QUASIAUTOMATA AND APPLICATIONS*
by
Ernst Leiss
Research Report CS-77-34
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

November 1977

* This research was supported by the National
Research Council of Canada under Grant No.A-1617.

for all qe Q,aecA, A is called deterministic. M is extended to
PO(Q) x A¥ é‘Po(Q) in the usual fashion. A word x ¢ A* is said to be
accepted by A iff M(qo’ x)nF#¢ . L(A) denotes the set of words
accepted by A . A language L 1is regular iff L = L(A) for some finite
automaton A .

(Unrestricted) regular expressions (over the alphabet A) are
defined inductively:

(a) Basis: If a e A then a 1is a regular expression denoting the
language {a} ; A 1is a regular expression denoting the language
{A}; ¢ dis a regular expression denoting the empty language ¢ .

(b) Induction: If o , B are regular expressions denoting the languages
L(a), L(B) respectively, then ac8 , a*B , a , o* are regular
expressions denoting the languages L(a)oL(B) , L{a)<L(B) , L{a) ,
(L(a))* , respectively, where o is any binary boolean function.

(c) Any regular expression can be obtained by a finite number of appli-
cations of (a) and (b).

We do not distinguish between boolean functions of different
models for boolean algebras. For example, inthe above definition, in
order to be precise, it would be necessary to say that o in aoB is a
boolean function in the model of regular expressions, that o in
L(a)oL(B) 1is a boolean function in the model of sets, that the two
models are isomorphic as boolean algebras, and that the two functions are
to be identified via this isomorphism. Besides the two models already

mentioned we will also use the model {0, 1} . It should be clear from

the context which model is actually referred to.

QUASIAUTOMATA AND THEIR RELATION TO FINITE AUTOMATA

In this section we introduce the notion of quasiautomaton which
is a generalization of the notion of finite automaton. Then we will
show that for each quasiautomaton there exists a deterministic finite
automaton, called the derived deterministic automaton, which accepts the
same languagde, thereby establishing that the language accepted by any
quasiautomaton is regular.

We would 1ike to mention at this point that we do not aim for
utmost generality but rather try to formulate this section in order to
- simplify the presentation of the following sections.

Given any natural number ¢ > 1 , we denote by ¢ the ordered
sequence ¢ = (1,2,...,¢c) . Let T, be an ordered binary tree such that
the leaf profile reads c . Furthe;ﬁore let the label of each node n
of Te be the leaf profile of the subtree with roots n . One easily

verifies: If a node n has ny (n2) as its left (right) son, and s

is the label of node N i=1,2, then n has the label

S=53US,
where S; U Sy is the ordered sequence consisting of the elements of S4
(in order) followed by the elements of S, (in order). (Note that u here
is not commutative.) Furthermore if a is the last element of Sy > b
the first element of So then at+l =b . In particular, the root o
of T has the label ¢ = (1,2,...,¢) . It follows immediately that

each label is of the form (i, i+1, ..., i*+d) , d =0 .

Let ST (or S if Te is understood) be the set of labels of
C ——

the tree To 3 each s ¢ S is called a type.

For example, let ¢ =5 . Then T, might be

5= (1,2,3,4,5)

(2,3’4’5)

The corresponding set S of labels is
{] ,2’3’435’ (3’4)9 (253’4)’ (253’4’5)’ _5_}
Let Q be a finite, nonempty set of states, ¢ > 1 , and assume

Q=Q]u...uQC

such that Qi n Qj =¢ forall i#j, and Qi # ¢ forall i-=1,...,c.

For each s ¢ ST we define
c

Q. = U Q
S ies |
(Note that the sequence s is treated here as a set; since s contains

no element more than once, no confusion should arise.)

