GENERATION OF BINARY TREES
FROM BALLOT SEQUENCES*

by

D. Rotemf
and

Y. Varolﬁ
Research Report CS-77-29

Department of Camputer Science

University of Waterloo
Waterloo, Ontario, Canada

Octcber 1977

T Department of Camputer Science
University of Waterloo
Waterloo, Ontario, Canada

t

Department of Applied Mathematics
University of Witwatersrand
Johannesburg

* The results of this paper are contained
in the first author's doctoral thesis.

ABSTRACT

An efficient algorithm for generating and indexing all shapes of n-noded
binary trees is described. The algorithm is based on a correspaondence
between binary trees and the class of stack-sortable permutations, to-
gether with a representation of such permutations as ballot-sequences.
Justification for the related procedures is given, and their efficiency

established by campariscon to other approaches.

Key Words and Phrases: binary tree, stack sortable permutation, ballct

sequence, tree generation, tree indexing.

1. Introduction

This paper describes an efficient algorithm to generate all

tshapes® of n-noded binary trees. Such algorithms are used in
investigating and comparing various deletion schemes in binary
trees [2], and can pe effectively employed for systematic gene-
ration of combinatorial objects which are in 1-1 correspondence

with such trees [6,pp.154] .

The algorithm is pased on a correspondence between binary trees

and the class SSn of stack-sortable permutations, together with

a representation of such permutations as ballot-sequences [5].

Initially, a ballot-seéuence of length n is generated. This is

then used to construct a binary tree. It is shown that if a

ballot-sequence is an inversion table of nessn, then the algorithm

generates_Tw, the bihéry tree constructed by the following well

known procedure.

construction-T: given II = <pl,p2,...,pn>, assign Py to the root
of tree T; for each py. k=2,3,...,n, apply the rule
-~ 1if Py is to be inserted into a non~-empty subtree
rooted by Py it must be on the left subtree of Py
if ana onLy i? P <Py otherwise p, rust appear to the right
of Py ~” until an empty subtree is reached, and
then create a root to that subtree and assign the
label Py to it.

It is well known that Construction —T is invertible and establishes

a 1-1 correspondencé between SSn and the set of binary trees of A

order n [4; See 6.2.2]. By generating all ballot-sequences ~f length n in their

lexicographic order,.all C, = (n+l)-l(%?) 'shapes' of binary

trees of order h can be obtained.

-l -

A unique integer , numn(B), between 1 and Cn , is associated with
each ballot-sequence B of length n , by using some combinatorial
properties of such sequences. The lexicographic order is preserved
b& this éssociation , namely , for any two ballot-sequences B and

B' , if B precedes B' then num_(B)<num (B').
n n

A simple recursion relation , is used both in computing numn(B)

from a given B , and its inverse num;1

{m) from a given integer
m<Cn. This provides the capability of storing a binary tree of
n nodes as an integer smaller than Cn , as well as efficient

generation of a random binary tree.

In what follows , the inversion-table of a permutation I on

N={1,2,..,n} , is taken to mean an n-tuple B=<b1,b2,...,bn> where
for l<i<n , bi is the number of elements in N |, which are

greater than i and appear on its right. Clearly , each entry of
the inversion-table must satisfy OsbiSn-l . In addition to that,

if biZbi+l for 1<i<n-1 , then B is called a ballot-sequence (51 .

A path <u=ao,al,...,a2=k> between nodes u and k in a binary tree
T , 1is denoted by PT(u,k). This path can be characterized as a
product al;az .;.;-az where o specifies the relation (left
son , right son , left father , right father) between two adjacent
nodes ai—l and a of the tree. Two path% ’ PT(u,k)= al.aj_' .ay

i
and PT(r,s)= ai.a:',_-, . _-ai are similar if and only if aimi for 1<i<g.
Similarity between two binary trees T and T' with respective
roots r and r' , can be defined in terms of paths as follows;
. T and T' are similar if and only if there is a 1-1 correspondence between

their nodes , such that if node u corresponds to u' of T' ,

then PT(r,u)=PT,(r',u'). It is easy to check that this definition is equivalent

to the standard one [3; pp:325].

