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Abstract

Recently, problems of security in databases have been studied
where queries involved medians. The results imply that it is almost
impossible to provide security of data within such a framework. In this
note we extend this conclusion to queries involving averages, using
entirely different methods,namely linear algebra. In particular, in the
case of averages there does not exist a "president-janitor" paradox. We
then analyze the method of restricted overlap of queries, and determine
bounds which imply that is is not practicable. We conclude by giving a
method using random access which guarantees the security of the database

at virtually no additional cost while providing the required information.



Introduction and Notation

Recently, several papers have dealt with the database security pro-
blem from the viewpoint of computational complexity ([1]; for further
references see there). For our purposes this problem can be formulated
as follows. A database is a set of N elements X1s Xos eves Xy where
access is by specifying an appropriate index. For example, X, might be
the salary of person i . A query is a function of zero or more arguments
i.e. indices in the range from 1 to N . In the following discussion

we will always assume that the X; are (real) numbers. Typical examples

in this case are Mk(i], cees ik) which returns the median of the k
elements X. , ..., X; , A (i;, ..., i,) which returns the average of
i Ty kY1 k
the k elements Xi o wees X5 0s and the random selector function S .
1 k
We will also consider Gk(il’ cees ik) , the geometric mean defined by

<j§]X1j\1/k . In many databases some information is considered to be
"classified", i.e. is not accessible to the user. However, it is not
uncommon that the user is allowed to apply Mk’ Ak’ Gk, or S to such
classified information since the feeling seems to be prevalent that this
does not violate the security. For exampie, while individual salaries
might be classified, medians or averages of k (k = 2) can be computed.
- Clearly, it must be assumed that the arguments to Mk’ Ak’ and Gk
are pairwise different.

In [1] the case was studied where the query function is Mk .
It was shown that O(k]/z) queries are sufficient to compromise the

database i.e. to provide the - unauthorized - user with access to some

classified information (although not necessarily that of the user's choice).



Furthermore it was shown that not all classified information can be
accessed in this way (the "president-janitor" problem).

In the present note we will assume that the query function is
Ak . In this case we show that k+1 queries are sufficient to compromise
the database. This is optimal, i.e. any set of k or fewer queries does
not compromise the database. The given method to determine Xj for
given j requires O(k) arithmetical operations. It immediately gives
rise to an optimal method to determine m elements which requires
max(m, k+1) queries and O(max(m, k)) arithmetical operations. In
particular k+1 queries are sufficient to determine k+1 elements!
Similar results hold for queries based on Gk under the assumption that

all x; are positive. We then analyze the method of restricted overlap
of queries, suggested in [2]. We derive tight bounds for this method by
reducing the problem to a questidn of symmetric block designs. These
bounds imply that this method should be avoided for practical purposes.
We conclude the paper by giving a method involving random access which

guarantees the confidentiality of the information stored in the database

at the cost of two random accesses for each query.



Queries Involving Averages: The Optimal Case

We assume that all queries are of the form

q <+ Ak(i], cees ik)

J
out, and q 1is the result of the query. For brevity we denote a query

k
where Ak(i], cees B ) = %- ) X; » k=2 is arbitrary and fixed through-
J=1

by (1], vy ik) . We show that k+1 queries are necessary and
sufficient to compromise the database. The proof is then extended to give
a fast method to determine the values Xg 5 wees X for given

1 m

1° " Sm .

Consider the following k+1 queries:

A S PP TR 19
Qp < (igs gy evs dps Tyq)
a3« (igs Tgs wens pgqs 1)

Qe * Cigs Taps -0 Tyge Tp)
Qs © g Tyo oees Tpge T y)

In other words we cyclicly permute (i], cees 1k+1) and then take the
k-tuple consisting of the first k elements. This can be rewritten as

a system of k+1 Tlinear equations
Bkoxzk-q

where x = | . (x.=x.),a=1": , and B = (sz) is a



(k+1 , k+1)-matrix such that sz =1 if 1j is involved in the 2-th

query, otherwise b 0 . For instance if k = 3 we have the following

I
system

0 1 1 1 Xo 5. 9,
1 0 1 1 X3 a3
1 1 0 1 X4 dg

In order to show that we can uniquely determine any Xy it is

necessary and sufficient that Bk be nonsingular, i.e.that the determinant

det B be different from zero.

k 0 i= j+l

Let F, = (fij) be a (k+1, k+1)-matrix, fij = {]

k otherwise.