For instance, if s = (2,3,4) QS = Q2 u Q3 v Q4 . For each

is a new state, not in Qs , which will be called the

initial state of QS .
For each ie{1,...,c} Tlet F. E-Qi v {q;} . Furthermore, for

each s e ST » S containing more than one element, fix FS as follows:
c

If s = Sq U S, then F_ 1is one of the following four sets:

S
s
2
s 1)
So 0

((Fs] v Fsz) - {qz]’ qzz}) v {qg} :

Clearly, FS E_QS u {qé} for all s e S.
We now define the set 50 or & of well formed expressions.
The variables of the expressions in E? will be the elements of Q .
Furthermore Tet BOP be the set consisting of the following boolean
operators:
+ (addition), + (multiplication), ~ (complement), and any other binary

boolean operator, one might want to add.
Finally, BR 1is a set of auxiliary symbols,
BR = {(,), FE, {} v {}q, }é, %q | 9 an initial state for some QS}

Then € is defined as follows:

(a) Any boolean expression over Qi is in & , having type 1 , for
ie {1,...,c}

(b) If f,g ¢€& having types s, t, respectively, then f is in £
having type s and fog , (feg) are in & having type s v t if
suteS, for o ¢ BOP .

(c) If f <€ having type s , and s' is such that s' is maximal

with respect to t=s us' e S (i.e. there is no s" such that

t' =sus"eS and s" has more elements than s' ; note that this

uniquely determines s' and £1)" then

Efd ot Ef]'s. are in € having type t .
% 9%

(d) If fe& having type s , then 4f) g fsin € having type s .
%

(e) Any element of € can be obtained in a finite number of applications

of (a) through (d).

To continue with our example, let

Q, = {A,B}, Q, = {C}, Q5 =1{D,E}, Q, = {F,6}, Q = {H} ,

and Tet X° be the initial state of Qs’ S ¢ ST . Then the following
5

expressions are in 9

A+H , type (1,2,3,4,5);

ED+E], . type (3.4)
X

T Alternatively, if ng is the node of T with label s , then ng is

the left son of the node Ny s and the right son of ny is the node Ngr-

EC'D + E3I5 s t.YPe (2,3,4’5) s
X

' , t 2,3,4 4
EQX(3’4) ype ()

{FC + GJXS . H)X(2’3’4’5) , type (2,3,4,5) ;

H . type 5
On the other hand, the following are not in €

FA + BJC , 4H) S forany s #5 ,

X

EH]

for any s e S ,
X T

5

EE]'S for any s # (3,4)
X

S

We now define a relation = on &€ as follows:
(a) Expressions of different type are never related.
(b) The boolean operators maintain their usual properties, in particular
+ and « are associative, commutative, distribute over each other,

etc.
This implies that = restricted to boolean expressions is precisely

equivalence of boolean expressions (boolean functions).

(c) Equ + Egiq = Ef+93q , EfHA + Egaé = Ef+gié , 4f9q. +,(géq. = (f+99q.,
if the left hand side is defined.

(@) g = 47,

It is clear that = 1is an equivalence relation since it is

reflexive, symmetric, and transitive.
Define
Fo=&=
Any element f of Z will be called a function, however for convenience,
we will always write expressions. Furthermore we define the type of a
function to be the type of any expression denoting this function.

Thus

1

fD + EJ ,-(FE3 , + ED3 ,) = D + EJ ,+fE + D]
X* ax4 x* x* x4

Eﬁ+E+_E_+mX4EE]3X4;
note that E13 4 £0
X

For the sake of completeness, qg is considered to be a boolean function

of type s for all s e S .

We are now in a position to define quasiautomata. A quasiauto-
maton Q is a quintuple
Q=R 0.,M q; F_)
A is the alphabet of input symbols.
QT is the tree of states, defined as follows:

T is a tree, T = Te for some natural number ¢ . S =S5
- o

is the corresponding set of labels of L Q 1is the set of

states of the quasiqutomaton, Q = Q] U eeu U QC as described

above. For each s ¢ S, Qs is defined as outlined above.
Also, for each Qs there is a distinct initial state qg ¢ Q.
is the initial state of the quasiautomaton, g = qo0 (s0 =c) .
F_ is the tree of final states, defined as outlined above.

