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§0 Introduction

One of the most intriguing topics in Mathematical semantics in the
last few years has been that of non-determinism. Although very few
existing languages allow non-determinism, the study of such languages is not
without merit. For example, any language which deals with relations as opposed
to functions (e.g. query lanauages for relational data bases) must be in some
way nondeterministic. In [ 4 ], Dijkstra has introduced a non-deterministic
language which he claims facilitates the synthesis of programs. Moreover,
many authours have studied parallelism by using the concept of non-determinism.

Non-determinism means, of course, allowing some element of chance
to influence how a computation might proceed. As a first approach, we might
introduce a choice construct "or" into a simple language of recursive
definitions. As in [ 17 ], these recursive definitions give rise to
evaluation sequences and the application of the evajuation mechanism to a
"program segment" T] or T2 would result in a random choice to evaluate
either T] or to evaTuate T2.

The relevant domains of interpretation for these recursive

definitions are non-deterministic domains or structures.which are special

instances of a class of domains suagested in [ 5 1. The elements of this
jdea appear in [ 13 ] and.‘[ 6 ] and were formally pointed out in [ g 1,
[ 9 ]. A structure is an element of a restricted class of complete partially
ordered sets (cpo's). The restriction is a consequence of requiring that we
not only have the usual so-called "computational partial order" (L) on data
domains, we also order domains by a so-called "results partial order".

The reasoning behind the choice of this restricted class is
explained as follows: We assume that our machine is equipped with basic

functions which are deterministic (i.e. return at most one output when given



some input). The non-determinism results from having a choice construct in

a programming language. Any given execution of a nondeterministic program

P will result in a deterministic computation. However, many different
computations may be executions of P and these computations (call them

Cp) may or may not be comparable using the usual ordering of computations.
The result of executing P could be the output of any of these computations.
Cp. What could be the output of an execution of P] or P,? The output
could be an output of an execution of P] or an output of an execution of
P,. Thus (informally) result (P] or P2) = join (result (P]), result
(Pz)) where join: (sets of resu]ts)z ~ (sets of results). Moreover, even
if the computations of P] and P2 (on the same input) are not comparable
(using the "computational partial order"), we may be able to show that result
(P]) approximates result (PZ) with respect to the join operation indicated
above.

Another important problem in studying computations is how to
construct function spaces of given domains. For example, if D is a cpo,
then [D - D] 4s the set of continuous functions from D to D and is
easily shown to be a cpo. The fact that D and [D > D] have similar
properties as domains is vital in studying deterministic computations.

Since we restrict the c]ass.éf cpo's we may us€ in studying nondeterministic
computations, do we also need to restrict the class of functions we allow in
order to maintain these special properties? The answer is of course in the
affirmative: given a structure D, we let [D,D] be the class of functions
which are continuous with respect to the computational partial order and
monotonic with respect to the results partial order. This reflects the

intuitive idea that if we give "more" inputs to a nondeterministic program,

then we should expect "more" outputs.



As to the contents of the paper, in Section 1, we outline some
underlying mathematical ideas. In Section 2, we study the class of
structures and show that there is a universal structure; that is, we show
that there is a domain in which nondeterministic programs can be given
meaning symbolically and that interpretations of this symbolic meaning in
other structures are consistent with the meaning of these programs in
these structures. In Section 3, we show that these ideas can be generalised
to give definitions of nondeterministic programs of higher type: i.e. non-

deterministic functionals.



81 Basic Definitions and Ideas

Llet S be a set of sorts. A many-sorted alphabet } is an in-

dexed family of sets

3

{ZW,S}<W,S>GS*XS indexed by S$*xS. Given f ¢ E'W,S

f 1is said to be of type <w,s>, arity w, sort s, and rank |w] (where

lw| 1is the Yength of the string w). f 1is called an operator symbol or

name.,

A many sorted E—algebra (or E-algebra) Az is an indexed family

of sets A = {A_}

s7ses and an indexed family of assignments

@ = {aw,s}<w,s>€S*xS where “w,s‘ zw,s Sn S
WSy s and (As X oue xAS + A) the set of functions from
1 n
A_x ... xA to A.. A 1is said to be the carrier of Acr and A_ is
3 Sn s = y s

the carrier of sort s. We denote o, S(f) by fA'

+ (A x ... xA_ > A) for
5

Given w e S*, we will assume w = S1 - Sy, unless stated

otherwise. We will denote AS X oo xAS by AL Let AZ and BZ be
1 n
y-algebras. A J-homomorphism h: AZ > BX is an indexed family of

mappings {hs}SES such that hS: A, ~ B and for f e )

S W,S’

L
<a-l’ «o ,an> € A 3

hs(fA(a]’ I )) = fB(h (a]), e ,hsn(an)).

A Y-homomorphism which is injective, surjective, or bijective is said to

be a Y-monomorphism, }-epimorphism, or }-isomorphism, respectively.

Let ¢ be a class of Y}-algebras. A y-algebra Az is said to

be initial in the class C if and only if Az e C and for each Bz e C
there exists a unique J-homomorphism h : Az -+ BE. Let Algi be the
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class of all }-algebras. Then Algi has an initial algebra Tz defined
as follows:

Let TE be the family of sets {TZ,S}SES defined by:

(i) Ex,s E-TZ,S for each s e S;

. ) W
(ii) Given f e ) and <t Cat> e TX , fty ot s Tz

W,S | R n S "
For fel, . and <t ...,t>e TZW; define
sz(t], - ,tn) = ft1 cen tn'
(As in [13], TZ is classically known as the word algebra on the alphabet }.)
Let X = {XS}S€S be an indexed family of sets of "variables".

Define }(X) by Z(X))\’s = ZA,S U Xgs X(X)W’S = Xw,s for w # X.

