11] R.A. Kowalski: Algorithm = Logic + Control. Dept. of Computation and
Control, Imperial College, 1977.

[12] Z. Manna: Mathematical Theory of Computation. McGraw-Hill, 1974.

[13] J.C. Reynolds: Programming with transition diagrams.
Programming Methodology (ed. D. Gries), Springer, 1978.

[14] R. Waldinger: Achieving several goals simultaneously. Machine Intelligence
8 (E.W. Elcock and D. Michie, eds.), Ellis Horwood, Chichester, and

John Wiley & Sons, New York, 1977.

PROGRAMMING
WITH
VERIFICATION CONDITIONS

M.H. van Emden

Research Report CS-77-35
Department of Computer Science
University of Waterloo

November 1977

Preface

In "Unstructured Systematic Programming" [4] I gave an exposition of
programming with verification conditions without, however, giving more than
a few cursory remarks comparing this method with others. As might have
been expected, I did not get away with that. The present paper is an
extensively revised version of "Unstructured Systematic Programming',
containing in addition a more complete discussion of the comparisons

mentioned above.

M.H. van Emden
Waterloo, 11 September 1977

Preface to the second edition

The program on page 42 in the first edition is wrong. At least, I
discovered an error in the translation from the program on page 40 to the
one on page 42. Such translations should be done as mechanically as possible,
because the error was made in handcopying. In this edition, page 42 contains

a corrected program for which the required copying has been done on a Xerox

copier, so that at least this source of error has been eliminated.

M.H. van Emden
Waterloo, 4 September 1978

PROGRAMMING
WITH

VERIFICATION CONDITIONS

M.H. van Emden

ABSTRACT

This paper contains an expositien of the method of programming with
verification conditions. Although this method has much in common with the
one discussed by Dijkstra in "A Discipline of Programming', it is shown to
have the advantage in simplicity and flexibility. The simplicity is the
result of the method's being directly based on Floyd's inductive assertioms.
The method is flexible because of the way in which the program is constructed
in two stages. 1In the first stage a set of verification conditions is
collected which corresponds to a program in "flowgraph" form. 1In this
stage sequencing control is of no concern to the programmer. Control is
introduced in the second stage, which consists of automatable applications
of translation and optimization rules, resulting in conventional code.

1"

Although our method has no use for the sequencing primitives of '"structured

programming', it is highly secure and systematic.

Index Terms: correctness—oriented programming, structured programming,
verification, control structure, bottom-up programming,
invariant assertions.

1. Introduction

The fact that programming is expensive and error-prone has been in the
past decade a source of surprise, alarm, or even despair; it became the
target of a large amount of activity now known as '"software engineering'.
What is so special about programs that they give us that much trouble?
Even if we can do no better thaﬁ to say that it has to do with their complexity,
then we can alreddy distinguish two ways in which this phenomenon arises.
In the first place there is the amount of complexity which large programs
typically contain by virtue of sheer size. Then there is the possibility
of obncentration of complexity: even a very small program can be difficult
to understand and to verify.

The first phenomenon, that of a large amount of complexity, may be
tackled by the "top—-down' method described by Dijkstra [2], which is based
on a process of abstraction where the solution to the original problem is
congeived as a simple algorithm using, possibly very powerful, actions of
a virtual machine. These at¢tions are usually not implemented on the available
machine: hence the implementation of each of them represents a programming
problem in itself. 1In a successful application of the method it is a
self-contained problem of a considerably lower degree of complexity. This
cycle represents the construction of one of the several layers in the
ultimate, hierarchically structured program, where the bottom layer is the
one where the actions are finally implemented on the available machine.

The top-down method attacks the problem of complexity by attempting a

hierarchical decomposition of it: the total amount of complexity can be

regarded as being somehow additively distributed over the layers, so that

at each stage in the design process one only has to tackle a simple task,

i.e., one has to handle only a small part of the total amount of complexity.
These advantages have to be paid for both by the programmer and by the machine.
The programmer has to design the interfaces between the virtual machines

and the machine has to work the streams of information through the interfaces
when executing the program. This means that one should try to keep the

number of layers small and that one should have within a single layer as

great a chunk of the total amount of complexity as one can safely handle.

In other words, each action of a virtual machine should have as great
an amount of complexity as one can safely handle without taking recourse
to decomposition. To increase this amount we need a method that works in
a direction opposite to the one of top-down programming, that is, we need
"bottom-up" programming as well, The terminology of top-down versus
bottom-up is not sufficiently informative, being based on the way we usually
draw trees, which happens to be upside-down. What matters is that the
top—down method decomposes, and that the complementary bottom—up method
can be said to proceed by aggregation.

This paper contains an exposition of programming with verification
conditions and a discussion of its methodological implieations. The method
allows decomposition in much the same way as other methods do; it is
distinguished by the ease with which it allows step-wise aggregation under
preservation of partial correctness. A discussion of other methodelogical
aspects 1s postponied to = sSections 6 and 7 because we prefer to have an
example to refer to. We review the required tools in sections 3 and 4, and

give an example in section 5.

2. Related Work

Our method builds upon, simplifies, and extends Dijkstra's work [1,2,3].
Reynold's transition diagrams [13] are closely reldted to 6ur flowgraphs.
Hehner's paper [8] contains a critique of Dijkstra's do...od construct and
some valuable hints on finding invariants. In [4] we gave a description
and an example application of programming with verification conditions, but
hardly any comparisons with other methods of systematic, correctness-oriented
programming. In [5] we elaborated the relationship between programs and
their verification conditions in the framework of first-order predicate
logic. 1In [6] we characterized the meaning of both flowgraphs and verification
conditions by means of minimal fixpoints.

Kowalski's paper [16] argues that it is possible and useful to
decompose an algorithm into a "logic" component and a "control' component.
One application of this decomposition is to explain the basic principle of
our method: that a set of verification conditions is both a logical
statement true independently of any sequence control, yet also a flowgraph

program with a practically useful sequence control.

