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Abstract

We present a new method of determining the language
L(N) accepted by a sequential network N . First we derive
a system E of equations of the form

Xi = U Fi

q'a v di, i=1,...,n
acl

14

where A is the alphabet of input symbols, the Xi are

variables, n is the number of unit delays in N , the F

i,a
are boolean functions in the variables Xi , and 6i is either

the empty set or the empty word. The system E is in one-to-

one correspondence with the next-state equations of N . We
prove that E has a unique solution L(E) , show how to
determine L(E) , and verify that L(E) = L(N) . The method

of determining the solution L(E) gives rise to a generaliza-
tion of finite automata, called boolean automata. These
automata provide a very concise representation of regular

languages.



0. Notation

Let A be a finite alphabet and A* the free monoid
generated by A . An element of A 1is called a letter and an
element of A* is called a word over A . The unit element of
the monoid A* is the empty word A . The length |w] of a
word w over A is the number of letters in w ; note that
|x] = 0 . The concatenation (product in the monoid A*) of two
words u and v is denoted by u-v . The reverse wP of a
word w over A 1is defined recursively: A° =1, and

(va)p = avp

for ae A, Vv ¢ A*
A subset of A* is called a language over A . The

empty language is denoted by ¢, and I 1is a shorthand for

the language A* . The concatenation of two languages Ll
and L, is Ly+L, = {u-v | uelLy, velLy, . If L isa
language then L* = U s , where LO = {1} . The left

nz0

guotient w\L of a language L over A with respect to a
word w over A is the language {x | wx ¢ L} ; similarly
for the right quotient, L/w = {x | xw ¢ L} . The reverse P
of a language L 1is the language {w" | w ¢ L}

The set P{(A*) of all languages over A together
with the set operations union (u), intersection (n), and
complement (7) forms a boolean algebra, in which ¢ and I act

as zero and one, respectively.

We also consider the finite boolean algebra Ln of
n
"language" functions f : x P(A*) ~ P(A*) , i.e. the functions
i=1



which can be expressed in terms of unions, intersections, and

n
complements of the variables. (Note that x § denotes the

i=1
cartesian product of n copies of S .) The constant functions

¢ and I act as zero and one, respectively.
Another finite boolean algebra which will be used is
n

the set BX of boolean functions f : x {0,1}+1{0,1} in the
i=1

variables Xpr eeer X4 X being {xl, ceoy xn} , together
with the operations OR (v), AND (A), and complement (') .
The constant functions 0 and 1 act as zero and one,
respectively.

We briefly review the concept of finite automaton.

A (nondeterministic) finite automaton A is a quintuple
A = (Ar Q, T, QOI F)

where A 1is the input alphabet, Q is the finite (nonempty)
set of states, Q0 < Q 1is the set of initial states, F < Q

is the set of final states, and T : Q x A » P(Q) 1is the
transition function, where P(Q) denotes the power set of Q.
If Q0 and 1(g,a) for all ge¢ Q and a € A contain
exactly one element, A 'is called deterministic. The function
T is extended to P(Q) x A* in the usual way. We assume
that A 1is connected i.e. for any g ¢ Q there exists some

w ¢ A* such that g « T(QO,W) . A word w ¢ A* 1is accepted
by A iff T(QO,W) n F# ¢ . L(A) , the set of words

accepted by A , is a regular language, and to each regular



language R corresponds a unique deterministic automaton A

0
with the minimal number of states such that AO accepts R ;
AO is called the reduced automaton of R . The reverse AP
of a deterministic finite automaton A = (A, Q, M, dg - F) is
defined as follows: Let Q, = {d e Q| t(g, w) € F} . Then

AP = (A, P, N, Po - G) , where

P={p | p-= Q. for some w ¢ A¥*}
p0=Fl
G={peP | q, € p} , and

N(p, a) = {g e Q | 1(gq, a) ¢ p} for

p ¢« P and

ae A .