We will generally write TZ(X) as TZ(X) and then Tz is isomorphic to
TZ({G}SES)' Let AE be a )-algebra and let a: X ~ A be an assignment of
values to variables. Then a extends in a unique way to a )-homomorphism

a: TZ(X) - Az. This is a very important result and is proved by showing
how Az can be "made into a }(X) -algebra". (The assignment to )} is as

before and the assignment to X 1is via the assignment a.) For further

details, see [ 1]. Let xw = {Xlssi""’xnasn} where x].’Si is of sort S5 ;

s = {xi,si|si = sk Thenlet Tp(X,) = Tp({(X )s}ses).

Define (Xw)s by (X

The motivation for defining XW and TZ(XW) can be founc in [13] or [1].

A congruence q on Az is an indexed family of equivalence

relations q = {qs}seS’ q. defined on As’ with the substitution property.

S
That is, given f ¢ zw s and <Ays ...,

0> <b], ce ,bn> € AY  such

that aiqsibi for 1 < i < n, we have fA(a], ves ,an)qsz(b], ces ,bn).

Denote by [a]q (or just [a]) the equivalence class of a. Let A/q be
the family of sets

tlalla e A ) g



We can make A/q into a }-algebra Az/q by defining for
fe Ew,s and  <[a;1, ... ,[a 1> € (A7q)",

fA/q([a1]’ oo s[an]) = [fA(a]a “eo san)]-

This definition is independent of representatives from equivalence classes
because of the substitution property. Moreover, there exists a unique
homomorphism h: AE - Az/q defined by hs(a) = [a] for a e A

A Y-equation is a pair <tpoty> e TZ(Xw)s XTE(XW)S for some

s e¢S. We usually write t, =1t, instead of <tysty> A Y-algebra Az

is said to satisfy t] =t if for all assignments a: Xw AN

E(t]) = 5(t2). Define the relation RP

on Ay by:
th=h )

E(t])R g(tz) for some assignment a: X - A.

t"-': tz

Given Ry there exists a least congruence q, _ , oOn
3 1

17 %’ 2

Tz containing Rt] tz' t] = t2 is said to generate qt1 = t,° A

system of V-equations E 1is an indexed family of sets of }-equations
E = {ES}. As above, E generates a least congruence A ‘on Az.

Let Alﬂ{,E be_the class of y-algebras satisfying E. Then
Alg{’E has an initial algebra, namely TZ/qE' (Note that, in general,
initial algebras are unique up to isomorphism. That is, if AE and BX
are initial in ¢, then Az is isomorphic to BE') This result is very
important and is the basis of much of the work on abstract data types

([2 1, [12]).



Let A be a partially ordered set (poset) with partial ordering
Cp- If A has a minimal element, then it is denoted by lA‘ A non-empty
subset ‘A' of A is an w-chain (or chain) if and only if A' is totally
ordered. We will normally indicate the ordering of the chain explicitly
by writing {ai} for aOEAaTEAaZEA ... + A s said to be an y-complete
(or complete) partially ordered set (cpo) if A has a minimal element and

every chain in A has a least upper bound. (A' < A has a least upper

bound b if and only if for each a ¢ A', 2 Ca b and if there exists any -
b' ¢ A such that for each a ¢ A', a [, b', then b [, b'.) We denote the
least upper bound of the chain '{ai} by iEOai or |h;.
If A and B are posets, then f: A > B 1is said to be contin-
uous if f(Uai) = Uf(ai) for any chain {a;} in A when Lla; exists in
A. Note that on the left of the equation, the least upper bound is taken
with respect to Cas whereas on the right it is taken with respect to Lg.
If A, B are posets, then so is A x B with partial order
C

=AxB
A, B are complete, then so is A x B (with minimal element (LA, LB)).

defined by (a,b) E—AxB(a ,b') if and only if a EA a's b EB b'. If
Let AE be a )-algebra. AZ is said to be continuous if each

AS is complete (with minimal element denoted by Ls) and if for each

f e Ew o T AV A, s continuous. (Note that A% s complete by the

remark above.) That is, for {<a s «.. 5a_ >} a chain in v
$1,i Sn,i

s eee s A .) = fA(aS s oeee B¢ ) where 3, = Lia for

Uf,(a
A S],i n,i 1 n J Jsi

1 < j =n. Note that to demonstrate the continuity of fA’ it is sufficient



to show that fA is continuous with respect to each of its arguments

separately. That is, if '{aj 1.} is a chain in AS » then it is sufficient
> i

to show that for each i, 1 <i <n, LfA(aS], SRR SIS ,asn) =

fA(as]’ ces ’Lﬁj,i’ et ,asn). A Y-homomorphism h: Az +~BZ between the
continuous Y-algebras AE and B2 is continuous if and only if each
hg: A » B, s continuous as a function. h is said to be strict if
hs((LS)A) = (LS)B; i.e., h maps minimal elements to corresponding mini-
mal elements. Let legi be the class of continuous Z-a]gebras together
with strict, continuous X-homomorphisms between them. Then Qﬁlg{ has an
initial algebra which can be defined as follows,

Let D = [A -.->B] be the set of partial functions from the set
A to the set B. We can order the elements of D by set inclusion on
the graphs of the functions in D (with the graphs considered as subsets

of A x B). It is well known that with this ordering D is a cpo. For

f ¢ D, let def(f) = {al<a,b> ¢ f}. def(f) is the domain of definition

of .f. Let } denote (ambiguously) the family {Zw and the

,s}ﬁu,s>€S*xs
set:forqu by taking the disjoint union of the family Z.
For each s €35, let CTE,S be the set of partjg] functions
t: N* -~ Y (N the.set of natural numbers) such that
(i) If A e def(t), then t(2) has sort s;
(ii) If weN*, i eN, and wi ¢ def(t), then
(a) w e def(t) and
(b) if t(w) has arity Sy ..o S then i <n and

t{(wi) has sort Si+1-



Let CT2= {CTE’S}S€S and define fo, =~ for fe zw’s by:
(i) If w=2x (and so f is a constant or a nullary) then

for = {<X, >}

CTE

(i) If t. € CTZ for 1 <14 <n, then
i »S;

