Deduction Plans: a graphical proof
procedure for the first-order
predicate calculus

Philip T. Cox
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-77-28

October 1977

DEDUCTICN PLANS: A GRAPHICAL PRCCF PROCEDURE

FOR THE +IRST-CHDEE PREDICATE CALCULUS

Abstract
by

Philip Trevor Cox

A proof procedure is described that relies on the
construction of certain directed graphs called "Y“deduction
plans". Plans represent the structure of proofs in such a
way that problem—reduction may be used without imposing any
ordering on tte csolution of subproblems, as required bY
other systems. The structure also allcws access to all
clauses deduced in the course of a proofy, which may then be
used as lemmase Econcmy of representation is the maximum
attainable, consistent with this unrestricted availability

of lemmase

Various restrictions of this deduction system are seen
tc correspond to existing linear deduction procedures, while
overcoming many of their shcertcomingse. Cne of the rules for
constructing plans, bhowever, has no equivalent in existing

systemse

A further economy is obtained by obviating the

necessity for explicitly performing subetituticns and for

calculating most general unifierse.

(iv)

An algorithm for determining the cause of unification
failure is shown to existe This allows the source of
conflict to be located when a subproblem is fcund to be
unsolveable, so that exact backtracking can be performed
rather than thte blind backtracking performed by existing
systemse Thereforey, a deduction system based on the
construction c¢f plans can avoid the wasteful search of
irrelevant areas of the search space that results frcm the
usual backtracking methodse. Furthermore, because of the
graphical structure, it 1is necessary tc remove only the
offending parts of the proof when a plan is pruned after
tacktracking, rather than the entire proof constructed after

the cutting pointe.

(v)

Ackoowledgements

First I want to thank Tom Pletrzykowskl, who supervised
this research with unfailing patiencey constant

encouragement and helpful criticisme

Thanks are also due to my external examiner, Ray
Reiter, who has shown a continued interest in my work during
its development, and to Maarten van Emden, Ed Ashcroft and

Eonald Kead for treir careful reading of this thesise.

Finally, I wish to thank wmy <friends for their

encouragement when times were bade

(vi)

Jakle 9f Contents

Abstract.........o..-..........................-...o.o-.(iv)

ACkﬂOWledﬂemenoncooooooooo.oo..ooooooooooo-oooooooooooo(vi)

CHAPTER 1:

CHAPTER 23

2.1:

2022

2432

2e4:

CHAPTER J3:

3e1l:

3e2:

3.3

CHAPTER 4:

INtroduUctiONececssscsosssecscscscscscssvsascsssccccnseal
PreliminarieSececccesccscscccecscscsnsscsscccssccssced
Grarh Iheoryo.....-.....................o.....-.S
Lansuage..........................o............ll
Substitution and unificationeecescceccsccccccscecld
Predicate calculUSeecssesssscssscscsscscssassscascanld
Deduction PlanSeesescsccscscesccscsscescssssscscsce2l
DefinitiCNecscccsssscscscncscscscsscscsccscsscscscncel
Comments, notation and preliminary resultSes ¢ e¢39
Soundness and Completeness...o.-............-..68
Congtraint ProcessingescsscsecscccecccsccncsncscceBY
The Baxter unification algorlthm.-......-......94

The modified unification algorithMeecsccocecccsceasayl

4elel: The algorithm CLASSIFY.....OQCOQ....O....loo

d4e2<2: Tte automaton fcr a constraint Seteccsceell?

402.3: The unification graph..-..-..............141

4433

CBAPTER 5:

5«32

The failure location process..........o.......146
Illustrations and ConclusionSescscesccccccccasel??
Backtracking-....-.............o......-.......177
Deduction plans and linear deducticnececesseeal85

Granrh theory in theorem—proving.o.---.o-.-....193

REFERENCES...‘..........CQ.'.....‘....................“.196

(vii)

CHAPIEE-1

Introduction

Mechanical +theorem—proving in essentially its modern
form began in 1865 with the advent of Robinson's rescolution
principle [36]s Thie is a system of first-order predicate
calculus which expresses sentences in a quantifier—free
conjunctive normal form called "“"clause form", has no lcgical
axiomsy and has only one rule of inferencee. The resclution
principle was expected to be particularly suitea to
theorem—proving ry computer, since one application of the
inference rule reguires considerable amounts of computation,
but is equivalent to several inferences in the traditional
systems of predicate calculuse.

The initial enthusiasm with which the resolution
principle was received rapidly gave way o disappointment
when early thecrem—-proving programs were found tc be unable
to prove any tut the simplest theorems without exceeding
their usually generous storage limitse. This early failure
led to a conpletely ill-fcunded condemnaticny by some
researchers, of resolution as an inference rulee The fault,

of course, lay not with the deduction ruley, but with the

strategy employed in the search for a proofe. The strategy

initially applied was "saturation®: +that is, all rossible
deductlons are performed ¢n the original set of clauses to
obtain a new exranded set; then all possible deductions are
performed on this new set, and S0 One The process
terminates when tre clause is cobtained whose thecremhood is
being established, or when the . empty clause (a
contradiction) is obtained in a refutational systeme.
Clearly, any theorem—prover operating in this way will be
choked by expcnential growth in the number of clauses it
must handle.

The failure of theorem—provers using saturation search
engendered in the late sixties a multitude of strategies for
limiting the size of the search space generated by the
resolution rule [30,10]. Unfortunately, little improvement
was obtained using these strategies, and many researchkers,
disillusioned with predicate logic as a problem-sclving
tool, adopted a more pragmatic approache. As a result
several programming languages were produced for solving
problems of a general type [15,31,37]« The power of these
languages lay in their wuse of '"problem reduction', a
well-known technique dating from +the early game—~playing and
general problen—sclving programse. Problem reduction entails
substituting for a particular problem a set of simpler
subproblems, tke simultaneous solution of which implies the

coclution of the original probleme.

Paralleling the development of these sc-called
"planning" languages, a new refinement of resclution
appeared called "linear resclution", independently proposed
by Loveland [2€]y Luckham [28], and Zamov and Sharonov [44].
Linear resolution alsoc employed problem reduction, and
appeared to be o¢ne of the more promising reiinements of
resolutione. It bhas in fact led to the development of
predicate logic as a progranming language [13,14,20,21],
implemented under the name of PROLCG [2,35]. Now that the
optimism of the sixties has given way to more sensible aims,
mechanical thecrem-provers are not exgected to pravide
complete automaticn of mathematics, and in this saner light
PROLOG is doing much to redeem predicate calculus as a
problem—-solving toole It has been used to program systems
for understanding natural language [11,32]; for performing
analytic integratiocn and formula—manipulation [6,18]; and,
most significantlyy it has been used to isplement a general
problem—sélvinn systen lof the planning variety [42]y which
compares favorably with the planning languages mentioned
abovee It is clear from the practical success of PROLCG
that the study of linear theorem—proving systeme 1Is a
worthwhile endeavours

Existing linear deduction systems suffer from several
drawbackse The particular system on which PFROLCGG is rased
je complete only for sets of clauses of a certain restricted
type (a system is copnlete if it is guaranteed tc produce a

refutation for an unsatisfiable set of clauses)e. This

restriction can lead to difficulties when one wishes to use
the negation of a predicate. One soluticon to this problem
is to use +the original simple linear system [26528,44], in
which any clause deduced in the ccourse of a proof may be
used as a "lemnma®; that isy, it may be used as if it were a
member of the set of clauses whose unsatisfiability the
system is trying to provee. This of course requires that
copies are kept of all clauses deducedy and that this list
is <continually scanned for useful lemnase The storage
problem could ke overcome by the use of a structure-—-sharing
scheme such as that proposed by Boyer and Moore (8]
(Roberts' PROLCG implementation [35] uses such a scheme),
but this solves only the storage problem; the list of lemmas
must still be scanned. Another solution +to PROLOG's
imcompleteness is to use the linear system proposed by
Loveland as Mcdel Eliminaticn [24,25,27]y and EKowalski and
Kuebner as SL-resclution [23]e In these systems, a rule is
used which corresponds tc the fTamiliar proof technique
treductio ad sbsurdum'e. To ensure soundnessy however, a
strict ordering wmust be imposed on the soluticn of
subproblems (a system is gsound if it produces refutations
for only unsatisfiable sets of clauses)e. Conseguently, we
lose one of the most attractive features of problemnm
reductiony, the parallel processing of subproblemse. We quote

Kowalski [22]:

"Althocugh 1n many cases such a strategy is
desirabley in other cases a more flexible rule is
usefule. 1he ability to attempt tte achlevement
of several subgoals sinultaneously is especially
important in +the general case when subgoals are
not inderendent."

Linear deduction alsc suffers <from twc rroblems
associated withk "backtracking". If a subproblem is found to
pe unsolveable in the course of a proof, the systen must
return to an earlier state of the procf and attempt an
alternative soluticn to a previously solved subproblemes The
strategy normally adopted by a linear thecrem—provery, PEOLCG
in particular, is to returm to the last subproblem it solved
for which there is an untried potential sclution: this may
not be the correct place to try an alternative, however, and
although the ccrrect point will be reached eventually, much
eftfort may be expended 1in the meantime on a fruitless
exploration of the search spacees This inefficiency 1is
compounded by the pruning that occurs wrenever the system
backtracks: when the linear gprover returns to a subgrroblem
A to attempt an alternative solutlony it erases all the
clauses produced since the last attempt at solving A« Some
of these clauses may constitute a perfectly acceptable
soclution to csome subproblem, and may eventually be

reugeneratede Furthermore, because of its blind backtracking

behaviour, the linear systemn may backtrack over this

innocuous subproof several times, and regenerate it several
timese.

An integral part of any mechanical thecorem—prover is a
unification algorithm for determining whether a pair of
formulae have a common instances The unification algorithm
provides the thecorem—-prover with its cnly 1link to tre
internal structure of the literals in a set of clauses:
this is where the informaticn lies ccncerning unification
failuree. Because of this, we contend that mechanical
deduction systems should be designed +to¢ take advantage of
the particular features of their unification algorithmse.
This has not been the custom in the past, and despite the
existence of several good unification algorithas
[34445,33,41], mechanical theorem—provers usually use some
modification of Robinson's original inefficient algorithm
[36].

We present here a deduction system which overcomes the
above-mentioned deficiencies of linear resolution. It s
based on the linear systems, and is designed to use a
modification of a recent unification algorithm due to Baxter
[4,5]. In this system, a procof is represented as a directed
graphy, the vertices of which are occurrences of literals
from the set of clauses under consideratione It is not a
new idea to use a graphical structure for predicate

calculus: Yates, Raphael and Hart [43], Sickel [38]y, Shostak

[38], and Kowalski [22] have all proposed systems based on

graphse Ours,y, however, becars no resenblance to any of
thesee Our graphs are called "deduction plans": the word
“"plan" is intended to convey the notion that such a grapb
proves nothing until the rules used in its ccnstruction have
been validated by the unification algorithme To each rule
of the various linear deducticn systems, there corresponds a
rule for plan construction; however, even though +the rules
for Model Eliminaticn have equivalents in plan construction,
no ordering need be imposed an the soluticn of the
subproblems of a plan to obtain soundnesse.

Plans allow the use of lemmas as in simple linear
deductiony but more lenmmas are availablees This is because
each plan actually correspands to a set of linear
deductions, and any clause deduced in any one of these
deductions is available as a lenmae

Plans regresent rroofs economically in that each
literal used in a rroof is represented only onces

A modification of Baxter's wunification algorithm |is
used to verify the applicability of each rule as a plan is
constructed, by performing an appropriate unification;
however, no eubstitutions need be performed. If the
unification algorithm detects nonunifiability at some stagey
a tracing algorithm determines all the choices for
racktracking, and the graphical structure of the proof

ensures that no harmless subrroofs are removed in the

subsequent pruninge.

CHAPIER. 2
Prelipiparies

Here we rrovide scome notation, make preliminary

definitionsy and guote familiar results fcr later referencee.

2+1: Graph Ibegry
With a few minor exceptions, our notation and
definitions for the concepts of graph theory follows Bondy

and Murty [7].

2e1.1: Definiticn: A directed graph G, is an ordered triple
<V(G)4+E(G)yYg>¢ where V(G) is a nonempty set of vertices,
E(G) is a set of grcsy disjoint <f£rom V(G)y, and Yg is an
Apcidence function from E(G) to V(G) X V(G)e If e is an arc
and u and v are vertices such that Yg(e) = (usv), then e is
said to ,JJoin u tg ¥y u is called the tail gj'g, and v is
called the head 9f ¢ Ve also say that e leaves u and
enters ve The jindegree and gutdegree of a vertex v, are
respectively the number of arcs which enter v, and the
number of arcs which leave ve.

We will henceforth abhreviate Wdirccted graphll to

"digrarh"e.

2e1e2: Defipiticpn: A digraph D is a subdigraph of a digraph
G if V(D) &£ V(G)y E(D) £ F(G) and VYp = Ug|E(D), where |
denotes restrictione

If E' C E(G)y, then G' is a subdigraph of G where:

V(G') = {v | Je € E' such that v is either the
head or the tail of e}
E(G') = E!?
Vo= Ygl|ET

G' is called thre subdigrapb induced by E'.

2e143: Defipition: If G is a digraph, a directed walk in G
is a sequence Vgy€isvVoeeaseeerensvn+a (Nn21) whose elements
are alternately vertices and arcs of G, which begins with a
vertex and ende with a vertexy, and is such that for all i
(1%i<n)y v, is the tail of eiy and v;4+3 is the tead of e; .
The lepngth of the walk 1s n; vy and v,43 are respectively

the origip and erpipus, and vVojeeeyv, are called the

internal vertices of the walk.
We will frequently use such expressions as "v lies on
the walk"; "a walk <from u to v"; and Y“the walk passes

through v%e Ttike meaning of such expressicns 1s cbviouse.
Note that a walk can be unambiguously specified as a

sequence of arcsy and in the case when wG is injective, a

walk can be unambiguously specified as a seguence of

verticese. Ve will uvse both representations fraom tinme to

timee.