AP is always reduced and the language accepted by AP is

precisely the reverse of the language accepted by A ,

L(AP) = [L(A)]° (see [1]).



1. Introduction

It is well known that every sequential network accepts
a regular language. A frequently used method of finding a
deterministic automaton or a regular expression for this langu-
age is illustrated in Section 2. This method is rather
indirect.

In this paper we present a direct method of relating
networks to languages. From the next-state equations, the
initial state, and the output logic of the network one derives

a system of equations of the form

SR N !
where the Xl,...,Xn are variables, the Fi,a are language
functions in the variables xl,...,xn (elements of Ln) , and
Gi e {¢, {x}} for i=1,...,n . Conversely, any such system

of equations uniquely determines a sequential network. We
then show that such a system always has a unique solution, and
give a method of determining it. We also prove that this
solution is precisely the language accepted by the network.
The approach gives rise to a generalization of the concept of
finite automaton; namely, we| introduce boolean automata, which
provide a very concise representation of regular languages.

A method of obtaining a regular language from a given
sequential network has been given in [2]; however, the basic

approach used there was different.



2. An Example

We begin with a detailed example, contrasting our
method with the classical approach.
Consider the sequential network of Figure 1. The

rectangles labelled A represent unit delays. The circles

X
a
Output
Y y
1 1
A S T\ \
TV z
o )
A/
initial state: y? = 0, yg =1
Figure 1 Network N
labelled A , v , and ~ represent AND gates, OR gates

and inverters, respectively. The inputs Xy and X, ~are
binary inputs, Y4 and y, are the state variables, and =z
is the output. This network is an example of a commonly used

idealized model of sequential network operating synchronously.



For more technical details on the realization of sequential
networks see, for example, [3].
We will introduce a special assumption about the inputs

X, and X, i namely, we assume that the abstract input alpha-

bet is A = {a, b} and the letters are represented as follows.

If X, = 1 and X, = 0 then the input applied to the network

is a ; if X, = 0 and X, = 1 - the input is b . We assume

that the remaining two combinations in which x = x  are not

allowed. We will call such inputs X, and x, decoded inputs.

b
In our example, one binary input u can be used (with u = X,
and u' = xb) to represent the alphabet A = {a, b} . The

reasons for using decoded inputs will become clearer later.
We also assume that the initial state is part of the network
description.

Sequential networks of the type shown in Figure 1 can
be analyzed as follows. We can first compute the next-state
variables Yl and Y2 and the output with the aid of the

next-state and output equations:

Yl = (yé) A XV (1) A X
zZ = yl A y2

(The reasons for the parentheses will be explained a little
later. We assume that A has precedence over Vv .) Next
we can obtain the transition table as shown in Figure 2(a),

where the arrow points to the initial state. Note that state



Xa Xb 2 Xa Xb A
Yy ¥ Y, ¥
0 0 |1 o |1 olo —0 1 1
—50 1 |o 111 0lo 1 0
1 o0 |1 0 |1 1o 1 1 |o
1 1 |o 1|1 ol1
Y Y
1 2
¥, Y,
(a) (b)

Figure 2 Transition table of N

00 is not reachable from the initial state; hence a more
appropriate table is that of Figure 2(b) which shows only the
reachable states. Note that the output 2z depends only on the
state; its value is shown in the rightmost column of the table.

We have now in Figure 2(b) the finite automaton
defined by the network of Figure 1, if we interpret z =1 as
denoting an accepting state. The state graph of this automaton
is shown in Figure 3, where the double circle denotes the
accepting state, and where we have used 1, 2 and 3 instead
of 01, 10 and 11 as state symbols. One can verify that

A is reduced.

a a
AR
_-.‘(1}\\1’ AR J?/,@

Figure 3 Finite automaton A defined by N



In this rather indirect way we have reached a point
where we have defined the language L(N) accepted by the net-
work N of Figure 1. This language can be specified in many
ways. For instance, we can interpret the automaton A as a
satisfactory description of L = L(N) = L(A) , or we can write

a regular expression for L , e.g.