}.

chz(t], ceestg) = LYo {<iu, g0 <u, g0 € ti

i<n
Thus CTE is a j-algebra and can in fact be shown to be a continuous
Z-a]gebra_and is initial in Qﬁlg{ ([11). The order on CTZ is that ob-
tained by restricting the order on [N*-°->}] to elements of CTZ'

The above is an awkward formalism in which to think about the
initial algebra in Qélg{ and so we introduce a more intuitive one. Let
L= {{LS}}Sés and consider }(1). (See above for definition of J(X).)
Consider CTi,s to be defined by:

(i) E(L)A’S E-CTi,s;

(ii) If f e Z(L)w’s and t. 1is a finite or infinite polish

prefix expression over X(L) already in CTi»Si for

1 <43 <n, then ft] ces tn € CTi 5

Let CTi = {CTi,S}SES. We can order CTE,S by: tLC oo t' if
and only if
(i) t=1t'
or (i) t = Les
or (iii) t = ft] tn’ t' = fti . tﬁ and ti ECT' t% for
1<i<n,

It is straightforward to show that C't'z and CTi are isomorphic and we

will generally think of elements of CT2 to be polish prefix expressions
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(or trees denoted by polish prefix expressions).

Let E = {Es} be a system of J-equations over Y(1) such that

seS
for each t] = t2 in ES, t],t2 € CTX,S' Congruences over continuous
Y-algebras are defined as before, as are the concepts of satisfiability and
the least congruence generated by a system of Y-equations. Given congruence
q over CTz, although the algebra CTz/q is well defined, it is not in
general complete. (i.e., the carriers of CTE/q are not cpo's as some
chains do not have least upper bounds.) However, the particular application
we have in mind will turn out to be complete and we will need the following
concept to prove this: Let A be a poset and R c AxA a relation on A.
Suppose we have chains {ai} and {bi} such that for all i, aini and

moreover Uai and Lbi exist. If Lia RUbi for all such chains {ai}

and {bi}’ then R is said to be [,-complete.
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§2 ¥ - structures and Solutions of Equations

Let Z be a many-sorted alphabet sorted by S such that:

(i) + € Ess . for each s ¢ S,

and (i) L € ZA’S for each s e S.

+ will be used to denote a (finite) join operation with respect to the so-
called subset partial order. L is used to denote the bottom element of
the carrier of sort s of a given continuous }-algebra. Consider the

cpo CTE with the usual order [

Ce- Define the relation SC on CTZ as
follows:
t ) t'" for t,t' e CTZ,S if and only if
(i) t=1t',
or (ii) t' = +t]t2 and t ¢ tisor t ¢ tys
or (iii) t' = fti e tﬁ, t = ft] e tn and ti ¢ t% for 1 < i < n.

Lemma 2.1: <. s Et-comp]ete. That is, if {ti}’ {t%} are chains so

that for each i, t,

i S¢ ti’ then Uti C Uti'

=C

Proof: Consider some t, e {t;}. Since t SC-tﬂ’ one can perform the
following sequence of steps_on nodes of t/, starting at the root, in
order to transform it into t:
(i) Let the node of t& being considered be labelled by +
and let the subtree whose root is this node be +t]t2.
(ii) There is a corresponding subtree of tk’ denoted by r,

such that

A R A—— vty g+
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(a) r= tryr, and ry ¢ t, for i=1, 2

or (b) tss

ety

or (c) t

r‘g_c 20
In case (a), perform no transformation at node labelled by +. In case (b)

(symmetrically (c)), replace the subtree +t,t, by t, (symmetrically tz).
(ii1) Proceed to step (i) at the next node to be considered.

Call the above sequence of choices Sqy - We can think of applying Sqy to
any tree t such that t& EC t. We need this restriction on t to ensure
that 54y is well-defined on t.

In particular for all j > k, we have that té EC ti and so we

can conclude that
tk = qu(t"() C qu(tj)-

Since this is true for every J > k, we must then have

— ] U ] — ]
. L' | I 1
since j>ktj = Uti.

Since t..1 S¢ teppr we have t . q = sqk+](té+1) for some
sequence of choices sq.,. But t, Lo and té g_t&+] and so
t, = sqk(té) g_sqk+](t'k+]) = tk+1' In fact t, Ce qu(Uti) for all j = k.
Thus there must exist a sequence of choices sq such that sqj < sq for

all j and tj = sqj(tj) Ce SQ(Lﬁi)- (sqj < 5q means that sq; 1s a

prefix of the sequence sq.)
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But then Utj = Usqj(tj) EC sq(Uti). Suppose that Lt, # sq(uti).
w cl 1 ') = ! . j . L
Now clearly sq(tJ) qu(tJ) EC LJt1 for each j (sq(tJ) makes sense
only if we assume that the choices specified by sq at non-existent nodes
of tj are not used in obtaining sq(tj).) So we have Usq(t&) Ce Ut; and,
finally, since Usq(tj) = sq(Utj), that ut; C. sq(Uti). Thus Ut, <. Ut:.0
Consider CTE/q where q is the least congruence generated by

the family of sets of equations

E = {{+xy = +yx, +xtyz = ++xyz, +xx = x}} e S

(These axioms specify the properties of the join operation.) .Denote CTz/q
by NCTy. Define the relation Gy on NCTy by: [t] g, [t'] if and only
if t EC r for some r ¢ [t']. This definition is independent of the
choice of representatives from [t] or [t'] for if ; is any other
representative of [t], then E can be transformed to t by some sequence

of transformations using only the axioms, r can be transformed to r using

the reverse of the above sequence, and clearly t Co T

Lemma 2.2: Ey is a partial order on NCTX'

