REGPACK, AN INTERACTIVE PACKAGE FOR
REGULAR LANGUAGES AND FINITE AUTOMATA*

by
E. Leiss
Research Report CS-77-32
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

October 1977

* This work was supported by the National Research
Council of Canada under Grant No. A-1617.

REGPACK, AR INTERACTIVE PACKAGE FOR
REGULAR LANGUAGES AND FINITE AUTOMATA

by

E. Leiss

Abstract

REGPACK 1is a package of programmes written in SPITBOL for
interactive use to facilitate dealing with regular expressions and finijte
automata. It contains procedures for some frequently used operations
such as constructing a deterministic automaton from a given nondeter-
ministic one orb from a given regular expression, reducing a deterministic
automaton, and constructing the syntactic monoid of a regular language.

This report on REGPACK consists of three parts: The first part
gives some comments on the implementation of the algorithms, in the
second part performance and Timitations of the programme are discussed,
and the third part presents one of the algorithms in more detail.

A certain familiarity with regular languages and their repre-

sentations is assumed throughout the report.

IT

ITI

Introduction = = 00000 @ ce et iiiiiiessistattencctanansraannnas

The programme = ceeectitiiiiictitiitietitecciaatananans
1 R 2 O
DERIV et ieiiiieittrttetaeaeat st aanas
MAKE DET =~ eeeeeeitientienteontannntennennnncnnans
REDUCE tiiieieneenecsnanensasacnssosanannnanns

MON and itS FfEALUrES +eecececsoccensosacssceosanssanosansons

(=2 BN & 2 B e L 2) ¥

PERMUTATION = ceteeenereerencenensnoannsncsossnnsanss
7. REVERSE eeettteenrnencnseseneasaccssassnsssasanns
8. The interfaCe @ @ ceeerirrteierorsenseasssansnscsssssannns.
9. INAUT eeeeiitiiiiiieeiiree ittt
10. OUT_AUT eeeeiiiiiiiii it eantenatsanenonanans

Performance and 1imitations «cvceeeeeeeeerroscsenassssoncansasas

Some remarks on algorithms to translate

expressions into automata.............. Peeseotassasssasncnsanan

Bibliography ot i i iie sttt

1
12
13
16
17
18
19
20

21

31

INTRODUCTION

Despite the fact that the class of regular languages is one of
the best understood classes of formal languages there are still various
open problems concerning regular languages. To study these problems one
often would like to test certain conjectures on examples. However, to
carry this out for nondegenerate examples usually involves a great amount
of (highly error-prone) hand computation. On the other hand, several of
the algorithms used in these computations can be programmed without great
difficulty. While we are aware that several such programmes have been
written [10, 13, 14, 15] we submit that their use is feasible only in
cases where hand computation does not present too much of a problem
either, whereas in cases where the amount of work involved is indeed
prohibitive for hand computation - computation of the syntactic monoid
of a regular language which happens to have more than 300 elements, for
example - these programmes typically cannot be used because they need too
much time and/or space.

For these reasons the package REGPACK was written which can be
used to solve the following problems: To construct a deterministic
automaton from either a nondeterministic one or from an (unrestricted)
regular expression, to reduce a deterministic automaton, to test whether a
regular language is noncounting, and to construct its syntactic
monoid. This package was written in the programming language
SPITBOL to be used interactively under the environment of the IBM Virtual
Machine Facility/370. It is very fast - due to agreat extent to the use
of specific features of SPITBOL - and can be used for rather large

examples. Furthermore, problems due to space requirements are alleviated

since it runs on a virtual machine.

This report gives some information pertaining to REGPACK. It
has three major parts. In part I, we give some comments on the implemen-
tation of the algorithms without, however, presenting any code. In part
II, we discuss the performance of the programme and its limitations (intrinsic
ones as well as those of the implementation). In part III, we describe
one of the algorithms in more detail.

The reader is expected to be familiar with regular languages,

their representations, and operations on them.

I. THE PROGRAMME

REGPACK is a package of programmes to facilitate dealing with
regular expressions and finite automata. It contains subprogrammes for
the following tasks:

1. Constructing a deterministic automaton from a given unrestricted
regular expression, in two versions
(A) using the method described in III (RGX),
(B) using derivatives (DERIV).

2. Constructing a deterministic automaton from a given nondeterministic
one (MAKE DET).

3. Reducing a given deterministic automaton (REDUCE).

4. Constructing the monoid of a given deterministic automaton (MON).
This programme includes various other features (see description).

5. Testing whether a reduced automaton is permutation-free (PERMUTATION).

6. Reversing a given deterministic automaton (REVERSE).

These routines are tied together by an interface which makes it possible,

for instance, to obtain the syntactic monoid of a language given by a

regular expression; note that this involves RGX or DERIV, REDUCE, and MON.

The programme was written for interactive use under the
environment of the IBM Virtual Machine Facility/370 as it exists at the
Computing Center of the University of Waterloo (circa July 1977). The
programming language used is SPITBOL, which is a compiler version for
the IBM 360/370 of SNOBOL4 ([6], see also [4]).

In the following we will describe important features of the
implementation; we will not, however, give the actual code or comments

on it (the source listing is about 40 pages Tong).

1. RGX

ITI.

A detailed description of the algorithm can be found in Section

It may be advisable to refer to that section.

Four procedures form the core of RGX:

UN :

CON:

ST :

COMPL:

given nonreturning finite automata A and B, UN constructs a
nonreturning finite automaton C such that L(C) = L(A) U L(B)
(UNion);

given nonreturning finite automata A and B , CON constructs a
nonreturning finite automaton (such that L(C) = L(A)L(B)
(CONcatenation);

given a nonreturning finite automaton A , ST constructs a non-
returning finite automaton (such that L(C) = (L(A))* (STar);
given a nonreturning finite automaton A , COMPL constructs a non-
returning deterministic finite automaton C such that L(C) = L(A)
(COMPLement).

UN, CON, and ST are straightforward implementations, COMPL first finds a

deterministic finite automaton B such that L(A) = L(B) and then

obtains (by complementing the set of final states of B .

Any regular expression which is to be used in RGX is first

preprocessed (in PREPROCESS) as follows:

(a) An internal binary operator (@) for concatenation is inserted.

(b) The expression is fully parenthesized.

(c) Intersection, difference, and symmetric difference are expressed in

terms of union and complement.

(d) Multiple brackets and redundant complementations are removed.

Then the basis for the inductive algorithm is established (in BASIS) as

follows:

(a) For each element a of the alphabet which occurs in the expression,
as well as for I and X , an automaton accepting {a} , I, {)\}
respectively, is generated.+

(b) For each a, I, A a token is substituted which refers to the
corresponding automaton. (Note that this token refers to the same
automaton for various occurrences of the same letter.)