2e01eJ

10

2+1.4: Dexipniticnp: A directed walk vyseqyecege yvas1y is
called a directed trail if for all i and § (15i%jsn),
e, = ey implies i = je A directed trail is called a directed
path if for all i and j (12i<jSn), v, = v; implies either
i=Jor i=1and g = ntle.

Note that a path can be regarded as the subdigraph
induced by the set of arcs in the path: hence if W is a

prathy, E(W) and V(W) are definede

2¢1+5: Defipition: A closed directed walk is a directed
walk in which the origin and terminus are identicale. We

usually refer to a closed directed path as a directed cyclee

2e1le6: Lefiniticon: A latelled digraph G is an ordered
4-tuple <V(G),E(G),I(G),¢G>, where V(G) is a nonempty set of
yertices: E(G) is a set of arcg disjoint £from V(G); I(G) is
a nonempty set of labels; and 1, is an jncidence fupction
from E(G) +to V(G) X XI(G) X V(G)e. If e 1is an arcy and
Ygled = (uylyv)y 1 is called +the label of e 7To avoid
repetitiony, we note that all concepts defined in 2.1.1 to
2¢1e5S in connection with digraphsy can be defined in exactly

the same way fcr labelled digrarhse.

Finally, in order +to simplify our notation and
descriptions, we make two observationse First, if the

incidence function Yg of a digraph G is injectivey we can

11

consider E(G) as being a subset of V(G) X V(G) (or
V(G) X I(G) X V(G) for a labelled digraph): this is the case
for all digraghs encountered in this thesise Secondly,
since we consider only directed graphs, we will usually omit
the word "directed" and the prefix "di-", using Ygraph",
"walk", %"path", Yeybgraph', etcey 1instead of Mdirected

graph", "directed walk", "directed path", "subdigraphV, etce.

2+2° Language

Presentations o¢f deduction systesms usually do not
include a thorough treatment of unificaticn; consequently,
the terminology surrcunding concerpts common to these two
areas is not uniforme. In this section we present a language
suitable for discussing both theorem—-proving and

unificaticne

2e2e1: Definiticon: An glphbabet is a 4-tuple (VyN,P,degree)

wheres

(i) Vs M and P are mutually disjoint, nonempty countable
setse

(ii) degree is a function from NU PU {-} +to the
nonnegative integers, wtere "-" js a special symbcl not
in My, P or Vy, and degree(-) = 1,

Elements oiVV are called yariables; elements of M are called

napping symbols and elements of P are called opredicate
Eymbolse Elements of N U P U {-} are <called fupcticon

2e.2e1

12

EYnbolse If s is any function symbol and degree(s) = m, we

say that s ig of degree me.

We juxtapcse the elements of an alphabet, together with
the punctuatiopn symbals W(", W)%, 8 " sccording to certain
rules, to obtain certain classes of stringse All the

following definiticns are with respect to sorme alrhabete

2+2¢2: Definition: An expression is:
either (1) a variable
or (i1i) a string of the form £() where £ 1is a mapping
synbcl of degree Q.
or (iii) a string of the form f(pgyesesypn)y whrere f is a
mapping symbol of degree n>0 and pgseeeypn are
exrressiconse.

An expressions cf tre form f() is called a constapte

2e2e3: Defipniticon: An atom is:
either (1) a string of the form P() where P is a predicate
syabol of degree Q.
or (ii) a string of the form P(pgseeesp,)y where P is a
predicate symbol of degree n>0, and PiresesPy
are expressionse

An atom of the form P() is called a prorositiog.

20243

13

20204: Defipitiop: A literal is either an atom or a string

of the form —-(A), where A is an atame

2025 Defipniticon: I1f L is a literal, the pegation of L is

the literal:

(1) —-(A) if L is the literal A, where A is an atcm

(ii) A if L is the literal -(A).

We denote the negaticn of a literal L by -Le. Note that -~ is
not a symbol in the language, but is a ki jection <fLfrcom the

set of literals to tte set of literals.

2¢2¢6: Definition: A forpula is either an exrression or a

literale A terp is a formula which is not a variable.

2e2¢]3 Definition: ord 1is a function from ttke set of
formulae to the nonnegative integers, defined as follows:
O if p is a variabley, constant or proposition
ord(g) =
1 + max ord(pi) if p = £(prrecesp,)

15i%n

If ord(p) = my we say that p _is 9f crder e

20292 Definiticon: 1If p and q are formulaey, then g is a
subforpula of p if:
either (i) q = p

or (ii) g ie a subformula of p, for some i (1%2iZ%n),

where p = f(pgrecespr e

202.9

14

Note that if q is a subformula of p, then ord(p) 2 ord(q),
and ord(p) = ord(g) iff p = ge A formula ¢ is said to be

variable~free if no subformula of p is a variable.

2210z Notaticpal conventions

We will abbreviate a literal of the form —-(A) as —A.
If F is a function symbcl of degree Q, we will abbreviate
the formula F() as Fe.

Context will always allow us to decide whetker a
particular symtol is a mapping symbol or a rredicate symbol
if its degree is 0. However, having abbreviated each
formula of order 0 as the function symbol with which it
reginsy we can now no longer decide whether a sSymbcl not
followed by "(" represents a variable or a ccnstante In
such cases, we will always make the meaning explicity, and
where prossibley represent constants by lower case letters
from early in the Roman alphabety, while representing
variables by 1lower case letters from near +the end of the

Roman alphabete

2«32 Substitution and unificaticy

2edel: Defipitiopn: A substitutiop 1is a finite set of
ordered pairs {(vysrgdseecess(v, sp,)} where viseseyv, are

distinct variatlesy piprecesyp, are expressicnsy and for each

2.3.1

18

i (1%i%n)y Vv; % P; e Viseeeyvy, are called the replaced
yvoariables of the substitution, and each element of the
substitution |is called a componente Ve will denote
substitutions ry lower case Greek letters, except for the

empty substitution, denoted by ¢e.

2e3e2: Definitiaon: 1f p is a formula and 6 is a

substitution, the applicatiaon 9f € to 1pey denoted p6, is the

formula defined by:

q if ord(p)

]

0y, and (pyq) € €

pe = £r if ord(p) 0
and p is not a replaced variable of €

1(pa©receyp,®) if p = L(pPrreeesp,)

L

If E is a set of formulaey § is a set of sets of formulae,
and 6 is a substitution, we define:

Ee

{re | p € E}

€e

{Ee | E € &}

called the applicaticn of 6 to E, and the applicaticn of ©
to €« If X is a formula, set of formulae or set of sets of
formulaey and € is a substitution, we call X© an jnstance of
Xy and call X a generalisation of X6, Note that since

Xg = X, X 4is both an instance and a generalisaticn of

itself.

16

2+3e3: Detipiticop: If © and 7Y are substitutions, the
composition of © with Y+ dencted 6®Y, is the substituticn:
{(ver?) | (vep) € 8 and v # p7}

U {(vep) | (vyp) € ¥ and v is not
a replaced variable of 6}

Clearly ©%g = ¢g*€@ = @ for any substituticn 8. It is easy to
show that ® is associativey, and that p(€*Y) = (po)Y for all

formulae p and substituticons € and 7.

2+3¢4: Definiticp: A substitution © ypjifies a set of
formulae E if and only if FE@ contains one elemente In this
casey E is said to be upifiabley and 6 is a upnitier for E.
€ is called a post seperal upifier (mgu) for E if and only
if for every unifier Y for E, there is a substitution g such
that Y = 6eg8,

We extend the noticn of unifiability to sets of sets of

formulaea.

If § is a set of sets of formulae and ©

2e3e5: Defipniticn
is a substitution, © ygpifies &§ if and only if 6 unifies E

for each E € €« We define "unifiable", "unifier", and “most

general unifier" exactly as in 2e3e¢4e
The fact that every unifiable set has at least one mgu

is clear frcm the existence of several unification

algorithmse.

2.3.5

17

If E is a unifiable set of formulae, we denote by mguE,
gome mgu of E. We use this notation alsc for sets ot sets
cf formulaee Note that if E is a set of formulae, then

mguE = mgu{E} .

2ede6: Lemma: If X4 and Xp are both sets of formulae, or
both sets of sete ocf formulae, then:
(1) Xq U X5 ie unifiable if and only if X, is unifiaeble and
XomguXyg is unifiablee.
(1i) 1f X4 U X2 is unifiable:
mgu(Xq U X2) = mguXz®mgu(IomguX;)
Proof:
(i) (a) If Xq U X2 is8 wunifiable, let 6 be any unifier for
X3 U X @ unifies X349 soc that by the definition
of mguy © = mguXy®s for some substitution SBe. But 6
unifies X394 so that 8 unifies XmguXjie Therefore
Xq and XomguXy are unifiablee.
(b) Suppose X3 and XomguXg; are unifiable, and let €@ bhe
a unifier for XomguXge Now mguXg unifies X34 soO
that mguX,90 unifies X;3 also © unifies XomguX; so
that nguXys®0 unifies Xose Hence mguXy4®©® unifies
X3 U X5, so that X3 U X2 is unifiable.
(ii) If Xg U X3 is unifiabley, than by part (i), mgu(XomguX;)
existse Now mguXs unifies Xy S0 that mgulXe®(XpmguXy)
unifies Xae Also:

XomguXg®mgu({XomguXg) = (XomguXy Jmgu(XamguXy)

2.3.6

18

So mguXg ®mgu{ XpomguXy) clearly wunifiles Xse Therefore
mguXg®nmgu(XomeguXy) is a unifier for X3 U Xze
Suppcee 6 is a unifier for X; U X229 then since ©
unifies Xg:3
6 = mguXy®*5 for some substitution B

But © unifies X3y, s0 that § unifies XomguX,e

.
[]

w
1

mgu(XomguXs)®a for some substitution a

.
.
0]
]

mguXg®mgu(XomguX,y)oa

Therefore mguXg®mgu(XomguX,) is an mgu for X4 U Xoe

2e3+7: Definitigpn: A substitution {(vgsuglreeey(v,yu,d} is

called a repamipg if uUjgeeeesu, are distinct variables, and:
{fugeecesu,}l NN {viseeeev,} = 0

1t v is a renaming, then 1 is the renasing

{(uyv)| vyu) € T}e Clearly, if 7Y 1is a renaming, then

Y8y = ¥, (Y1)} = 7, and Yey-1 = 1,

2e3e8: Definitian: If p 1is a formula and 7Y is a renaming,
p?Y is called a yarispt of p if and only if no variable is a
subformula of both p and p7Ve If E is a set of formulae
and £ is a set of sets of formulaey, EY is a yariapt of E if
and only if pY is a variant of p for all p € E; and &7 is a
variant of & if and only if EY is a variant of E for all

E 8 €. I£f p €@ E € § it is clear that &Y is a variant of §&

inplies that E¥Y is a variant of E implies that p7? is a

2.3.8

19

variant of pe Also, if X is a formula, set of formulaey, or
set of sets ot formulae, then X7 1 = X so that
(X7)r 1 = Xvey—1! = Xr-1 = X: X is therefore a variant of

X7e.

2.4: Predicate calgulus
We descrite tere the guantifier—free conjunctive normal
form of <flrst-order predicate calculus usually used by

mechanical thecrem—rroverse.

2e4.1: Definitiop: A clause is a finite set of literalse.

The empty clause is denoted by Hhe.

2e4e2: Defipition: A yaluatigp is a function 2 from the set
of all variable-free literals into the set{T,F} such that:
3(L) = T iff 2(-L) = F

%We extend the domain of every valuation 2 to the set of all
clauses, as follows:
(i) 1If ¢ is a variable-free clause:

3(¢) = T iff 3(L) = T for éome Le¢
(ii) If ¢ is a clause which is not variable—free:

3(¢) = T iftf 2(¢6) = T for alt variable-free

instances €6 of ¢

24302

2+4+3: Definiticp: A valuation 2 is saild to satisfy

20

a

clause ¢ if and only if 2(¢) = Te We also say that 2 is a

podel for ¢ Similarly, a valuation 2 is said to gatisfys, or

to be a model for a set of clauses & 1f and only it 2(¢€)

for all € € 8

T

2443

SHAEPIER. 3

Deduction Plapng

In this chapter we present a deduction system which
relies on the construction of certain directed graphs called
"deduction plansVe Before defining these graphe formally,

we give an infcrmal descripticn aof their structuree.

The underlying structure of a deduction plan for a set
% of clauses is a rocted tree the rocot of which is a special
vertex called TOP. Every vertex other than TOP is a variant
of some literal in some clause cf 8« This underlying rooted
tree corresponds exactly tc a linear resoluticn deduction
from $ in which +the o¢nly inference rule i binary

resolutione Ttke rule used in building such a tree is called

"replacement". The following example illustrates such a
rooted ‘tree and the corresrcnding linear resolution
deductione

21

22

Jdef: Example: Consider the set of clauses:
g = { [B(xey)e P(x,%(x))y -Q(x)},

{G(x)y R(xya), —-S(x)},

{s(x)s Q(x)},

{-R(x,¥y)y -S(y)},

{-PCa,f(a))} }
where a is a ccnstante.