Proof: The only property which is not trivial to check is antisymmetry.
So let [t] Cy [t'] and [t'] Ty [t]. Then there exist r ¢ [t] and

r' e [t'] such that t [, r' Lo r Thus t [, r and r 1is obtained from
t by replacing some occurrences of 1 in t by some expressions. But

r e [t] and so r must be obtainable from t by use only of the axioms.
Clearly +xy = +yx and +xtyz = +txyz do not lend themselves to this

process since the use of either on t gives t' such that t ZC t' and
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t' Zt t. The only possibility is to use x = +xx repeatedly to replace a

subexpression L of t by +11 to obtain r. Since t gc r EC r, r' s
obtained from t by making only some of these replacements. Then using
tXx = x on r', we obtain r" =t and of course r" ¢ [t']. But then

[t] = [t'] since they have an element in common. 0
Lemma 2.3: NCTE is complete.

Let {[ti]} be

Proof: Clearly [LS] is the least element of NCTE .

a chain in NCTZ' Clearly the ti can be chosen so that ti Ce t for

it]
all i, let t = LJti and consider [t]. Clearly [ti] Oy [t] for all i,
so [t] 1is an upper bound for {[ti]}‘ To show that [t] = U[ti]’ assume
that there exists [t] so that for all i, [ti] Oy [t] ¢N [t]. Thus for
each tos there is ri e [t] so that ti Lo Ty _Since ts ¢ t1+],_ we
can choose a single representative, say t, of [t] so that t. [t

But then Uti =t EC t and so [t] Oy [E]. This is a contradiction and

so [t] is the least upper bound of {[ti]}' ]

Lemma 2.4: NCTZ is a continuous Y-algebra (with respect to the partial

order LN).

Proof:  Let {[t.]} be a chain in NCTy. Then fN([t(1)], ST AN
) |
[fCT(t(]), vt v, 0]

(where t e L[t;])

[fCT(t(]), T T ¢{n)y3
for all i)

{where t = uti, ti Cc ti+]
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= Ufcﬁt“),..., t., ... ,t(m)]

i
(since fCT is continuous)

u[fCT(t(‘),... AR £(nh

(assuming Ufs.] = [us,])
-t e L (M),

The proof that U[Si] = [Usi] is the subject of the next lemma. =

Lemma 2.5: Let {s;} be a chain in CT.. Then U[si] = [Usi].

)

Proof: let s = Usi. Then [Usi] = [s]. We have shown above that
U[si] = [t] where t 1is the limit of a chain of representatives. Clearly
[t] dis independent of the choice of chains of representatives from {[Si]}
and so [t] = [s]. C
We now define -the relation €y on NCTZ by: [t] N [t'] if

and only if t €. s for some s« [t'].
Lemma 2.6: N is a partial order on NCTZ'

Proof: Reflexivity and transitivity are clear. Antisymmetry follows from

an analysis similar to that found in Lemma 2.2. a
The join of [t] and [t'] with respect to N is defined by

+N([t],[t']) = [+tt']. This definition is clearly independent of repre-

sentatives c¢hosen.
Lemma 2.7: N is EN-complete.

Proof: Let {[ti]},'{[t;]} be chains in NCT2 such that:
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(1) {t.} is a chain in CTZ;
(i1) [ti] oy [t3] for all i,

From property (ii), there exist S; € [t%] for all 1 so that t;

The s; can clearly be chosen in such a way that s
Thus Lt cc Us; by lemma 2.1. But [Uti] = U[ti] and
by lemma 2.5, and so [[t.] ¢, U[t'].

- =N i

Lemma 2.8: Let f e ] . for some <,s> ¢ S*xS. Then

Proof: Suppose [ti] N [t%] for some 1, 1 <1 <n.

Then fy([t;], ..., [t;1, ..oy [t])

= [fc(t], cee s ti’ e s tn)] (definition

= [ft] PRI PR tn] (definition

oy [fty oo th o t]

= fN([tl]’ cen [t%], cer s [tn]) (by definition of f

C S..
=€ i

ok S1Lesp g

[Us;] = Uls; J(=ult!])

N

of f

We can summarise the above in the following important result:

Theorem 2.9: NCTz is a Z—structure.

is

c)

(]

c,,-monotonic.
<N 0

(by definition of cy Tn terms of

—

\) -

Proof: By lemmas 2.2, 2.3, 2.6, 2.7 the set NCT2 is a structure. Lemmas

2.4 and 2.8 indicate that NCTz is indeed a 2—structure.

0

We now want to prove that NCTz is initial in the class of

y-structures. Let §££{ be the class of }-structures together with strict,

C-continuous, and c-monotonic }-homomorphisms.

C

&

)
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Consider the diagram

nat

where: (1) hA: CTz - Az is the unique homomorphism guaranteed by

‘ the initiaiity of CTZ in Eﬂlﬂ{i

(i) natq:CTZ - NCTE is the natural homomorphism mapping t to
its equivalence class [t];

(iii) N NCTZ - Az is a mapping defined by nA([t]) = hA(t).

Note that na is well defined since if t, t' ¢ [t], then t' is trans-
formable into t wusing only the axioms, A2 is 1in §§r{ and so obeys the
axioms, and so hA must identify the images of t and t'.

We now proceed to prove that ny, s a unique, L-continuous,
c-monotonic homomorphism. In order to prove}the c-monotonicity of Nps

we need the following auxilliary result.
Lemma 2.10: Let Az € §§£{ and hy: CTZ > Az. h, preserves c.