M, finally, is the transition function. It is a function from

(Qu U {qg})><A into F
seS

defined as follows:

For all q ¢ QS , seS ,M(g, a) is a boolean function (% qZ) of

type s , and M(qg, a) 1is a function of type s .

We extend M fo
M:F x A* > F

as follows:
(1) M(f, A) = f for all fe F , M(qo, A) = 9
(2) M(f, a) for f e F is defined as follows:

(a) If f 1is a boolean function, f = f(ql,...,qj) then

M(fs a) = f(M(f]]’ a)a veey M(an a)) .

(b) If f

g then M(f, a) = M(q, a)
(¢) If f f,of, » ° a binary boolean operator in BOP, then

M(f, a) = M(f1, a)oM(fz, a)

—
o
~—
f—
—4
—h
1t

Egﬂq , and s is the type of g , then

Mg, , 1if = 0
M(E, a) = EM(g a)gq 1 g Fs

(E1(g, 23, * M, @) L3 g = |

10

(e) If = Egﬂé, and s is the type of g , then
EM(g, a)d! , if g= 0
M(f, a) = q | s
(EM(g, a)d; + M(g, a)), if g = 1
g s

(F) If f= (g)q , and s s the type of g , then

Mlg, a)d,
Mlg, a) +g), , if g F, |

,if g = 0
M(g, a) = s

and ¢ is defined as follows:

~ { M(g, a) if M(q, a) $(g'9q for some g'
g =

g' if M(q, a) = (g')q for some g'

(3) M(f, xa) = M(M(f, x), a) for feZ , xechA* ,ach.

“F is an equivalence relation on functions of type at most s.
s
It is called evaluation under Fs and is defined as follows:

(a) If f 14s a boolean function of type at most s , i.e.

f = f(FS; QS - Fs)

then f =r o where a=f(1,...,1; 0,...,0) (e e {0, 1}) .
s

(b) If f =g then
- { 0, Tf g =FS 1
S 1,i1if g =Fs 0
(¢) If f= fof, » o a binary boolean operator in BOP, then
f =Fsa where o = Qo0 and fi =Fs o » 1.=1,2 .

(d) If f =fgd then f = 0.
q Fs

11

(e) If f = Egﬂé then f =Fs o where g =Fs o

(f) If f=4g) then f=. o where g = o
q Fs Fs
To illustrate these concepts, recall the quasiautomaton ,Q] .

3

Let us compute M(X”, 0100) .

M(x3,0010) = MMMM(X3, 0), 1), 0), 0) .

MO, 0) = EA + B, by definition of M ;
X
M(EA + 83'2, 1) = EM(A + B, 1)]'2 since 1 is the type of A+B
X X
and A+B =_ 0

F

SEB+BI, S E1T, s
G G

M(ENT!, 0) = (EM(T, 00!, + M(X®, 0)) since 1 = 1
X X 1

', + 403 ,)
(F JXZ { 9X2

M(E13', + 4C9 ,, 0) = (EM(1, 0)3', + £C) ,) + {M(C, D)3
: 3X2 2 E 2 2 2

= 13, + {c) , + {C)
‘ X2 G X2
=F13', + 4 +Cy, = 13, + 419
G G G X2

3

Thus M(X”, 0100) = E13'2 + £1) o
X X

Now we can define acceptance of a word x ¢ A* by a quasiauto-
mation Q = (A, Q.M g, FT) :

X ¢ A* 1is accepted by Q iff M(qo, X) = 1.

%0

12

The set of words accepted by Q 1is denoted by L(Q) ,

L(Q) = {x e A* | M(q, x) =g T}.

S
0

For example, X is accepted by Qq since FS = F(] 2) = {X3},
0 L)

and X3 is the initial state of Qq . 0 s not accepted by @, since

A + B]', = 0 . 01 1is accepted by Q, , for f1d', = 1, similarly
2 F ~ 2 F
X s X s
0 0
for 010 and 0100 . In fact, it should be clear that every word starting

3

with 01 1is accepted by ,g] since for any w A* | M(X”, 0lw) will

have an additive term E]Q'Z , and
X
E];IZ =F] .
X So

Theorem 1 Every regular language is accepted by some quasiautomaton, and

conversely, every quasiautomaton accepts a regular language.