3. Flowcharts, Floyd's method, and flowgraphs

Consider the following example of a flowchart for an exponentiation

algorithm.

even{y)

vi=v-1; wi=uxw uisuxu; vi=v/2

Box 2.1

The '"labels" S,P,Q,PB,P4,H are names of program points. A ''state" is
determined by the contents of the registers u,v, and w. Execution of the
flowchart can be regarded as the construction of a computation, which is,
for the purposes of this paper, the sequence of (label,state)-pairs
recording which labels are successively encountered during execution and,

for each label, the corresponding state. For example,

(P39(8’5,l))’ (P’(8’4’8))’ (Q’(8’4’8))’ (P49(8’4,8))’ (Q,(64,2’8))

is a subsequence of a computation of the flowchart.

According to Floyd's method [7,12] of préving correctness, an "assertion"
is associated with each label, with the intention of ensuring that whenever
execution reaches a label, the state satisfies the associated assertion.

For example, Box 2.2 lists useful associations.

e

T,

Q with P & (v#0),

P3 with Q & =even(v),

P4 with Q & even(v), and
. v

H with w= u, 0 .
Box 2.2 ‘ .JQ

In Floyd's method, a flowshart is considered '"verified" if execution
reaching a label L with state s dimplies that the assertion associated
with L 1is true of s. The proof that a flowchart is verified proceeds
by induction. The basis of the induction is that the initiél state satisfies
the assertion associated with the start label, which can, in this example,
always be satisfied by a suitable choice of ug and vy The induction
step consists of proving a number of '"verification conditions", namely

statements of the form

{ precondition} action { postcondition}
where the precondition and the postcondition are assertions. The meaning
is that

if

state x satisfies '"precondition" and

"action''transforms x to ¥y
then state y satisfies "postcondition"

The verification conditions required for the flowchart in Box 2.1 are the

following:
1o{st wi=1 (P}
% {P} gquccessful exeuction of "v=0" {H} @
a {P} successful execution of "v#0" {Q}
) {Q} successful execution of "even(v)" {P4}
{Q} successful execution of "aeven(v)" {P3}
{Py} uz=uxus vi=v/2 {Q}
{P3} vi=v-1; wi=uxw {P} .
T Box 2.3

where the assertions are as given in Box 2.2. The induction of Floyd's

. . . . Vv, .
method proves that execution reaching H implies that w=u O, that is, the

result of the exponentiation is found in w, The induction has

not proved that execution will reach H, which is indeed not always true;

for example not when v0<< 0.

A result of the form

if the initial state satisfies assertion S
and the flowchart terminates

then the final state satisfies assertion H

is called partial correctness because termination is assumed, not proved.
Note that a verification condition is itself a statement of partial correctness

for an action. A result of the form

if the initial state satisfies assertion S
then the flowchart terminates

and the final state satisfies assertion H

is called total correctness.

According to Floyd's method termination is proved separately from
partial correctness by showing that in each possible computation an integer,
whid¢h is bounded from below, id decremented a sufficient number of times
for an infinite computation to be impossible. This general principle can be
used in several different ways. We shall return to termination later and
explore first the connection between programs and their verification
conditions.

'From a mathematical point of view, an action can be a binary relation

between input states and output states. Expressed in terms of sets, such

a relation R is the set of pairs (x,y) such that (x,y) in R iff
y 1is a possible state after executing the action represented by R, when
x 1is the state before. We will admit indeterminate commands, so y is
a possible output state rather than the output state. Mathematically
speaking, we may have that (x,yl) € R and (x,yz) € R and V1 ® Yy
Relations can express another important computational phenomenon: it
may be that for some x there exists no y such that (x,y) in R. This
expresses the fact that for some input states the action of a command is
"not defined'. For example, if the input state x is such that w = 0,
then for the action wu:=u/w there is no corresponding output state y.
It will be useful to have a dummy action (so called after Algol 60's
"dummy statement"): an action which does not change the state. These are
modelled by the identity relation I: (x,x) € I for every state x.

If a and a

1 are actions (represented by the relations Rl and R2),

2

is the action obtained by first executing a and then a

then al;a 1

2 2°

The action a;3a, is represented by the product of Rl and R2: (x,v)
is in the product iff (x,z) ¢ Rl and (z,y) € R2 for some state z.
Because every relation is a set and every set of pairs of states is a

relation, every subset of a relation is a relation again. We are especially

interested in relations which are subsets of the identity relation, such as

{ (x,x)|B is true in state x}

where B 1is some assertion.

An action which is represented by such a subset of the identity is
called a guard. 1If the input state to a guard satisfies the assertion, then
the output state exists and is the same; otherwise no output state exists.

If we write an assertion where one expects an action, then a guard is meant.

For example

(v:=v/2); integer (v)

is an action and it has the same iInput-output behaviour as

even(v) ; (v:i=v/2)

With these conventions we write the verification conditions of Box 2.3 as

w:=1 {P}
v=0 {H}
vi0 {Q}

even(v); u:=uxu; v:=v/2 {

~even(v); vi=v-1; WIsUXW

T Box 2.4 TR

These verification conditions are more succinct than the ones in Box 2.3
and they no longer have the same direct relationship to the flowchart in
Box 2.1. We now define independently of flowcharts a representation of sets
of verification conditions as labelled directed graphs, which we call flowgraphs.

These turn out fo be very similar to flowcharts.

10

For every assertion in a set of verification conditions there is a node
in the corresponding flowgraph. For each verification condition there is
an arc in the flowgraph directed from the precondition node to the postcondition
node, labelled with the action of the verification condition. Let us also
suppose that specifications for programs are given in the form of an input
assertion and an output assertion. The input assertion is an assertion which
the initial state may be assumed to satisfy. The output assertion is an
assertion which the final state must satisfy. The node in the flowgraph
corresponding to the input assertion (output assertion) is called the start
node (halt node). In this paper we use bhe letters S and H, respectively.
We assume that no verification condition has the input assertion as post-
condition or the output assertion as precondition.