Proof: The proof proceeds by induction on the structure of t' for

t ¢ t'. If t'=ac¢ ZA,S’ then t = a and clearly hA(t) = hA(t'). If
= - . .

t' = fti ..... tﬁ, then t ft] cen tn and t. gt for 1 <1 <n,
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So we assume hA(ti) N hA(t%) for 1 <1 <n and then

h,(t) = h ft-l oo t)

A( n

= fA(hA(t])’ cee s hA(tn)) (hA is a Y-homomorphism)

A¢

EAfA(hA(ti)’ cee s hA(tﬁ)) (by induction since fa is c-monotonic)
= hA(fti .. tﬁ) (hA is a ) -homomorphism)
= hA(t').

If t' = +t1t) then eijther

(i) t St (symmetrically té), in which case

hA(t) Ca hA(ti) (by induction)
Satplhalty)s hy(t))) (+, is a join)
=h,(+tits) (hy is a Y -homomorphism)
=h,(t")

or (ii) t = ttt, and ts ¢ t{ for 1 = 1,2, in which case
hA(t) = hA(+t1t2)
=tp(hp(t),hp(t,)) (hy is a Y -homomorphism)
SA+A(hA(ti)’hA(té)) (by induction since ta is

c-monotonic)

=hA(+tité) (hA is a )-homomorphism)
=h, (') 0

Theorem 2.11: NCTZ is initial in §§£{.

Proof: By Theorem 2.9, NCTE € §E£{. We must now prove that n, in the

above diagram is a unique, [C-continuous, c-monotonic y-homomorphism. The

fact that Na is a )-homomorphism is proved by:
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NCA (2 R {5 )

= nA([ft] .. tn]) (definition of fN)

= hA(ft] e tn) (definition of nA)

= hA(fC(tl’ cer s tn)) (definition of fc)

= fA(hA(tl)’ cees hA(tn)) (hA is a )-homomorphism)
= fA(nA([t]])’ cer s nA([tn]) (definition of nA).

The fact that na is unique is proved as follows: Suppose Ny NCTZ - AZ
nallal) by
nA([ti]) for

is a homomorphism. Let t =ae ), . Then a, = h,(a)
. A,s A A

definition. Let t = ft

] e by and suppose nA([ti])

all i. Then nA([t])

falha(ty)s ooy hplt)) (hy is a ]-homomorphism)
fA(nA([t]]), cee TA([tn])) (definition of nA)
fa(ny ([t 1)y ooy ny([t 1)) (induction hypothesis)

1]

ﬁA(fN([t]] s eee s [tn]) (ﬁA is a )-homomorphism)

= nA([t]) (definition of fN).

Thus we have proved by induction that Np = Na. Let {[ti}} be a chain
in NCTZ such that {ti} is a chain in CTZ' Then

na(Ult,1) = ny(Lut,]) (lemma 2.5)
= hA(Uti) (definition of nA)
= UhA(ti) (hA is continuous)
= UnA([ti]) (definition of nA).

Thus n, s C-continuous.

Suppose [t] N [t']. Then
nA([t]) = hy(t) | (definition of n,)



- 20 -

a hA(t') (lemma 2.70 and definition of EN)
= nA([t']) (definition of nA).
So n, s c-monotenic. 0O

We have now established the result we were after (the initiality
of NCTE in §££{). Now we proceed to apply the above to solving recursive
systems of equatibns. Let Z be as above and suppose I 1is some S-sorted
family of sets of "function variables". We will be interested in systems

of equations of the following form:
E: F](x];], cee s x],n]) =t

Fm(xm,]’ v s xm,nm) = tm

. - § . ) )
where (1) Fj € 5 s, for some Wis S5 e S*xS, 1 <j <m
J
(i1)  <x. cee s Xs o> = <X cee 5 X s for w, =Sy . ...5 . .
"I’ ) . . ,S .’ b . . y ,’
J J nJ 1 1. nJ’snj,J j 1,3 nj j
and 1 <j <m and (iii) tj € CTZ ! E(ij)sj for 1 <j <m Thus

F » F_are names of the functions which we are defining;

-I, e m

<X: 15 .«. 5 X: _ > are the (properly typed) arguments of F.; and t. is
Js1 \FLE J J

some expression in the "basic function symbols" in Z, the function variables

in Z, and the input variables <xj’], e s Xj,n.>'

We will show that these equations can be solved by assigning to

each tj a continuous function over a structure whose elements are non-

deterministic functions. Thus we consider tj to be a functional with

> are essentially ignored

variables F], e s F . (The <xj’], er s xj,nj

m
in this process.) We proceed by defining this structure of non-deterministic
functions.
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Let NCTZ(X) denote CTZ(X)/Q. Then NCTZ(X) is initial in
§§r{(x). That is, given an assignment a: X - A where AE is any
Z—structure, there exists a unique, [-continuous, S-monotonic Z-homomorphism
a: NCTZ(X) -+ AI which extends a.' Let [t] e NCTZ(Xw)s for some <w,s>.
We use [t] to define a derived operation [t]A: A > A by using the
definition [t]A(a) = a([t]) for anbassignment a: X, > A Me call [t]A
a derived operation of type <w,s>. Order the set of derived operations of

type <w,s> as follows:

(1) [t]A EF [t']A if and only if for all assignments
a: XW + A, [t]A(a) EA [tle(a);
(i) [t]A e [t']A if and only if for all assignments

a: X, ~ A, [tlp(a) <, [t'],(a).