Now, the subprogrammes ST, COMPL, CON, and UN can be applied to the

resulting string. Note that the pattern matching facilities of SNOBOL4

make this process rather efficient. In particular whenever an automaton

for a certain subexpression has been found the whole expression is scanned
for another occurrence of this particular subexpression. If one is found
it is also replaced by the token referring to the corresponding automaton.

To save memory space tokens which become obsolete can be reused as

reference to some other automaton; this mechanism employs a queue of

tokens which can be reused (procedures FEEDQUEUE and NEXTAUT). The final
result of RGX is then output and stored in a global variable AUT, which

can be used later on as input to REDUCE or MON.

T 1 denotes the full monoid A*, X the empty word.

2. DERIV

The programme is a fairly direct implementation of the algorithm
as described in [3]. At its centre is a procedure (DRIV) to take the
derivative of a regular expression (PREFIX STRING) with respect to a
letter (LETTER). This procedure is recursively used and outlined below.
As the name of the variable suggests the internal representation of the
regular expression is in prefix notation. This is obtained by a recursive
procedure (POL) which is applied after an internal operator for concate-
nation (@) has been inserted. The programme keeps a queue to record the
derivatives which still need to be processed. A derivative D is
considered to be processed if either D 1is similar to a processed
derivative or the derivative of D with respect to all letters in the
alphabet has been constructed. The subroutine DELTA is used to determine
recursively whether the empty word X is contained in the language
denoted by a regular expression.

To test for similarity (actually somewhat stronger than in [3])
a standardization procedure is employed (STANDARD) in addition to a
simple-minded test for certain equalities (SIMPLE). STANDARD basically
rearranges a given derivative so that the operands of every binary
commutative operator are in lexicographical order (they are simply
treated as strings), and then tests whether two adjacent operands are
equal in which case the expression is simplified. STANDARD uses first
a simple bucket sort (ORDER), which in turn employs an exchange sort
(PRIM_ORD) if necessary. STANDARD and SIMPLE together guarantee that the
empty derivative will never appear as a proper subexpression of any

derivative.

Computation of DELTA (PREFIX_STRING)

For brevity let S denote PREFIX_STRING. PREFIX STRING is a
simplified and standardized derivative in prefix notation. DELTA(S)
returns A if X e L(S) , otherwise F, the empty derivative.

(a) If S is an atom then DELTA(S) = A iff S=2x or I (an atom
being any letter a in the alphabet, or A , or I).
(b) If S =3S_ then DELTA(S)

1

S? then DELTA(S)

S]oS2 where o is a binary operator, i.e. union (+),

A iff DELTA(S1) =F .

A

P —_~~
o (9]
S o
- —_
- -h
w w
il fl

intersection (+), concatenation (@), difference (-), or symmetric
difference (A), then the result of DELTA(S) is given in the follow-

ing flow chart, where D = DELTA(S) , Di = DELTA(Si) , i =1, 2:

?‘-..EIESI..’. N

< x> <0
Y N Y N
D:=A <t D:=F
Y N Y, N
@ D D:=F
Y N
<Dy
D:=x D:=F Y

Clearly, for any S DELTA(S) is either A or F .

Computation of DRIV(LETTER, PREFIX_STRING)

For breyity let S denote PREFIX_STRING, A denote LETTER. S
is a simplified standardized derivative in prefix notation. DRIV(A, S)
is the derivative of S with respect to the letter A . Let R denote
DRIV(A, S) , Ri = DRIV(A, Si) , 1 =1,2 .

(I) S s an atom (i.e. a letter a ,or I ,o0or 2)

(II) S contains operators

1

(1) star S = S* ; DRIV(A, S) = DRIV(A, S]

(2) Complement S = ET; DRIV(A, S) = DRIV(A, 51)

(4) Binary boolean operators S = 51052 s o {+, o, -, A};

)oDRIV(A, Sz) .

DRIV(A, S) = DRIV(A, S]

N
R:=F R =R2 o=+ Y
Y N < o= > R T N
R =I o= Y N Y
Y N 2 R:=R; R,
R:=F R:=R,
o=+
R:=R 0
2
y N Y N
= RisI | < o=r >
R:=1I R:=R,,
Y N
R:=R, 0
Y N
R:=F R:=R.

This concludes the computation of DRIV(A, S) . It is easily verified that
DRIV(A, S) never contains F as a proper subexpression. Using these
derivatives DERIV then constructs a deterministic automaton which can be

referenced by AUT for further use by REDUCE or MON.

11

3. MAKE DET

This procedure uses the global variable NAUT which refers to a
nondeterministic automaton. It creates an equivalent deterministic
automaton which can be referenced by the global variable AUT. It employs
as primitive a procedure DET which basically performs the subset
construction. More specifically it starts with the initial state and puts
it into a queue of subsets not yet processed. For each subset in the
queue it computes the result of that subset under a letter, for all letters
in the alphabet. This result - which clearly is again a subset - is
ordered. Then it is checked whether this subset - actually a sequence -
was already encountered during the computation so far. If this is not
the case the sequence is appended to the queue. DET employs two procedures
(MERGE and ORDR) to obtain ordered sequences and uses the built-in tables
of SPITBOL to test whether a certain sequence has been already encountered

during the process (SYN).

12

4. REDUCE
This procedure operates on the global AUT and constructs the
minimal automaton accepting the same language. It uses the usual

)

reduction a]gorithm* i.e. successive refinements of equivalence classes
on the set of states starting with the sets of accepting and rejecting
states until the partition is consistent with the transition function of
AUT (see any standard textbook on automata theory or alg. 2.2 in [2]).
The result is then stored in the global variable MIN for possible further

use in MON.

*) This is a quadratic algorithm. At the moment we do not intend to
supply an implementation of Hopcroft's algorithm [7].

13

5. MON

This procedure operates on the glebal variable MIN. It assumes
that the automaton referenced by MIN does not have more than 26 states
because it renames them so that 1 becomes A, 2 becomes B, ... ,26 becomes
Z. Let this renamed automaton be A = (A, Q, M, dgs F). MON constructs the
monoid (or the semigroup) of this automaton. Since it is irrelevant for
this construction whether a state is accepting or rejecting this informa-
tion is ignored for the time being. The method is the usual one; it starts
with the n-tuple consisting of the first n Tletters, ABC ... N (n is the
number of states in MIN). If the monoid is to be constructed then this is
considered to be the first state of it, if the semigroup is to be construc-
ted only its successors are considered states. The successor of a state
under a letter a of the alphabet is the n-tuple (M(A,a), M(B,a), ... ,M(Na)).
This new n-tuple is then also considered a state. Each state coming up in
the process which had not been encountered up to this point is placed into
a queue. For all states in the queue their successors under each letter of
the alphabet are computed.