The flowgraph in Box 5.5 is the one corresponding to the verification
conditions in Box 2.4.

Although flowgraphs are defined as a graphical representation of
verification conditions, they also define sets of computations, hence, they
are algorithms. The execution of a flowgraph can be pictured as a token
tracing a path from the start node to the halt node through the graph, with
the following constraint: the token carries a state and it may enly pass
through an arc if the action labelling the ard is defined for the state. As
a result of passing through the arc the state on the token is changed as
required by the action.

For a more precise definition of computation we first define the successor

relation among (node,state)-pairs: (N',x') is a successor of (N,x) iff

11

there is an arc from N to N' and (x,x') is in the action labelling

this arc. A finite computation is a finite sequence of (node,state)-pairs.

(NO’XO)""’(Nk’Xk)

such that No is the s#art node
and (Ni+l’xi+l) is a successor of (Ni,xi) for i=0,...,k-1
and (Nk,xk) has no successor.
If Nk is the halt noda then the computation is successful, otherwise

it is failed; X, is the start state of the computation.

An infinite computation is an infinite sequence of (node,state)-pairs

(NO’XO) > (lexl)s"'

such that No is the start node

and (N is a successor of (Ni’xi) for i=0,1,...

1+1°%541)
Flowgraphs are more general than conventional programs in two respects.

A (node,state)-pair may have more than one successor; in that case the

flowgraph is indeterminate. A finite computation may be failed; because of

this possibility any set of verification conditions corresponds to some

flowgraph.

12

4, Correctness of flowgraphs

Any set of verification conditions corresponds to a flowgraph, and any
flowgraph is a program in the sense that it defines a set of computations.
Of course, the flowgraph may have, apart from successful computations, also
failed or infinite ones; it may not even have any successful computations at
all! This close correspondence between verification conditions and flowgraph
programs is essential for the method described in th#s paper.

The following theorem shows that, if a flowgraph is viewed as a set of
valid verification conditions, then it is this set that proves partial

correctness according to Floyd's method.

Theorem: If, for a verified flowgraph, a (node,state)-pair (L,x) occurs
in a computation with start state X satisfying the assertion associated

with the start node, then x satisfies the assertion associated with L.

Proof: A flowgraph is verified when its verification conditions are wvalid.
Let (Ni’xi) and (Ni+1’xi+l) be successive pairs in a computation. By the
definition of computation, (xi,xi+l) € C, where C 1is the action labelling

an arc from Ni to N . Let the corresponding verification condition be

i+l

{P} c{Q}, where P(Q) is the assertion associated with Ni(Ni+l). The validity

of {P} c{Q} implies that, if x;, satisfies P, then x, . satisfies Q[
Note that the theorem applies to computations of all kinds: successful,

failed, infinite. A special case of the theorem for successful computations

proves partial correctness with as precondition (postcondition) the assertion

13

associated with the start node (halt node). To prove in addition total
correctness it is often useful to prove separately the absence of infinite
computations and the absence of failed computations.

For a proof of the absence of infinite computations the following
method (adapted from Floyd [7,12]) is often useful. The main idea is to
introduce a function of the state, named the '"counter". If we can show that
the counter can only assume nonnegative integral values, is never incremented,
and is decremented sufficiently often, then the absence of infinite
computations follows. '"Sufficiently often" is made more precise by requiring
that the counter be decremented whenever a path in a given 'Pasis get" of
paths is traversed in a computation; a set B of paths is a basis set if
and only if each infinite path starting at the start node has infinitely
many occurrences of paths in B.

The requirement that the counter is always a nonnegative integer must
be proved. The verification conditions are useful here because their truth
proves something about every state in every computation (starting from
somewhere in §S), no matter whether the computation is successful, failed,
or infinite. In particular, if every assertion is included in the set of
states where the counter is a nonnegative integer, and if such assertions
verify the flowgraph, then we can conclude that for each state in any
computation starting from S, the counter is a nonnegative integer.

To summarize, the absence of an infinite computation starting in S

may be concluded from the following premisses:

14

1) each node is associated with an assertion included in the set of states
where the counter is a nonnegative integer

2) these assertions verify the flowgraph

3) no arc is labelled with a command that increments the counter

4) there is a basis set B such that every path in it decrements the
counter when executed; more precisely: counter(x) > counter (y)
whenever the pair of states (x,y) ¢ Cl;...;Cn, where Cl""’cn

are the actions labelling the successive arcs of a path in B and

where x 1is in the assertion labelling the initial node of the path.

In other words, the paths of the basis set '"cut all loops".

For suppose, on the contrary, that an infinite computation

(S,xo),...,(Ni,xi),...

would exist and suppose X, € S. Because of 1) and 2) x; € Ni and
counter(xi) is a nonnegative integer for i = 0,l1,... . Because of 3)
the sequence of counter(xi) is monotone nonincreasing. Because of 4)
counter(xi+l)'< dounter(xi) for infinitely many i, which contradicts the
fact that counter(xi) is a nonnegative integer for all 1i.

Obviously, a verified flowgraph cannot have a failed computation with
a node N in its final pair if for every x ¢ N there exists a y and an
action C labelling an outgoing arc from N such that (x,y) € C. Hence,

if this fact holds for every node of a flowgraph except the halt node, we

may conclude the absence of failed computations starting from S.

15

5. Example I: Systematic construction of an exponentiation algorithm

The method of stepwise aggregation may be summarized as follows.
Given as initial approximation to the required program only the specification
in the form of a precondition and a postcondition, we successitely add
assertions and walid verification conditions, using the heuristic that
failed computations be extended in the mext approximation under the constraint
of maintaining partial correctness and not introducing infinite computations.
A statically ascertainable criterion, in this case the conditions for total
correctness in the previous section, determines when the process of program
construction by stepwise aggregation has been completed.