(The meaning of F in -EF and Sr will become clear in a moment.) Consider

the following diagram:

‘ natq
CTZ(XW) > NCT}:(XW)
a a
Mix,)

Since NCTo(X ) is initial in Str clearly a([t]) = a(t) where
Y W ———{(Xw)

a: X, +A. Thus [t]A(a) Ca [t']A(a) <=> %([t]) Ca a([t'])

<=> a(t) [ g(r) (for some r ¢ [t'])

<=>t EC r.
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Thus [t]A EF [t']A if and only if t EC r for some r e [t']. It can
just as easily be shown that [t]A r [t']A if and only if t EC r for
some r e [t']. So the set of derived operations of type <W,s> form a
structure with [isJ as least element. (This follows easily from the

properties of CTZ(XW) and the above analysis.)
Consider the alphabet F(X) sorted by the set F(S) = S*XS:

(1) fe Ew o s an element of F(})

A,<w,s>;

.. i - ; .
(ii) 8y € F(E)A,<w,si> for w=s;... s, 1T<isn;
(iii) +' ¢ F(Z)GG,0 for each o ¢ F(S);

(iv) ¢ e F(Y) for each

<W,V,S> <USS><V,S >0 <V,S >, <V, 5>

<W,V,S> e S* X S* X S.

That is, the elements of ) become constants of F()); nullaries 6; are
introduced to serve as constant functions standing for values of input variables;
a new join function +' 1is introduced to join derived operations; com-

position functions are added to allow composition of derived operations.

Now define the F(})-algebra F(AZ) as follows:

(1) FlAg), o = {[E] (] € NCTR(X) o33

(i) (SL)F = X, for w=s; ..os, 1<is<n;

1 .
354

(1) *+H([t], [t'],) = [¥tt']y

(iv) (C

n,

<w,v,s>)F ([tO]A’ Tt [tn]A)

= [to “ <t], cee s tn>]A.
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Theorem 2.12: If AE is a l-structure, then F(AE) is a F(})-structure.

Proof: As shown above, each F(AZ)W s is a structure. We show that each
Cuv,s 1S Cp-continuous. Let {[t;1,} be a chain in F(Az). Then
(C<v,,v’s>)F (U[ti]A’ [ti]A’ ree 9 [tr.]]A)

< (Cqy g s)p ([T 61 e s 51y (Temma 2:5)

= [Uti « <ti, cee s tr']>]A (definiton of C<w,v,s>)

= [U(ti « <ty oL, tr']>)]A (« is continuous)

= Ll[ti « <ti, cee s tr']>]A (lemma 2.5)

= U(C<w,v,s>)F ([t;Jp [E31ps -0 s [t,1,) (definiton of C<w,v,s>)‘

Similarly, we can show that

(C<W,Vgs>)F ([t[')]A, [t'll]A’ LI b U[ti]A’ ¢ o0 3 [tr.]]A)
ST (LS W <30 PPN L35 NP A
and so (C<w,v,s>)F is [-continuous. To prove that +p fis C-continuous,
consider

+£(U[t1]A, [t']A) (symmetrically +% ([t‘]A, U[ti]A))

= +L([Ut; g [t]p) | (lemma 2.5)

= [+t;t' ]y (definition of +¢)

= [ty (+ is continuous in CTy)
= uf+tst' ]y (lemma 2.5)

1

Lﬂ'[l:([t-|]Aa [t|]A) (definition of +;-_-)
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C -

To show that (C e

<w,v,s>)F 15

(C<W,V,S>)F([t]A’ [t]]A’ “ee

monotonic, consider [t]A S [t']A.

[t Jy)

= [t « Sty ee s tn>]A (definition of C<w,v,s>
EF[r <ty s tn>]A for some r e [t']
= (C<w,v,s>)F([r]A’ [t -or 5 [t 14) (definition of C<w,v,s>
= (Cqy g oo pl Tt o [ty oon s IE)D)
(since [r] = [t']).
It is just as easy to show that
(Copov oo i Ttglps Ty oo s [l oo s [2,1)
S (Copv, o Ll Tyl o s T8 D s T DY)
Obviously +% is Ce-monotonic and so F(AZ) is a F(})-structure. 0
Now let E be a system of equations as illustrated above. There
corresponds to E a system E' over F(}) uZ' (where Ei,<w,s> = Ew,s
and for all <w,g> € F(S)+ X F(S), Ew’c = @) obtained as follows. Define
FW,S : CTEuE(Xw)S ” (CTF(Z)UE')<w,s> by:
(i) Fw,s(xi;s) = 5; for Xis 10 X3
(i) Fw,s(a) = C<w,x,5>(a) for a ¢ (ZUE)A,S;
(iii) Fw,s(ls) = lss?
(iv) Fw,s(ftl - tn) = C<v,w,S> f Cw’vft]) . Cw’vn(tn)
for v = Vi oo Vs fe (XUE)v,s’ and to e CTEUE(XW)Vi
for 1 <1 <n.

)

)
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Then, if F.(X

: 93 e 9 X =t. is i s
55 9 ) j 1sin E, we place

N,
-0

Fj = ij,sj(tj) in E'. Given any F(})-structure B, each Fw.,s.(tj)

defines a gﬁ-cont1nuous function from Bw],slx - XBw 8 to Bw.,s.

(noting that <l,<wi,si>> is the type of Fi in E' for 1 <i
-1 : _ . " Lol .

so E' defines a Eé continuous "system" tTunction from Bw],s]x e XBw 5

to itself. (See, for example, [6]).

We denote the solution of E' over the structure B by IEéI.

Thus we can find IE&TF(Z)I, |E F(CTz)I’ lEF(A2)|’ |EIF(NCT2)|’ etc. where

Az is any l-structure. We could also find lEk(A)l where 6(A)w’s =

{f]f: ¥~ Ag» f is Cy-continuous, EA-monotonic}. Thus F(AZ)w,s < (A)w,s

since 6(A)w,s contains all Eﬁ—continuous, EA—monotonic functions from
AV to As‘ Most authors‘are interested in solving E' over §(A), but we
will satisfy ourselves with F(Az) since the latter contains all program
definable functions already.