We show by induction on k that det Fk =1 for k=1 . Clearly
det F, = det F, = 1 . Assume det Fk—] = 1 ; we have to show det Fk = 1:

1 2
11 11 1 0 0 0 0
0 1T ... 1 1 o1 1 1 1
det/] 1 0 1 ... 1 1 |= det|/ 1 .0 1 1 1
. !
.
1 1 1 0 1 1.1 1 0 1
4 -l+]. =
= (-1) "edet F_; =1

k for k=1 . Clearly det 31 =1,

1]

Similarly we show that det Bk

det B, = 2 . Assume det B _; = k-1 ; we have to show det B =k:



| I 1 0 T 1 1 1 0

o 1 1 ... 1 -1 T .01
det 1T 0 1 ... 1 1 |=det o o 1 ... 1 1
T 1 1 0 1 0o 1 1 0 1

= ()Medet By (1)1 et B =Tk -1 =k

This shows that the information obtained in k+1 queries is sufficient
to compromise the database. In fact, it shows considerably more, for we
can determine all the xj's using this information since the latter
problem is equivalent to solving the system of Tinear equations

Bk-x = keq in x . Furthermore, we now can easily determine further

elements x,. s «oes X: . This can be achieved by m - k - 1 further
i i
k+2 m
queries:
G < (g pa1e Tgopans -ooo i) for s = k+2, k+3, ..., m (in this
order!).

Since all but the last element (Xi ) in these queries are already known
s
we obtain the formula

s-1
X; = k-qS - y X; 55 =k2, ...,m.
S j=s-k+1 'j
We summarize: Let i], cees im indices be given. To determine the
values X. 5 «.., Xs max(k+1, m) queries are sufficient.
1 m

Clearly solving a system of k+1 1linear equations in k+1
unknownsis not a very attractive method. However, due to the special

form of the matrix Bk we can give explicit formulae for the xj in



terms of the q, - We have

k+1
ARSURIRR I
where
s if sefl, ..., k+1}
|s| = k+1 if s =0 mod k+l

s mod k+1 otherwise

For the proof we first observe that Bk-x = keq 1is equivalent to

k+1

keq, = jZ] Xy - x“_]l (by inspection)

Substitution yields

k+1 k+1 7 k+1 )] k+1
- X, = .- ke - - keQy .
b Xs T X [ 2 (ﬁl KA B (ﬁﬂa qll1+1|-1l>

s=1
k+1 k+1 k+1 ’
= |(k+1)- . - ke A - ~K-q.
[( ) jZ] qJ j§1 qJ:l <jz]q3 th)
k+1 k+1
= . - A . = .

This holds for all i 1, ..., k#1 , and shows that
k+1

X. = . - keq,.

1 jz] qJ Q|]+]|

is, in fact, a solution. Since Bk is nonsingular, it is the only one.

This proves:



(a) To determine one element, k+1 queries and O0(k) arithmetic
operations suffice.

(b) To determine m < k+1 elements, k+1 queries and O(k + m) = 0(k)
arithmetic operations suffice. Note that we compute %i] qj only
once.

(c) To determine m' > k+1 elements, m' queries suffice. As for the
number of arithmetic operations we first apply (b) LE—Tj times with

= k+1 to pa1rw1se disjoint sets, and for the remaining
elements we apply (b) with m=m"' - (k +1)- [k+]J . Altogether
this requires 0(m') arithmetic operations.

It is easy to see that this method is optimal in the number of
queries. Any set of queries is equivalent to a system of linear equations.
It follows that k+1 queries are necessary to determine at most k+l
elements. This is obvious if one bears in mind the following facts: Any
query involves k different elements; two queries are identical iff they
operate on the same set of elements. Thus any reasonable set of queries
must involve at least k+1 elements. If we have only k' (< k+1)
equations in at least k+1 unknowns this Teads to an underdetermined system
of linear equations, which has either no solution or infinitely many
solutions. It is easily verified that every X depends on all k+l
queries (see for example the proof that Bk is nonsingular). Hence none
of the xi's can be uniquely determined because there does exist a solution
by assumption. Since all the x, depend on k+1 queries O0(k) arithmetic
operations are necessary to calculate one X; . This consequently implies

that the above method is optimal with respect to the number of arithmetic

operations, as well.



The reader should note that any error in a response q will
affect only k+1 elements Xij » i.e. there is no indefinite propagation
of errors. Also, round-off errors in the computations should not present
any problems.

From the viewpoint of data security the most alarming aspect is
the following: If a malicious user wants to access all the classified
information it does not make any difference whatsoever how large k is
(k = 3) .