In this example the problem is to raise a number u, to the power of
a nonnegative integer v We assume that states are triples of contents of
registers called u,v, and w. The specification calls for a program which

is totally correct with respect to precondition
S = {u=u0 & V=V & nni(vo)},
where nni says whether its argument is a nonnegative integer, and postcondition
H ={w=u 'O},
o]
At this stage we have as approximation to the solution the following flowgraph,

which is already partially correct. We maintain partial correctness with

absence of infinite computations throughout the entire sequence of approximations,

16

and attempt to get closer to total correctness at each next step.

¥
uy & v=v & nm(vo;’l1

f“ﬁ%i S={u-=
M- B _ B Vo
. H={w=u %
H nni(x) iff
: x 1is a nonnegative integer
Box 5.1

The flowgraph in Box 5.1 needs improvement because it has no successful
computations. Inserting a non-empty action X such that {S} X {H} may give
an improvement, especially when X is W:=u0V°, but let us assume that no
such action is possible. Therefore at least one other node, with associated
assertion, will have to be introduced. 1In order to obtain at least one
successful computation, it is necessary that the assertion P be such that
nonempty commands X and Y can be found such that {8} X{P} and
{P} ¥ {H}.

As it turns out, the invention of the right P is almost all there is
to invent in the algorithm ultimately obtained. If there would be a way of
formally deriving P from S and H then it would be conceivable that the
entire algorithm is constructed automatically. In the absence of such a

formal derivation we assume P to be given as the assertion

17

as, for example, in Dijkstra's proof [3] of an exponentiation algorithm,
We do not claim to have anything to contribute to solving the important
problem of obtaining intermediate assertions. But even with this problem
unsolved, reasondag in terms of assertions to find the required intermediate
assertions is a much better method for constructing a correct program than
directly manipulating program components, as seems to be the alternative.
Therefore we will in this example bring some of the existing folklore
[14,3,8] to bear upon the problem of at least making plausible the choice
of P, so as hopefully to facilitate invention in future similar situations.
The fact that there is no useful X such that {S} X{H} suggests
that H is too hard to achieve directly. A commonly used heuristic is to

divide (so as hopefully to conguer) into two easier goals, say Hl and HZ'

In easy cases, Hl and H2 are independent in the sense that H can be

achieved by first achieving Hl and then H2. When Hl and H2 are not

independent, achieving H2 spoils the already obtained solution to Hl’

and vice versa. But if we are lucky, and patient enough not to require H2

to be achieved in a single step, we can take a step towards H2 and then

adjust the solution so that it still satisfies H In that case we have

1
the familiar iterative scheme where Hl is an invariant and H2 a stopping
criterion.

The choice of P can be made somewhat plausible by regarding { H} = {w=uovo}

as a conjunction of two assertions '{Hl} = {wxu' = uovo} and '{HZ} = { v=0}.

18

H. can then be the intermediate assertion P which can be achieved initially
1 ‘

by w:=1 and H2 is achieved by passing the guard v=0. This gives not

only as next approximation the flowgraph in Box 5.2, but it also suggests

s

that v be used as counter for proy#fig termination because a decrease in
B . . . " " ;
v is an obvious intg%pretatlon of "a step towards achieving H2 . Hénceﬁé&g

conjunct mnni(v) which henceforth appears in all nonhalt assertioms.

{s} ={u=uo & v=v, & nni(vo)}
{P} = {wxuv=uov° & nni(v)}

{H} ={ w=u°v°}

{S} w:=1 {P}
{P} v=20 {H)

Box 5.2

The flowgraph in Box 5.2 is again partially correct but only slightly

less vacuous than the previous one: there are still not enough successful

2
R

computations. We have not yet used the possibility of taking a step toward

achieving H2 under imwariance of Hl' Let us first try a single command
X satisfying {P} X {P} and such that no infinite computations are
introduced. For a simple proof of termination we try a basis set of single-arc

paths, which must then include as a path the arc labelled X. The identities

-1 -1

wxu' = w X (uxuV) = (wxu) x u’

19

are useful for preserving P while decrementing v: they suggest trying

for X the command v:=v-1l; w:=wxu. However, in P the variable v has to

be nonnegative; this must also hold after X. The straightforward way of

ensuring this is to put

X = (vi=v-1l; wi=uxw; v = 0) e (5.1)

But actions with a guard following an assignment will give trouble in

translating to a conventional language. So it is better to use the equivalent

X = (v >0; vi=v-1; wi=uxw) ..(5.2)

Because P implies nni(v) we might as well take v 2 0 instead of v >0,

as in the flowgraph in Box 5.3.

E el

{S} =(u=u0 & vav, & nm‘(vo)}
{P} = {wxuv=u°V° & nni{v)}

{ H} = {w=u°v°}

{S} wi=1 {P}
{P} v=0 {H}

{ P} v=0; vizv-1; wi=uxw {P}

Box 5.3

20

The flowgraph in Box 5.3 is partially correct with respect to S and
H, and has no failed or infinite computations shatrting fwem S. Efficiency
can be increased by using the identity
v/2

u = (uxu)

which usually decreases v #faster. This suggests that another arc from P

to P be introduced, labelled by the action

ur=uxu; vi=v/2

The requirement that v remain integral is taken into account by elaborating

the action to

ui= u X u ; yi=y/2; integer (¥) .e.(5.3)

The desirability of having guards before assignments is the reason for

using instead the equivalent action

even(v); u:=1u x u; v:i= v/2
The requirement that the new arc be included in a basis set, as a path of length
1, and that v must therefore be decremented by the action labelling it,

forbids that v = 0. Hence the new arc must be labelled with

v # 0; even(v); ui=u x u; vi=v/2 e (5.4)

21

{s} ={u=u0 & vav, & nni(v)} S

P} ={ wxuv=uov9‘,§“nn'1 (v)}
DETCAU IS) -
L

v=0; even{v); ¥
o

{8} w:=1 {P}
el QRO (P} v=0 {H
e, (P} v = 83 viENT; wimunw (P

{P} v = 0; even(v); bu:=uxu; vi=y/2 {P}

, Box 5.4

Note that the resulting flowgraph in Box 5.4 is indeterminate: efficient
computations have been added to the set of computations of the previous
flowgraph, but they have not replaced them. 1In order to exclude the
inefficient computations it must be enforced that the usually more effective
reduction in the counter is performed whenever possible. To achieve this

the guard neven(v) is inserted into the action

vz 0; vi=v-l; wi=uxw

to give

v 2 0; meven(v); vi= v-1l, wi=uxw

22

Two flaws remain: one is the fact that we have two actions beginning

with the same guard v # 0 and starting from the same node P. An improved,

equivalent flowgraph in Box 5.5 is obtained from the one in Box 5.4.