I, = a*b(a v ba*b)*b .

We now proceed to show that the language L = L(N)
can be related much more closely to N than in the classical
approach described above. Suppose we translate the set (1) of

equations to the following system of right language equations:

1 X2-a u I*b

) ,ca v (X n iz)-b u A (2)

o
n

>
1
>

>
il
e
=
»3

The motivation for this is as follows. Let X, be the set of
all words in A* that lead N to a state with Yy = 1 , when
started in yi, yg , for i = 1,2 . Suppose now that w ¢ A*
and w ¢ X2 , 1.e. Yy, = 0 after w 1is applied. From the

network of Figure 1 it is clear that yé =1 and, if X, = 1,

Yy

Yy = 1 . We conclude that Xl 2 §2a . The remaining pieces

of (2) are similarly obtained. Note that we have used all the

1 . Thus the word wa will result in a state where

information about N to write (2). In fact the next-state



equations define the non-empty words of Xy and X, i the

initial state determines whether or not X ¢ X = 1,2 ;

g0t
and the output equation leads to the "output language" equation

for X0 . |

One of the main results proved in this paper is that
(2) has a unique solution for X0 , and in fact
Xy = L(N) = L(A) , where N and A are defined in Figures 1
and 3, respectively. Thus a direct translation of the next-
state and output equations of a sequential network N to a
system of language equdtions leads to the language L(N) . We
now verify our claim for the example.

From (2) we can obtain the right quotient equations

for X as shown below:

0

0 1 2
¢ = ¢*a v ¢*b

Xl n X2 = X2°a u (Xl u X2) *b » (3)
X2 = X2°a U (Xl u X2)-b

Xl U X2 = X2-a U (Xl n Xz)-b U oA
X2 = X2-a U (Xl n Xz)-b U A

Noting that Xl n X2 = X2 and Xl u X2 = X2 we have:
X = Xy n X, = ¢ra u X,°b 1
= ¢+a u $°b * (4)

X2=X2°a UX2-b
X, = X,+a u X,*b u A
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If we reverse (4) we have the derivative equations

p .
for X0 : .
p:‘.. . L) p W
1 Xp = a'¢ v bexy
2 d = a*¢ u bep
— — » (5)
P _ P wP
3 X2 = a X2 ub ig
p _ o P .wP
4 X2 = a X2 ub X2 u A J
For convenience let us number the derivatives of Xp as shown
in (5). Then (5) defines the state table of Figure 4.
a b
— 1 2 3 0
2 2 0
3 4 0
4 3 1

Figure 4 State table of finite automaton for Xg

To get the reduced finite automaton for X0 we can now reverse

the automaton of Figure 4 by the "subset construction" [1].

We obtain Figure 5. One verifies that this automaton is

a b

—> {4} {4} {3}
{3} {3} {1,4}

{1,4} {4} {3}

Figure 5 Reduced automaton for X
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isomorphic to the automaton of Figure 3 with the correspondence:

1 «— {4}
2 «— {3}

3+ {1,4} .

Thus we have demonstrated that XO = L(N) .
Alternatively we can proceed as follows. The system

(4) can be solved for X0 using the fact that

X=XUuV, A 4¢U implies X = vu* ,

for all languages U and V . This yields a regular
expression for Xy~ e.9. X, = (a2 u ba*b)*ba*b - from which an
automaton can be obtained.

In the sequel we prove that these ideas hold in

general.



12

3. The Language Defined by a Network

The general form of a sequential network N with
decoded inputs is shown in Figure 6. Suppose we have an
abstract alphabet A of m elements. These m elements are

represented by k = [logzm] binary inputs Uyre..,u, , Where

[x] is the smallest integer > x . Each input x ~of N is
obtained by a decoder from the up - More preciseiy
Xy S VLA eee AV, where vj = u, if the j-th digit of the
bi;ary representation of i-1 is 1 and v, = u' otherwise.
For example, let k = 2 . Then we can have four decoded
inputs:

X, = ui A ué

X, = ui A,

X, = uq A ué

Xy = Uy AU,

Only one of the xj will be 1 at any given time, and not

all them need be used.