In addition to the choice between semigroup and monoid, MON also
offers partial computations. This is to be understood as follows: Rather
than starting the above process with the n-tuple ABC ... N the user can
input a nonempty string w over the alphabet and take as the starting
n-tuple (M(A,w), ... ,M(N,w)) (again this works for semigroups and monoids).
The reason for this is that in some cases the information derived from such

a partial semigroup or monoid suffices to determine the structure of the

whole semigroup or monoid while requiring considerably less work.

14

This process of taking successors will eventually terminate;
the result yields an automaton, the (partial) semigroup or monoid automaton.
This automaton can be printedas well as the multiplication table of the
(partial) semigroup or monoid (the latter only if the number of elements
is less than 40 - otherwise the table would not fit on one page).

Upon completion of th{$ process of enumerating the elements of
the (partial) semigroup S or monoid M the following special features’are
available. Features flagged with ftab]e" require the multiplication table,

similarly for "full monoid" and "full semigroup”.

1. The eSe tables for all idempotents e (table), and the tests
for definiteness (full semigroup) and for local testability
(full semigroup, table) of the input language.

2. The correspondence of the resulting elements to the states of the
input automaton.

3. Input of a set of elements of the monoid (semigroup); the
programme determines the smallest submonoid (subsemigroup)
Conté&ning this set (table). a

4, Principé] ideals fM, Mf, MfM for f ¢ M, using the procedures
P_IDEAL and REACHABLE (full monoid).

5. Me={geM| fe MgM}fusing procedure M_SUB F (full monoid), and

analogous tests as in 1. (Hence, * denotes the monoid closure.)

The tests mentioned in 1 are as follows:

finite/cofinite eS uSe =¢
definite Se=e

The Tanguage is iff
reverse definite eS = e
generalized definite eSnSe=¢e

idempotents e of its semigroup S. (Note that eS n Se = eSe.)

15

for all

Further-

more the language is locally testable iff all eSe monoids are idempotent:

(ff=Ff) and commutative (fg=gf).

The significance of the eSe monoids is amply demonstrated in

the literature; for example see [24], [22], [23].

The corresponding tests in 5 are:
Tests for eMe U Mee = e, eMe = e, Mee=e, and eMe n Mee = e for
idempotents e of the monoid M, and further tests whether the
eMee (= eM, n Mee) monoids are idempotent and commutative

([21], [22]). We make use of the fact that g e Mf iff g ¢ MaM

some a ¢ M whose corresponding congruence class of A* contains

of A. This considerably reduces the amount of work to be done.

all

for

a letter

Furthermore the list of elements in MaM for all such a « M is saved

to avoid duplicating computations.

MON also uses a procedure (TRANSFORMATION) to compute the

starting sequence if a partial semigroup or mondid is needed.

16

6. PERMUTATION
This is a procedure to determine whether a given reduced

automaton A = (A,Q,M,qo,F) is permutation-free, i.e. for all nonempty
subsets {p;,...,p.} = Q and all words x e A* (M(p1,x),...,M(pr,x))
is either the identity permutation of (p],...,pr) or no permutation at
all. This condition is known to be equivalent to the following statements:
(1) L(A) can be denoted by a star-free expression - a regular expression

which does not use the star operator
(2) L(A) is noncounting

(3) The syntactic monoid of L(A) 1is group-free; i.e. doesn't have

nontrivial subgroups.

The test whether A is permutation-free is far cheaper than any of the
other tests. This algorithm can be found in [19].
PERMUTATION operates as follows: Starting with the sequence

T, = (1,...,n) it computes in depth-first fashion Tya Which is defined

as follows for we A* , acA: If T = (p],...,pr) then

Twa = (M(P],a),---,M(pr,a)) . If T, has as many different

J - 1 . .
elements as Twa then TWa = Twa » otherwise Twa is the sequence

obtained from TQa by discarding repetitions and ordering it. If TWa has
either only one element or is a sequence already encountered there is no
need to consider TWau for any u ¢ A* If TWa is a permutation of a
sequence TV previously encountered and v 1is a prefix of wa then A
is not permutation-free (note that we compute Tw in depth-first fashion
i.e. if A = {0,1} we compute all possible T j s before we compute T .

0 0v1
and so on).

18

8. The Interface

The interface constitutes the main programme from which the
functions described above are called. In addition to these it also uses
functions IN_AUT and OUT_AUT for input and output of finite automata (not
necessarily deterministic). It makes use of three global variables: AUT,
NAUT, and MIN. AUT references a deterministic automaton obtained either
by input via IN_AUT or from RGX or DERIV as result, NAUT references a
nondeterministic automaton obtained by input via IN AUT, and MIN references
a reduced automaton obtained as resu]f from REDUCE. A1l automata are
represented in the same way namely as a table C , where C<-1> contains
the cardinality of the underlying alphabet, (<0> contains the number of
states of the automaton, and C<X,L> 1is the result of state X under
letter L of the alphabet.

Although NAUT, AUT, and MIN are global variables, the infor-
mation they refer to is erased after the full cycle of possible operations
is exhausted. Typical computation cycles might be:

IN_AUT, MAKE DET, REDUCE, PERMUTATION or

DERIV, REDUCE, MON.
While it usually is sufficient to keep the information just for one cycle
sometimes one might want to store some information for several cycles.
Therefore the interface allows for saving resulting automata for further
use. It creates unique names for them which then can be used as tokens in
regular expressions in RGX. If they are not needed any Tonger they can

be released (collectively or selectively).

17

7. REVERSE

REVERSE is a procedure which finds a deterministic
automaton accepting the reverse of the language accepted by the given
automaton. The algorithm is described in [20] and can be briefly stated
as follows. We first constructed an intermediate nondeterministic
automaton with the same set of states as the given automaton. Its set
of initial states consists of the final states of the given automaton,
its set of final states consists of the initial state of the given
automaton, and its transition function is the inverse of the given
transition function. Then the result of REVERSE is simply the result
of DET (see MAKE DET) applied to the intermediate automaton. This

automaton will always be reduced.

19

9. INAUT
This procedure is used to input finite automata. It is the only
way to initialize NAUT. The states of any automaton are the consecutive
numbers 1 through n where 1 <n <99 . Any alphabet throughout the
programme - this also applies to DERIV and RGX - is the set of consecutive
numbers O through 2 where 0 =< 2 < 9 ; therefore 2+1 s the cardi-
nality of the alphabet. The automaton is represented as described in &,
Furthermore in C<X, 2+1> it is recorded as A if state X in
automaton C is accepting; otherwise C<X, 2+1>=F . If NAUT is to
be initialized the result of state X under Tetter a has to be written
as a sum of states e.g. 3+4+12 without blanks. For the empty sum the

symbol F should be typed. This also applies to subsequent corrections.