Figure 3«1 is a linear binary resolutiocn deduction from

%, and figure Je¢2 illustrates +the corresronding plane Note
that the subgraph indicated by the dotted line corresponds
to the top clause in the 1linear deduction, and the arcs
labelled "SUB" cgnnect the root vertex with the literals of
the top clausee SUB stands for "subprcblem" and indicates
literals whichk must be remaoved by resclutione. 1If a
subproblem has no arcs leaving ity then that subproblem is
said to be "open": that is, it has yet +to0o be removed by
resolutione. Each arc labelled NREPIY indicates one
application of the replacement ruley, and shows that we have
selected a variant € of scome clause from 4 and bave
performed a binary resoluticn on the subrroblem at the tail
of the arc, using the literal of ¢ which appears as the head
of the arce The remaining literals of ¢ are then introduced
as new subproblem vertices at the head of new SUE arcs: the
tail of each of these new SUB arcs is tre head of the new

REPL arce In Figure Je2 the REPL arcs are numbered,

indicating the crder in which the tree is constructed: this

3.0

23

P(x,,y1), P(x,,f(x,)), -Q(x,) O

e QUxs), R(xy,a), -S(x,)
P(X;,¥1), P(X35f(Xs)), R(X352), -S(Xy) </]
";::_": -R(%3,y3), -S(ys)
P(x3,Y1), P(x5,f(x,)), -S(a), -S(x3) </

S(x4), Q(x4)

X3 < X4

P(x4Y1), P(x4f(x,)), -S(a), Q(x,) €

/ -P(a,f(a))
X4 a
P(39YI)9 'S(a)s Q(a)

A binary linear resclution deduction from the set of clauses
ci example 3«0 The substitution applied during each

application of the resoluticn rule is noted bkeside thre
appropriate breanche

Figure 3.1

24

o P S WS VI U S S W S ——

SuB suB Sus

‘—-———————————’

A
-Q(x;)
— -——f/l
REPL 1|
\/
(o)
SUB suB
3 4
REPL 2 REPL 3
\V
suB
\/

A plan for tte set cf clauses
ctf examrle 3.0 <corresponding

to the linear resoluticn of
figure Jele.

EFigure .2

3.0

order correspords exactly +to the order in which deductions
are performed in tfre linear resolution deductian of figure
31 When a subproblem becomes the tail of an arc it is
said to be 1'"clcsed". Note that a vertex at the head of a
KEPL arc is not a subrrcbleme

In building this tree we have not applied ttre unitying
substitutions as in the linear deductione Instead, a record
is Xept of the formulse which must be umnified in order to
validate the ccnstructicone. In chapter 4 we describe how
this is daonee.

At each stage during tte construction of this tree, the
set of open sutproktlems corresrconds to tre clause deduced by
the equivalent linear resolutione. If at some stage there
were no open subproblems lefty, then in the corresgonding
linear resoluticn, tte enmpty clause would have blheen
cbtained, showing the set § to be unsatisfiablee. The
cbject, therefore, when using rlans to prove
unsatisfiability, is to construct a plan with no open

subproblems: such a plan is gaid to be "closed".

Unfortunately, binary resolution is not complete: that
isy for some unsatisfiable set of clauses it will not
produce the enpty clauvsee Similarly, the replacement rule
in plan construction is not complete. The completeness of
linear resoluticn can be assured by a variety cf methods,

and we have plan constructicn rules which simulate each of

thesee Two of these rules are "factoring" and "reduction'.

3.0

26

As with replacementy facteoring and reduction add new
arcs to the plan; however, unlike replacement they introduce
only gne new arcy and add no new verticese Factoring is
analogous to tte familiar factoring rule of rescluticn, and
is applied by selecting an open subproblem cf the plan, and
directing an arc labelled "EFACT" from it to another
subproblem of tte plan: eventually, of coursey these
subproblems must be shown to be unifiablee. Factoring in
plans differs frcm factoring in resolution in that when a
FACT arc is addedy the subprcblem at its head need not be
cpene Reducticn alsc has an analogy in 1linear resolution,
namely, the reducticn rule of model-elimination [24,25,27]
and SL-resoluticn [23]« 1This corresponds to the familiar
proof technique "reductio ad absurdum"™ in which & particular
typothesis is shown to imply its negatione. To arply
reduction, we gelect an open subproblem u and direct an arc
labelled "RED" from it to scme subproblem v which is %above"
u in the underlying rooted tree: that isy there must be a
walk from v tc u consisting entirely of EEPL and SEUB arcse.
For the reduction to applys we must verify that u and the
negation of v are unifiablee. As for REPL arcsy subproblems
at the tail of KED and FACT arcs are said to be closede.

In figure J3¢3y, we illustrate a closed plan oktained
from the plan c¢f figure 3.2 by applying trese two rules.

Note that plans containing REL and FACT arcs are not

treese.

27

FACT

A closed plan for the set of
clauses of exanmple 3Je0e

Figure 3.3

3.0

28

There is cne furthker rule for constructing rlans called
"ancestor replacement", which is a variation of +the simple
replacement rule we have already describede This allows us
tc close a subrroblem by rerlacement using a clause deduced
earlier in the proof, rather than a clavuse from £. In order
to apply this we must have some neans cf extracting such
clauses from tte plane This leads us to the definition of a
special kind of subgraph of a trlan called a "sukplan. The
important feature of subplans is thaty althcugh they cannot
necessarily be ccnstructed from £ using the rules we have
described, they have the same underlying roo ted tree
structure as rlanse That isy, each subplan contains the
vertex TOP, tre REPL and SUB arcs of tre subrlan form a
rooted tree, and if a RKEPL arc is in the subplan, then so
are all the SUBE arcs associated with that REFIL arce To
apply ancestor replacement, some subplan is extracted from
the plan, and tre set of oren sukgrrcblems of this subrglan is
used as though it were a clause in & for closing a

subproblem of the prlan ty rerlacemente.

We present now the formal definiticn of deduction
rlans, followea by the proofs cf socundness and completeness

ot the various deduction systems based on theme

3e1: Definitiop: If & is a set of clauses, a deduction rlan

for % is a digraph G, where:

29

(a) E(G) 1is divided intoc fcur mutually disjoint sets
REPL(G), SUB(G)y RED(G) and FACT(G),

(b) TOP € V(G), where 1ICP is a special symbol which does
not occur in £,

(c) G is constructed recursively, using a finite number of

applicaticns of the rules defined below (3e1le6)

Before detining the rules for constructing deduction
plans, we must digress with the follcwing remarks and

definitionse.

We will tenceforth refer to deduction plans for § as
"'plans for &Y% , or when +the «context ensures that no

ambiguity is likely, simply as "planst.

delel: Definitiop: If G is a plany and vgy v € V(G)y then
vy is said to bte a direct s8pncestcr of v 1if and only if
there is a walk from Vi to vz with no arce in
FACT(G) U RED(G)e Also, vz is called a direct descendant of

Vge

Jele2: I£f G is a plany and H is any subgraph of G, we can
meaningfully refer to SUB(H)y, FACT(H), RED(H) and kEPI(H).
Henceforthy in any subgraph H cf a plan G, SOL(H) will be

used as an abbreviation for FACT(H) U RED(H) U EBEPL(H).

30

Jeled: Definiticnp: I1£f G is a plan for g, and B is a
subgraph of G, then B is a gubplap of G for £ it and anly if
for every x 6 V(B):

(i) (xy3y) € SUB(G) =2 (x,y) € E(H)

(ii) (ysx) € EEPL(G) =2 (yosx) © E(H)

(iii) if y is a direct ancestor of x in G

thén y € V(H).

We will say that H is 8 subplap for £ if there exists a plan
G for @, and B is a subplan of G for $. When the context
ensures that trere will be no ambiguity, we will say H is a

subplan of Gy or simply H is a subplap.

Note that every plan is a subplan of itselfe It is not
the case though that every subplan is a plan: we will
rroduce an exanrle to illustrate this following the
definition of the plan—construction rules. However, if H is
a subplan for £ but not a rlan Xor %, it can be shown that
there exists a set $3 of clauses for which H is a plan, such

that 84 is satisfiatle if and only if § is satisfiablee.

dele4: Defipitiop: If B is a subplany the tgp <clause of H

is the set { v | (ICP,v) € E(B) }.

Jeled: Defipiticn: If H is a subrlany, the set:

{f v | 3x € V(B) such that (x,v) € SUB(H) 1}

Jele5

31

is called the =set of gsubproblems of Hy and is dencoted s(H).
Alsoy if v is a subproblem of B and 3 (v,y) € E(H), then v
is said to be clgsede A subproblem which is not closed is
opene The sets of closed and open subproblems are dencoted

cs(HB) and os(H) respectiveiy.

dele.6: Plap constructiopn xrules

We now define the rules for constructing planse.

Jdeleb.0: Basis
It € is a variant of any clause in %, then G is a rlan,
where G is defined by:

V(G) {1cP } U ¢

SUB(G) { (ICPy1) | 1 € ¢ }
SCL(G) = ¢
G is called a tasic plane A pictorial representation cf a

tasic plan is shown in figure 3e4.

delebe1: Induction
Rule (1): Replacement
(A) Simple replacement
If G is a rlan and:
(a) v € o0e(G),

(b)) 1L € ¢,

(c) € is & variant of some clause in § and contains no

variaktles wkich occur in any vertices of Gj

Jelebel

32

A pictorial representation of
a tasic plan with +top clause
{laseertucle

Figure de.4

then G' is a plan, where G' is defined by:

V(G') = V(G) U ¢
REPL(G') = REPL(G) U {(v,1)}
SUB(G') = SUB(G) U { (Lym) | m € ¢g~-{1} }
FACT(G') = FACT(G)
RED(G') = RED(G)

(B) Ancestor rerlacement
If G is a plan, and:

(a) v € o0e(G),

Jelebol

(b) 1L € ¢,

(c) ¢ = oe(B)Y, wtere H is a subplan of G, and 7Y is a
renaming such that fc¢r every x € V(B), x7Y is a
variant of x3

then G' is a glany, where G°! is defined as for sinple
replacemente We alsc define: In both types of replacement,
we say that v is replaced tbhrougbh 1y, and that v is replaced
by £ - {1}. Feplacement may be represented pictorially as

in figure Je«5.

Note that if scme literal m 8 € contains no variables,
then it is possible that thte plan on which the replacement
is performed masy already contain a vertex corresponding to
the literal me The set of vertices, howevery should be
regarded as a set of literal cccurrences rather than as a
set of literals: the replacement then introduces a new

vertex correspcnding to the new occurrence of me

Eule (2): Reduction
If G is a plan and:

(a) u € o0e(G),

(b) v € ¢cs(G) is a direct ancestor of u,

(c) if (x,y) € FACI(G)y and either y = u or there is a
walk from ¥y to u which does not pass througlk v and
containe no arcs in RED(G), then v is a direct
ancestcr of x;

then G' is a plany where G' is defined bLy:

Jelabel

34

P T i e T BAOY S SRS SUER M S G GE Y A e T S A G — S W S S

A rerresentaticn of a plan G!
oktained frco G by
rerlacenmente.

Eigure 3.5

\~—————-——————————————.————————

V(G') = V(G)
RED(G') = REL(G) U {(u,yv)}
FACT(G') = FACT(G)
BEPL(G') = KEFL(G)

SUB(G') = SUB(G)

Jelebel

35

Ve say that u is reduced 1g ¥« Reduction may be represented
rictorially as in figure 3J.6.
Rule (3): Factcring

Factoring, like rerlacement, divides into twc casese.
(A) Simple factoring
If G is a plan and:

(a) x € 0(G),

(b) v € os(G) - {x};

then G' is a plan, wlkere G' is defined by:

V(G') = V(G)
FACT(G') = FACT(G) U {(x,¥5)}
RED(G') = RED(G)
REPL(G') = EEFL(G)
SUB(G') = SUB(G)

(BE) Back factoring
If G is a rlan and:
(a) x € 0s(G),

(b) v € ce(G),

Jelsbetl

36

~,
1

(3) /

Walk containing no s in- /
RED(G)UFACT(G) . ares

~
arces

~,
~
g no

/7 (1) RED

~
RED(G)UFACT(G)

~
Walk containin

Either y = u

or there is o walk from ¥ to u con-
taining no arcs in RED(G),
and not passing through v,

N e
~—

(2)

The RED arc <c&n be constructed, provided that the walk (1)

exists, demonstrating that v is a direct ancestor of u; and
provided that, if the items marked (2) exist, tren tte walk

(3) exists, demcnstrating that v is a direct ancestor of x.

EFigure 3.6

Jelebel

37

(c) every walkx from y tc x contains at least one arc in
RED(G };
apd iz uyv € RED(G) and both of the following
conditions hold:
(1) either ¥y = u cr there is a walk from y
t0 u containing no arcs of RED(G) and
not passing through v
{(2) for scme w € V(G)y either w = x or
there is a walk from w to x centaining
no arcs of RED(G) and not rassing
througk v
trten v is a direct ancestor cf w
then G' is &a plany, where G?* is defined as for siaple
factoringe. In both tyres <c¢i factoring, we say that X is
factored to Yye A pictcrial representation of rackfactoring

is shown in figure 3.7

We now frresent an example to illustrate the

construction of a plan.

Selel: Exapple: Let § be the set of clauses:
{ {P(X)' P(y). ’P(f(Y))}'
{P(W)' C(‘gb)' P(f(W))}'

{-Q(£(z)yz)y P(z)y P(£(£(2)))} }
where b is a ccnstante Figure 38 illustrates a plan G for

g Fach arc ¢f SCIL(G) is 1latelled with the name of the

Jele?

38

//
”
-~
-
-~
”~
(3) -~
”
,/
Walk con‘tuipin(g no ares in o~
RED(G)UFACT(G) 7
rd
'
-~
”
-~
e
”
”’
”
e
”
td
-~
,/
Ul
(4)
RED

AT

82 |

MeEd

(&S] =3
el
=1

25

o &

o= I

s&z(3)

— - :-J:: '

=X

$ o |
e (1)
n, =2l
_2ES| Walk
2o
50
= 2
SR __m__u_ij_

Eithery =u

or there is a walk from y to u con-
taining no arcs in RED(G),
and not passing through v.

The FACT arc

can ke constructed provided that,

if the walk

one arc

of EED(G);

and

(1) exists,

it contains at least

provided that,

irf

the items (2), tten v

(3) and (4)

exist,

is a direct ancestor of w,

as demcnstrated by the walk (§8).

Figure 3.1

Jele?

39

subset of SOL(G) +to which it bhelongs, and with an integer.
The integer labels indicate the order of construction of Ge
Note that the KEFPL arc numbered 3 is an ancestor replacement
using the boxed clausee. G has only one open subproblem,

which is the vertex with a double outlinee.