Proof Let R be a regular language; we have to show there exists a
quasiautomaton Q such that R = L(Q) .
Let A be a deterministic finite automaton such that A accepts

R . Since R 1is regular such an automaton always exists; denoted it by

A=(A, Q M, q., F) . Define
,Q, = (As PT’ N, po, G)
as follows: ¢ =1, 1 is the (degenerate) tree with one node, P = P, = Q,

F , if g ¢F
G={ °

Fu {po} » Otherwise

13

Finally N dis defined as follows:
for all qe Q, N(q, a) = M(q, a) , and N(po, a) = M(qo, a).
It is easy to verify that, in-fact,
L(Q) = L(A) .

This proves the first claim of the theorem.

The second claim will be shown in the following way:
Given a quasiautomaton Q = (A, Q. M, q> FT) we will construct a
deterministic finite automaton A such that LQQ) = L(A) . Clearly this

implies that L(g) is a regular language.

Define A = (A, P, N, p , G) as follows:

P={fc¥IM,, x) = f for some x ¢ A*} ,
G={peP|p= 11,

%o
pO = qo ’ and

N:PxA->P is defined as follow:
If a<A and pe P, i.e. M(qo, x) = p for some

X ¢ A* then
N(p, a) = M(p, a) = M(q_, xa) .

We now have to verify that A 1is indeed a finite automaton. However,
this follows immediately, if we can prove that ¥ is finite. This will
be done below.

It remains to show that L(A) = L(Q) . This is not hard to

see, since x ¢ L(Q) iff Mlgy. x) =g 1 iff N(a > x) ¢ G iff
%0
x e L(A) . This concludes the proof. 0

14

The deterministic finite automaton which was constructed in the
proof from a given quasiautomaton Q will be called the derived deter-

ministic automaton, denoted by AQ .

~o

Lemma 7T is finite.
Proof By induction on the height h of =
Basis: h =0, i.e. Q=0Q, . Assume Q has n states. Thus there are

j
+
n+2 functions of type i , since there are n+l1 variables

at most 2
(Qu {qo}) and a function is either a boolean function or a function of
the type 497 1 where g 1is a boolean function.

Induction steﬁ: Let S1» So be types in ST such that

S=5S;US, € ST , and assume that there are finitely many functions of
type S; i =1,2. Now, every function of type s can be considered

as a function of two variables Xy and Xo s where for X; functions of
type s; can be substituted, i = 1,2. There are only finitely many
possibilities to do this. Hence there are only finitely many functions
of type s .

This shows that F is finite. 0

Let us construct the derived automaton AQ for ,g]
~]

[A + 33;2
L=

eV

R+ BIy 40
B3, + 40,
LEFRRCH
EPRRCY
A+ B3y ¢ 1)

BI', + {1
£ JXZ)XZ

135 + {13
£ 2

15

0 1

FA + B]" BJ! 1
2 t 2

fA + BJ 13 0
G i G

fA + E]iz * (Céxz
E13'X2 ¥ 4CJX2
£A + B‘J)‘(z ¥ mx2
fA + EQ;Z + (1)X2
513;2 ¥ (1)X2
E13X2 ¥ 4C)X2
fA + Ea)'(z + mxz
A + E};Z + 419X2

13, + 41
ERERLY:

BJ' C-
E—HXZ + ¢)XZ

£13', + 4C)
X2 X2

£13', + 4C)
X% X2

B]', + {1)
£ JXZ 2

11', + 4C)
£ JXZ 2

14, + 413
£ sz 2

F13, + 413
G G

BI', + 41y
E X2 X2

13, + 413
£ sz 2

—

Obviously, as already remarked, this could have been shortened

by using the observation that any function containing E]J'z as additive
X

term evaluates under FS

automaton is given by Ao = ({0,1}, {1,2,3}, Mo’ 1, {1,33) , M0

by

(¢

to 1 ; similarly for 13',

X

The reduced

defined

16

17

QUASIAUTOMATA ARE LINEARLY CLOSED UNDER REGULAR OPERATIONS

In this section we will show that the class of quasiautomata is
Tinearly closed under all regular operations i.e. all boolean operations,
concatenation, and star. By this we mean the following: Given an m-ary

operation f , m=1, and m quasiautomata Q. , there exists a quasi-

i

automaton Q such that the following holds:

(1) L(Q) = f(L(Q)s ...n L(Q)) -

(2) If Qﬁ has n, states, i=1,...,m, then Q has 0(n1 + ...+ nm)
States.

Clearly, if f 1is a regular operation (1) can be satisfied by construct-

» i =1,...,m , and

ing the derived deterministic automaton AQ for ,gi

~

then applying standard constructions. However, the result of this

approach will not satify (2), in general.

Theorem 2 The class of quasiautomata is linearly closed under all
boolean operations, concatenation, and star.

Proof We start with boolean operations. Without loss of generality
we consideronly complement and binary boolean operations.

Complement: Let Q' =’(A, Q.. M g, F%) be a quasiautomaton. Define
Q= (A, QT, M, Ay > FT) where F_ is the same as F' with the exception

of F which is given by
S0

{F; - {q,} if q,¢F!
o 0

F; u {qo} if 9, ¢ Fs s
0 0

18

and M is as follows: M(qo, a) = M'(qo, a) for all ac A, and
M(q, a) = M'(q, a) forall achA, q#gq .

Clearly, this defines a quasiautomaton. By the definition of acceptance
by a quasiautomaton we have x e L(Q) iff x 4 L(Q') for all x # A,

and due to the definition of F_ we also have X e L(Q) iff 1 e L(Q').
0
Therefore L(Q) = L(Q") which proves the first requirement for Tinear

closure. The second one is obviously fulfilled.

11) be a quasi-

Binary boolean operations: Let 'Qi = (A, Q;-, Mi’ q;, F
; i T

automaton, 1 = 1,2, and Tet o be a binary boolean operation. Without

{qf}) n (ng ' 2uS {qf,z}) - 5.

loss of generality assume (Q v U
' S 1
0 1 SEZ

)

We now define Q = (A, Q. M, o> FT) :

Let Ty = T o and for simplicity assume that fhe leaf profile of)

reads (c+1, ..., ctd) . Then T =1 where the root (with Tabel

cHd
ctd) has 7T, as left and 71, as right subtree. Clearly

$=S 55 uvs,, 51 being the set of labels of T

QT is as follows: For all s « Si , Q. = Q1. , 1 =1,2, and for

1
S S

) ol 2 2 .
s, = ctd , Qg QS] u QS2 (50 being ¢ , s being (ct1, ..., d)).

0
0 0

F. isas follows: For all sTes. ,F.=F.,i=1,2, and

19

1 2 1 2 . _
<F 7Y F 2‘> - {qo, qo} ,» if Gy 00, = 0
S S
Eoo= 0 0
S0
1 1 2 . _
(FS] u F 5 U {qo}> - {qo, qo} ,» if aqea, = 1T,
0 0
0, if g §F.
S0
a; = . ' i=1, 2
1, if g eFl
S0

Finally, M is as follows: M(qo, a) = M](q;, a)oMZ(qg, a) for all

aech,and Mq', a) = Mi(q1, a) forall aeA, if
i s
q €Q iU U {q } » 1 =1,2 . Clearly this defines a quasiautomaton.
i

S .
S.
0 Se_I

We claim L(Q) = LQQ])oL(QQ) . Again this follows immediately from the

definition of acceptance and the fact that the two quasiautomata have no

states in common; the definition of F. ensures that X e L(Q) iff
0

X e L(Q])oL(QQ) . Therefore the first condition for Tinear closure is
satisfied. As for the second, we observe that Q has all the states of

g1 and QQ plus a new initial state q, » thus (2) is clearly satisfied.