We will be particularly interested in solving E' over F(NCTZ)
as the following analysis will make clear. F(NCTZ)w,s is the set of de-

rived operations over NCTZ of type <w,s>. Let [t]F(N) € F(NCTX)W .
Then [tlpq ([ty], oon s [t = THTVVTERT (0ED)

(by definition of [t]F(N))

= G L 5P (1)
(by definition of <[t;1, --- » [£ 1)
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Now <[t]], cer s [tn}>: CTE(XW) + NCTZ(XV)’ for some v € S*, and it is
easy to show that

<[t]], N [tn]>(t) = [t <« <t], cee s tn>].

Thus composition of derived operations in F(NCTX) corresponds to syntactic
substitution in NCTZ' This models the usual "body replacement rule" of
syntactic or symbolic solutions of systems of equations and motivates our
adoption of F(NCTE) as our symbolic computation domain.

Consider the following diagram:

hy
Te(D) > NCTg(T)
0 "E(N)
F(NCTZ)
\4
F(AE)

Since the least fixed point of a system of equations E' over a structure
B is found by taking the least upper bound of an approximating chain and
since hB and ng are continuous for any continuous algebra B, we must
have that the following preserve solutions of equations (i.e., they map

the solution to E' in the domain algebra into the solution in the co-do-

main algebra)}

hen)ys PR Pve ) MF(A)
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It remains to show that F(nA) is a unique strict, C-continuous, <-monotonic
F(})-homomorphism for any l-structure Az, proving that the whole diagram
commutes and all mappings in the diagram preserve least fixed points.

Let [t] be in F(NCTz)w,s‘ (Note that we have dropped the F(N)
from [t]F(N) in’ F(NCTx). This is because of the one to one correspondence

between [t]F(N) and [t] in NCTX(X) as shown above.) Define
F(nA)([t]) = hF(A)(FW,S(t))'

-1
Note that. FW,S(t) € hF(N)(t).
Lemma 2.13: F(nA) is a unique, strict, L-continuous, S-monotonic homomorphism.

Proof: F(nA) is strict since F(nA)([L]) = hF(A)(Fw,s(l))
= Pepy ()
= LF(AZ).

We show that F(nA) is a homomorphism:

F(nA)((C<W,V,S>)F(N)([t0]’ e s [tn])

= hF(A)(Fv,s(tO “ <t eee s tn>))

) hF(A)(Fv,s(c<w,v,s>t0 s b))

tO)Fv,s](t]) o Fus (t,))

hF(A)(C<w,v,s>Fw,s( n

(t,
aon

(C<w,v,5>)F(A)(hF(A)(Fw,s(tO))’hF(A)(Fv,s](tl))"'"hF(A)(Fv,s

(C<W,V,S>)F(A)(F(nA)([tOJ)’ ree F(nA)([tn]))'
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Also Fng) (v (Tt 1s TE,10)
= hea) (R o (8)F, (1)
= Hem) Op(a) Puys (810D Ry (Fy s (82)))
= vt (FOIE D), Fln) ([e, D))
To prove that F(ny) is C-continuous, let ([t;]) be a chain in NCTy(x)
such that (t;} is a chain in CTg(x,) . Then
Fnp)(Llt1) = Flng) (Lt 1)
= ey (s (U57)
heay (LFy, s (t5))

(clearly a property of FW s)

ey (Fy (89))

W,S

UF(ng) ([t,1).
To show that F(nA) is c-monotonic, let [ti] SE(N) [t2] and consider
Fng (0641 = heay (Fy o (89)
EF(A)hF(A)(Fw,s(r)) for some r ¢ [t2]

(since if [t]] EF(N)[tz]’ then there exists r ¢ [t2] S0

that t] ¢ ' and then clearly Fw,s preserves c SO
Fw,s(tl) EF(CTE) Fw,s(r))
= F(ng)([r])

= F(ny)([£'])

It is easy to show that F(nA) is unique. 0



- 29 .

Theorem 2.14: |EF(A | = IE%(NCTZ)IA' (The solution of E' over F(A.) has

Z -
FeneT) | 1S
a (tuple of) derived operation(s) over NCTZ; i.e., IEF(NCT )[ is a (tuple

as its solution a (tuple of) derived operation(s) over Az. [E;

of) expression(s) in NCTZ(X) and so IEF(NCT IA is the (tuple of) de-
rived operation(s) over AE defined by this (tuple of) expression(s). Thus
the theorem states that solving E' symbolically over F(NCTZ) and then
taking the derived operation over A defined by the solution gives the same
result as solving E' directly over F(AE); i.e. finding directly the de-

rived operation defined by E' over AX')

Proof: IEF(NCTZ)I (U(E%(NCTZ))n (8))A

(for B = <[lW],S]]’ ey [lwm’sm]>)

LK(E;(NCTZ))” (8)),

DT e s Tt D « e« <Dty ]s oee s [ 35)(8)),

fn

F(N) Wy»Sy

(Since EE(NCTE) = <h (F (t]))s see 3 hF(N)(FW wm(tm))>

<[ty)s ..o s L2 D5)
= W<ty T oen s D08
(where By = <(Lw],s])F(A)’ cee s (lw s )F(A)> and the use

m
of the homomorphism property of F(nA))

= U(EE(A)n(BF(A)))

[Era)l- 0
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§3 Equations of Higher Type

We now want to extend our previous results to define non-deter-
ministic functions of higher type (in the logical sense). Let Z be as
in section 2. Define F'(S) by: FO(S) =S, F™(s) = F"(s)* x F(s).
pefine F(I) by: FO(I) = I, F™U(T) = F(FY(T)). Denote by +™ for n > 0,
the join symbol introduced at level n. Thus +(0) is + € Ess,s for some
s ¢S and +(]) = +' of section 2. Denote by C(n),(")d for n >0 (with,
of course, the appropriate subscripts and superscripts) the composition,
projection symbols, respectively, introduced at the n'th level. For each

2 0, define

=(n) _ {n(n) }
= ,07<w,0> € F(S)* X F" (S)

to be an indexed family of variables of level n. We assume each set in
each such family to be countably infinite. Thus in section 2, the system

E has F], cee s Fm € 5(1) while the x, ij© ~§?2 for appropriate s e S.