Jde2: Conmeniss notation and some preliminary resvlis

Every vertex of a subplan, except TCP, has indegree at
least 13 TOP has indegree O. Open subproblems have
outdegree 0 and closed subproblems have outdegree 1. In
facty, closed subproblems are former open subproblems each of

which has been closed by one application of a rule.

In every subplan, there are vertices which are not
subproblems: TCF is <¢ne of these,y, and the otheres are those

vertices through which subproblems are replacede

Je2e1: Defipiticn: If G is a tlany then there exists a
sequence of plans D = (GgyeesG,) sSuch that Gg is basic,
G, = Gy and foar i X ny, G; is derived <from G;-.; by one

application of a rulee Such a sequence is callea a

dexrivation of G of lepsth n-

Since one aprplicaticn of a rule closes exactly one

subproblem, and adds exactly cne arc to SCL(G), we note that
lJes(G)] = |SOL(G)] = ny and that every derivaticn of G has

the same lengthe We note also that every derivation of G

221

[A)

40

SUB SUB

S

SUB

I
§ </

kel Y L L Ypp—

A
{0) o

RSO IR |

2 1 REPL
\/
SUB . SUB
/X S .
m PCFCw))
7{FACT 4
S |REPL 4 3JREPL
\/ \V/
-Q{(2),2) mr 5 -P({(y, D)
SUB SUB SUB
A J AV,
@ PUED @
A rlan G for +the set & of
clauses of example JeleTe
Figure 3.8

RED

Jde2.1

41

begins with the same tasic flane. Consequently, for any plan
G we can specify a derivatian either as an ordering of
cs{G)y or equivalently, as an ordering of SCL(G)e This leads
to some notaticnal devices which we will use frequently,
despite their initially ambiguous appearance: namely, to
define some new planm G by applying a rule to Gyy we may
write:

cs(Gz) cs(Gg) U {x}

or SOL(G2)

SCL(Gz) U {(x,y)}

ar FACT(G3) FACI(Gg) U {(x,¥)}

ecsesetce
when it is obviocus from the ccntext exactly how x ies to be

closedy and exactly what vertices are to be addede

We now present some general results concerning the
structure of rlans, and the relationships between plans,

subplans and the construction rulese

Je2e2: Lemmas i1f G is a plany there is no closed walk in G
with all its arcs in REPL(G) U SUB(G)e.

Proof: Let D = (Gu,.-.,Gn) be a derivation of Ge We use
induction on this derivatiocone

Basis: Gp is a tasic plany, and therefore has no closed

walkse
Induction: Suprose G; has no closed walks with arcs in

REPL(G;) U SUB(G;) onlye

Je2e2

(i)

(ii)

del2ed:
then G°!
v(

E(

Eroof:

(1) ve

42

Suppose G 44 is obtained from G; by factoring or
reducticn, tten:
REFL(G,+4) U SUB(G,;4+;) = REPL(G,) U SuB(G,)

So if G, 44 has a closed walk of the specified type,
the same walk exists in G, , contrary to hypothesise.
Suppose G; 43 18 okbtained from G by replacing
Y € o0s(G;) through x by Xgyeee9X, e If G, 44 has a
closed walk of the specified typey this walk is
either in G; s+ contrary to hyrothesis, or contains one
ot the new arcs (¥9x)9(XyxXqgDygoeoses(Xy9x,,)e
Consequently, tte walk nmust rass through x and
therefore must rass through > ¥ for some
J € {lyeeeym}e But for each J € {lyeeeym}, X has

outdegree Oy so no walk through X; is closede.

Lemmas If w is any closed subrroblem cf a cglan G,

is a sutrlan of G, where G' is defined by:
G") = V(G) - fu | u is a direct ancestor of w}
G') = E(G) -~ {(uyv) | (uev) € E(G)

and either u = w
or u is a direct
descendant of w
or v is a direct
descendant of w }

show first that G°? is a subgraph of Ge. Since

V(G') S V(G) and E(G') € E(G), we neced only show that G?

is

a graph; that is, that E(G') C V(G') X V(G"').

Je2e3

(2)

43

Suppose the contrary: then there exists (x,y) € E(G')
such that either x ¢ V(G') or y € V(G'), Now if
x € V(G'), then x is a direct descendant of w, so that
(xyv) ¢ E(G'"), which 1is a contradictione We obtain a
similar contradiction by assuming y ¢ V(G').
e"e G is a subgraph of Ge.
Suppose now that G' is not a subplan of G: we have three
cases:
(i) Suppoee for scme x € V(G') that:
(x9y) € SUB(G) - SUB(G')
Since (x4,y) ¢ SUB(G")
either x = w, which is impossible since w is a
subproblem and x is note
or X is a direct descendant of wy in which
case x € V(G'); a contradictione
or Yy is a direct descendant of w, sc that x is
also a direct descendant of Wy and again
x € V(G'"); a contradicticne
(ii) Suppose fcr scme x € V(G') that:
(ysx) € REPL(G) -~ EEPL(G')
Since (yy,x) ¢ REPL(G")
elther y = wy s0 that x is a direct descendant of
w
oar Yy is a direct descendant of w, sc that x is
also a direct descendant of w

or X is a direct descendant of w

In each case x ¢ V(G'); a contradictione.

Je2.3

44

(iii) Finally, suppose for some x € V(G') that y is a

direct ancestor of x and y ¢ V(G')e In this case,
Yy muet be a direct descendant of wy s0 that x is a
direct descendant of w, and therefore x ¢ V(GY'); a

contradicticone.

Therefore G' is a subplan of Ge

In the fcllowing lemmay, we show how the structure of

plans

is affected by the ccnditions cn the <factoring and

reduction rulese.

de204:
(wez)
(i)
(1i)

(iii)

Proof:

(i)

(ii)

Llenma: 1f G is a plan, (uyv) € RED(G), and
€ FACT(G)y then:
v is a direct ancestor ¢f u in G,
every walk from z to w in G ccntains an arc in RED(G),
if either z = u or ttere is a walk in G from 2z to u
which dces not rass through v and has no arcs in
RED(G)y then v is a direct ancestor of w in Ge

Let D = (GgjseesG,) be a derivaticn of Ge.
For some ky where 0 < k¥ £ n, we have:

cs(Gy) = cs(Gy—3) U {u}

g0 that v is a direct ancestor of v in Gy—39 and Lence
in Ge

Suppose there is a walk from z to w in G cantaining no

arcs of RED(G)e lLet (x,¥) be the 1last arc on this

Je2.4

(iii)

45

walk to ke ccnstructed in the derivation De Then for
some ky where 0<k<n:
SCL(G,) = SCL(G,—31) U {(xyy)}

Suppose x 1s replaced ttrough y by Yaveeeyy,, 3 then y,
lies on the walk for scme i such that 1%5i<m, and y; is
an open subprchblem of G e Ihis is a contradiction
since x is the last subproblem ¢n the walk to be
closede Tterefore x mnust ke <closed by factoring,
since there are no arcse of RED(G) on the walke Since
(xy¥y) is the last arc on the walk +to be constructed,
all the other arcs on the walk are in E(G,-1)y so
there is a walk in G,—a from y to x ccntaining no arcs
of RED(G)e This contradicts the ccndition (c) on the
factoring of x to y in Gy—ge

Therefore every walk from =z to w in G gust
contain an arc of RED(G).
Suppose either z = u or there is a walk from z to v in
G containing no arcs of RED(G)e Then in either case
there is a walk from w» toc uy containing no arcs of
RED(G)e Ve now have two cases to ccnsiders
(a) Suppcse u is clcsed in the derivaticn D after all

other subproblems on the walk from w to u have

been closede 7Then for some k, where 0<kin:

SCL(Gy) = SCL(Gy—q) U {(uyv)}
and the walk from w to u containing no arcs of

RED(G) exists in Gy—ge So by the <conditions on

3.2.4

(b)

46

the reductiaon of u to v in Gy-2+ U must be a
direct ancestor of w in G,_34 and hence in G
Suppcse x#u is tre last subrroblem in the walk
from w to u which is closed in the derivation De
Let (Xx3y) te the arc in SCL(G) constructed in this
closuree Then for some k, where 0<k<n:

SOL(Gy) = SCL(Gy—a) U {(x,¥y)}

Suppcse x is replaced through y by ygseeeyyms then
y; lies on the walk from w to u, where 15i<m, and
¥; is an oren subproblem of Gye. This contradicts
the fact that x is the last subrroblem on the walk
to ke closede. Trterefore x must be closed by
factoring, since there are no arcs of RED(G) on
the walk, and x#ue Now since (x,y) is the last
arc ¢cn the walk to be constructed, all the cther
arcs on tte walk are in E(Gy_g)y s0 in Gy—3 both
of ttre following hold:

(1) either x = w or there is a walk from x to w
containing no arcs of RED(Gyx-3) and not
rassing through v

(2) eitter y = u or there is a walk fromy to u
caoantaining nc arcs of EED(Gyx—3) and not
rassing ttrtrough v

So by the conditicns cn the factoring of x to y in

G,-as u must be a direct ancestor of w in Gur_a e

and hence in Ge

Je2.4

47

de2e5: Corollazys Suppose Gk is @& subplan of G, Gk is a
tlany (x,y) € FACT(G), (u,v) € RED(G)y and xeu € os(Gk).
(1) I£f Gyeq is the subplan of G defined by:
SOL(Gk4a) = SOL(Gk) U {(x,5)}
then Gk+a is a plan provided that y € s(Gy)
(ii) XIf GLe4q is the subplan of G defined by:
SOL(Gkea) = SCL(G,) U {(u,v)}
then G;+a is a rlane

Proof: Lemma 3e¢2.4 ensures that the conditions for closing

either x or u are satisfied in Gye

dele6: Lemma: If G and G' are rlans, and G' is a subgplan of
Gy then every derivaticn GD,..,Gm of G'" may be extended to a
derivation GpyeesG, of Gy where n 2 me
Proof: Suppose G _# Ge We show that trere exists a gplan
G,#+1 which is a subplan of G, and is derived from G, by one
applicaticn of a rulee
Since G # Gy the set 0s(Gp) N ¢s(G) is not emptyes Let
XgreeeyXy be the mnmemhers of this set in the order of their
closure in some derivation D of G. We define G4y byS
cs(Gmeg) = cs(Gm) U fxq}
It remains to rrove that G 4g is a rlane Ve have four
cases:
{a) Suppose xa is closed by simple renlacement in G. Then
the conditions for closing x; are trivially satisfied in

G,y 80 that G, 44 is a plane.

Je2.6

(b)

(c)

(d)

48

Suppose x3 is closed by reduction, tten corcllary Je2e5
#uarantees that G 44 1s a plane
Suppose xq 18 closed by factorinug to y In Ge
Suppose y ¢ V(Gp)y, then +there must exiet some
x; € os(GL) such that X, is a direct ancestor of yy and
x; is closed by replacement in Ge Put x; must Le closed
before x4 in every derivation of G, in particular in D,
contrary +tc the ordering imposed c¢cn 08(Gm) N cs(G)e.
Therefore y € V(G,)y s0 corollary J.2.5 guarantees that
Gma is a rlane
Suppose x5 1is closed by ancestor replacement using some
subplan H ¢f Ge We must show that H is a subplan of Ge
Suppose the contrarys tten we have two cases:
(1) Ty € V(B) - V(Gy)
In this case, Jx; € 0s(Gy) such that x; is a direct
ancestor of y and is closed by replacement in Ge.
But x; is closed in Hy, and tterefore is closed
before x3 in any derivation of G« 7This contradicts
the ordering impcsed on os(G_) NN cs(G).
(ii) Je € F(E) - E(Gp)y say e = (yy2)
If e € SUB(G)y, then z € V(H) - V(G,)y, which we have
already shown to be imgpossiblee.
If e € SCL(G), then since V(H) C V(G,) by case (i),
y is an cpen subproblem of G,y and s¢ y = x; for
some i>1. But ¥ must be <closed before xa in anyv
derivation of G; this <contradicts +the ordering

imposed ¢cn 0s(G,) N cs(G)e

Je2.6

49

H is +therefore a subplan of G, + so the conditions for
closing xq ty ancestor replacement are satistfied in G-
Therefore G, 4q3 is a plane

Since cs(G) is finite and |lcs(Ge)l > |cs(Gy)|, a finite

number of such extensions nmust eventually result in a

derivation for Ge

0
de2ed: Corollary: A subgraph B of a plan G is a plan if and

cnly if +there is a derivation (GgyeesG,) of G such that

H = G, for some m < ne

Je2e8: Lemma: If G is a plan such that FACI(G) # @ and for
all (x,y) €@ FACI(G)y y is neither oren, nor closed by
reduction; then 3J(x,y) € FACI(G) such that Yy is closed by
replacement and no direct descendant of Y is closed by
factoringe.
Proof: Suppose the contrary; that is:
(A) for all (xy¥y) € FACI(G),
either y is closed by factoring,
or ' y |is closed by replacement and a direct
descendant of y is closed by factoringe

We first prove that for any integer n21, there is a walk of
length n in G such that +tre last arc in +the walk is in
FACT(G) and no arc of the walk is in RED(G). Tte proof is

by induction or ne

Je2.8

50

HBasisg: n=1, Fact 1is not empty, s0o there exists
(X19x2) € FACI(G)e The walk from xg to x2 consisting of
this single arc has the required propertiese.

Induction: Surrose there exists a walk
(xXq9X2)revey(X,—g9yX,) with the required rropertiess Now
(x,-e9%x,) € FACT(G) by the induction hygothesis; so by the
bhypothesis (A), we have tweo cases:
elther x, 1is closed by factoring to 2z, £aye Then

(xgsX2)yeoes(x,—g9x,)9(x,42z) is a walk of length >n
with the required prorertiese.
or X, is closed by replacement, and scome direct

descendant w of x_ is closed by factoring tc some

n
Ze Therefore, ttere is a walk fFfrom X, tc w
containing only arcs of REPL(G) U SUB(G)y and a
walk from w to 2z consisting c¢f the single arc
(wyz) € FACTI(G)e Aprending these two walks to the
end of the walk (X39X2)9eee09(X, _g9X%,)y we obtain a
walk cf length >n with the reqgquired propertiese.