We conclude this section with a remark on the geometric mean

-G If we assume that all the x; are positive the above results also

K
hold for Gk in place of Ak » since the two models are isomorphic by
virtue of the functions log and exp. If we also allow negative
numbers k+1 queries do not compromise a database in general since we
might be able to change signs. For example, if we have the following

system

9x]- 5 = 1, 3’x2-x3 =2, ?X]-x3 =3

and if we assume XqsXgsXg > 0 then we get the unique solution
Xq = 3/2 , Xy = 2/3 , Xq = 6 .

If we drop this assumption we also have the solution

Xy = - 3/2 , Xp = = 2/3 Xg = - 6



Ensuring Security of Databases: Restricted Overlap

In the preceding section we saw that k + 1 queries are
necessary and sufficient to compromise a database when we allow queries
of the type Ak(i], cee s 1k). Similar results hald for queries of the
type M ([11,[2]) or G . Thus we have to conclude that allowing queries
of these types and aiming at security of databases are conflicting
objectives.

In [2] restriction of the overlap of queries was suggested to
ensure the security of classified information. More precisely, given a
set of queries the overlap r 1is the maximal number of common indices in
any two queries (i], . ee ,ik) and (j1, vet ,jk) in the set. Clearly,
r can be restricted to {1, ... ,k-1}, since r =0 (no overlap) and
r =k (repetition of a query) are of no interest; it should be obvious
that a set of queries of any type with overlap r =0 can not compromise
a database. Examples show that restricting the overlap r in conjunction
with allowing only a limited number of queries does indeed guarantee pri-
vacy of data. For instance, if k = 4 the minimal number of queries of
type A4 to compromise the database is 7 for r = 2 and 13 for r =1
(versus 5 for r =3), for k=3 and r =1 this number is 7 (versus 4
for r = 2). However, the claim in [2] that their ftheorem 1 points out
that there exist mechanisms (bounding the overlap and the number of queries)
that can protect a database" is somewhat misleading because the lower bound
given in this theorem in [2] on the number of queries necessary to compro-

mise a database has the maximum k.
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In this section we will give an analysis of the method of re-
stricted overlap. We will obtain tight bounds by reducing it to symmetric
block designs. These bounds imply that the method is of little practical
use to ensure confidentiality of data.

If we restrict our attention to queries of type Ak, one can
easily verify that the problem of finding a compromising set of queries is

equivalent to the following problem:

Find an integer t, t

Dep = (di) 1 ¢4, 52t

k ones and t - k zeros, any two rows di- and dz- have at

t(r,k), and a (t,t) - matrix Dk P

» such that each row d. ~ consists of

A

most r ones in the same position, and Dk,r is nonsingular.

Let us analyze this method in order to assess its value for
practical applications. Most of this analysis will be done by appealing
to some theorems in combinatorial theory. In particular, all the theorems
cited in this paragraph are from [3]; Since we can formulate our results
without making reference to block designs, we will not give their defini-
tion. Note, however, that the theorems from [3] all belong to the theory
of block designs. In the following assume k > 3.

First we observe that we are only interested in the case where
t s minimal, i.e. if we have matrices Dk,r’ Di,r of dimension t, t',
respectively, we need consider only the smaller one. Furthermore, the
following should be obvious: Let Dk,r be a matrix such that any two rows
have precisely overlap r, and suppose that Dk,r is of minimal dimension

t with respect to this property. Also, let Dé P be a matrix such that

not any two rows have overlap r, and let t' be its dimension. Then t' > t.
More general, if Dk " has more rows than D& P with overlap precisely r,

and if Dk v is of minimal dimension, the dimension of Dk v is smaller than
that of Dﬁ,r'

E
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Therefore, we restrict our attention to matrices Ek v of

dimension t in which any two rows have exactly overlap r. This implies:

T _
k,r Ek,r -

matrix of dimension t, and J 1is the matrix consisting of

1. E (k-r)‘I + r-J, where I is the identity

ones only. This is easily verified by considering the inner
product of a row of Ek . with itself.
2. det (E, .- E )= (k-r)t1 « (troesk)  ([31, p.103).

Therefore det (Ek r) = #(k-r)t-T.(tr-r+k), and t >k >r
implies Ekr is nonsingular.

3. E .J=k .+ J, where J is as in 1.. Again, this

kyr
follows by considering inner products.