2. Genheration

The generation of the ballot-sequence, and the construction of the binary tree,
are given separately in two procedures. Procedure BALIOT generates the next
ballot-sequence from the previous one in an array B, and then calls procedure
TREE which converts the ballot-sequence into a difference-sequence and constructs
the corresponding binary tree. It is possible to generate the difference—
sequence directly or to combine the two algorithms below and obtain a marginally
faster algorithm. However, this would make the presentation and the subsequent
analysis more cumbersome. Algol-like descriptions of the two algorithms with

some explanatory notes are given below.

Ballot-sequences

Successive applications of this procedure will generate all ballot~sequences of
length n in B, in their lexicographic order, where the rightmost digit is the
nmost significant one. Note that by definition B{n] is always 0, and the values
of an entry B[i] range fram B[i+l] up to n-i. A new sequence is generated from
the previous one by changing only those entries which differ from one sequence

to the next.

procedure BALLOT (n,B,MATREE) ;

integer n; integer array B, MATREE;

begin comment generate the next ballot-sequence of order n

in B[1l],...,B[n], and then call procedure TREE to construct

the corresponding tree in array MATREE. m is a pointer to the
element last changed in B. first is a global variable which

is initially set to true, it is assigned the value false by the
first entry to BALLOT and remains so until all ballot-sequences
have been generated.;

integer i,k,x; own integer m ;
~ Af first then begin for i=1 to n do B[i]:=0 ;

m:=1 ;
first:=false ;
go to call ;
end ;
newballot : BIml:=B[ml+l ;
| if BOml > n-m then begin m:=m+l ;
if m#d then go to newballot;
end ;
else if m=l then go to call;
" else begin kz=m-1;
x:=B[m1 ;
“for i:=1 to k
do Blil:=x ;

m:=1; go to call;

stop : first := true ; go to exit ;
call : TREE {(n,B,MATREE } ;

exit : end of procedure BALLOT ;

Binary trees

Given a ballot-sequence we consider its difference-sequence as

the array D , where
D[1]=n-B[1] and for 2<isn D[i]=B[i-1] -B[i] . (1)

It follows from the definitions of D and B that for 1l<isn D[1]=20

n
and L D[i] = n.
i=1

Initially , a pointer P points to a dummy root labelled O . The
array D is scanned from D[{1] to D[n] ,and P always points to a
node labelled i~-1 when D[il 1is being processed . This processing

depends on the value of D[i] .

If D[i]=j>0 , then j new nodes gl,gz,...,gj are created , such

that 9, is the right son of node i-1 and for l<f<j-1 y s

is the left son of g, - Each node except the last one is pushed

into a st;ck after it is created , the last node gj is assigned
the label i and P is made to point to it. In other words , the
path ?T(i-l,%) of Figure 1 is constructed and the j-1 unlabelled

gl,gz,...,gj_l are added to the stack.

If D[i]=0 , then the node on top of stack is removed and assigned

the label i , again , P now points to i.

In this way , all entries of D are processed to obtain a labelled
binary tree of n nodes. If only the 'shape' matters, we may stop
even earlier , as soon as n nodes are generated. The actual root
of the generated tree will always be the righe son of the dummy

root.

Since the entries of D.are processed one at a time they are computed
immediately prior to their use. During the construction the
nodes are labelled from 1 to n in symmetric order (postorder) .
This labelling is not essential to the algorithm but facilitates

the proof of its validity given in Theorem 1.