{s} ={”u=uo&v'v°&nni(v)} s

(P ={wxu'= u°v° & nni{v)}
{Q} ={P &v =0}
{H} ={w= uov°}

—even{v);
vi=v-1; Wi=uxw

even(v);
ui=uxu; vi=v/2

{s} w:=1 {P}
- {P} v =0 {H}
{P v=0 {Q

{Q} meven(v); vi=v-1; wi= uxw {P}

{ Q) even{v); u:=uxu; v:=v/2 {Q}

Box 5.5

The other flaw, which persists in Box 5.5,is that whenever in a computation

(Q’Xi)’ (P’Xi+l>’ (Q,Xi+2)’ (Q’Xi+3)

23

are successive (node,state) pairs, v 1is even in state X and

therefore v 1is also even in Xigg = X . But then activating the guard

+2 i+l

even(v) 1is superfluous, This situation is caused by the fact that

{Q} "even(v); vi= v-1; wi=u x w {P}

can be replaced by the stronger verification condition

{Q} qeven(v); vi= v-1; wi=u x w {R}

where R = P & even(v). Because we have {P} (v = 0) {H}, we certainly
have {R} (v = 0) {H}. Because we have {P} (v # 0) {Q} we certainly have
{R} (v = 0){Q}, but we éven have {R} v # 0; u:= u x u; v:=v/2{Q}. It is
only by including this last verification condition that we avoid the
superfluous test. These changes give the flowgraph in Box: 5.6 which is
easily seen to be equivalent to the one in Box 5.7. Which of the two is

preferred is largely a matter of taste.

All of the flowgraphs in Boxes 5.1,...,5.7 are partially correct and
lack infinite computations. Those in Boxes 5.3, 5.5, 5.6, and 5.7 are
determinate as well, lack failed computations, and their actions have a
trivial translation to a conventional programming language. As an example,
let us translate into Algol 60 the verification conditions of Box 5.7.

The following translation rules are applicable for a useful class of
verification conditions of which the flowgraphs must be without failed

computations.

\A

even(v);
ui=uxu; vi=v/2

~even{v);

=v-1; wi=uxw

{s} =fu=u°) vav, & nni(v)} {S} w:=t {P}

{P} = Cwxu=u Y0 & nni(v)} (P} v=0 (W

{Q} ={P & v=0} {P} v=0 {Q)

{R} ={P & even(v)} ‘ {Q} even(v); ui=uxu; v:=v/2 {Q}
C{H} = {w=u0V°} {Q}=even(v); vi=v-T; w:=uxw {R}

{R} v = 0; u:=uxu; v:=v/2 {Q}
{R} v=0 (H

Box 5.6

24

-

e

25

{s} ={u=uo &vev, & nni(vo)}
{P} = {wxuv=uov° & nni{v)}
{Q={P & v=0}

{R} ={P & even{v)}

{QR} ={Q &R}

{H} = {w=y "0}

L.

"even(v);
vi=v-1; wi=uxw

{S} w:=1 {P}

{P} v=0 {H}

(P} v=0({Q}

{ Q) qeven{v); vi=v-1; wi=uxw {R}
{Q} even(v) {QrR}

{QR} u:=uxu; v:=v/2 {Q}

{R} v=0 (qr}

{RY v=0 {H}

Box 5.7

L9

e

26

Let the verification conditions be ordered in such a way that those with

the same initial assertion are contiguous (and call the resulting subsequence
a segment). Within a segment the order is insignificant. The translation

of a set of verification conditions is a sequence starting with the
translation of the segment with S as initial assertion, followed by the
translations of any other segments, and ending with a dummy statement
labelled H, the label translating the assertion H.

A segment of verification conditions

{r} clfql}

{p} ck{Qk}

translates to

where the 0's are determined by the translation rules:

If C is a guard then o0 , 1is
i
if Gi then goto Qi
If C., 4is an assignment then Gi is
Ci; goto Qi

If Ci is a guarded assignment Y; o, then Oi is

if vy then begin oa;goto Qi end

27

For example, the verification conditions for the flowgraph in Box 5.7

translate to the following fragment of an Algol-60 program:

P: if wv=0 then goto H;
if v#0 then goto O;
Q: if Teven(v) then begin v:=v-1; w:=uxw; goto R
end;
if even(v) then goto QR;
QR: wu:=uxu; v:=v/2; goto Q;
R: if wv=0 then goto QR;

if wv=0 then goto H;

The application of some simple optimization rules gives:

S: wW:i=1;
if v=0 then goto H;
Q: if Teven(v) then begin v:=v-1; w:i=uxw
3 if wv=0 then goto H
end;

u:=uxu; v:=v/2; goto Q;

28

6. A methodological discussion of example I

Dijkstra [1] argued that it is necessary to prove programs correct and
he suggested that the difficulties encountered in attempts at program
verification are caused by the peculiar approach where a program is completed
first and a proof is attempted afterwards. He whowed that it is possible
and advantageous to develop a program and its proof in parallel. He argued
that in this way the necessity to provide a proof does not need to be an
additional burden on the programmer, but can actually facilitate the takk of
program construction. In his more recent work [3] Dijkstra showed that an
algorithm can be developed more easily by reasoning about assertions than
by manipulating program components. Here the proof comes, in a sense,
before the program.