20

10. QUT_AUT

OUT AUT is a procedure to output a finite automaton. This is
done by printing the transition table with the understanding that 1 is
always the initial state. Since it also outputs nondeterministic
automata the width of the columns is variable, this number being deter-
mined as the length of the longest sum plus three. It should be noted
that this can result in not very readable output if the alphabet as well
as the width is large since there are only 120 positions in a line.
However, it is hoped that these occasions are rare.

This concludes the section dealing with the programme itself.
The next section will be devoted to performance and 1imits of the

programme.

21

IT. PERFORMANCE AND LIMITATIONS

It is known ([12], [17]) that of the 4 main problems listed
at the beginning of the preceding section only the reduction of a giypn
deterministic automaton has a computationally efficient solution, in the
sense that there is an algorithm bounded by a polynomial in time and
space ([7]). While the user should be aware that some computations are
not possible or at least not feasible in the case of the other three
problems, this should not be a deterrent from using the known methods at
all. Practice shows that in almost all cases a solution can be found.

However before we investigate performance and 1imits of the
package we will give - as warning - some unpleasant classes of problems.

In Section III it is shown that for regular expressions involv-
ing only union, concatenation, and star (restricted regular expressions)
the number of states of the corresponding deterministic automaton is
bounded by 2"+1 if n s the number of letters in the expression. One
might hope for an improvement of this bound, however it turns out that
one cannot get rid of the exponential nature of any bound for this

problem. This 1is indicated by the following class of expressions:
o, =(L(10%)" T 11*[01*01%]%)*

Clearly, s](gn) = n+2, hence using RGXi we obtain the bound 2n+2+]
on the number 6f states of the automaton accepting L(ah) (for the de-
finitions of S and RGXi see Section III). Furthermore dn is
accepted by the following finite automaton

22

A, 0 1
n
> A B A, A
A, A, Ay ¢
A; Aj A ¢
n-1 n-1 An ¢
A B A A
n 1
B c B o
c B C.A, A

. The following recurrence relation for the number Nn of states of the
reduqed automaton gﬂ accepting L(an) is suggested by the first 5

numbers:

N, =8, Nn+1 = 2Nn - (n-1) , n=2

Indeed, the following numbers have been obtained from the programme

N2 =8
N3 =15
N4 = 28
N5 = 53
N6 = 102

From the recurrence relation one obtains the following formula

S IL-C I P i
N = 2 - Y 2°(n-j-2) , n=2 (for n = 2 the sum is
j=0 empty)

23

and from this formula one easily deduces

N, > (1.9)"+] for all n=> 2 .

However, most expressions with which the programme was tested did not show
such an undesirable behaviour.

Similar examples can be exhibited for MAKE DET and MON. First
the conversion from hondeterministic to deterministic automaton. The
following class of automata A = ({0,1,2}, {1,2,...,n}, Moo Ts F) has
the property that applying the subset construction to them yields deter-

ministic automata with 2“-2 states,

Mn 0 1 2
>] 2 2 1

2 3 1 2

3 4 3 3

4 5 4 4

i i+] i i

n-1 n n-1 n-1
n 1 n 1,2

(final states need not be specified). The proof can be sketched as
follows: The first 2 columns can be viewed as permutations of 1,...,n .
These two permutations generate the symmetric group on n elements. The

‘last column is simply used to obtain a subset of 1i+1 states when given

24

one with i states, for i < n-1 . This shows that any nonempty subset
of {1,...,n} different from {1,...,n} can be obtained, which proves
the claim.
A similar construction applies to MON. Given a deterministic
automaton with n states one easily derives n" as bound on the number
of states of the transformation monoid. Recall that each state is a sequence
of n states of the original automaton. Since repetitions of the same
state in the sequence may occur this shows n" isabound. The following

class of automata En = ({0,1,2}, {1,2,...,n}, M s 1, F) attains this

bound,

Mn 0 1 2

> 1 2 2 1

2 3 1 1

3 4 3 3

4 5 4 4

i i+] i i

n-1 n n-1 n-1

n 1 n n

(final states again need not be specified). The proof is similar to the
previous one; however, rather than obtaining a subset of 1i+]1 elements
from one with i elements, the last column is used to obtain an n-tuple

with i+1 repetitions from one with i repetitions. This shows that any

27

188181818178.
Yet PERMUTATION spent only about 1.6 sec to perform this test.

MAKE_DET:

(a) To compute a deterministic equivalent automaton for Aun for n=6
(using the subset construction) MAKE DET spent about 5 sec (the
result has 166 states).

(b) To compute MAKE_DET(An) for n = 4,5,6,7 the programme used about
.4sec, .9 sec, 2 sec, and4.7 sec (the results have 14, 30, 62, and

126 states, respectively).

Rather than listing results of RGX and DERIV we will compare the performance
of the 2 routines for various expressions.
The following expressions were used for the comparison, the
alphabet always being {0, 1} :
1) {0[01(01)* v 101 u A] v 1[10(10)* u 011]} n (070 u 101)*

3) (0 u 1*)0{00*[0 v 011 u (00 v 11*0)[00*TT*0]*(x v 11)]}
4) 01*[(01*01*)* u 1*] A ({10*[(01*01*)* u 1*]} u A)

(
(2) 0101010101
(
(

(5) [010(11)* v 00(010)* u (00)*11]*
(6) [11(000 u 101)* v 10(111 u 010)*1]1*[00 v 11]*
(7) [0(00 u 01)* n 0(10 u 11)*] n (101010)*

The results are listed in the following table; column "sec" gives the
number of seconds to compute an automaton for the expression in question,
column "states" gives the number of states this automaton has, column

"sec(r)" gives the number of seconds it took to reduce this particular

25

sequence consisting of elements of {1,...,n} can be obtained, and
therefore proves the claim.

Clearly the above examples show some of the inherent 1imits of
any programme dealing with these problems. However, as mentioned before,

it should be kept in mind that these are exceptions and not average cases.

On the other hand we believe that this programme is among the
fastest available. This must be attributed to a large extend to the
choice of SPITBOL (the compiler version of SNOBOL4 for IBM 360/370 machines)
as programming language and the advantageous use of its pattern matching
abilities as well as other features of this language.

But Tet the results speak for themselves.
MON:

(a) To compute the monoid automaton for

0 1 2
1 2 1 1
2 4 2 1
3 1 4 3
4 3 3 4

which has 256 states (a similar example as the ones given above).
MON spent about 12 sec.

(b) To compute the monoid automaton for

26

0 1 2
1 1 3 2
2 4 5 2
3 3 2 5
4 2 2 4
5 1 5 4

which has 367 states MON spent about 24 sec.