‘procedure TREE (n,B,MATREE) ;

integer n ; integer array B, MATREE ;

begin comment construct in MATREE, the tree corresponding to

the ballot-sequence given iﬁ B. MATREE is an array of dimen-
gion [l:n+l,1:3]. For a given index j, MATREE[j,1] and
MATREE[j,3] are respective pointers (row indexes) to the left
son and right son of the node whose label is in MATREE([3,2].
Entries in the first and third columns of MATREE are initially
assigned special values to represent grounded links. avail is

a pointer to the next row in MATREE which has not been labelled
nor reserved by having its address pushed into the stack. On
exit from the procedure, the second row of MATREE will represent
the root of the generated tree. i

integer i,j,s,p,avail ; integer array STACK[l:nl :

p:=1 ; s:=1 ; avail:=2 ; MATREE[1,2]:=0 ;
for i:=1 ton
do begin if i=1 then j:=n-B[1l]

elece j:=Br[i-11 - B{il

2 4 1000 o

' 3
3 as 2000 10 3p
/?/f\\4
1

0000 ' 8

7 1 3100 14 1 3210

4

" Figure 2. The binary trees

and their corresponding ballot—x
seouences in their order of J

generation by procedure BALLOT.;

-10 -,

if j=0 then begin s:=s-1 ; p:=STACK[sl] ; end ;
else if j=1 then begin MATREE[p,3]:=avail ;

p:=avail; avail:=availtl

e

end ;
else begin MATREELp,31:=avail ;
p:=avail; STACK[sl:=p ;
s:=s+l; avail:=avail+l;
loop: j:=j-1; MATREE[p,ll:=avail;
p:=avail; avail:=avail+l;
if j#1 then begin STACKLs1:=p;
' s:=s+l1 ;
go to loop;

end;

MATREE[(p,21:=1 ;
end ;

end of procedure TREE ;

As an example , all binary trees of order 4 are shown in Figure 2

in their order of generation.

Theorem 1 Let n€SSn have an inversion-table B . Then TREE

constructs from B a binary tree Tb ., such that Tb=Tn .

Proof For convenience let the number O be added to T as its
leftmost member, and let us consider the generated tree Tb with

its dummy root. We have to prove that Pg (0,i)=P5 (0,i) for lsisn.
b w

-1 -

First let us show that PTb(i—l,i)=PT (i-1,1i) for the case when

i-1 is to the left of i in II. Accogding to the construction

of T“ , any element between i and i-1 which is smaller than i-1
will not appear on the path PT (i-1,1i). Therefore ,consider
G=<gl,gz,...,gj=i> ’ the subsequgnce of all elements greater than
i-1 which appear betwéén them in . If 3j<2 , then G is trivially
a decreasing subsequence . For Jj>2 , suppose that G is non-

" decreasing , then we can find two elements 9 <9, with k<& , and

this in turn implies that I contains a subsequence
g£<gk<gj=i and k<2<j]

'which would contradict the fact that NesS_~ [3, pp:239] . Thus

G is always decreasing. Therefore PT (i-1,i) will have the ‘'shape’
, T
shown in Figure 1 , which is also the *shape' of PT {(i-1,i) , since
b
by definition j=D[i] .

The proof now proceeds by induction on i. As a special case

PT (0,1)=P_ (0,1). Assume that
w Tb

P, (0,i-1)=P

. (0,i-1) . (2)

m Tb

When i~1 is to the left of i in II , then PT“(i—l,i)=PTb(i—1,i).

This together with the induction hypothesis (2) gives the desired
result. When i-1 is to the right of i in II, we need to show that

node i is placed at corresponding points on the paths from : O to

i-1 by both constructions. Clearly, in Tn' i-1 is the rightmost node
in the left subtree of i. Namely , the path Pn (i-1,i) has the shape
given in Figure 3. Note that in this case D[i]:O . Therefore i

is assigned to the node on top of stack, which is the last one
generated before i-1,and having a left son. This observation combined

¥

with (2) completes the proof. l

91-1 i(}“

Figure 1 Figure 3

Figure 4.