A
In Figure 6, £, . = f,. . A X , where f. . 1is a
i,J i, 3 aj i,J
boolean function of Yyreeea¥y only, for i =1,...,n and
j=1,...,m . The single binary output 2z of N 1is deter-

mined by g which is also a boolean function of

y = (yl,...,yn) . Clearly for any finite automaton A we can
always find a network N realizing A and design it in the
form shown in Figure 6. The network N 1is now completely

defined by its initial state and the next-state and output
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initial state:

“ e (] (o] o]
yl yn Y = (Yll ceny Yn)

Figure 6 General sequential network
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equations: ' ‘
J
initial state: yO = (yf, ey yg) 1
next-state equations:
Yl = (fl,l(y) A xal) V o eee V (fl,m(y) A X )
m
. > (6)
Yn = (fn,l(y) A Xy ) V ... v (fn,m(y) A X )
1 m
output equation:
z = g(y) J
We now define the state yw of N reached by N
when we apply w to N started in yO . This is done by
induction on |w| .
A (o} C s
y = y , the initial state
waj Y . } (7)
Yy =(f1'J(Y), v ey fn'J(Y))
Clearly this corresponds to the usual computation of the next
state of the network using the next-state equations.
Next we define acceptance of a word w ¢ A* by N
as follows:
we LN iff  gy") =1 (8)

To illustrate this approach return to (1)

We have

and let w = abb .



v = v° = (0, 1)

y? = (' ¥ = o, 1

Y= v A D = @ whoa b
= (1, " = (1, 0

y*P = 1, v A ey = 1, 1A

Il

(1, 1)

Since g(yabb) = 1 , we conclude abb ¢ L(N)

15
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4. Right Lanquage Equations of a Network

Following the motivation of Section 2, we transform

(6) into a system of equations, called right language equations,

which has the form:

X, = Fl,l(X)oal U ees U Fl’m(X)-am u 61 7
: r (9)
Xn = Fn,l(X)-al U eee U Fn’m(X)-a u 6
X, = G(X) /
where X = xl' ceoy Xn ;
Gi =X if y? = 1 and Gi = ¢ otherwise;
Fi,j is a language function in Ln , derived
from fi,j as shown below for i =1,...,n,
and j =1,...,m ;
G is a language function in Ln  derived

from g as shown below.

The term "right language equations" reflects the fact that the
letters a; of the alphabet appear on the right in (9). Note

that the AND function of (6) in the expression £, .(y) A x

i,]j a.
J
is replaced by concatenation in (9). We could also construct
a system of left language equations of the form:
m
Xi = .Bla -Fi’](X) u 61 i=1,...,n,
= (10)
X, = G(X)



but this is not the concept that we need presently.

Clearly, Bn and Ln are isomorphic as boolean

algebras. The following correspondence will be used:

17

Bn Ly
constant functions: 0 ¢

1 I=A*
variables: Y = Yyreeer¥, X = Xl,...,xn
operators: A N

Y U

. -
function symbols: i,j(y) Fi,j(X)

g(y) G(X)

We obtain Fi,' from f.’. as follows. Take any expression
for fi,j (such as the canonical sum of products) involving
0, 1, Yyr ceev yn, A, vand ' . In this expression replace
' by Xi s 1i=1,...,n, 0 by ¢ , 1 by I, Aby n
v by v , and ' by =~ . We now have an expression in the
variables Xl’ veer X The language defined by this
expression is precisely Fi,j(xl’ ceny Xn) . The function G

is obtained from g in the same way. To illustrate, we have

f given by the expression y. A y' in (l). Thus
2,b 1l 2

F2,b = Xl n X2 . Compare (1) with (2).
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In order to show that (9) has a unique solution we
will first construct a larger system of equations, the right

quotient equations defined by (9). We require the following

result.