Since this holds for any integer, and V(G) is finite, there

exists a walk in G of length |[V(G)]| + 1 with no arcs in

KED(G)e Such a walk must encounter scme vertex more than

once: hence there is a closed walk in G containing no arcs

of RED(G)e By 1lemma 3e2e2y, sonme arc (x,y) on +this walk is
in FACT(G)e Ccnsequently, ttere exists (x,y) € FACT(G), and

a walk from ¥y toc x with no arcs in RED(G)e 1his contradicts

lemma Je263, thereby disp;oving hypothesis (A), and

establishing tre resulte.

Je2e8

51

As mentioned akove, not every subplan is necessarily a

plan; this is illustrated as followse

3e2e9: Exanple: Consider tre plan G for the set of clauses
{ {vesvals {v3sve}l }, where Gz has the derivation (GgyGy4G2)

defined as folleows:

V(Gg) = {ICP, vi, v3}

SUB(Gg) {(ICPyvs)s (T0P,v2)}
V(Ga) = V(Gg) U {v3evael
SUB(Gg) = SUB(Gg) U {(v3evae)}

REPL(Gsg) = EEPL(Gg) U {(vgev3z)}

V(G2) = V(Gg) U {vi,ve}
SUB(G2) = SUB(G1) U {(vesv2)}

REPL(G2) = REPL(Gg) U {(va2sve)}

-, -
where v2 and vg are corresccnding variants of vy and vg

respectivelye Now B is a subrlan of Gz, where:

V(R) {ICF, vay V2y Vas V2}

E(H) {CTCPyva)y (TCPeva)dy (vaeva)y (vayve)d}

However, H is rct a plane This is illustrated in figure 3.9

Je2e9

S2

et e e e

T iy S S B S S S . M W G G ST S T R G S
G G G SRS e e T = e s S Sos S — . o s o, St S G G P oo s g St SO

B is &a subplan of G but is
not a plane.

Figure 3.9

As the reader may have realised, €itvaticns such as
that described in the above example can arise cnly in the
presence of the ancestor replacement rulee. This is proved

in the followirg lemmae.

de2e¢10: Lepma: If G is a plan constructed using rules (1)A,

(2) and (3) only, then every subplan of G is a plane

3+2.10

53

Broof: Suppose G,, is a subplan of Gy where m = |SOL(G.)]e.
We will show that there exists a subplan G, ; such that
|sO0L(G,~q)] = u-1, and Gn is a plan if Gnh—3 is a plane VWe
consider two ceasese.

Cage(a): If EED(G,) U FACI(G,) is not empty, define Gm—1

by:
V(Gy—a) = V(G,)
E(G,—¢) = E(G,)-{(x,¥y)}
where (x,y) € RED(G,) U FACI(G_,). Now |SCL(G,—¢)| = m—-1,

and by corollary Je2+&, if Gn-3 is a plan then G, is a rlane.
Loase(b): Suppose KED(G,) U FACI(G,) is emptye Let Xgseeyx
be the closed subproblems of G, in order of their closure in
some derivation D of Ge. Surrose x;, is replaced through y by
¢-{y}+ where € is a variant of scome clause in B« Now since
G, dis a subplany € C V(Gn)e Also €¢-{y}] € o0s(Gm)y since
otherwise x;, € ¢-{y} for some i < k since x, is clcsed

before x, in tre derivation D. Hence we can definpe Gn—a1 by:

V(G,—a) = V(G)¢
E(Gp—a) = E(GL)-{(x, 4y5)}-{(ysz) | z € ¢-{y}}
Now |SOL(G_-q)| = m-1 and if Gn-a is a plany G, is clearly a

plane

Since SOL(G,,) is finite, a finite npumber of
applications of this process must eventually yield a subplan
having no arcs of SCL(G)e The only such subplan is Ggs the

tasic plan of G« Bence G, is a plane

Je2.10

The reduction and factoring rules are intimately
relatede Example 3.3.6 following the presentaticn of the
soundness and c<cmpleteness results demonsirates the need for
the restrictive conditlons on these rulese. Meanwhile, we
note that in tre absence of factoring, condition (c) on the
applicability cf reduction can ke removede. Similarly, in the
absence of reducticn, ccnditicn (c) on tack factoring can be
weakened +to "y is not an ancestor of x%. Also, in the
absence of ancestor rerlacement, factoring is equivalent to
eimple factoring, according to tke following lemma and its

corcllary.

de2e11: Lemma: If G is a plan constructed using rules (1)A
and (3)y, then G can be constructed using (1)A and (3)A.
Proof: We will show that there exists a derivation
(Ggyee3G,,) of G such that for some m < ny Gm is cobtained
from G, g by simple factoring, and if m < n, then for i > my
G; is derived <frcm G, -3 by simple replacement. Since Go—1
is a plan ccnstructed wusing (1)A and (3) only, and
|FACT(G—qa)| = |FACT(G,)|~1, a finite number of applications
of this process will yield a derivation ocf G in which all
factorings are simglee
If FACT(G) is empty, there is nothing to prove, sc we

suppose the contrarye. We have two cases to considere.
Case(a): Suprcse for some (x.v) @ FACI(G)y v is ovpene

Obviously this factoring is simple. Define G,—3 by:

V(G,—g) = V(G)

Je2.11

55

E(G,-¢) = E(G)~{(x,y)}
Then G _q is a subrlan c¢cf G by lemma Je2.3, and hence a
plan by lemma 3¢2.10. If (Ggyee9Gpr—-3) is a derivation
of G339 tten (GgyeeyG,)y where G, = Gy is a derivation
of G with tre reguired propertiese.
Casel(dh): Suprose that for every (x,y) € FACI(G), y is
closede.
(A) Suppose that for every (x,y) € FACI(G),
if ¥ is closed by replacement,
then eitter some direct descendant of y
is closed by factoring,
or some subproblem z is factored +to
a direct descendant of ye.
We show +trat byrotbesis (A) leads to a contradictione.
To do this, we show that, for any integer k, there exist
two seguences of subgroblems, Xg9X29eece0pXky and
Ye1Y2seeepy, such that for all i, where 15i<k:
(1) (x, 4y,) € FACT(G)
(ii) ¥, is closed by replacement.
(1ii) Y, +e is a direct descendant of y,
(iv) no direct descendant cf y, is closed by factoringe
These sequences are ccnstructed inductively as follows:
Bagis: Since for every (x,y) @ FACI(G), y is closed,
lemma 3¢2.8 ensures that 3J(x,y) € FACI(G) such y is

closed by replacement, and nc direct descendant of ¥

is closec¢ by factoringe Ilet xq4 = X and yg = Ye Then

Je2e11

56

Xg and y; obviously satisfy +the conditions (i) to

(iv)e.

Inductions Suprose a suitable sequence of length k-1
has been constructede. Now Yy—-a is closed by
replacement, and no direct descendant of Yp-—1 is
closed ty factoringy by the induction hypothesise.
Therefore by the hyrotkesis (A), scme subproblem z is
factored to a direct descendant y of Yx—ae Let x, = 2z
and Yy, =¥ 3 then:

(i) (x,sy,) € FACI(G)

(ii) ¥, is closed by replacement since it is a direct
degecendant of Yy-av and ty the induction
hyrottesis, no direct descendant of Yy—1 is
clcsed by factoringe

(iii) y, is a direct descendant of Yy—ae

(iv) no direct descendant of y, is closed by
factoring,y since this would imply that Y¥y—a has
a direct descendant closed by factoringe.

Hence sequences of length k exist with the required

rroperties.

Now since such seguences exist to any lengthy, and s(G)
is finite, there exists a pair of sequences of length
Is(G)| + 1: in this case, ¥y, = y; for some i < j, and ¥;
is a direct descendant of vV, This implies the

existence cf a closed walk in G, all the arcs of which

Je2.11

57

are in REPI(G) U SUB(G), contrary to lemma Je2¢2e Thus
hypothesis (A) is disproved, and there exists
(xyy¥) € FACI(G) such that Yy is closed by replacementy no
direct descendant of Yy is closed by factoring, and there
is no subproblem z factored ta a direct descendant of y.

We now define:

vV(G,) V(G) - {z | z is a direct descendant of v}

E(G_) E(G) - {(wyz) | z is a direct descencant of ¥}
It is easy to see that this definiticn is equivalent to
the definiticn of the subgraph G!? in lemma J.2.3, =0 by
that lemma, G, is & subplan of Gy and therefore 1is a
Plan by lemma Je2.10. Also (xyy) € FACI(G) and y |is
openy so Ly case(a) there is a derivation (Gu,...,Gm)
such that G, is obtained from G,—a by simple factoring.
Now by lemma J.2e46, this derivation can be extended to a
derivation for G, and cbviocusly G, is obtained trom G, _4
by simple replacement, for idme Finelly, from case(a)
we have |FACT(G,_a)l = |FACI(G_)| - 1 = IFACT(G)] - 1.
This completes the proofe

a
dedel2: Corollary: If G is & rlan constructed using rules

(1)A, (2) and (3) cnly, tken G can be constructed using

rules (1)A, (2) and (3)A onlye.

Proof: We define a subgraph H of G bys:

V(H)

V(G)

E(B) E(G)-RED(G)

Je.2.12

58

Cne applicatior of lemma 3.2.3 and one arplicaticn of lemma
Jd¢2.10 for each arc of RED(G) removedy proves that H is a
plane But H is constructed using rules (1)A and (3) only,
80 by lemma 3¢2.11, there exists a derivatian (GpssesG,) of
By constructed wusing rules (1)A and (3)A cnlye By lemma
Je2.65 this derivation can be extended tc a derivation
(GaseeyG,) for Gy where for i 2 m, G; is obtained from G —;
by reductione (Ggyee3G,) 1is a derivaticn of G cecnstructed

using rules (1)A, (2) and (3)A only.

de2413: Definiticopn: A plan B is said to be closed if os(H)

= Ge

Jde2e14: Definition: Denote ty P the set of all uncrdered
rairs of variants and negations of variants of the literals
which occur in the clauses of $« That is:
P={ {T4,Y2} | 3¢4+¢2 © £ such that
1y € €qy 12 € ¢,
1{ is a variant of 14,
12 is a variant of 1, }
where 1T denotes eitkter -1 or 1le. If H is any subgraph of a

plan G for 8, the gcopnstraipt fupnctiop freom E(B) to 2 is

J.2.14

59

defined by:

[4 1f e € SUB(H)
{{x,y}} if e = (xyy) € FACT(H)
{{xyy}} if e = (xyy) € RED(BH)
or € = (x9¥y) € REPL(H) wtere
C(e) = (x,y) is a simple replacement

{{X,ﬂy}} U C(K)Y
if e = (xyy) € REPL(H) where
(xyy) is an ancestor replacement
using the clause o0s(K)?, and K
is a subplan cf G

The set U C(e) will be called the constraipnt set of H,
e€E(H)

and will be denoted C(H)e.

The properties of plans discussed so far are rurely
structural, sirce they do not depend on the set of clauses
under consideratione We now intrcduce ttre important ccncept
"correctness", which is related to the unifiability of the
constraint set of a plany, and hence determines the semantics

of planse.

Je2.15: Defipition: A subplan H is said to be correct if

C(H) is unifiatle, in which case we denote the most general
unifier of C{(H) by €(B)y and call the clause os(B)8(H) the

clause deduced by He Note that every subplan of a correct
plan is correcty and that the clause deduced by a cleased

plan is the emgty clause 0.

Je2.15

60

Je2416: Example: If § contains the empty clause 0, we may
use O as the top clause for ccnstructing the tasic plan

G = <{IOP},2>; then G is a closed rlany and o0s(G) = G.

Jdelel7: Example: Consider the plan G of exanple Jele7
(figure 3e8)e Figure J.10 lists the cocnstraints
constituting C(G): each constraint in +this list is labelled
with the integer corresponding to the arc in SOL(G) fram
which it originates (see figure 3J3.8). The constraint set
C(G) is unifiarle, and its mast general unifier is:

8(G) = { (x,a). (y,a), (z,a), (W,i(a))' (y;.i(a)) }

1 {P(x), P(y)}

2 {-P(£(y)), -P(w)}

3 {P(f£(w)), P(£(y;1)}
3 {P(xa)y Plye)}

4 {P(yq)y P(£(y))}

5 {Q(wyb), Q£(z)yz)}
6 {P(£(£(z)), P(£(w))}

7 {P(z), P(y)}

The constraint set C(G) for
the plan G of figure 3.8,

Eigure 3.10

Ihe clause deduced Lty G is tterefore {P(y)}e(G) = {PCa)}.

Je2417

61

de2+18: Lemma:z If G is a correct plan for § generated by

rules (1)A and (2) cnly, then there exists a correct plan G

for $ generated by rules (1) and (3)A ocnly, such that:
0s(G)6(G) = ¢s(G”)6(G")ea

for some substituticn a.

Eroof: If REI(G) = ¢ there is nothing to praove, sc we

assume the contrary. lLet G, be defined by:

V(G,) = V(G)

E(G,) = E(G)-RED(G)
Cne application of lemma 3«2.3 and one agplication of lemma
J3e2410 for eack arc of RED(G) removed,y, rroves that Gp, is a
rlan; so by lemma 3.2.6, there is a derivaticn (Ggyee9G,) of
G such that m<n and for i > m, G; is derived &ty reduction
from G —qe
We now ccnstruct a sequence of gratghs (G&,G;+;,o-,G;)
such that for J 2 m:
(1) Gi is a correct plan,
(1i) os(G]) = ocs(g,)
(iii) G;+| is derived from G; by ancestor replacement and
sinple factoring onlye.