Define F'\( Az for any J-structure AZ by: FO(AZ) = AZ and

n+](A2) = F(F Az We will call

E(n) : an)(xg‘:]i']), . X(n;]))

It
rf-
—t

() (01 (n-1)y .

Fn Xmyl 2 o 0 Xy
a level n system of equations for n >0 if:

(1) F(-n) € E(n) for some <w.,0.> € Fn(S), 1 <j<m

J wj,oj J7J
(i1) Xgn;1) ”(? 12 for some <w',o'> € Fn"l(S), 1 <j<m
3 ’

and 1 <1 < nj;
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"“]g. for <w;,0.> as above.

(i11) t. € CT (
LUJ' LI

i ¢ T gyt ©

(In (iii) we further assume that tj contains only occurrences of

an), .. Fén) and no other elements of E(n).) Note that we have used

the convention of using upper case letters for the names of functions we

are trying to define and lower case letters (mainly x's) for so-called in-
put variables. We do this for the sake of readability. In general, we

will write equations in a more readable form as illustrated by the following

example:

Example 3.1: Consider the recursive definition
F(Z)(F(]),X(O))

= f](fz(F(])(x(O))), X(O), F(z)(F(]), f (X(O)))

3

where (i) } = {Zn}n ) y(sorted by S = {i,b}) and fs e Zi,i’ fye Jib

fy € Ipiy,is

(i) (0 _ (0 (1)

-i ?

1) 2 _(2)

9], € :<isi><lsi>s<A’i>‘

-
-
-

3]

(
1

If this equation is interpreted as an equation over the flat cpo of integers,

with f] the usual conditional, f2 a test for zero, and f3 the successor

function, then the resulting least fixed point is the functional which maps

the pair <f,a >(for f: integers - integers) to the smallest integer b

greater than or equal to a for which f(b) is zero, if such a b exists.p
We also use or, as an infix operator to represent +(n) and we

use infix notation and other common conventions used in writing systems of

equations. It is now up to the reader to show that such an informal system
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can easily be translated into an equivalent formally defined system. Now
given E(n) defined using the formal system, we can use ij ; (to map

t. to tj, an element of CT and thus) to define a system

J Fn(Z)UE(n)

(E(n))' corresponding to E(n) which we can then solve using the techniques

of the previous section. Now consider the diagram below:

C hN[n]

.
F*(E)

A4
Fn(Az)

This diagram is the same as the last one in section 2, but with some con-
sistent relabelling of edges and nodes. We have used N[k] to denote

NCT and B<k> to denote Fk(BZ) for any J-structure B Thus

F¥(7) I

this clearly gives a relabelling consistent with the new application.

Theorem 2.14 becomes in this new setting (dropping the (n) from E("));

Lemma 3.2:

Ujerel =) 1Ein, 1= 1B cr |

gy P

ClEENn-17) | Aen-1)- 0
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This is not quite good enough even though F(NCT n-1 ) 1is a symbolic
Fr()

domain. However, it is not the "right" symbolic domain. The expressions
in ,EIF(N[n-l]){ contain composition, projection, and join symbols of all
levels between one and n - 1. Since we are interested mainly in the de-
rived opcrations defined by these expressions over Az, we should use on’y
) and the appropriate variables of all Tevels up to n in our symbolic
solution. This means that we must interpret the composition, projection
and join symbols of levels between one and n - 1 as operations of com-
position, individual variables of the appropriate level, and join operations,
respectively. To put it another way, we should be seeking symbolic solutions
in Fn(NCTz) = NCTy<n > We show that this in fact can be done.

Consider the map ME(H[n-1]) N{n] > F(N[n-1]). Clearly all
this map does is interpret the symbols C(n), (n)a, and +(n) as compo-
sition of functions of level n-1, individual variables of level n -1
(i.e., function variables of level n - 2), and joins of level n - 1 fun-
ctions, respectively. This is similar to a class of homomorphisms consi-
dered in [ ] (see also [ ]) and for that reason will be renamed YIELD.

In fact we will ambiguously use YIELD as a name for the homomorphism
YIELD: FI(N[n-i1) > F H(N[n-i-1])

0< i <n -1, which interprets the symbols C(n'i), (n'i)a, and 4(n-1)

as the appropriate compositions, variables, and joins. Clearly, each such
YIELD is a homomorphism and clearly it is unique (in the context in which
it is found). One can compose such homomorphisms to bbtain unique homomor-

phisms
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YIELD) : FY(N[n-11) = F Y (N[n-i-3])
for 0<is<n-1and 0<3j <n-i. Note that again YIELD' is unique
only in context.

The proof of the following is left to the reader.

Lemma 3.3: Forall n>0, 0sis<n-1, 0<j=n-i,
vieeod - Fl([n-i1) » FPI(N[n-1-30)

is a strict, C-continuous, <-monotonic, Fn(E)-homomorphism.

Consider now the following diagram:

hN[n]

NE(N[n-11)

h
F(N[O])
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Clearly nF(N[n_n)oYIELDn']an(nA) in this diagram must equal
nF(N[n-ﬂ)°F(nA<n—1>) of the previous diagram. Paralleling the proof of

lemma 2.13, we can define Fn(nA) in terms of h and show that it is

A<n>

an unique, strict, [C-continuous, c-monotonic Fn(Z)-homomorphism. This

leads to the following important result for the system E'.

&[n]lA<n> -

Theorem 3.4: |E |E |, =
— F(n[o])

Epcns| -

(The proof is similar to that for Theorem 2.14.)
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