We now use a theorem by Ryser ([3], p.104, theorem 10.2.3) which states

2
that 1., 2., and 3. imply t = 5?15-+ 1. We therefore conclude that

matrices Ek P exist only if r 1is a divisor of k?-k. We summarize
1]
these results as follows:
Let r and k be given, 1 < r <k, and assume there exists a

matrix Ek,r‘ Then any matrix Dk v satisfying the requirements set out above

has at least dimension
+ 1.

k2-k
r

Before we continue we remark that the Bruck-Ryser-Chowla theorem

in our case provides a necessory and sufficient condition for the existence
kZ-k
r

of matrices Ek " for given k and r. In fact, letting t = + 1

such a matrix exists iff

t is even and k-r is a square

or
t is odd and 2% - (k-r)@ + (-1)(t'])/-2r-y2 has a solution in

integers x, y, z different from (0, 0, 0).

For a proof we refer to [3],theorem 16.4.1 (p.282) and sections 10.3 and 10.4.
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The above lower bound on the dimension of Dk,r implies that
any number of queries less than‘ E;ZE-+ 1 will not compromise the database.
In particular, choosing the smallest possible value for r, namely 1, the
best this method can give is an upper bound of k2 - k + 1 queries. Since
it can be shown (see [3], p.111) that for any k and r =1 there exists
a matrix Ek,l’ this is an absolute bound; clearly, even if r > 1 we
can assume r =1 and use Ek,] which is of dimension k2 - k + 1. There-

2 _k

fore under no circumstances is it possible to allow more than k
queries with common overlap if the database is not to be compromised. This
alone would suggest that the method of restricted overlap is not feasible

in practice. Moreover, in order to be able to test whether the overlap
condition is satisfied, all queries of a user must be stored (and there

can be arbitrarily many since disjoint queries do not affect anything) for
as long as the information in the database remains unchanged. In the case
of salaries this may well be a month, in the case of financial contributions
to political parties even longer. Yet, even this would not guarantee that
the database cannot be compromised because two malicious users each one
having issued less than the maximal number of queries with common overlap

can combine their results and can thereby compromise the database. In

summary, the method of restricted overlap is totally infeasible.



13

Ensuring Security of Databases: Random Selector Functions

The results of the last section suggest that restrictions imposed
on the "form" of the queries are not very feasible. On the other hand,
the first section amply demonstrates that there is a need for some mechanism
to protect a database. In order to achieve this we propose the following
method. Rather than using queries of the types Ak’ Gk, or Mk we suggest

the following types of queries, where 0 < v < k-1 (again k = 3):

\'4 . .
A (1], e ,'lv, S, ... ’S)s

Gx (igs +ee oiys S onn ,S), and

V 1. s
My (iqs oo siys Sa el uS)

This is to be understood as follows: The user provides v indices
i], ces ’iv’ and the remaining k-v values are determined by the random

selector function S. For instance

q«Q(H,“.JWs,“.ﬁ)
means
X, *+ = - S.
1 1j k 321 Jj

Q=1L

1§ D3

J
where s. is a result of S. In the following discussion we will con-

J
k-1

centrate on queries of the type Ak However, all the results can be

applied to Az for arbitrary v < k, and some of them also to Gx and Mk'
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We claim that it is impossible to compromise a database with a
set of queries of type Ai'], even for very large k. Clearly, if k is
not too small, the results of a query (i;, ... ,i, _;,.) will be a good
approximation to the desired (exact) value

1 k§1 )
k-T 321 Tj'
Thus, as far as statistical data is concerned this modification does not
make much of a difference.

Let us first assume, that the results of the queries form the
right-hand side of a system of linear equations. Since so far we were
concerned with Tower bounds only, this assumption was not necessary. How-
ever, now we allow arbitrarily many queries and have to be more careful.

To substantiate our claim under this assumption we first observe
that our best "guess" for the values sj returned by S is the average

p

==

s* =

Il 122

i
taken over the whole database, or - if we don't know s* - the average
over all responses to the queries issued. Therefore, rather than dealing

with a system of equations

k.x = k.q
where D, =D , , (i.e. any overlap is permitted) we must solve the

modified system

where a = ((k+1)q]'5]s e ’(k+])°qk'sk
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However, all what we can solve is the system
Dk.x = a

where q =((k+1)-q]-s*, e ,(k+1)»qk—s*)T. Another way to look at this problem
js to assume that q contains errors, and is given by a. The sensibility
of a system of linear equations M:x = ¢ to errors in c¢ 1is usually

measured by the condition number

cond(M) = |[M]]- IIM-]ll

1 denotes the inverse matrix to

where || || is some matrix norm, and M~
M. We pick the following norm || |[:
n
- 2\k =
M= € jz]lmijl Y2 M= (misdig, jens