Proposition 1 Let X,Y c A* be expressed in terms of their

right quotients:

X= U Xa-a U Sx

aeA
Y= UY caudé .
acA a ¥
Then Xuy= U (Xa u Ya)oa u (6x u GY) (11)
aeA
XnY= U (Xa n Ya)-a n (GX n GY) (12)
achA
X= UX avu (A - 68,) . (13)
aeA a X
Proof: This is easily verified. 0
Given a set of right language equations
m
X, = .E Fi,j(X)~aj u Gi ’ (14)
j=1
as in (9), we construct the set:
m~ ~
Fk = .E Fk’j(x)-aj u Gk ’ (15)
ji=1
on
where Fk ranges over the 2 language functions, i.e.
n
2

k=1,...,2 This is done as follows: For each language

function in Ln write an expression involving Xl, cees Xn,



19

U, n, + ¢ and I . Compute the functions Fk 5 for Fk '
[4

J=1,...,m, by using (11), (12) and (13). We call (15)

the right quotient equations generated by (14).

In the example of Section 1 we have:
Xl = iz-a U I+b
X, = X2-a U (Xl n i2)°b U A .
We first note that
$ = ¢*a u ¢°b

I =1TIavuvilIbu ).

Next we can find the functions corresponding to ii :

1
X2 = X2-a U (Xl u X2)-b .
Similarly:
X1 n X2 = ¢*a u (Xl n X2)-b
X1 n X2 = X2-a U (Xl U Xz)-b ’
22
etc. In this way we can construct a set of 2 = 16

equations of the form (15).

Theorem 1 Any system of right language equations of the
form (14) has a unique solution for each Xi 1 =1,...,n .

Furthermore each X is regular.
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Proof: The system (15) of equations generated by (14) as

described above has the form of quotient equations. Hence this
system of equations can be solved using the fact that the

equation

X=XBuC, A ¢ B ,

has the unique solution X = CB* which is regular if B and

C are regular. Thus we can find Fk for k = 1,...,22 .

Note however that each Xi represents one function in Ln ’

i.e. the right language equations (14) are contained in the

list of right quotient equations (15). Hence we have a unique
solution for Xl' ooy Xn which satisfies (14) since it is
part of the solution of (15). n

Returning to our example of Section 1, note that we

are interested in finding Xg = X, n X, « In general, it is

not necessary to find all 16 right quotient equations; we need

only those functions that are "reachable" from X i.e, only

0 14

the quotients of X This is in fact what we found as (3).

0 .
Note also that the 16 distinct boolean functions of two vari-

ables in (15) do not necessarily define 16 distinct languages.

- 3 T 1
In our example, Xl n X2 = X2 , though Yy MY, and Yo

denote different boolean functions. However, the following

system of equations generates 16 different languages:

X, = (X, u X2)'a U Xz'b

n 22) u (X

(16)

X = X,*a u ((X n Xz))'b

1 1
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The verification of this claim is straightforward and is left
to the reader.

In summary, we have shown in this section that (9)

has a unique solution for X0 = G(X) and that x0 is a reqular
language. We have yet to prove our claim that X0 = L(N) .
Lemma 1 Let £ Bn be a boolean function and let F be
the corresponding function in Ln . For i=1,...,n let

y; ¢ {0, 1} and X; £ A* be such that y, =1 iff 1 ¢ X, .

Then

f(y) =1 1iff X ¢ F(X) . (17)
Proof: Assume that each function £f 1is represented by
some standard expression in the symbols 0, 1, Yy oeer Yo
and operators Vv , A and ' . We proceed by structural

induction on the number r of operators in that expression.

Basis, r = 0

(a) I1If £ =0, then F o and (17) holds.