The basic proof method relevant here is due to Floyd. Subsequently
Hoare [9] used Floyd's method in a formal system for proving partial
correctness with a rule of inference for each basic construct of the
programming language, Dijkstra [3] expressed correctness in terms of
"predicate transformers". Where Hoare applies rules of inference to obtain
partial cerrectness, Dijkstra manipulates expressions denoting assertions
and obtains total correctness. Each construct of the programming language
is characterized by a predicate transformer which is a functional combination
of the predicate transformers of the constituents of the construct.

In contrast with the above, our method of programming with verification

conditions is directly based upon Floyd's original method [7,12], bypassing

29

any subsequent elaborations. This directness is made possible by the use
flowgraphs, a form of program identical to a set of verification conditions.
Results from our method are as provably correct as those from Hoare's or
Dijkstra's, but we need no counterpart for Hoare's rules of inference of
Dijkstra's calculus of predicate tranformers for dealing with language
constructs, simply because what little of language constructs we use, enters
only in the translation phase from a flowgraph already proved totally correct.
In particular, we claim that the problem-solving power of Dijkstra's use of
the "wdec'" predieate can be achieved in an easier way by informal reasoning
of which the transitions from (5.1) to (5.2) and from (5.3) to (5.4) are
examples.
We have argued above that programming with verification conditions is
a simplification with respect to previous comparable methods. We now argue
that our method has a larger scope: it allows the 'divide and conquer"
principle to be applied in more dimensions than previous methods do. Let
us first review various ways in Whicﬁ the principle is useful in programming.
In programming (and elsewhere) confusion results when one tries to do
more than one thing at a time, as happens for instance, when one worries about
efficiency before the design of the basic algorithm is completed. It helps
to do as much as possible one thing at a time; yet being able to do so
depends on a suitable decomposition of the task at hand. The first decomposition
is suggested by Kernighan and Plauger's maxim [10]: 'get it right before
you make it faster'". And the goal of getting it right can again be

decomposed, with similar advantages.

30

There is much to be said for getting the program right before one makes
it determinate: see the flowgraph in Box 5.4 which is correct, but not
determinate. This decomposition, the second, we owe to Dijkstra [3]. And
we suggest a third decomposition, namely to get the program right even
before making it do anything at all: the partially correct flowgraphs in
Boxes 5.1 and 5.2 have no useful computations. Flowgraphs can have failed
computations; they may even fail to have any successful ones. This degree
of freedom makes programming by stepwise aggregation possible: our initial
program is the vacuously partially correct one directly obtained from the
input-output specification; in each step an assertion or verification
condition is added with the purpose of allowing failed computations to
continue on toward success. The addition must maintain partial correctness
and must not introduce any infinite computation.

Each of the above decompositions is useful. Programming with verification
conditions uniquely contributes the third decomposition, while being equally
suitable as other methods for the first and second decompositions.

Dijkstra's sequencing primitives [3] are unsuitable for the third
decomposition; this is because of the, in our view unfortunate, way termination
for do...od is defined. Note that if...fi can give rise to failed computatiops
(Pijkstra refers to failure as "abortion"). The do...od construct cannot,
by (Dijkstra's) definition, fail: the criterion for successful termination
is implicitly, by default, determined by the guards, as the conjunction of
their negations. We have argued elsewhere [6] that an explicit criterion
for success, independent of the guards, is an improvement for goal-directed
programming. Our proposal in [6] would make Dijkstra's primitives more

suttable for the third decomposition.

31

7. Example II: A trade—off between complexity and efficiency of a program

The a@lgorithm described by the flowgraph in Box 5.5 can be expressed in

Dijkstra's language [3] as

do v#0 > doeven(v) > u,vi=uxu,v/2

od;

v,Wi=v-1,uxw

It is significant that this algorithm is chosen rather than the more
efficient one described by the flowgraph in Box 5.7. The latter is more
complex in the sense of having more program points, which provide a sufficient
"memory" for results of tests, so that no test needs to be duplicated.

In this section we will discuss the trade-off between having few program
points (hence a simple algorithm which looks elegant in a "structured"
language) and avoiding superfluous tests, which requires a certain minimum
number of program points, in our method nodes of the flowgraphs. The fact
that such a trade-off exists is typically swept under the rug in discussions
promoting "structured" programming, where there seems to be a bias towards
elegant algorithms performing superfluous tests.

We are aware that it is not usually worth the complexities of eliminating
superfluous tests because anyway most programs are used only a few times (if
at all). But in thése rare cases where optimal efficiency is important, a

systematic method must also help in discovering a satisfactory algorithm.

32

And the most important advantage of programming with verification conditions
is that it allows one to cover fluently the entire spectrum between an
efficient algorithm without duplicated tests and a simple algorithm of
which the flowgraph has few nodes. The example discussed in this section is
chosen because the spectrum is rather wide.

Let us condider the problem of merging two sorted input files of

numbers (a left file called 1ft and a right file called rht) into a single,

sorted output file called tpt. We are allowed to use calls getl (x) to
getr (x)
1ft

rht} and yield true if the

boolean procedures, which attempt to read {
input file is nonemepty, and false otherwise. If the input file is nonempty

then there is a side effect: x becomes the first number in the file. A

putl ' . ifey

call {putr} transfers the first number of {rht}
ift
{rht}

to tpt and advances

one position.

One solution is to envisage the merging process to consist of two
stages. In the first stage both files are nonempty. The second stage
begins as soon as at least one input file is empty (assertion =sl vV =sr
below), because then all that remains to be done is to copy the entire
remainder of the ohher input file onto the output so that both input files
become empty (assertion =1sl & =1sr below). The following solution may
well be a typical outcome of an exercise in Disciplined Programming. It
clearly marks the two stages; the assertions marking these are literally the

terminating condition for the corresponding do...od.

sl,sr:=getl(u), getr(v);
do sl & sr ~ if u < v > put(u); sl:=getl(u)

0u

[\

v > put(v); sr:i:=getr(v)
fi

od;

{78l Vv =sr}

do sl » putl ; sl:=getl(u)

[sr - putr ; sri=getr(v)
od;

{-sl & =sr}

33

The above algorithm performs superfluous operations in many situations.