(iv) there is a substituticn a; such that:

zG(Gj) = zG(Gj')‘aj for all z € s(G,;)

Ihis sequence is ccnstructed as follows:

(A) G, =G

m

Je2.18

62

(B) Suppose the ccnstructicn is ccmplete up to G;. Gy+2 1s
fenerated from Gj Ly reducing some x € os(G,) to some
direct ancestor ye. Let B be defined by:

V(R)

V(G;)-{z | z is a direct descendant of v}

E(H)

n

E(G;)—{(w.z)l W or z is a direct descendant of y}
By lemma Je2ed, B is a subplan of G;. Also
os(H) = {y,x1.-.,xk}, where {xl,..,xk} c os(G;)o ¥e now
fenerate a sequence of graphs (G?,...G}) as follows:

(a) Let C(B)Y be a variant ox C(H)e G? is the rlan

aobtained from G; by replacing x € os(G;) through yY
by {XqVyoeeyx,7}e

(b)) For i € {1509k}, G. is the plan defined by:

i

FACT(G)) = FACT(GI~1) Uf(x,7,x,)}

Let Gi4a = G;5 it remains to show that Gj+4 satisfies the

required conditions.

(i) G;+g ie clearly a rlany sc we need only show that
C(Gj+4) is unifiable.
First we show that {xe(G;),ﬂye(G;)} is unifiablee.
Since C(G 4q) = C(G;) U {{xy~y}} is unifiable, by
lemma 236, {xG(Gj).wyG(G,)}.is unifiabley, s0 by the
induction hypothesis condition (iv),
{xG(G;)‘aj,ﬂyG(G;)'a]} is wunifiable and therefore
{xG(G;),ﬂyG(G;)} has a unifier a,‘mau{xG(G,),ﬂyG(G,)}.
Therefore trere is a substitution # such that:

(1)ececa;*mgu {x6(G,)y~y6(G;)} = mgu{x6(G]),~ye(G])}eg

J«2.18

63

We now proceed to show that C(Gj4q) is unifiablee

1l

(2)eeeC(Gi4a) = C(G) U CH)Y U {{x9~y7}}
U {{x;79x,} | 1 € {1geeayk}}

Let §

T106(G])*mgu {x6(G)y ~y6(G)}
We show that § wunifies each set 1in +the above
expressicn (2) for C(G;*ﬂ).

C(Gy)6 = (C(Gy)Y1)(e(G])®mgu {x6(G])y~yE(G;)})

(C(G{)6(G]) Imgu {x6(G) ,~y6(G;)}

since none of the rerlaced
variables ¢f Y~ ! occur in C(Gy)

So since €(G;) unifies C(G/), 5 unifies C(G;).

(C(H)Y)5

[}

(CCB)(Yer—1))(€(G])*mgu {x€(G) y~yO(G,)})

(C(B)}Y™1)(6(G))*mgu {x€(G])y~y6(G/)})
by 2347
=(C(B)€(G]))omgu {x6(G,)y~y6(G,)}

since none of the replaced
variables of 71 gecur in C(H)

So since C(H) < C(G;)y €(G]) unifies C(H)y soc that 6

unifies C(H)e«

{{xe-~y7136 = {{x7"1,~y7"1}}(6(G])®ongu{x6(G),~y6(G;)})
hy 2¢3e7
{ {x9~y11(6(G])®mgu {x0(G,)y~y6(G,)})

s8ince nane of the replaced
variables of 71 gccur in x or y

= {{x6(Gy),~y0(G])}} mgu {x€(G;),-y6(G)}

Therefore § unifies {{x,-yr}}e.

Je2.18

64

Flnally, for each i € {l,oo.'k}:
{x,7,x, }a = {xi?“,xi7‘1}(6(0;)'mgu{xG(G;),wyG(G;)})
by 2.3.7

Therefore 5 unifies {xi7,xl}.

Hence C(G4a) is unifiable so that G 43 is correct.

(ii) OS(G;*.) = os(G]) - {x}

os(G;) - {x}

0s(Gj 44)

(iii) Since {xgyeeeyx,} C os(G;), all the factorings

performed in deriving G:+l from G; are simple.

(iv) 1In the proof of (i) abovey we have shown +that
7‘106(6;)'nau{{xG(G;),wye(G;)}] unifies C(G;+1), so
for some substitution T3
(2)e¢e0(6 4q)01 = T~1%6(G)omgu {{x€(G,), ~y0(G])} }

Let § be tre substituticn defined in equation (1) in
part (i) above, and let @ +1 = T®8, then iz

z € S(Gj 44):

zG(G;+;)‘ai*g z(G(G;+‘)‘T)'B
= z?“'G(G;)‘ngu{{xG(G;).ﬁyG(G;)}}‘B
from (2) abhave

= z6(G;)engu{ {x6(G]). ~ya(G)11}l es

since none of the replaced
variables of Y 1 gccur in =z

= zG(G;)Oaj‘mau{{xG(GjlpmyG(Gj)}}

Je2.18

65

by (1) in (i) above

ze(Gj)°mgu{{x€(Gj).wye(Gj)}}

by induction hypothesis,
condition (iv), and since
z € S(Gj+q) = S(Gj)

But C(Gj§|]

C(G;) U {{xs-y}}

So by lenma 2366

€(G 44q) G(Gj)'mgu{[xe(Gi).mye(Gj)}}

o o ze(Gj+.) ZG(G;+1).aj+|

The seqguence having been constructed, let G° = G; and

a = a,y then:

0s(G) os(G”)

and z€(G)

]

z6(G ')®a for all z € s(G)

e e 05(G)E(G) 08(G°)E(G’)eq

de2.19: Lenma: If G is a closedy, correct rlan for @&
generated by rules (1)A and (2) only, trken there exists a

closed, correct planm ¢~ for # generated by rules (1) and

(3)B onlye.
Proof: If REL(G) = ¢ +there is nothing tc¢ provey s0 we

essume the contrary. Let G,, te defined by:

V(G,_) = V(G)

E(G,) = E(G)-RED(G)

Cne application of leamma 3¢2.3, and one arplication of loemms

Jde2+10 for each arc of RED(G) removedy proves that G, is a

3e2.19

66

plan; so by lemma Je2e6y there is a derivation (GgreeyG,) of
G and for i > n, G, is derived by reducticn from G, —ae Let

B be defined by:

V(B) = V(G,)-{z | J(x,y) € RED(G) such that
Z is a direct descendant of y }
E(B) = E(G,)-{(wyz) | J(x,y) € RED(G) such that

either w or z is a
direct descendant of y }

Againy, lemmas J¢2¢3 and 3.2.10 ensure that H is a subplan of
G .

Now suppose x € 0oe(G,)y then (x,y) € BRED(G) for some
direct ancestor y of x; but x is then a direct descendant of
¥y so that x ¢ V(B)e Hence os(H) C cs(G_).

We now ccnetruct a sequence of grarhs (G, ,GosaseeeG))
such that for j 2 a:

(1) G; is a correct plan,
(1i) os(G]) = o=(G)
(iii) G;+1 is derived from G; by ancestor replacement and
back factoring onlye.
(iv) there is a substitution a; such that:
z6(G;) = zG(G{)‘aj for all z € s(G;)

(v) G, 1s a subplan of G;

This sequence is ccnstructed as follows:
(A) G, = G,
(B) Suppose the construction is complete up to G;- G; +a is

f&enerated from G, by reducing some x € os(G,) to some

direct ancestor ye. Now y @ os(H), since y is at the

Je2.19

The

67

head of an arc of RED(G)y and all such vertices lost

their direct descendants in the ccnstruction of H.

Suppose cs(B) = {y,xl,..,xk}. Ve now generate a

sequence of graphs (G?,..,Gf) as follcws:

(a) Let C(E)r be a variant of C(H). GP is the ¢rlan
obtained from G; by replacing x € os(G;) through y7”
by {xq¥yeesx,7}e

(b) For i € {lyeeyk}, G/ is the plan defined by:

FACT(G{) = FACT(G}~1) U {(x;7yx;)}

Let Glea = Gf; it remains to show that G, satisfles

the required conditionse.

(1), (11) and (iv) are proved analogously to the
corresronding parts oif lemma Je2.18.

(iii) Now since os(H) C cs(G,)y then by condition (iv),
os(H) < cs(G;). Bence all the factorings
perfcrxed in deriving G;+l fronm G; are bhack
factoringse.

(v) G, is a subplan of G; and hence of G;+¢.

4

sequence taving been constructed, let G = G, then

cs(G”) = o0s(G) = €y and G° is ccrrecte

J.2.19

68

d+3: Soundpess and Lcapletepess
Our aim in +this section is to shew that a set of
clauses $ is ursatisfiable if and only if there is a closed,

correct plan fcr 8.

Ledel: Definiticp: If G is a subplan, and ¥ is any
substitution, we define:
E(G)Y = {(x7Y,y7) | (x,y) € E(G)}

Also, we denote the graph <V(G)Y,E(G)r> by GYy and call G¥
an ipstance of G. GY is a varlable-free instapce of G if
for every x €@ V(G),y, x¥ is variable—-freee GY is a variagnt of
G if x7 is a variant of x for every x € V(G)e If G is a
plan for a set £ of clauses,y then clearly s¢ is every

variant of Ge.

dede2: Lepma: let G be a correct plan for a set $ of
clausesy, H a subplan of Gy 2 a model for 8y and HE(H)®Y &
variable~free instance of HE(H): then there exists a walk
(X09Xg)yseey(Xpn g9xn) in H centaining no arcs in RED(H), such
that xg9 = TOPy x, € o0s(B)y, and 3(x,;6(H)®*r) = T for every

xes(B),0<iSn-

i
Proof: We prove this by induction on the number of ancestor
replacements performed in tte construction of Ge.

Easis: Suppose G is cecnstructed without ancestor

replacenente We construct +the walk recursively as

follows:

Jede2

(i)

(ii)

69

The top clause {x | (TOP,x) € SUB(H)} of H is a

variant of some clause in £, and therefore contains

some literal Xq &uch that 2(xq68(H)®Y) = T.

(TOPyxq) is tte first arc in the walk.

Suppose the walk has been constructed up to the arc

(x;—q9x;)y and that x; is a subprobleme.

Suppose (x; 4y¥) € RED(H).

elther the walk fyrom TCP to Xi contains no arcs of
FACTI(H)y in which case all direct ancestors
of x; must lie on the walk, sSo y in

particular must lie on the walke.

or the walk frcm ICP to xj centains arcs in

FACI(H)e In this cases let (xX; 9X; 43) be the

first arc on the walk in FACI(H), where j<i,

then:

eitter that rart of the walk from X; 42 to x;
rasses through y,

or by lezmma Je2.4, y is a direct
ancestor of X;y S0 that part of the
walk from TOP to X, passes through y.

In any eventy, y must lie on the walke.

... I(ye(ﬂ)")‘) T

But 3(y6(H)®Y) = 3(~x,€(H)eY)

= F
which is a contradictione Therefore x:i is not
closed by reducticn in He Hence we frave three

cases to consider:

Je3e2

70

(a) X, € os(H)y in which case n = iy and we have

tte required walk.
(b) x, is closed by factoring in H, say
(x,9z) € FACT(B), in which case:

z€6(H)

x,6(H)

»"e 3(26(H)*Y) = 3(x,6(H)*v)
=T
Let X, 48 = Z3 (x‘.xi+¢) is then the pext arc in
tre walke.

{(c) x, is closed by simple replacement through y in
H; tten we define X, 428 = Yy s0 that
(xlyxi*a) € REPL(H). In this case
{x,44} U {x | (x,44+x) € SUB(H)} 1is a variant
of a clause in $, and therefore:

2([{x, 40} U {x | (x;4a9%) € SUB(H)} Je(H)®¥) = T

But x;4+16(H)

~x;6(H)
e"e 2(x;426(H)®Y) = 3(~x;6(H)®Y)
= F

Hence Jz € {x | (x;419x) € SUB(H)} such that:

2(z6(H)®Y) = T.
We define X ;42 = Ze Then (x;yX;4a)9(Xj4a9X;42)
are the next two arcs in the walky, and satisfy
trte required ccnditionse

Suppose this construction does not terminate as in

case(a), then since V(H) is finite, the rpracess

must #enerate a walk which passes through some

J.3.2

71

vertex of H +twicee In the latter case, there
existe a closed walk in H containing ne arcs in
RED(H)e Py lemma 3e3e2y, howevery, no closed walk
can ccnsist entirely cf arcs in REPL(H) USUB(H).
Therefore scme arc (x;,%;41) cn thies closed walk
must telcng to FACI(H): then trere is a walk from
X; +a to x containing no arcs in RED(H)y contrary
to lemma Je.2.4. Bence the ccnstruction must

terminate as in case (a).

Ionduction: Assume the result for plans constructed with

fewer ancestor replacements than G. We then ccnstruct
the required walk in H exactly as in the basis of the
proof, except that we bhave ocne more case to consider
when extending the walk, as fcllows:

(d) x; is closed by ancestor rerlacement, using a
variant Ka of some subglan K of Ge Suppose x;
is replaced through yae Let Xi+2 = yay tren:

os(K) = {y} U {w | (x;4e9wa) € SUB(H)}
Let (GoseeeyG,) be a derivation of G, then for
scme k<m:
cs(Gy) = cs(Gy—q) U {x;}
G,-e4 is a correct glan for $, constructed using
fewer ancestor rerlacements than are used in

tre construction cf Gy and K 1s a subplan of

Gyg—qe So by the induction hypothesis:

Jede2

72

(1) It R6(K)®1 1is a variahle-iree instance of
E6(K), then Jz € os(K) such that:

2(z6(E)et) = T

Also we have:
C(K)a ¢ C(H)

«"« 6(B) unifies C(K)a

«"e a®*@(H) unifies C(K)
Tterefore:
(2)ecescecencceca®6(H) = G(K)og

for some substitution g

HE(H)®*7Y is a variable-free instance of HE(H).
Suppose (Ka)8(B)®Y is not variable—-free; this
ie possible since K 'is not necessarily a
subplan of HBe 1In this case, Llet Ye¢ be some
substitution such that (Ra)6(H)erYey, is
variatle-free, tten:
(3)esceceeexO(H)®YOY, = %@ if x € V(H)
Ncw gince (Ka)e(B)ervey, ig variable-free, by
arplying (2), we see that K€(K)®(pB®YeY,;) is a

variable-free instance of K€(X), so by (1):

3(z6(K)*(g*rey,))

T <f£or some z € os(k)

Now 2(y6(EK)e(5eyver,)) 3(x; 410 6(H)* (Y97,))

by applying (2)

3(~xi 6(HI®(reYe))

S(-x;6(H)*7)

by (3)

33.2

73

= F
e o 2 % ¥y
e oz € {w |[(x;4q9wa) € SUB(H)}
Let x, 42 = za

Tten (x,...l.xi +2) € SUB(H)

and 2(x; +268(H)*Y) = 3((za)e(H)eYev,)

32(z6(K)e(gerey,))

=T
(xi,xi+1),(x,+l,x,+z) are then the next two
arcs on the walk and satisfy the required

ccnditionse

Jdeded: Iheorem: Ihe Soundpness gf Flans

If there exists a clecsedy correct plan for a set 2 of
clauses, then ¢ is unsatistiaeble.