We proceed with concatenation. As in the previous case for
binary boolean operations, let ,Q] and QQ be quasiautomata with no
states in common. We define

9= (A Q.M q,F)

20

. . . i
T and QT are defined as in the previous case. For s « Si we have

_ el -
F i F joi= 1,2 , and
s S
2 2 . 2 2
¢ F 5 - {qo} , if 9y ¢ F 2
So So
_ 2 1 1 2 . 2 2 1 .1
0 So So S, S,
2 1 1T 2 ,
(F o U FS] u {qo}> - {qo, qo} » Otherwise

S0 0

For the definition of M we distinguish two cases, A ¢ L(Qz) , and
A€ L(QZ) :
2 2 .
(a) q, ¢ F52 :
0 M (q), a)3 if gl ¢ F]
1'%’ q2 > 9 ¢ N
M(q., a) = ° 0

EM](ql, a)d ot Mz(qo, a) , otherwise
9%

and M(q', a) =M.(q', a) for q' =Q'; v U {qs},1=1,2
S i Y
0])
(b) q2 e F2
0 S2
° ™ (q', a)1* if ql ¢ F!
149> 2 > 9% ¢ Fq
0 S0
M(qo, a) =

t EM](ql, a)3'2 + Mz(qz, a) , otherwise
9%

i i 5!
Mi(q , a) for q € Q s u U {qo } , 1 =1,2 .
s

Q
>
Q.
=
—
O
O -
-
QO
S~
It

3
0 S eS_i

21

It is easily verified that Q 1is in fact a quasiautomaton.
We claim: L(Q) = L(g1)L(g2) .

We will prove this for the case A ¢ L(QZ) » the other case is similar.

Wel(QIL(Q,) and A ¢ L(QG) implies w=ww, , lw,l =1,

. N 1 _
W, e L.Ggi) for i=12. w e L.Gh) implies M](qo, w1) o 1.
1
%o
By definition, this implies M(qo, w1) = [f] » ¥ g for some
%
, - e 2 :
f,g e ?P ., and if w, = aws , M(qo, w]a) = [f'] 5t M(qo, a)tg
; o2
for some f',g' . Clearly M2(q§, w2) =, 1 and hence
F
S2
0

M(q_ , w) =r 1 since Fz2 - {qg} E_FS . Therefore w e L(g) . Now
s

0 0 0

assume w e L(Q) , i.e. M(qo, W) = 1 . This implies that

S
0

M(qo, w) = £ 2t g where g = 2 1 . Therefore some prefix W,

% F 2
%o
_ . 2 B .
of w= Wa Wy must be 1in L(Q]) such that M2(qo, w2) —Fz 1 . This
2
s
0

shows W « L(Qq)L(QQ) . Thus, we verified the first requirement for

linear closure under concatenation. The second one is again obvious.

Finally, we deal with the star. As in the case of complement, let

Q' = (A, QT’ M', 9> F’lr)

22

be a quasiautomaton. Define Q = (A, QT, M, Ays FT) where FT is the

same as FT with the exception of FSo > FSO = FSO U {qo} , and M is

as follows: M(qo, a) = (M'(qo, a))q for all a < A, and
0
M(g, a) = M'(q, a) for all acA, q# A4y - Again, this defines a
quasiautomaton.
We claim: L(Q) = (L{Q"))* . This follows in the same fashion as

for concatenation . Furthermore, the number of states remains unchanged.

Therefore quasiautomata are also linearly closed under star.