(b) If £ =1, then F I and (17) holds.

(¢c) 1If f =y, for some i ¢ {1,...,n} , then F = Xi .

By assumption Y; T 1 iff X e Xi . Hence (17) holds.

Induction Step, r > 0

Assume now that (17) holds for g and G , as well

as for h and H

(a) £f=gvh, F=GuUH
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f(y) =1 iff g(y) v h(y) =1
iff g(y) =1 or h(y) =1
iff A e G(X) or X e H(X)

iff X e G(X) u H(X) = F(X)

(b) £f=gAh, F=GnH . The proof is similar to (a).
(c) f=g', F=G . This case follows easily.
Thus the induction step holds. 0

This result shows that L(N) and X, agree as far

as the empty word is concerned, for
. o
A e L(N) iff g(y’) =1 .

By construction of (9), yg =1 iff X ¢ Xi for i=1,...,n.

Thus Lemma 1 applies and g(yo) =1 1iff XA ¢ G(X) . Next we
would like to show that w ¢ L(N) iff w ¢ X0 by induction

on the length of w . We encounter the following problem.

Let w ¢ A* ., For the network we must compute yw inductively

as in (7), i.e.

A (o}
vi =¥
Waj W
and yl = fi’j(Y )

Note that in this computation the letters of w are used from

left to right. On the other hand the computation of right

quotients of the Xi involves the use of the letters of w

from right to left, for we have
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X/A = X

and X/ajw = (X/w)/aj .

In view of these difficulties it is convenient to
reverse the system (9) of equations. To simplify the notation

i = o = p =
we will let Vi,j Xi,j ’ Vi Xi , and V Vl' . Vn .

This formal reversal yields the system of left language

equations:

V., =a

i l-Fi’l(V) U weae U am~F. m(V) u Gi ,

i,
i=1,...,n (18)

V0 = G(V)

Now we can deal with the left quotients of V .

Proposition 2 Let X Xl' ceey X be languages and F

n

a language function in Ln . Then for all w ¢ A*

w\F (X) F(w\X) .

]

Proof: The proof follows easily by structural induction

on F . It is sufficient to verify that

w\ (G(X) u H(X)) wAG(X) u w\H(X) ,

and wAG(X) = w\G(X) .

This follows from the definition of left quotients. 0
Lemma 2 In the system (18) of left language equations,
for all i=1,...,n , aj e A, W e A¥*

ajw\Vi = Fi j(w\V) . (19)

4
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Proof: We proceed by induction on r = |w]| .

Basis, r = 0

Here w = A , and (19) reduces to:

This follows immediately from (18).

Induction Step, r > 0

Assume (19) holds for wa, where a € A . Then
ajwak\Vi = ak\(ajw\Vi)
= ak\Fi,j(w\V)
= Fi'j(wak\V) ’
by Proposition 2. 0
Lemma 3 Let w ¢ A* , let yw be defined by (6) and (7)
and let V be as in (18). Then for all i =1,...,n
y; = 1 iff A e wP\v,
Proof: We proceed by induction on r = |w|
Basis, r = 0
_ A _ O P —
Here w =X , i T ¥ and A \Vi = Vi . By
construction of (9), yi =1 iff X ¢ Vi

Induction Step, r > 0

Assume the result holds for w and let aj e A

Then by (7)
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By Lemma 2

a.wp\V. = F,
1 1

o
i j(w \V) .

14

By the inductive assumption yﬁ =1 iff X ¢ wP\V for all

k
k =1,...,n . By Lemma 1, £, .(y") =1 4iff A e F. . (wP\v) .
i,] 1,)

’

Note that ajwp = (waj)p . Thus A € (waj)p\vi iff

y 3 =1 as required. a
We now prove our main result:

Theorem 2 Let N Dbe a network defined by (6) and let

X0 be the solution of the corresponding system of right

language equations (9). Then L(N) = XO

Proof: By the definition of acceptance (8) we have

we L(N) iff g(y") =1 .