2]

-13 -

3. Indexing Binary Trees

To store a binary treé T as an integer, we need to know its
- index with respect to the generation scheme of procedure TREE.
~ This can be achieved by solving the following two problems:

i) find the ballot-sequence B which is the inversion-table

of I € SSn; such that Tw =T,

ii) find the number numn(B), of ballot-seguences of length n
which precede B in the lexicographic order of procedure
BALLOT. |

We shall later see that the difference-sequence D is generated

in the solution'of both problems as an intermediary step, and

therefore B does not need to be explicitly derived. However,
to simplify the presentation we shall solve both problems as
posed. The solution to the first one is an algorithm which

is the inverse of procedure TREE, and will be illustrated by

an example. Consider the tree T given in Figure 4. T is

traversed in symmetric order, and the number of new nodes which
are pushed into the stack before the removal of the i'th node
from it is recorded as D[il. This results in the sequence

p = <2,0,3,0,1,0,1,1> which in fact is the difference-sequence

of the ballot-sequence corresponding to T. Hence, we find

B = <6,6,3,3,2,2,1,0>, using (1) . The justification of this

algorithm uses the same arguments as in the proof of Theorem 1.

We now turn to the problem of finding numn(B) for a given
ballot-seguence. Let Snk be the set of all ballot-sequences

S

nk denote

of order n, with exactly k non-zero digits, and let

- 14 -

the cardinality of this set . A sequence Unkésnk will be called

a unit-sequence if its k non-zero digits are all equal to 1.

Lemma 1
1 _ for k=0 (3a)
|snk1= ‘S<n-1)k‘+|fn(k—1)| for O<ksn-1l (3b)
0 for k=n (3¢c)

proof The relations (3a) and (3¢) follow directly from the

definitions. To prove (3b) we first show that

s (4)

k
nk! iil‘s(n—l)i‘ ’

o k
by copstructigg a correspondence between Snk and J= };k S(n—l)i .
'Given a sequence B=<bl,b2,...,bn>essn , we define B'=<bi,bé,..,bﬁ_l>

as follows .

b}=b;-1 for 1sisk

bi=bi=0 for k<isn—-1 ., (5)

Clearly, every member of S is mapped by (5) into a unigue member
of J. conversely , given any B'eJ , We can find the unigue Besnk

associated with it using .

bi=bi+l for 1<isk

b;=0 for k<is<n . (6)

This correspondence implies (4) from which (3b) is readily derived.l

In the sequel the subscript of ‘num' is omitted when it is applied

A}

to unit-sequences.

- 15 -~
Lemma 2 num(U)= Is(n+1)(k—l)| : for O<k<n . (7)

Proof By definition the sequence U . is the first ballot-sequence
in the lexicographic which has k non-zero digits. Hence , the
sequences which precede pnk in this order , are exactly the ones
which have fewirlthan k non-zero digits. The number of such

sequences is iﬁ2:1sni| . The result now follows from (4). I
=0

Theorem 2 For a ballot-sequence B=<bl'b2""'bn> , let 95 tlsisbl) be
the number of elements in B which are not smaller
than 1. Then

b
b2 (8)

num_(B)= num (U s).

n i=1 (n+l 1)gi
Proof The proof is by induction on the length of B. The result
is easily verified for sequences of length 2. Assume that it holds
for ballot-sequences of length n-1. Let S(X) denote the set of

sequences which are generated before X by procedure BALLOT.

Since B has 9; non-zero digits , it follows that S(B) can be
partitioned into two disjoint sets S(U } and S(B)-S(U)= G.

9 "9,
Therefore ,

numn(B)=|S(Ungl) |+lG]= num(Ungl)~+lGl . (9)

Consider the ballot-seguence B' of length n-1 , which is obtained
according to (5). Using the mappings of (5) and (6) , a 1-1

correspondence between G and S(B') can easily be established. Hence,

numn(B)= num(Ung1)+numn_l(B'). R (10)

Let there be gi digits which are not smaller than i in B' , then

»

- 16 -

by the construction of B' and the induction hypothesis

gizgi'l'l, Lo (11)
bi-1
B')= .
numn_l() iil num(U(n—l)gi \ (12)

The result follows by substituting (11) and (12) into (10).'

The two algorithms for computing numn(B) from B and its inverse

num;l(m) from an integer m<Cn ;, are both based on Theorem 2,

However ; they are considerably simplified by observing that in

the difference-seguence D[1],...,D[n] of B, an entry D[k] rep-
resents the number of times that 95 is equal to k-~1. The entry
D[1}is irrelevant in both cases. For fast performance , the
algorithms magg use of a pre-computed table containing the values

of num(Uik) l<i<n and 1l<ksn-1 , which can be computed directly

using the results of Lemmas 1 and 2.