Let us determine a Tower bound on cond(Dk). Clearly,

1D || = #&°E

t being the dimension of D . We claim that |[Dk][| > ¥t/k. Llet D =

-1

(d:.), DE1 = (dijl)' Since Dk "D = I we have

t

Zz1diz dpj = 1.

t L

We want to make ( ) [d'ilz)2 as small as possible, for all i =1, ... ,t.
=1

So, let dii = 0 whenever diz = 0, Therefore, at most k of the dii

are nonzero. Furthermore, these must add up to. 1; note that diz e {0,1}.

Now, consider

k
2\
(1121
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as a function in the k variables Zys wee 325 and determine a minimum

k
subject to the constraint y 25 = 1. This minimum is attained for
j=1

= = =1
Z] T e T Zk - /k,

and is k~%. This holds for all i =1, ... ,t, hence we get

7tk .

o= (E 5 L
L L

Therefore we obtain
cond Dk > t,

This implies that all matrices Dk are quite sensitive to errors; note
that t > k. Furthermore, the errors will be considerable since on the
average sj - s* will be of the same order of magnitude as s*. There-
fore, it is not possible to obtain useful results when solving this system
of equations, the database cannot be compromised.

D.J. Taylor pointed out that there exists a way to compromise
a database if we do not assume that the results of the queries form the
right-hand side of a system of linear equations, provided the random
selector function S satisfies a certain property. This method can be
described as follows: Let {qj(igjl.",iéj), S) | =1, ... ,t} be a set

k

of queries of type Ak+1 corresponding to a matrix Dk ke of dimension

t such that the following holds: If qj is q. as query of type Ak

J
(i.e. no S appears) then by solving D | ; - x = q' we can determine

all Xi s e sXg Now define q3,m to be the mth repetition of query
1 k >
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A m $ Qy gt Since the result s of the

qj3 note that, in general,
random selector function S in the mth repetition can be different from
Syt * However,
N*

1

* mzl qj,m
might converge to a certain value with increasing N*, say q;, i.e.

t

*

q; = ) d

*
+ g.
I 9=

3,85, T %

where D = (d, ,). Assume this holds for all j =1, ... ,t. Further-
ksk'1 J’£

more assume that

* *
s] = ,,, =§, = 8%

i.e. the value to which S converges does not depend upon the particular
query it is used in. We will assume that s* is known; usually it can be
obtained by averaging. Under these circumstances it is possible to com-
promise the database since this simply amounts to solving the following

system of linear equations

qq - s*

This suggests several methods to prevent a breach of security.
One is to do away with the assumption that s* is known; one might for

instance change it from time to time. Another one is to make sure that N*,
T N*
the number for which @ = ] s is a reasonable approximation of s*,
m=1
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is very large, preferably N* = O(N). A third possibility is to drop the
*
&
to change s* from time to time will introduce a time dependency which

assumption s? = ... =8 The first possibility is rather simple-minded;
might be undesirable for reasons outside of the scope of the questions we
deal with here. We also discard the second strategy because in order to
implement it queries must be counted. This would lead to problems similar
to those in connection with restricted overlap, such as the problem of
storing information about queries for a long period of time, or the problem
of users combining their results. We therefore have a look at the third

proposal, dropping the assumption

By applying the above arguments from linear algebra it is not difficult to
see that the database cannot be compromised if there is a possibility that
s; $ s?. for j % j'. Of course, we assume that no s; is known; note
that this information cannot be retrieved from the queries if one uses the
following scheme. Let T be a random selector function; we do not assume
anything else about T. Whenever a query (11, - ’ik—1’ S) is to be
executed two calls to T are made, yielding t] and t2. If Xi1 < xik-]
then the maximum of t, and ty is the value of S returns, otherwise

S returns the minimum. Note, that in this way no information about the
range of the xi's is required, no time dependency is introduced, and no
previous values of T must be stored. Furthermore it can be implemented

at virtually no cost. We do realize that a slight bias in the statistical

information might be introduced by this method but we feel this is negligible.
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In conclusion, queries of the types At'], Gﬁ'], or Mt'l

, for
not too small k and a suitable choice of the random sélector function S,
provide all the statistical information the user is supposed to obtain
while on the other hand they protect the security of databases at prac-
tically no additional cost i.e. they do not require extensive storing of

previous queries and costly checking for conditions (such as overlap).
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