Because of Lemma 3, we can apply Lemma 1 to yw and

gly") = 1 iff A e G(wWP\V) .
iff A e G(wP\xP)
iff A e G((wP\xP)P)
iff A e G(X/w)
iff A e G(X)/w

iff w e G(X) = X ’

where we have used the (easily verified) property

(wPAx?)P = x/mw . 0
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5. Boolean Automata

We now re-examine some correspondences between classes
of automata and left language equations. Consider the follow-

ing systems of equations:

El Xl = a-Xl U b°X2 U A
X2 = a-X2 u b-Xl
E2 Xl = a'(Xl U XZ) U bed U A
X2 = a'Xl u b'X2
E3 Xl = a-(Xl U X2) U b-X2 U A
X2 = a-Xl U b-((Xl n X2) U (Xl n XZ))

The system E3 is most general, permitting all language
functions in Ln to appear as coefficients of the letters.
The system E2 uses only unions of the Xi ; note that empty
unions are allowed. Finally the system El is most special,
allowing only the X, . It is well known that systems of type
1 correspond to deterministic automata and those of type 2 to
nondeterministic automata. For the new systems of type 3 we
can define a new type of finite automaton where the "next
state" of a given state is not a set of states but a boolean

function of the set of states.

A boolean automaton is a quintuple

B= (A, Q, 1, fo, ) , where

A 1is the input alphabet.
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Q = {ql, ceey qn} is the finite, nonempty set

of states.

T : Q x A > BQ is the transition function which

gives for each state and each letter a

boolean function in BQ .

£© is the initial function in BQ .

F c Q 1is the set of final states.

For example let B = ({a,b}, {ql,qz}, T, dyAd,, 19,}) , where

T 1is given in Figure 7.

a b
]
4 | 9 1
[ ]
9 | 93 q; M,

Figure 7 A bo-lean automaton

We extend the transition function 1 to BQ X A* ag

follows. For a ¢ A* , aj e A ,i=1,...,n

(a) T(qi, A) = a;

(b) T(qi, ajw) = fi,j(T(ql' W), eeey T(qn, w)) , where (20)

£i,5 = Tlagr ay)

Now for any f ¢ BQ define

(£, w) = f(T(ql, W)y eesy T(qn. w)) . (21)
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We remark, that we could replace (20) (b) by any of

the following two definitions

T(q; ajw) (g, aj), w) or

Il

T(qy ., waj) T(T(qi, w), aj)

One can verify that all three ways of defining 1 on BQ X A*
yield the same function.
We now define acceptance of a word w ¢ A* by a

boolean automaton B . Let h = T(fo, w) . Then

w ¢ L(B) iff h(cl, .oy cn) =1,

where c; = 1 iff q; € F and c; = 0 otherwise.

To illustrate these concepts consider Figure 7. We

find
T(ql, ab) = qé(T(qu b), T(qz, b))
= qé(l, qlAqé) = (qlAqé)'
T(qzl ab) = qZ(T(qlr b)l T(qu b))
= (q;1q3)
o o
T(f°, ab) = f (T(ql, ab), T(qz, ab))

= £20(q;nad) ', (g ral))
= (qlAqé)' A (qlAqé) = 0

To determine whether ab ¢ L(B) we now evaluate T(fo, ab)

at (1, 1) . Clearly we obtain 0 . Hence ab 4 L(B)
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The following theorem summarizes the main property of

boolean automata.

Theorem 3

(a) For every boolean automaton B = (A, Q, T, fo, F) with
n states there exists a sequential network N with n
unit delays such that L(N) = [L(B)]P . Conversely, for
every sequential network N with n unit delays there
exists a boolean automaton B with n states such that
L(B) = [L(M]P .