PERMUTATION: This procedure is much faster than MON (note that from the
syntactic monoid one can also retrieve whether an automaton is permutation-
free). For instance, consider the following reduced automaton

0 1 2 3 4 5 6 7 8

LU L T A R R D R D Y
2 |17 2 2 2 2 2 2 2 3 4
3 13 2 3 3 3 3 3 3 4
4 (4 4 3 4 4 4 4 5
5 |5 5 5 4 5 5 5 5 6 g
6 |6 6 6 6 5 6 6 6 7 g
7 7 7 7 7 71 6 1 8 8
8 |8 8 8 8 8 8 7 7 1

The monoid of this automaton has 88 states (16777216; for a proof
consider columns 0, 7, 8), thus its computation would present a bit of a
problem. Furthermore it is unfairly slated against PERMUTATION which
starts its depth-first search with 0 . Thus the first word enacting a

permutation (on (1, 3)) is

29

The reason why RGX had problems with (1) and (7) is simply the
fact that in both cases a certain redundancy (bias) is built in. DERIV
soon discovers in (1) that it is enough to consider
(010I v 101I) n (010 u 101)* while RGX has to compute the whole expression.
Expression (7) is even worse; since everything in the first part starts
with a 0 and in the second part with a 1 the intersection must be empty.
This is easily detected by DERIV whereas RGX has to compute everything.

That RGX "fails" with (4) has its reason in the fact that RGX rewrites

oAB as o uB UBUO which is far more complicated while DERIV can
handle A directly.

Turning to DERIV's problems the user is advised not to use it
if the expression to be dealt with contains stars within the scope of
other stars. This usually yields very long expressions for the derivatives
making the computation very costly. Expression (6) is an example for this
effect - a rather harmless one, though; it would have been not too
difficult to give an example where DERIV runs out of memory space or uses
too much time to finish at all (any of the an's mentioned in the begin-
ning for n = 4 will do).

In summary DERIV should be used if built-in redundancies are
expected and no complicated starred subexpressions occur within the scope
of other stars. Furthermore DERIV must be used if one needs expressions
for the states of the resulting automaton which are structurally related
to the original expression. In the other cases it is probably cheaper to
use RGX, especially for very large expressions. Furthermore, it appears

that the sequential operations, i.e. concatenatjon and star, are better

28

automaton, and column "states(r)" gives the number of states of the
reduced automaton for the expression in question (this clearly is the same

for both methods), column "total" finally gives sec + sec(r).

expres-
RGX DERIV sion

total sec states sec(r) states(r) sec(r) states sec total

4.0 2.9 30 1.1 7 0.2 1 1.5 1.7 (1)
2.0 1.2 12 0.8 12 0.5 12 6.2 6.7 (2)
8.8 4.8 79 4.0 6 0.5 22 12.0 12.5 (3)
6.3 5.6 20 0.7 5 0.2 12 2.3 2.5 (4)
1.7 1.4 13 0.3 5 0.3 15 6.5 6.8 (5)
5.1 3.1 40 2.0 35 1.7 37 33.5 35.2 (6)
1.9 1.9 15 - 1 - 2 0.3 0.3 (7)

From these results (and from further experience) it can be concluded that
RGX tends to compute automata with more states which subsequently need
more time to be reduced (expression(5) is rather an exception). However,
this is usually done faster. The main reason is that RGX reuses automata
for subexpressions which occur more than once; also important is that it
only operates on automata therefore considerations such as the length of
a derivative - which is very crucial for DERIV - are irrelevant. On the
other hand it should be noted that DERIV actually computes considerably
more than just an automaton. In fact it computes a regular expression for
each state of the automaton which is structurally very closely related to

the original expression,

30

handled by RGX while the boolean operators are better handled by DERIV.
Thus if a‘1arge expression involves many boolean operators but very few
concatenations and stars, the use of DERIV might be advisable.

One last advice: If efficiency is an important issue when using
RGX it should be kept in mind that RGX parenthesizes the input expression.
Therefore the programme might not recognize common subexpressions.

For example, the input 00000000 takes .46 seconds while

((00)(00))((00)(00)) takes only .36 seconds, because RGX transforms
00000000 into ((((((00)0)0)0)0)0)0 and there are no common subexpressions.

Therefore proper parenthesization can help saving execution time! (This

does not apply to DERIV.)

31

ITT. SOME REMARKS ON ALGORITHMS TO TRANSLATE EXPRESSIONS INTO AUTOMATA

This part of the report will be devoted to some comments on, and
explanations of, algorithms to translate regular expressions into finite
automata in general; in particular, we will discuss some aspects of the
derivative method (which is described in [3]) and present the algorithm
(in fact class of algorithms) underlying RGX. First, however, we will
define the basic terms.

Let A be an alphabet; (unrestricted) regular expresssions (r.e.)
over A are defined inductively:

(1) (Basis) The empty word A and the empty set ¢ are r.e.'s denoting
the Tanguages {X} and ¢ , respectively. For all ac A , a is an
r.e. denoting the language {a} .

(2) (Induction step) If a, 8 are r.e.'s denoting the languages L(a),
L(B), respectively, then so are

auB, anB,a, aB, aoF

denoting the languages
L(a) u L(B) (union), L(a) n L(B) (intersection), L{a) (complement),
L(a)+L(B) (concatenation), and (L(a))* (star), respectively.

Every r.e. can be obtained by a finite number of applications of

rules (1) and (2).

A restricted regular expression is an r.e. involving only union,
concatenation and star as operations. Any regular expression (restricted
or unrestricted) denotes a regular language.

A finite automaton A 1is a quintuple

~

A= (A,Q,M,q ,F)

32

where A is the input alphabet, Q 1is the finite nonempty set of states,
qy © Q is the initial state, F < Q 1s the set of final states, and M
is the transition function, defined by

M:QxA~> PO(Q)

where PO(Q) denotes the set of nonempty subsets of Q. Note, that for
convenience we do not allow the empty states. If M(q,a) consists of one

element for all q e Q, a ¢ A, A 1is called deterministic. As usual, M

is extended to M : PO(Q) X A* -~ PO(Q) as follows:

M(P, a) =
M(q, A)
M(q, wa) = M(M(q, w), a) for qe Q, we A*, a c A .

qtGJPM(q, a) for P ¢ PO(Q) ,aeh,

q for qeQ, and

A word w e A* 1is accepted by A iff M(qo, w) nF # ¢. L(A) is the set of 4
:words accepted by A; L{A) = {w e A% | M(qd; w) nF # ¢¥; it is always a
regu]afvlanguage. For any finite automaton there exists a unique deter-

ministic automaton accepting the same language, which has the minimal

number of states; this automaton is called reduced.