Exoof: Let G te a closed, correct rlan for $, and suppose 2
bas a modele Then ty lemma 3.3.2, there is a walk from TQOP
to y in G such that y € os(G), contradicting the fact that G

is closedes Therefore £ has no model.

It now remains to show that plans are ccmpletee To
this end, we now present a description of Loveland's model
elimination deducticn systen [24,25,26], which is equivalaent

to the SL-resolution system of Kowalski and EKuehnmer [23]

Jeded

74

dede4: Model Elimipaticp

dededel: Definiticp: A literal occurrence is an ordered
pair (l,i) where 1l is a literal and 1 is an integer. VWe
will refer to literal occurrences sSimply as ggcurrencese.

(1l4i) is said to be an gccurrence of le.

deded4e2: Definition: A chain cf lengtb n is a set K of
cccurrencesy such that:

E = {(lgyl)geees(l,4n)}
Each chain K 1is divided into two disjoint subsets A(Xk) and

B(K), the elements of which are called A-occurrences and

B-occurrences respectivelye.

dedede3: Defipiticp: 1t A(K) = @, K is said t0o be
elegentarye.

Those familiar with ILoveland's descripticn of his
system will thave noticed that our definitions differ from
his in that we have made the difference between "1iterals"
and "literal cccurrences”" explicite We will later define
functions whict mar elements of a chain into the vertices of
a plany, so confusicon is likely wunless we can distinguish
tetween different occurrences of the same literal in a

chaine The abcve representaticn is cumbersomes however, so

we will streamline it as followse

Jeded.3

75

dedede4

(i) The chain {(1..1),..,(1n.n)] will henceforth be
represented as (la,..,ln).

(ii) If 1 = (mweyi) is an cccurrencey vwe use 1it(l) and
pos(l) tc denote m and i respectivelye.

(iii) If L is a set of occurrencesy we will denote the set
{1it(1) | 1 € 1} by lit(L)e.

(iv) For any substitution 7y we define (myi)rY to be the
occurrence (mYqyide

(v) If L = (14....1n) is a chain, we define

LY = (l"yyoopln?)o

This representaticn Xfor chains allows us to refer to

the relative pcsitione ¢f occurrences in chains as follows:

Jdeded4.5: Defipition: If K is a chainy and 1,k € K, then we
say that 1 is ic¢ tbe left of k¥ ip K if pos(l) < pos(k), and
denote this by 1 <(K) ke Sinilarly, we can use such phrases
as "k is the 1last occurrence in E"; "k and 1 are separated

by p"; and 80 cne

dede4.6: Definition: A chain K is said to be Rreadmissible

if and only if:
(i) any two B-occurrences of complementary literals are

separated by sgome A—goccurrences

Jeded.6

76

(ii) no B-occurrence appears to the right of an
A-occurrence cf the sane literal,
(iii) there are no two A-occurrences of identical or

complementary literalse.

dededed: Definition: A chain is adpissible if it |is
rreadmissible and its last occurrence is a B-occurrencee

The empty chain is defined toc be admissiblee

Sedede8: Definiticg: If M is a set of elementary chains, a
finite sequence (KgjeeeK,) of chains is called an
MNE-deduction of E from M if Kg is a variant of some chain
in M, and for each i € {l,eeyn}, K, is derived from
Ki—12 = (kKgyeesk,) by one of the following rulese.
(i) Extension

If K, .4 is admissible, and K = (lyseeel,) i a variant

of some chain in M, tren:

K, (Kgopoosk ylogecesl, }7
and A(E;) = (ACK;—4) U {(x,ym)})r

mgu ik, ¢~14}

where Y
(ii) Reduction
If K3 1s admissible:

Ki = (k‘y-o,km—[)y

and A(K;) = A(R, —¢)Y

where ¥ megu ik, ,-k; }
and (k; sj) € A(K; _q)

for some k; to the left of ke

Je3e4.8

77

(1ii) Contraction
If K| - is preadmlssible, and the last occurrence of

K, -.q¢ is en A-occurrencey theni

I3

K, (kgyoeok~2)

it

and A(K;) ACR —q)= {(k,ym)}
J3e3e4.9: Definitiop: 1f ¢ is a clause and k¥ € ¢, then a
mairix chain for £ is a chain obtained by 1imposing some
ordering on €e Note that there is only one oécurrence of
any literal in a matrix chaine
I£f £ is a clause, a gairix set for £ is a set N of
matrix chains for € such that:
(a) I£ x € ¢
then N containe a chain in which the first occurrence is
an occurrence aof Ke
(b) If Lg,15 € ¥ and the first cccurrences of Ly and Lz are
cccurrences of the same literal of ¢
then Lg = 1,
If $§ is a set of clausese. let F be a family of matrix
sets consisting of one and only ocne matrix set for each

g € $§, then UF is called a gatrix set for 2.

S3ede4.10: Defipiticpn: A clause ¢ is said to be ME-deducible

from 8§+ a set of clauses, if there exiets an NE-deduction

(KgeeeskK,) frcm scme matrix set N for %, such that

£ = Lit(B(E_)).

Jede4.10

78

3ede4.11: Iheorem:(loveland [25])
£ is unsatisfiable if and only 1if the enmpty clause O is

NE—~-deducible frcm feo

Jedede12: lemma: If a clause ¢ is ME-deducible from a set $
of clausesy then tlrere exists a correct plan G for $, €guch
that G is cénstructed using rules (1)A and (2) onlyy and
0s(G)O(G) = €.
Proof: Let (Egyeeyk,) be an MNE-deduction from scme matrix
set M for $ such ttat € = 1it(B(K,)). We show now that for
each i € {0jseeyn}, there is a ccrrect plan G; and a function
g, 3K, —=> s(G;) such that:
(1) G, is constructed using rules (1)A and (2) only, and
is correct,
(1i) g, is injective,
(iii) g, (B(E;)) = 0s(G;)y
where fcr any set of occcurrences L, we define
g, (L) = {g; (1) | 1 € L}
(iv) 1it(l) = g;(1)e(G;) for all 1 € K;,
(v) If L © A(E,) and L <(E;) py then g (1) is a direct

ancestor cf g, (r)e.
The proof is by inductiocn on ie

Basis: Ka is a variant of a <chain in N, and sSo

{1it(1) | L € Kg} is a variant of a clause in 8. Let Gg

be the basic plan with this top clause, and define:

JeJdedel2

79

2a(l) = 1it(1l) for all 1 € Kg

Then Gg and gg have tte required gropertiece.

Induction: Assune G;-a and g; -1 have been constructeds. We

have three cases to considere.

Case(a): K; is derived by contraction Zfrom Kj_—g-. Ve
define:

Gy = Gj—u

and g; 8 —alk

Again G; and g; bhave the required prorpertiese.

Cage(b): K, is derived by reduction from K;_—qe.

Let K; -3

(k.,co'km)

then Ki (kg,oo'km—a)'y

and B(E,) = (B(K;—q)—{(k,ym)}7

where 7 mgu {k, ¢~k }

and (k; yJ) € A(K _yg)
Now (k;+J) € A(E —q) and (k;4J) <(K;j-a) (kpem)y so by
condition (v) on G| -uqv gi_u((kj.J)) is a direct ancestor
of g, —1((k om))e Alsoy (X ym) € B(K;-q)s so that
gl-l((km.n)) € o0s(G; -q) by condition (ii)e The conditions

for reducing gi_.((km,m)) to gl_g((kj,J)) are thereby

satisfied in Gi_‘, and we define G, accardinglye.

We define g, by:

e (xy) = Ei—n(k) for all kXY € K,

3e3.4.12

80

(i) G, is constructed using (1)A and (2) only, since it is
derived by reduction frcm Gy —gq which satisfies this
condition ty the inducticn hypothesise. e muet now ahow
that G; is correcte

Now C(G;) = C(Gi—a) U {{g —¢((kmym))y~gi—al (ks »J))}}
But mguC(G;—¢) = 6(G;—3)y so by lemma 2436 C(G;) |1is
unitfiable if
{{R; —a((K,em))O(G; —a)y—g; —a((ky +J))E(G; —a)}} | is
unifiablee. But by tte inducticon hypotresis, from

condition (iv) we have:

& —a((k,,m))O(G; —a) Km

and 8; -—‘((k, IJ))G(Gl-I)

k;
So C(G;) is unifiable if {kje-k;} is unifiable;
therefore, since mgufkpywk;} = ¥y C(G;) is unifiakle.
Therefore G, is correct and:
6(G;) = 6(G; —¢)*Y Ly lemma 2.3e6
(ii) g; is clearly injective, since g -1 is injective, by

the induction hypotresise.

(iii) g; (B(K;)) 8 ((B(E; —¢)-{(kyym)})7)
= g, (B(E; -3)= {(kyym)7})
= g, (B(E; —1)7)-{g; ((ky,ym)7)}
since g; is injective
= g —a(B(E; —g))-{g -1 ((k,sm))}
= 08(G; —g)-{g; —a((K ym))}
= os(G,)
(iv) Suppose kY € K,y then k € K; —4 and:

Tit(k7)) = 1it(k)Y

Jededel2

81

1]

(gi—a(k)6(G;-¢g))7
by ccndition (iv)

gi—-a(k)O(Gj—-31)%7)

gi—-a(k)E(G;)

as shown in (i) abavee.
(v) If qY € A(EK;) and q¥ <(K;) g7y thten q € A(EKi_;3) and
q <(Kj—q) Py so that gi_3(g) is a direct ancestor of
gi—a(p) by condition (v)e Conseguently, g1(q7) is a

direct ancestor of g;(pY)e.

Case(g): K;i 1s derived by extension frcm Ki—ge

Let Ki—-a (kl'oo’km)

1]

then Ki = (kg,oo,km,].z,ooo'].r}'y

and A(Ri) = (A(xi--—[) U {(km'm)})X 4
where 7 = mgu{ky~1;}
and K = (lggessl;y) is a variant of

some chain in M.

(kmym) © B(K;_4), €0 by candition (iii) on Gi—ay
g, -a((k _ym)) € 08(G;—q)e Now {Lgyoesl,} is a variant of a
clause in % so we can replace gi_;((km,m)) through 14 by

{11...0111} to obtain G‘o

We define g, is fcllows:

g;—alk) for all k € K; ¢
ai(kT) =
1lit(kx) € V(Gi)-V(Gi_.)
ctherwise

3e3e4.12

82

Note that since ttere wmay be more than one vertex in a
plan corresgrcnding to a particular literal, we mnmust
specify ir our definition of 8 that for

i

kK € {(12,m+1)....,(1r.m*r—l)}, g8, (k7) is a pew vertexe

(i) Gi is ccnstructed by siaxple rerlacement from Gj—as
which is ccnstructed using rules (1)A and (2) only, by
the inducticon hypothesise Therefore Gy is ccnstructed
using (1)A and (2). We must now show that G is
correcte

C(G,) = €6, 1) U {{g—al(kysm))y1g}}
Now C(G, —q) is unifiabley, with mgu 6(G, -¢); so by lemma
24366, <(G;) is unifiable provided that
{@,—a((k_ ym))IO(G, —¢4)9~12€6(G;_3)} is unifiable. But by
the inducticn hypothesis, from condition (iv) we have:
g —1((k, ym))O(G;) = k,
Alsoy since 14 contains only variables which dc not
occur in G; g3
-146(G; —4) = 14
Hence C(G;) is unifiable if {k,,s21lq} is unifiable; so
since mgu{km,wla} = Yy C(G;) is unifiable. Therefore Gy
is correct and:
€(G,) = €(G; -3)®*Y by lemma 2366
(ii) We establish that g; is injective by making tlre

following observations:

3e3e4e12

83

(1) g, |E, —q7 1is injective since, by the 1induction
hypothesis, g, —-a is injective.
(2) g | {l{lzymt1)yeeey(l, ymtr—-1)} is okviocusly injective.
(3) If kg € E; -2 and kz € {(layntl)yecey(l; ymtr—-1)}
then g; (Ka7) € V(G; —q¢)
and g (k27) € V(G; } — V(G —q)
so g (ke?) # g (k27}
(iii) B(K,) = E(E{—¢) = {(Kmem)}?
U {(logmt1)yeees(l, ymtr-1)}7
e @ (B(E)) = g (B(E —a)7) - & ({(knym)}?)
U f1it(k) | ¥ € {(laym)yeces(l, ymtr-1)}}

since @ is injective

&8; —a (B(Ei—a)) - {Bi -l((km'm))}

08(G; —g) - {g1—-1((kyym))}

g —a(B(K; —¢q)) - {@gi—2((kmym})}

by the induction hyrothesis

os(G;)
(iv) Suppose 1Y € K; , then either 1 € K; 3 or 1 € K.
In the first case:l
1it(l7r) = 1it(l)Y
=(g;—a(l1)6(G; —¢))

= g;—-4(1)6(G;) as shown above

In the seccnd cases

1Lit(1lr) = 1it(1)”

(11t(1)6(G, —1))Y

Je3e4.12

84

since 1lit(1l) contains only
variables not in Gij—q

1it(1)e(G6;)

gi(lr)e(G;)

(v) Suppose qY € A(K;) and q?¥ <(Kj) p¥. There are two
cases to ccnsidere.