The first procedure, NUM, does not require any explanation since
it is a straightforward application of (8). The computation of
the inverse in procedure INVNUM, is based on a recursive applica-

tion of (10). Observe that in row n of TAB, num(Ungl) is the
maximal value smaller than m. Similarly, in row n-1, num(Un_l’gz
is the maximal element smaller than m—num(Ungl), and so on.

Thus, after nuijik) is found in row ‘i, and subtracted from the

)

argument, row i-1l is searched for the index of the maximal unit-—
sequence of order i-1. This process is continued until all the,
terms of (8) are found. Note that in any roY i of TAB, the

first i-1 elements constitute a non—decreasing sequence suitable

for binary search, and that this search can be restricted to

fewer than i-1 elements since the g{% are non—increasing.

- 17 -~

procedure NuM { n,B,numb,TAB)

integer n,numb ; integer array B, TAB ;

begin comment compute the number of ballot-sequences preceding

B, in the generation of procedure BALLOT. The difference-se-

quence D is not stored, but each entry in D is computed prior

to its use. TAB is a precomputed tablé of dimension [1l:n,l:nl.

For l<i<n, and lsksi-1, TAB[i,k]=num(Uik), and only this lower

triangular portion of TAB is necessary. i

integer ik,j,9

i:=n ; numb:=0 ;

_ for k:=n-1 step -1 tol

do begin ji=BIk1-Blk+1l ;
if 3=0 then go to loop i

else for g

t=1 to j de

begin numb : =numb+TABLi k1 ;

f:=i~1 ;

loop: end ;

. end of procedure NUM ;

- 18 -

procedure INVNUM (n,B,m,TAB) ;

integer n,m ; integer array B, TAB ;

begin comment construct B which is generated as the (mtl)-st

sequence by procedure BALLOT. TAB is as described in procedure
NUM. The difference-sequence D[2],...,D[nl], is computed in
B[1],...,B[n-1], which are then used to construct the ballot-
sequence. Procedure BSEARCH(TAB,i,k,j,unum) performs a binary
search among elements TAB[i,1]1,...,TAB[i,k] for the largest
entry not greater than m. It returns the value of this entry‘
in unum and its column index in j. min is a library function
whose value is the minimum of its arguments. ;

integer i,j,kfhnum :

i:=n ; k:=n-1 ; .

for j:=1 to k do BLil:=0 ;

loop : if m=0 then go to construct ;

else BSEARCH(TAB,i,k,j,unum) ;

| BL31:=B[3 +11;
k:=min (j,k-1) ;
m:=m-unum ; ‘
ii=i-1 ;
go to loop ;

construct : Blnl:=0 ;
for k:=n-1 step -1 to 1
do Bl{k1:=B[k1+Blk+11 ;

end procedure INVNUM ; A

- 19 -
Example
Given B=<5,3,1,1,0,0> find numG(B). We first derive
D=<1,2,2,0,1,0> . Hence , by procedure NUM

numG(B)= num(U64)+num(U52)+num(U4Z)+num(U3l)+num(U21)

= 48+5+4+1+1%= 59.

Conversely , consider the construction of the ballot-seqguence B
of length 6 whose index is 86. In this case , five successive
rows of the table (given below) containing the values of num(Uik),
are searched . The contents of array D aftér<each search are

listed below.

i) fThe maximél element not exceeding 86 in row 6 is 48 , found
in column 4 , D¥<0,0,0,0,1,0> . |

ji) m=86-48=38 , the required number in row 5 is num(U54)=28 .
D=<0,0,0,0,2,0> .

iii) m=38-28=10 , p=<0,0,0,1,2,0> .

iv) m=10-9=1 , D=<0,1,0,1,2,0> .

v) m=1-1=0 and no more searches are needed.