A regular expression is commonly considered to be a very neat
representation of a regular language. So why would one want to obtain an
automaton accepting this language? Well, one of the drawbacks of regular
expressions is that it is usually quite difficult to determine whether a
given word is in the corresponding regular language. Take for instance

the word w = 001010100 and the expression o over {0, 1} ,

Is we L(a) ? Hard to say. But it certainly helps, if one knows that

L{a) s accepted by A, = ({0, 1}, {1,2,3,4,5,6,7}, M, 1, {1,3,5,7}) ,

33

M being given by

0 1
1 2 3
2 3 3
3 4 3
4 5 3
5 6 3
6 7 3
7 7 3

It is very simple to compute M(1, w) =5 ¢ F which imp]iés
w e L(a) . Moreover, there is a less tangible benefit derived from Au
namely that we can obtain a "simpler" expression for the same language.
For we might realize that L(A) consists of all words # 0,000,00000,
which do not end in 10 or 1000;therefore,abbreviating I = {0, 1}*, we can

write

a' = I10(x v 00) u 0 u 000 u 00000 .

Clearly o' 1is a more convenient expression for L(a) than o itself
if we want to test for membership, since w e L(a') iff w ¢ L(a") , and
the last condition is easily tested.

Having illustrated the desirability of a method to obtain a
deterministic automaton for a given regular expression, we will review
some of the algorithms.

A very commonly used method involves taking derivatives; it is

usually referred to as derivative method (see [3]) and can be described

34

as follows: Define functions Dw from regular expressions (over A) to

regular expressions, for all w ¢ A* , by:

(1) Dk(a) = o for all regular expressions o

(2) Dva(a) = Da(v(a)) for veA*¥ , ac A
(3) (a) D (¢) =9 ,D,(A)=¢ , D,(b)=¢ for beA- {a}, and
D, (a) = &

(b) D, (o uB)
Da(a n 8) =D (a) n D,(8)
(a) = D (o)
(a 8) = D, (a)8 u 8(a)-D,(B)

Da(a) = Da(a)'a*

Dy(a) uD,_(B)

where & s a function from regular expressions onto the set
consisting of the two regular expressions A and ¢ , defined as
follows: |

S(A)=x , &(¢)=9¢ , 6(a)=¢ for acA,
8(avg)=6(a)vs®), sng)=s)as(®), &@)=xr iff
§(a) = ¢, 6(aB) = 6(a)+6(B) , and &(o*) = A .

Then Dw(a) is called the derivative of o with respect to w . It can
be shown thaf every regular expression has a finite number of dissimilar
derivatives where similarity is an equivalence relation on regular
expressions defined as follows:

Two regular expressions o and B8 are similar iff B can be

obtained from o by use of the following equalities:

Yo=Yy =6, dUY=Y, YA=Ay =y, YUY=Y,yuYy =y Uy,

yu(y'uy") = (yuy"')uy".

Clearly, o similar to 8 1implies L(a) = L(B) , but the converse is not
true, as the example at the beginning shows. It should be noted that
these rules can easily be applied mechanically.

Now, we can summarize the derivative method :
Let A* = {w;.w,,...} such that lws | < |wi+]| for all i =1,2,...
(|w| denotes the Tength of w). Generate Dw.(a) for i =1,2,...
where o 1is the given regular expression and lheck whether Dw_(a) is
similar to any of the Dw_(a) for j < i . If this is the cas; then
remove all w's from A* where ¥ is a prefix of w . Since there are

only finitely many dissimilar derivatives this process terminates. Then

define the automaton

A, = (QGAMq F)

as follows: Q 1is the set of equivalence classes, Q = {[Dw(a)] lwe A%}

(clearly Q 1is finite), a [Dk(a)] = [a] , F 1is the set of all those

[Dw(a)] for which G(Dw(u)) =), and M is defined by

M([Dw(u)], a) = [D (a)] weA*, acAh.

It follows that L(a) = L(Au) .

It should be clear that by introducing additional equations in
the definition of similarity the algorithm can be improved upon, in the
sense that the resulting automaton will have fewer states, in general.

In fact, any equation will do as long as it implies equality of the

36

languages involved. Now, the obvious idea is to introduce "enough"

equations in order to strengthen similarity such that o similar to B

is equivalent to L(a) = L(B) - the ultimate goal, for then we would

obtain a "smallest", i.e. the reduced automaton. Yet, this is impossible since
it is known that there is no finite set of equations such that this can be
achieved ; this even holds for restricted regular expressions [16] (see

also [5]). We therefore are in the somewhat puzzling situation that by
introducing arbitrarily many equations we can get an arbitrarily "good"

result but not the optimal one - which nevertheless does exist, namely the
reduced automaton for «o

This algorithm is implemented in REGPACK (DERIV); for more
details of the algorithm see [3], some remarks on the implementation can
be found in Section I.

While the derivative method is a very general algorithm, various
methods have been developed for the special case of restricted regular
expressions. Common to all of them is that they implicitly use the fact
that finite automata are "closed" under union, concatenation, and star,
precisely the operations involved in restricted regular expressions.
Closure of a class ¢ of finite automata under an m-ary operation bm R
m=> 1, will here be used in the following sense: Given automata Ai € f:

i=1,..,m, theife is a "direct" way to construct an automaton A «{ such that

L(A) = b (L(A),...oL(A))

"direct" meaning that the construction of A is of time complexity linear

in the sum of the number of states of the A, . The algorithms we have in

37

mind are those in [1 (ch. 9.1), 5 (ch. 4), 8, 9, 11, 17]. Rather
than describing any of these algorithms we will give an extendible
generalization of the algorithm by Mirkin ([11]). The simplest version
of this algorithm forms the basis of RGX, the second general algorithm to
translate regular expressions into deterministic finite automata.

A finite automaton A = (Q,A,M,q ,F) in which no transition
goes back to the initial state d, (that is Mﬁqﬁ,x) n'{qo} = ¢ for all
X ¢ A-A*) is called nonreturning. Clearly, if A does not satisfy
this property then A' = (Qu {qé}, A, M', qé, F') does, where qé ¢ Q,
M'(p, a) = M(p, a) for pe Q, and M'(qé, a) = M(qo, a) , F' = F if
d ¢ F, otherwise F' =Fu {qé} . Furthermore L(A) = L(A') .