For example, in the first stage both input files are tested for nonemptiness,

wheress it is omly mecessary to do so for the one from which a number has

just been taken.

34

Let us now construct by stepwise aggregation a program at the other
extreme: no information will be thrown away and not a single superfluous
test will be tolerated in the result.

The state is determined by the values of 1ft, rht, and tpt. The input

specification is

1ft = Ifto & rht = rhto & tpt = ¢

where lfto and rhtO are arbitrary, given, sorted files and ¢ is the
empty file.

The output specification is

tpt = merge (lfto,rhto)

An intermediate assertion is again obtained by a judieious decomposition of

the output assertion H as the conjunction of Hl and H2

Hl: merge (1ft,rht) <> tpt = merge (lfto,rhto)

H2: 1ft = ¢ & rht = ¢

where <> is the operation of appending one operand to the other. The

algorithm tries to achieve Hl and H2 by repeatedly taking a step towards

H2 under invariance of Hl. This suggests using as counter the sum of the

lengths of 1ft and ¥ht.

35

Because we want to retain all information concerning the status of
1ft and rht, we will use several assertions each having the form of a
conjunction of Hl together with an assertion putting a constraint on 1ft
and rht. Let us use the shorthand _{a,B} for Hl in conjunction with an
assertion stating that 1ft haé the form o and rht has the form R. TFor

0 or B we may have

? stating that the file is possibly empty
xiy stating that the file is nonempty and that, moreover, x
is the first number and that the remaining file has the form Y

¢ stating that the file is empty

Box 7.1 shows in terms of verification conditions the properties of the

commands,

o :? ne

T

{a,x:?} putr {a,?}

{?,8} getl(x) {x:?,p}
{?,8} ~getl(x) { 4,8}
{a,?} getr(x) {a,x:?}

{a,?} ~getr(x) {a,}

Box 7.1

The problem of finding the merge algorithm is now to get from {?,?} to

{4,9}.

36

The counter is decreased by a call to put. This can only be done under

invariance of H, if {u:?,v:?}, {u:?,¢}, or { ¢,v:?} hold, and then it

1
must be done. 1In the remaining cases it is for at least one of the files
unknown whether it is empty, and then the appropriate chodce of getl or getr

is called for. We therefore have initially the following verification

conditions,

s 4f {7,?} getl(u) {u:?,7} df Py

s 4 19,9} qgeti(u) {6,2} &F p,

Box 7.2

Now there are no arcs going out from nodes Pl and P2' In order to
avoid failed computations we must add such arcs. We already know that the
commands in those arcs must resolve the "?" in the right-hand position. We

therefore add

37

P, = {u:?,?} getr(v) {u:?,v:?} dg P

Pl ={u:?,?} vgetr(v) {u:?,¢} df P4

3

P, = {$,7} getr(v) {¢,v:?} df P,

P, = 14,2} -1getr(v) {¢,4} df H

and get the flowgraph in Box 7.3.

Ce
LAy
s’
LY

B

We have now introduced even more '"dangling nodes', namely P3, P4, and

P It is determined by our heuristic which commands label the arcs godng

5

out from them:

38

P3 ={u:?,v:?} (u £ v); putl {?2,v:?} df P

6
P, ={u:?,vi?}v(u < v); putr {u:?,?2} = P

P4 ={u:?,¢} putl. {?’q)} d£ P

1

7

P

P, ={¢,v:?} putr {¢,7} 9

See Box 7.4.

For the first time now we have not introduced more dangling nodes than

we eliminated; in fact, only P6 and P7 remain., We now add:

P

39

P, = {7,v:?} getl(u) {u3?,v:?} = P
P ={?,vi?}qgetl(u) {¢,v:?2} = P
P7 ={7?,0} getl(u) {u:?,0} = P

P7 ={?,0} getl(u) {¢$,6} = H

This time no dangling nodes have been dntroduced. In other words, there are
no failed computations. It is easily checked that the arcs with a putl or putr

command are a basis set, so there are no infinite computations. The flowgraph

in Box 7.5 is therefore totally coreect.

40

The translation from a set of verification conditions to an Algol 60
program, as given with example I, is only one of several useful translations.

In this example we translate a pair of verification conditions such as

S ={7,7} getl(u) {wu:?,?2} = Pl

S ={?,?} getl(u) {¢,?} = P2

to

S: if getl(u) then goto P1 else goto P2

In this way the set of verification conditions of this example translate

to the set of statements in Algol-60 shown in Box 7.6.

S: if getl(u) then goto P] else goto P,;

Py if getr(v) then goto P, else goto P4;

P2: if getr(v) then goto P5 else goto H;

Pyt if u < v then begin putl; goto P, end

else begin putr; goto P] end;

P4: putl; goto P7;

Pg: putr; goto P2;

6 if getl(u) then goto Ps else goto P5;

P, if_get1(%lifhen goto P, else goto H e
e :

be 7.6

41

Note that the verification conditions are an unordered set. Written
in any order they define the same flowgraph, which uniquely defines a set
of computations. Therefore the statements resulting from translation of
verification conditions, such as those in the sub-boxes of Box 7.6, can
be re-ordered without affecting the meaning of the resulting statement,

provided that they are immediately preceded by

goto S;

and followed by the labelled dummy statement

We take advantage of the reorderability of the sub-boxes in Box 7.6
by utilizing the programming language's default transfer of control to
the next statement, thus saving some jumps. Also, some tests are inverted
to create more opportunities for such an optimization.

No attempt is made to obtain a result which is optimal with respect
to program size. 1In fact, we cut out with scissors the boxed statements
of Box 7.6, shuffled them around a bit, and then deleted unnecessary jumps
and labels, sometimes after inverting a test. Box 7.7 is the result. Note
that it is irrelevant whether this code is understandable. Understandability
is provided by the verification conditions in their historical development,
with commentary, as given above. Correctness is guaranteed by the way
the statements in Box 7.7 are obtained from the verification conditions by

translation and optimization.