(b) For every boolean automaton B with n states there

exists an equivalent deterministic automaton A with at

B
n
most 22 states, such that L(AB) = L(B) .
Proof:
(a) Let B = (A, Q, T, fo, F) be a boolean automaton with
Q = {ql, cees qn} . Define a system E of left language
equations derived from B as follows:
X. = U a-F, U Gi , 1i=1,...,n
1 achA 1,8 } (22)
Xy = F°
where Fi,a € Ln corresponds to T(qi, a) for
i=1l,...,n and a ¢ A via the isomorphism between BQ

and L and F° corresponds to £° in a similar way .

Also Gi = X if q; ¢ F and Gi = ¢ otherwise.



We will show

w e L(E) iff

iff
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that L(B) = L(E) . First we note that

woe X, = F° (X)

A€ W\FO(X)

Fo(w\X)

o
F (w\Xl, ce ey w\Xn)

’

or w e L(E) 1iff A € Fo(w\xl, ceny w\Xn) (23)
Secondly, let T(qi, w) = q? for i=1,...,n and
W e A* , and let ¢ = Cyr «ees C where

0 if gq; ¢ F
c, = { . We have

1 otherwise
we L(B) iff [1(£f°, w)l(c) =1

iff [£°(t(qy, W, ..., t(q ., w))](c) =1

iff [fo(qY, ceer @) 1) =1

iff fo(qY(c), coos qx(c)) =1,
or we L(B) iff £°(qj(c), ..., qp(c)) =1 (24)

Now we claim that for all i =1,...,n and all
w ¢ A* ,
. w
A e w\X, iff g, (c) =1 . (25)
i i
If we assume this claim, then Lemma 1 applies and
o) . o
£2(q)(c), vouy qple)) = 1 EfE A € FO(W\Xy, ..., WAK ),
thus showing that L(B) = L(E) by (23) and (24).
The proof of (25) follows by induction on |w| . For

w o= A we have A ¢ )\\Xi = Xi iff q; € F iff ¢, =1,

by construction.

Now assume the claim holds for

w
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consider ajw . By Lemma 2, the induction hypothesis,

and Lemma 1

A e ajw\Xi iff X € Fi,j(w\xl’ ey w\Xn)
. A" w _
lff fi,j(ql(c)' " s ay qn(C)) - l .
a.w

But qiJ = T(qi, ajw) = fi’j(qY, ceey q:) . Hence the

induction step goes through, and (25) holds.
Now we construct a network N so that its language
will satisfy the reverse of (22). Namely, the network

equations are of the form:

Y, = (fi,l(y) AX

i Yv ... v(fi,m(y)/\x Y, i=1,...,n

1 am

y =¢

z = £f2(y) .

It is then clear that the equations for L(N) are obtained

by reversing (22). Hence [L(N)]° = L(E) = L(B) . fThus
we have constructed N from B in such a way that
L(N) = [L(B)]1° .

Reversing the argument proves the converse claim.

Construct the derived deterministic automaton

o]

AB = (A, P, u, £, G)
as follows: P = {t(£f°, w) | w e A*} ,
G={fepP | flc c) =1 for ¢, =1 1if g, € G

l' e+ 0 g n i i
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o

c; = 0 otherwise} , and w(t(£f°, w), a) = t(£%, wa) for all

weA* and a e A . Note that P c By hence Az is a
deterministic finite automaton. Furthermore one verifies that

L(AB) = L(B) . 0

In summary, boolean automata or the corresponding
language equations provide a very concise way of representing
regular languages. Suppose the reduced deterministic
automaton of a regular language L has n states. Then the
nondeterministic automaton representation uses at least
flogzn] states, whereas the boolean automaton representation
uses at least [logzlogzn] .

Finally we remark that the language equations
corresponding to boolean automata are "as general as possible",
if one wants their solutions to be regular, in the following
sense. If one permits concatenation in the expressions for

the F , the result need not be regular. For example,

i,3
one verifies that

X = a(X*Y) u X
Y = b+Z
Z = A

has the unique solution X = {a"b"™ | n > 0} which is not

regular.
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