Assume now that Aﬁ, i=1,2, are nonreturning finite automata,
A; = (Qi’ A, M5 g, Fi) , where Q] nQ, = {g , o} , and o is a reject-
ing state such that Mi(D’ a) =o forall acA,i=1,2. (If there
is no such state in Q, for some i ¢ {1, 2} then Q] nQ, = {qo} .)
We will construct nonreturning finite automata ﬁh, QQ,,§3, directly from
A; and A, such that L(By) = L(Ay) v L(Ay), L(B,) = L(A;)*,
L(B3) = L(&))-L(A,) -
(a) Union: B, = (QuQ,, A, Ni» g, G]) where Gy = Fy uF, , N as

follows:

i M](qo, a) u M2(q0, a) if q

N (qs a)_

] “M.{q, a) if qeQ - {g,} for some i

It
K]
o

(b) Star: ﬁQ = (Q], A, NZ’ A > F] u {qo}) s N2 as follows:

38

N,(q» a) = { My (a> a) Taeq-F
2q3a - .

Mi(a, a) uM(q,, a) if qe F
(c) Concatenation: ,53 = (Q]UQZ, A, N3s qs 63) where G, = F, if

a ¢ F2 , otherwise G3 = F] u (F2 - {qo}) , and N3 as follows:

M](q, a) if qe Q1 - F
N3(q, a) = Ml(q,a) u M2(qo,a) if q ¢ F]
Mz(q, a) if g € Q2

The proofs are easily supplied. Clearly if Aﬁ has n, states

different from o then gﬁ and EG have n]+n2—1 such states, and 52
has ny such states.

These constructions give rise to an inductive method for obtaining
a finite automaton for a given restricted regular expression provided

we can find a suitable basis to start the induction. To this end it

suffices to supply a nonreturning finite automaton for each of the

expressions ¢ , A , a for all a e A :
Aq) = ({]sD}s A, Mq),]9 ¢) Wher‘e Md)(q’ a) =0 fOr qe Q, ac A.
Ay = ({1,ah, A ML T, {13), M, = M, -
A, = ({1,2,0}, A, My Ts {2}) where Ma(1, a) =2, Ma(q’ b) = o

forall ge Q,be A suchthat g#1 or b #a.

Therefore each of the regular expression ¢, A, a ¢ A 1is accepted by a
nonreturning finite automaton with at most two states # o . Thus to
every restricted regular expression containing m occurrences of elements

in {¢,A} u A there exists a nonreturning finite automaton with at most m+l

39

states different from 0O .
More formally, let So be a function from restricted regular
expressions to natural numbers, defined as follows:

(a) (Basis) so(x) =s(p) =0, s (a)=1 for acA

0

(b) (Induction Step) so(a uB) = so(a-B) = so(a) + sﬁ(B), so(a*) = so(a) for
o, B restricted regular expressions.

Now we can state: For every restricted regular expression o there

exists a nonreturning finite automaton Au with s(a)+1 states # o

Clearly in a restricted regular expression a (# ¢) we can always get

rid of ¢. If X occurs as an operand of a concatenation, we can drop

it. If X occurs as an operand of a union and the automaton for the

operand has m states, we obtain an m state automaton for the union

by making the initial state accepting. Finally, the star can be reduced

to the two previous problems, since A* = A. Therefore the definition

so(¢) = so(x) = 0 correctly reflects the situation.

We will denote this algorithm for restricted regular expressions
by RGXé . Basically, it is Mirkin's method ([11]), and also in principle
similar to the methods in [2], [81, [17]. In particular, all the
algorithms (including the one in [1]) are based on structural induction,
rely on closure properties, and start the induction with Qﬁ¢,) EA’ Aa’

a e A . This basis, however, is not the only possible one, in fact, it
turns out to be somewhat wasteful.

Recall that in order to obtain the bound so(a)+1 on the
number of states # o of Au all we used was the induction step - which

works for all nonreturning finite automata - and the fact that for each

40

element b ¢ {¢p, A} u A we have a nonreturning automaton Ab with at
most two states # o . However, such automata can accept more than
just {L(b) | b e« {¢, A} u A} . For one easily verifies that to any
expression y of the form +y = F<G*¥ or vy =FG* UX, F,G cA , there
exists a nonreturning finite automaton AY with at most two states # o
such that L(y) = L(Ay) , and conversely, given such an automaton A there
exists an expression of the above form describing L(A) .
Therefore we define S; as follows:

(a) (Basis) s](¢) = s](x) =0, S](y) =1 forall vye S, - {4, Al,

S; = {FeG*, F-G* ux | F,6 cA}.
(b) (Induction) s (o u8) = s;(aB) = s;(a) + s](B) » s(o*) = s(a) for

all restricted regular expressions o , B .

Clearly Sl(a) < so(u) for all o . For example, consider A = {0,1,2}

and a, = (0u1)21(0 u 1 u 2) . Clearly so(a]) =7 while s](a]) = 2.

In general, if k 1is the cardinality of A

1 ,
?E'So(“) < s](a) < so(a) for all o.

So far we dealt with a basis consisting of automata with at
most two states # o . However, this can be carried over to automata
with more than two states # o . Obviously, this can only improve the
bound on the number of states of the resulting nondeterministic finite
automaton constructed from a given restricted regular expression o
Thus, let Sk be a certain subset of the set of all restricted regular
expressions Yy such that L(yk) is accepted by a nonreturning finite

automaton with k+1 states # o , k= 1; furthermore Tet S = {¢,{A}}.

41

Then define
(a) (Basis) sm(yk) =k for all Yk € Sk - Sk-] s k=1,2, ... sm.
(b) (Induction) sm(a ug) = sm(aB) = sm(u) + sm(B) s sm(a*) = sm(u) for

all restricted regular expressions a , B8 .

There are two basic difficulties with this approach.

The first problem is the definition of the set S Clearly in general

K
the set of different restricted regular expressions for the same
t .
regular language is infinite, as indicated by U 0' u 0% o* , for a1l
i=1
t 21 . Since no normal form is known for restricted regular expressions

which can be defined by an equivalence relation induced by a finite set of
equations, the problem to decide which expressions should be in Sk is
not easy. Usually, this decision will be quite arbitrary. In the above
case (that is for 51) we insisted on a certain structural relation
between automata and expressions. The second problem is the definition of

s, » for s need not be a function anymore. For instance, take

m m
A ={0,1,2} and o = 01*20*%01*2 . Now, o = G0y 5 oy = 01*20*,

a, = 01*2, therefore sz(a) = sz(a]) + sz(az) =2+ 2 =4 1f we define S,
.appropriably. On the other hand, o = 616283, B] = 01*2, 82 = 0%, 63 = 01*%2, and
spla) = s,(87) + 5,(8,) + s,(85) = sp(B1) + s57(By)) +5,(Bg) =2+ 1 +2

=5 . However, this problem can be avoided by defining sm(a) to be the

minimum of all possible values. Note, that this depends crucially upon

Sm .

42

Here, again, we are in the strange situation that by choosing
larger and larger m and admitting more and more expressions to Sm we
can get as close to the optimal result as we want (namely, always obtain-
ing the reduced automaton) - but will never be able to reach this goal.
It appears that this is an inherent property of all algorithms which
translate expressions into automata.