42

L : SR

o
S: if getl(u) then goto P]; ’
PZ: if ~getr(v) then goto H;
xﬁ; Ps: putr; goto Py;
! P,z if agetr(v) then goto Pys
P3: if u >v then begin putr
5 goto P]
end; o

putl;
if getl(u) then goto P,
else goto P5;

P4: putl;

if getl(u) then goto P4;

Box 7.7 'v

There are no duplicated tests in the program in Box 7.7 because after
executing an action, execution is already at, or transfers to, the program
point adsociated with an assertion containing all information in the action's

postcondition.

43

8. Concluding remarks

An incomplete understanding of programming with verification conditions

may give rise to the followdng objections

a) the resulting programs exhibit no structure
b) the resulting code is unreadable

c) the method requires no discipline (hence must be sinful)

As for the first objection, let us go back to "structured programming",
the harmfulness of goto's, and all that. Dijkstra [2] emphasised that human
intellectual limitations necessitate great care in the choice of primitives
for sequence control. He concluded that, in order to keep sequence control
intellectually manageable, it is wise to abstain from the use of goto
statements and to rely instead on sequencing primitives which gimplify
and accurately reflect the flow of control.

Notice that these considerations are relevant only in situations where
sequence control has to be managed by the programmer. Our method consists
of two stages. 1In the first stage assertions and verification conditions
are collected until a flowgraph is obtained which is totally correct and
translatable to Algol. In this stage sequence control need not, and should
not, be considered. The next stage consists of automatable applications of
translation and optimization rules. It is only here that sequence control
appears: automatically, guaranteed correct, and, we have to add, almost
entirely in the form of goto's. But even here sequence control should not

occupy the programmer: if there is anything for him to do, it is to apply

44

the translation and optimization rules. The translation rules guarantee
that just before executing a goto a certain assertion holds and that the
goto then transfers to a label associated with that assertion: there is no

harm in a goto if one knows where one is going to.

"structured programming" dealing with

We conclude that the aspect of
intellectual manageability of sequence control has become irrelevant now
that there exist sufficiently systematic programming methods, such as in
Dijkstra's own recent work [3] and in our method.

The objection of unreadability is dismissed simply by pointing out that
the Algol programs resulting from our method are only meant for the compiler
to be read, not for the human programmer. It is the set of verification
conditions that is meant for reading. Moreover, the rules we have given for
checking the absence of failed computations are ascertainable from the
flowgraph representation of the verification conditions without reference
to sequence control.

The only constraint on the structure of the flowgraph which we find
useful is that it be easy to find a basis set. A property of "structured"
sequencing primitives is that the program text itself implies a basis set
in the flowgraph corresponding to the program. We see no merit in this
coupling of text and basis set. Consider for example the fairly complex
flowgraph in Box 7.5. Even there it is easy to see that there is no infinite
path from S without infinitely many actions pyt] or putr . In other

words, that Putl and putr . ‘'ecut all loops".

45

We conjecture that the phenomenon of a high concentration of complexity
is unavoidable for algorithms avoiding superfluous tests. The stepwise
aggregation aspect of programming with verification conditions gives a
sétisfactory way of constructing such algorithms.

It has been remarked that programming with verification conditions
necessarily generates '"structured" programs in disguise. Even if true we
maintain that our method has the advantages of simplicity and fkexibility
as discussed in section 6. However, we neither know nor care whether the
remark is justified: what is new here is that "structure" has become
irrelevant.

"Think before you do" applies in programming no less than in other
activities. 1In programming this injunction can be followed by preferring
reasoning about assertions to manipulating program components. Perhaps
the fundamental merit of programming with verification conditions is that
assertions are central, rather than program components. Our method restores
in full the flexibility of the unrestrained use of goto statements, yet
maintains, and improves upon, the security and problem-solving power of

"structured" programming.

9. Acknowledgements

Jack Alanen has helpfully and critically read an earlier draft, giving
many valuable suggestions. We have profited from discussions with Peter
Roosen-Runge and Keith Clark. The Canadian National Research Council has

provided partial support.

10.

(1]

[2]

[3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

46

Literature

E.W. Dijkstra, "Concern for correctness as a guiding principle for

program composition', The Fourth Generation (J.S.J. Hugo, ed.),

Infiotech, Maidenhead, 1971.

E.W. Dijkstra, "Notes on structured programming', Structured Programming

by 0.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Academic Press, 1972,

E.W. Dijkstra, A Discipline of Programming, Prentice-Hgll, 1976.

M.H. van Emden, "Unstructured systematic Programming', Report CS-76-09,
Dept. of Computer Science, University of Waterloo, 1976.
M.H. van Emden, "Verification conditions as programs', Automata,

Languages, and Programming (S. Michaelson and R. Milner, eds.),

Edinburgh University Press, 1976.
M.H. van Emden, "Relational equations, grammars, and programs", in

Proc. Conf. on Theoretical Computer Science, University of Waterloo, 1977.

R.W. Floyd, "Assigning meanings to programs', in Proc. Symp. App. Math.
Vol. XIX (J.T. Schwartz, ed.), American Mathematical Society, 1967.

E.C.R. Hehner, "do considered od: A contribution to the programming
calculus, Report CSRG-75, Computer Systems Research Group,
University of Toro;to, 1976. |

C.A.R. Hoare, "An axiomatic basis for computer programming', Comm. ACM,
Vol. 12, pp. 576-581, 1969,

B.W. Kernighan and P.J. Plauger, The Elements of Programming Style,

McGraw-Hill, 1974.

[11]

[12]

[13]

[14]

47

R.A. Kowalski, "Algorithm = Logic + Control", Dept. of Computation and
Control, Imperial College, 1977.

Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.

J.C. Reynolds, "Programming with transition diagrams',

Programming Methodology (ed. D. Gries), Springer, 1978.

R. Waldinger, "Achieving several goals simultaneously', in Machine

Intelligence 8 (E.W. Elcock and D. Michie, eds.), Ellis Horwood,

Chichester, and John Wiley & Sons, New York, 1977.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