This concludes the proof of the theorem. a
Example: Let Eh and Q2 be quasiautomata.
Q] = ({0,1}, Q]l’ M1, X2, F1]) where T] is the tree with one node,
~ T T
labelled 1, Q'y = {AB} , F'. = 0%, AB) , and M, is given by
%0 S0
0 1

X2 A B

A A+B A+B

B A B

_ 2 3 2 2 . .
Qz-({0,1}, Q755 My, X7, F 2) where <t~ 1is the tree with one node,
T T
labelled 2, Q% = {C,D} , F%, =¢ ,and M, is given by
s s

0 0

23

0 1
o B T
C D D
D C+D C+D

We construct a quasiautomaton ,Q such that

L(Q) = L(g;)L(Q,)

Q= (0,13, Q_, M, X

root labelled (1, 2), its left son 1, and its right son 2.

, FT) where 1 1is the tree with three nodes, the

0; = (AB}, Q= {C.0}, Q ,= {AB,C,D} .

b

The initial nodes of Q], QZ’ Q] o are X2, X3, X] , respectively.

F=0C A BY, F=0 ,F ,=0¢ . Finally, M is given by

0 1
X! EA3X3+C EB]X3+'C'
G A B
A A+B A+B
B A B
x> c T
C D D
D C+D C+D

24

By constructing the derived deterministic automata and A

R, &, &

~,

one can verify the result directly i.e. without referring to the theorem.

25

REGULAR EXPRESSIONS AND DETERMINISTIC AUTOMATA: A BOUND ON THE NUMBER OF

STATES

In this section we apply the results of the previous ones to
solve the following question: Given an (unrestricted) regular expression,
is there a bound on the number of states a deterministic automaton must
have which accepts the language denoted by the given expression?

We define the function s from the set of regular expressions
to the set of natural numbers - s is sometimes called the "letter
content" of an expression and gives a measure for the “"size" of the
expression:

(a) s(B) =1 for Be A u {X, ¢}
(b) s(aoB) = s(a) + s(B) where o , B are regular expressions and o
is a binary boolean operator;
similarly for concatenation,
s(a+B) = s(a) + s(B)

(¢) s(a) = s(a*) = s(a) for o a regular expression.

OQur aim is to construct a quasiautomaton gu from a given
regular expression o . This will be done by structural induction on
a . It should be obvious that the induction step is precisely the
construction given in the proof of the theorem in the last section. All
that remains 1is to give a basis. This is rather trivial. Let t be
the tree with one node. Construct Q¢, QA’ ga accepting ¢ , {A} , {a} :
= (A, Q. M¢, X, 9) Qso = {q} , M¢(X, a) = g and

M¢(q, a) =0 for all aeA.

%

26

G= A Qe My, X F) 5 Qg = fad s WX, a) = q and
Mx(q, a) =0 forall aceA, FS = {X} .
0
Q, = (A, Q, M, X, FJ) o Qso =1{q} ,M(X,a)=q,
Ma(X, b) =0 forall beA-{a}l, Mg, c)=0

for all c e A, FS = {q}
0

(0 in the definition of the transition functions denotes the constant

boolean function 0 .)

Therefore, given a regular expression o there exists a quasjautomaton

Qa with 2's(o) states such that L(Qa) = L(a) .

Now recall the proof that F is finite. The crucial property
is that a function of type s = S1 U S, € S can be considered as a
function of two variables X1s %o where functions of type S; may be
substituted for Xs o i =1,2. Since the above construction imposes
certain restrictions on the quasiautomata one obtains, it is easily |

2
verified that there are 2(2)-NS -NS functions of type s (= 1 U 52)
1 2
where NS denotes the number of functions of type Si s i=1,2. Thus,
i
it follows by induction that the derived deterministic automaton AD
~Q

accepting L(a) has at most

22501, 1,2 ()

states, or letting s(a) =n we get the bound

27

dn-4 _2n

p¥n-4.p20, o PBn-4

1

(The "+1" comes from the fact that the only initial state ever appearing

as state of Aga is the initial state of ga .)

Since the reduced automaton accepting L(a) cannot have fewer states

than A we can summarize:
~,

Theorem 3 Given an (unrestricted) regular expression o , the

reduced automaton accepting o has at most

265(&)—4 .

states. [

28

Acknowledgement

I am indebted to Professor J.A. Brzozowski for several discussions

which helped me in the formulation of the results reported.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