The required sequence B is constructed from D (in iv) as

B=<4,3,3,2,0,0> .

Table of the num(U,,) values

X1 2 3 4 s
- - - - -
231 - - - -
3 i - - -
411 4 9 - -
511 5 14 28 -
611 6 20 48 90

>

-20 -

4, Comparative evaluation

In -this article ,: the approach taken for ‘- generating and. -
indexing of all 'shapes' of binary trees , is based on a relation

between such trees and ballot-sequences of the same order.

A different approach , based directly on stack-sortable permutations
and Constructioﬁ—T , has been adopted by Knott [2] to sélve the

-game problems. It may be argued that the indexing we propose is

not a natural one , while Knott uses the natural indexing [3 , pp: 3311
for binary trees. However , the suggested algorithms'ére con-
siderably more efficient than their counterparts in similar works

known to the authors.

Let us first cénsider (a) Construction-T as opposed to (b) procedure
TREE. The actual création of the nodes of the tree

is the same 1ﬂ both cases . In creating the *shape' , it is well
known that (a) requires O(n2) compar;sons for worst case , and
O(Hkgzn) for best case. The amount of assignment statements have
similar bounds. In (b) , the extra memory space for n-1 pointers
which may have to be stacked is insignificant. Comparisons are
applied- to the value 3=p[1] , and since g p{il = n , it is clear ..
that exactly n comparisons are performedi_j1 while the number of
assignment statements is only O(n). The superiority of (b) is

highlighted especially for those applications where all Cn *shapes’

need to be generated. } .

If the 'shape' of the tree is given , generating its corresponding

permutation Il or pallot-sequence B 1is straightforward and of

-2l -

equivalent complexity. However , if only the index of the tree

is given , as in the case of random tree generation , the cost of
procedure INVNUM is governed by the binary search which may regquire
n) ;

1§=1 (LlOgZ(l—l.)_l + 1) =~ O(nlogzn)

comparisons between ?ntr;es of a two dimensional array TAB and

the argument m of the procedure. In addition there is a' fixed
initial cost of 0(n2) additions in computing all the values in

TAB , but this is insignifican£ since in many applications it is

required to generate random trees in large numbers.

Similar algorithms for generating I from a given index rely on
the definition of natural order among binary trees and the well

kxnown recursion relation

n
7y G:G_ _. ?
j=0) n-]

_Gn+l= .
where Gj is the number of distinct binary trees of order j. The
. relation betweeh the'complexitieé'of the recursive procedure
given by Knott [2] for this purpose, and INVNUM seems to be

similar to the relation-between Construgtion—T and procedure TREE.

Finally, let us considef the case where k trees having consecutive
i{ndex numbers q,q+l,;..,q+k—l, are to be genefated. Using INVNUM
we find the sequence B=num;l(é—l), and then call procedure BALLOT
k times, withvariable'Tirst'set to false. Note that we compute
a ballot—sequencé from a given index only once, and each conse-
cutive seguence is generated from its predecessor at minimal cost.
On the other hand, to geﬁerate k trees corresponding to consecu-
vtiQe pexmutations would require the transformation of k indices,
since tgere is no simple way of deriving stack-sortable permuta-

tions in their order corresponding to the natural order of trees.

-22 -

References

1. Knott, G.C. Deletion in binary storage trees. Ph.D. Dissertation, Camputer
Science Department, Stanford University 1975.

2. Knott, G.D. A mmbering system for binary trees. Comm. ACM 20, 2(Feb. 1977),
113-115.

3. Knuth, D.E. The Art of Computer Programming, Vol.l, Fundamental Algorithms.
Addison-Wesley, Reading, Mass., 1968.

4. Knuth, D.E. The Art of Computer Programming Vol.3, Sorting -and ‘Searching.
Addison-Wesley, Reading, Mass., 19/3.

5. Rotem, D. On a correspondence between binary trees and a certain type of
permutation. Inf. Processing Letters 4(1975), 58-61.

6. Wells, M.B. Elements of Combinatorial Computing. Pergamon Press, New York, 1971.