At any rate, having chosen Sm sensibly - at least satisfying

Si ?-Si-l for all i <m - we obtain an algorithm which we will denote

by RGX& . Obviously, for all m= 0 RGX$+]

the sense that for some input, RGX$+] will construct a smaller automaton

is "better" than RGX& in

that RGX& .

We conclude by remarking that a nonreturning finite automaton
A= (A,Q,M,qO,F) with ntl states different from o has a nonreturning
deterministic counterpart B = (A,P,N,{qo},G) such that L(A) = L(B) ,
and B has at most 2"+1 states. Note, that this is completely inde-
pendent of how A was obtained. This remérk follows immediately from
the subset construction and the following observations: If 9y € P € P
then p = {qo}, for A is nonreturning. Whenever oe p and p # {o}
we can remove o from p without affecting anything. Therefore we need
to consider only the nonempty subsets of Q - {a, qo} . There are
M1 of them; adding to this 1 for {zg} and 1 for {qo} gives precisely

the bound 2™1 . This shows that for any restricted regu}ar expression
s_(a

m +]1 states,

a there exists a deterministic finite automaton with 2
for all m=0 . This bound for m = 0 is also obtained in [9] by a

slightly different method.

43

While finite automata are not closed under complementation,

deterministic automata do have this property. This suggests the follow-

ing general method:

(1)

(2)

(3)

Given an unrestricted regular expression o , express all boolean

operators in a in terms of union and complement; let this be o'

Isolate all maximal restricted regular subexpressions of o' and

construct finite automata for them using RGX& .

If B 1is a proper maximal restricted subexpression of o' then B
'

is a subexpression of o' . If B dis not proper then B = a' ; in

this case goto (4). Make A, deterministic using the subset

B
construction and complement the final states of the resulting
automaton. Replace all occurrences of B in o by a token g’
which is considered to be a restricted regular expression associated
with the automaton for B . Call this modification of o again

a' and goto (2).

Construct a deterministic automaton B for the result and stop. B

accepts precisely L(a) .

This method is implemented in REGPACK (as RGX) using as sub-

algorithm for restricted regular expressions RGXé » and the basis

{¢, A} UA .

For some remarks on the implementation see Section I; for a dis-

cussion of the performance of RGX see Section II.

44

Acknowledgement

I wish to express my gratitude to Professor J.A. Brzozowski
whose interest and suggestions helped shape REGPACK and this report on it.
Thanks are also due to Faith Fich and Denis Thérien who have critically

read this report.

45

BIBLIOGRAPHY

[1] Aho, A.V., Hopcroft, J.E., Ullman, J.D. The Design and Analysis of
Computer Algorithms, Addison-Wesley (1974).

[2] Aho, A.V., Ullman, J.D. The Theory of Parsing, Translation, and
Compiling, Vol. I, Prentice Hall (1972).

[3] Brzozowski, J.A. Derivatives of regular expressions, JACM 11, 481-
494 (1964).

[4] Dewar, R.B.K. Spitbol version 2.0, Document S4D23, I1linois Insti-
tute of Tech., Chicago, I11. (1971).

[5] Ginzburg, A. Algebraic Theory of Automata, Academic Press (1968).

[6] Griswold, R.E., Poage, J.F., Polonsky, I.P. The Snobol4 Program-
ming Language, Prentice-Hall (1971).

[7] Hopcroft, J.E. An n Tog n Algorithm for Minimizing States in a
Finite Automaton, in Theory of Machines and Computations (Z. Kohavi
and A. Paz, eds.) Academic Press, 189-196 (19723

[8] Johnson, W., Porter, J., Ackley, S., Ross, D. Automatic Generation
of Efficient Lexical Processors Using Finite State Techniques,
CACM 11:12, 805-813 (1968).

[9] McNaughton, R., Yamada, H. Regular expressions and state graphs
for automata, in Sequential Machines: Selected Papers, (E.F. Moore,
ed.), 157-174, Addison-Wesley (1964).

[10] McNaughton, R., Papert, S. Counter-free Automata, MIT Press, Cam-
bridge, Mass. (1971).

[11] Mirkin, B.G. An algorithm for constructing a base in a language of
regular expressions (in Russian), Iz. Akad. Nauk SSSR, Techn. Kibernet.
No. 5, 113-119 (1966), Engl. translation in Engineering cybernetics,
No. 5, 110-116 (1966).

[12] Meyer, A.R., Stockmeyer, L.J. The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential Space, 13th Annual
IEEE Symp. on Switching and Automata Theory, 125-129 (1972).

[13] Perrot, J.F. Utilisation d'APL pour calculer des mono'ides finis,
Institut de Programmation, Université de Paris VI (1972).

[14] Perrot, J.F., Cousineau, F.G., Rifflet, J.M. APL Programs for
Direct Computation of a Finite Semigroup, Institut de Programmation,
Université de Paris VI (1973), also in APL '73, Actes du Congres,
Copenhague, August 1973, North-Holland.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

46

Piatkowski, T.F. Computer Programs Dealing with Finite-State

Machines I, IT, SEL Technical Reports 11, 20, Department of
Electrical Engineering, University of Michigan, Ann Arbor (1967).

Redko, V.N. On defining relations for the algebra of regular
events, Ukrain. Mat. Z. 16, 120-126 (1964).

Stockmeyer, L.J., Meyer, A.R. Word Problems Requiring Exponential
Time: Preliminary Report, 5th Annual ACM Symp. on Theory of
Computing, 1-9 (1973).

Thompson, K. Regular expression search algorithm, CACM 11:6,
419-422 (1968).

Bierman, E. Realization of Star-Free Events, M.A.Sc. Thesis,
Dept. of Elect. Eng., University of Waterloo, Waterloo,
Ontario, 1971.

Brzozowski, J.A. Canonical Regular Expressions and Minimal

State Graphs for Definite Events, Mathematical Theory of Automata,
New York, 1962, 529-561, Brooklyn, Polytechnic Institute of
Brooklyn, 1963 (Symposia Series 12).

Brzozowski, J.A. A Generalization of Finiteness, Semigroup
Forum Vol. 13 (1977), 239-251.

Brzozowski, J.A. Hierarchies of Aperiodic Languages, Revie
Frangaise d'Automatique, Informatique et Recherche Opérationelle,
Vol. 10, n. 8 (1976), 33-49.

Eilenberg, S. Automata, Languages, and Machines, Vol. B,
New York, Academic Press, 1976.

Simon, I., Hierarchies of Events with Dot-Depth One, Ph.D. Thesis,
Department of Applied Analysis and Computer Science, University of
Waterloo, Waterloo, Ontario, 1972.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