(a) Suppose p € Ki-z9 then q # (kpem), €0 that
q € A(K;—q)e Alsoy, q <(EK;j—31) p so g —-a(q) is a
direct ancestor of g, —q(p)e Consequently, g; (g7) is
a direct ancestor of g; (p7)e.

(b) Suppose p € K, —qay then for scme &y where 2<s%r,
g2, (pY) = 1, € 08(G,)-0s(G;-¢)5 so by the ccnstruction
of G,y & ((k,ym)Y) is a direct ancestor of g (p7).
But q7 € A(EK,)y so either q¥ = (k,ym)r and the result
is proved; or g € A(X;_4) in which case g (q7) is a
direct ancestor of g; ((%,,m)Y)y by case (a)y and

hence of g; (p7Y)e.

Hence the required sequence of plans existse.

Ncw ¢

1it(B(K,))

{1it(1) | 1 € B(k,)}

{a,(1)e(G,) | 1 € B(E,)}

by ccndition (iv)

3ededel2

85

i

&, (B(K_))6(G,)

os(G_)e(G_)
n n
by condition (iii)

Therefore G = Gn is the required glane.

0
Jededeld: Corollary: If & is unsatisfiabley there exists a
closedys correct plan for £, ccnstructed using rules (1)A and

(2) onlye.

Proat If $ is uncsatisfiable, then there is an NE-deduction
of the empty chain from 8, sScy by lemma Jededel2y, there
exists a correct plan G for & ccnstructed using rules (1)A
and (2), such that o0s(G)6(G) = DO.

0
Jedede14: Corcllaxy: If $ is wunsatisfiable, there exist
closed, correct plans G and B for £, where G is constructed
using (1) and (3)A, and B is ccnstructed using (1) and (3)B.

Proof: This follows from corollary Je3¢4.13 and lemmas

Je2. 18 and 3-2.19.

Either of tke above corollaries implies the

completeness of general plans as followse.

3eJed.14

86

Se3+5: Theorem: Ccmrleteness of plans

If § is unsatisfisble, there existe a <closedy, correct rlan

for S.

We are now in a position to demcnstrate that the
restrictive ccnditions on reduction and factoring are
necessary to ensure socundnessy by presenting the following

example as promised in section 3.2

Je3.6: Example: Let $ be tte set of clauses:
{ {P(x)y F(a)y R(x)},

{-P(y)y Q(y)},

{-R(z)y C(2)y N(2)},

{-Q(w), =R(w)},

{-N(r)y -E(r)y, =R(a)}]}
where a is a ccnstante g is obvicusly satisfiable.
Consider the graph of figure J.112 this grarh can be
constructed using the rules for plan construction with
condition (¢) on reduction removedy, and condition (c) on
tacklactoriné weakened to "y is not an ancestor of x". This
graph is <closed and |is clearly correct, despite the

satisfiability of £.

Je3e6

87

A plan for the set of clauses of exanple JeJeb demonstrating
the unsoundness that results when the restrictive conditions
on reduction and factoring are removede

Figure 3.11

Je3a6

88

de3.7: Sound and ccprlete subsets af rules

JeJdelel: Definition: If R is any subset of the rules for
constructing plans, we say that R is gound (cgpplete) if,
for every set of clauses $, £ is unsatisfiable ix (only if)
there exists a closedy correct plan for £ constructed using

1the set R of rulese.

By theoren 33«3 the set of all rules is soundy 8o
cbviously any subset is alsc sounde By corollary 3344413
and corollary 3Je3¢4.14, the sets {(1)A, (2)}, {(1), (3)A}
and {(1)y, (3)B} are complete, sc a superset of any of these
gsets is also completee Furthermore, these three sets are
minimal in the =ense that nc subsets of them are complete.
This is clear if we observe that sets which do not cantain
(1)A are not comglete; and that neither {(1)A, (3)} nor
{(1)} are complete sincey, for examrle, neither can generate
a closed plan for the unsatisfiable set of clauses
{ {P(x)sP(3y)}s [-P(x)y-P(¥y)} }. We also note that the
subsets {C1)A, (2), (3)} and {C1)A, (2), (3)A} are
egquivalent in the sense that both generate exactly the same
plans for a given set of clauses (corocllary Je2e12)e
Furthermore, bcth are equivalent +to {(1)A, (2), (3)B} in
that they generate the same set of closed rlans for a given

set of clausese.

Jede7e1

SHARIER_ 4

Cconstraint Processing

In chapter 3, we described the construction of prlans
and proved the soundness and completeness of various
deduction systems based on theme. We have not, however,
suggested any methods for umnifying the set of constraints

produced during the constructicn of a plane

In a practic#l theorem—proving system, it would
cktviously be unwise +to attempt to caonstruct a closed,
correct plan in the way suggested by the presentaticn of
chapter 3 (that is, by constructing a closed plany, then
veriftying its correctness) since congtraints introduced
early in the derivation may be nonunifiabley, so that
continuing the derivaticn rast the foint where these
constraints are produced is pointlesse Instead, as each
open subprobles is closedy, the new ccnstraints this closure
introduces should be unified with the constraints already
producedy to determine whether tthe new plan is correcte
Consequently, tc process tte constraint set, we require an

algorithm which <can efficiently unify +the constraints

op—-line as they are producede. This requirement indicates

89

90

which of the existing unification algorithms we should
choose as the kasis o1 our constraint processing system,

according to ttre following argumente

Two formulae may be nonunifiable for two reasonse For
exampley, the formulae F(G(x)) and F(a) cannot be unified
because of the disagreement Letween the functicn symbol G
and the constant e The second type of nonunifiability is
exemplitied by the twc formulae F(G(x)) and F(x)y, which

cannot be unified because x occurs in G(x).

A recent unificaticn algorithm of Baxter [4,5]y is
brased on detecting these twoe types of nonunifiability
separately, and accordingly, corerates in two stages: first
the trapnsformaticnal stage detects nonunifiability due +to
incompatible functicon symbols, then the ggrting stage checks
that no variable 1is unified with a formula in which it
occurse This requires +time rroportional to nG(n), where n
is the 1length of the input formulae, and G(n) is an
extremely slow~growing function of ne The transformational
stage operates in a serial manner on the constraints, and so
is particularly suited to our on—line application: the
sorting stage 18 a +topological sort of a digraph, and
unfortunately, no efficient ocn-line algorithm is kpnown for
this taske. However, when a new constraint is added to a

previously wunified set, only the sorting stage of the

91

algorithm mus+t be completely repeatede By contrast, other
unification algorithms «combine the transformational and
sorting stages, s0 that complete reprocessing muet be done
following the addition of a new constrainte A recent
algorithm of Faterson and Wegman [33], although of linear
time complexity is of this latter typey, and hence is not
suited toc our pur;oées. In facty, because of its two-stage

structure, Baxter's algorithm appears to be +tte only one

which satisfies o©our requirement for efficient cn—line
operatione.
Another inportant consideration when deciding how

constraints are to be processed, involves jLackirackipng: a
problem which +to date has received little or no attention

from researchers in the field of mechanical deductione.

At each gxoint 1in the search for a rraoof, there 1is
usually a variety of possible actions which can be performed
by a theorem—proving system: it must choose the subproblem
toc work on next, then choose which of several solutions to
that subproblem it should trye. If the system should fail to
solve a subprchlem, it must return to an earlier point in
the search, and attenpt an alternative solution +to an
earlier subprotleme. This acticn is termed "backtracking"e.

The nusual strategy emnloved in backtracking., is to returmn to

the last roint in the search at which there exists an

92

untried alternative scluticne The wastefulness of this

exhaustive approach 1s illustrated by the following examplee.

4.0: Exanple: Let # be the set of clauses:
(1) P(x)sR(b)yR(x)
(2) ~P(x)yQ(x)

(3) -P(x),B(x)

(4) -Q(x),E(x)

(5) =Q(x)¢N(x)

(6) -H(x)yE(x)

(7) ~H(x)yN(x)

(8) -K(x)yN(x)

(9) -K(x)yS(x)
(10) =N(x)y¥(x)
(11) -N(x),S(x)
(12) —M(x)y,-B(x)

(13) -S(x }Jg=B(x)

(14) -R(x)
(15) B(a)
where a and b are constantse. Suppose a proot of the

unsatisfiability o¢f this set is attempted vusing model
elimination with factoring [27)e To determine the order of
alternative solutions, surpose that the rules are tried in
the order: contractiony reduction, factoring, extension; and
that input clauses for extension are taken from £ in the

above ordere Selection of subproblems is right to left,

4.0

necessary to naintain soundness of model—eliminaticne
following search is performed, in which A-literals
framed:

(1) P(x)y R(x), R(x)

(16) P(b)y, R(Ek) Factoring

(17) P(p),[BTE]] Extension with
(18) P(b) Contractian
(19) '], Q(x) Extensicn with
(20) [Fta11,[0TE)], K(1p) Extension with
(21) [Fx11,[08)], k(]], N(D) Extensicn with

(22) [FLRY],[0181],[RTeT]1,[H{E]]s -B(b) Extension with

Backtrack to (20)

(23) I'Fx11,[0(&Y1,[XTR]Y], S(b) Extension with

. three backtrackings occur here

(39) [F(pI1,[ART].[B{RY].J5(k]]s ~B(b) Extension with

Backtrack to (1)

(40) P(x), R(:),[E]] Extensicn with
(41) P(x), R(t) Contraction

(42) P(x),[RT(:]] Extension with
(43) P(x) Contraction

(44) [PTxJ1, Q(x) Extensicn with
(45) [FIxY],[0xT], E(x) Extension with
(46) [FxI3].I013.IBTxT], MCx) Extensian with

(47) [PCx3],[O0xT],[RTxT],TH(x]]y —B(x) Extension with

93

The

are

(14)

(2)

(4)

(8)

(12)

(9)

(13)

(14)

(14)

(2)

(4)

(8)

(12)

4.0

94

(48) [P{(3])1,[01=a7],[XTa1],[¥{a)],[=ETaY] Extension with (15)
(49)

. Contractiaons

(83) =n

The solution of subprcblem -B(b) is attenpted <five
times before tte search eventually backtracks to (1) to try
solving R(x) by extension rather than factoringe. 7This could
be avoided if the system was able to observe that the
nonunifiability which makes ~B(b) unsolveable, is caused by
the factoring of R(x) to R(b) at the beginning of +tre

gearche

A system for processing the ccnstraints should
therefore be able to locate the source of conflict vwhen
nonunifiability occurs, in crder that the deduction system

may backtrack tc the correct point in the searche.

4.1: Ibhe Baxter Upification Algorithn

4e.l.1: Defipitiop: A consiraipt is an uncrdered pair of
formulaea If C is a set of constraints, we will say that a

formula p is a subformula of C if r is a subformula of some

formula q, suct that {q,r} € C, for some re.

4e1.1

4.1.2: Irspsformational Stage

The input to this stage is C, the set of constraints to
be unifiede Wren the algorithm stops, either tre original
set C is nonunitiable,y, or the algorithm returns a partition
Feout of all subformulae occurring in C. Feout has the
property that for all substitutions €6y € unifies C if and

only if € unifies Fecute

During this stage two sets are manipulated: a set S of
constraints, with initial value C, and a set F of classes of
formulaes C and S may contain repetiticnse F is initially
Feiny the partition of the set of subtformulae of C in which
each class contains cne and c¢nly one formula. The £final
value of F on successful termination af the algorithm is

Feouty and 8 is finally enptye.

In his description of the algorithm in [5], Baxter
allows Fa.in to contain several identical classes containing
the same term, although variables <can appear ¢cnly cnce.
This is because his main ccncern is the complexity of the
algorithm, and since he assumes the constraints to be
unified are input as strings of charactersy, he must allow
the repetition ocf terms 1in order to avoid the task of

identifying multirle cccurrences of a ter=ne.

96

We, however, are not ccnsidering the unification
algorithm in isclaticn, but as a component of a
theorem—prover in which structure is shared and every
subformula is represented cnly concee Consequently, we can
restrict every class in Fein to be unigque, and as a result F
is always strictly a partition of a set according to the
usual definiticne. This restriction allows us to make the

following defiriticne

delelel: Definition: I£f F is a partition of thre set of

subformulae of Cy, and p and g are subformsulae of C, then we
denote by [p]F the class in F which contains p, and define
P=gmod F if and only if [p] p= [al e When F is

understood frosx the context, we will write [p] for [p],.

The algoriths which performs the transformational stage

is as follows:

4.1.2.1

87

algaritbm TRANSFCEN(C);
g <--= C3;
F <== Fein:
xhbile s # ¢
do

Delete a ccnstraint {pgyp2} from S;

if [pa) # [e2]

r

then | if [pe] contains a term f4(giasecerqam)
| and [r2] contains a term f2(gz2g9eee9g2n)

r
then | if £f. # £
| r
| then | unification fails;

| | stop
| L
| else add to S the pairs:

{ {daevg92a} secey {gansganl

Beplace [py] and [p2] by [pa] U [p2] in F

[———— ———— ——

Eilop

Two important results ccncerning this algorithm are:

4e01e2.2: Lepmps C is unifiatle with mgu €6 1f and only if

TRANSFORN(C) succeedsy, producing partiticn Fe.out which has

mgu OBe
4ele2.3: Lenma: it ts4 = t2 mod Feout, where
tea = £(QageeeesqQgn) and tp = £(gagseeesdan) then for each

i e€ {1,.00'0}' qa; = g2 mod Fecute

Both these results are proved in [5].

4‘1.2.3

g8

4.1.3d: Sorting stase

To determine whether or not Feout is wunifiable, it is
necessary to ccnstruct a certain directed graph whose vertex
set is Feoute This digraph is then torologically sorted:
that is, an attempt is made to place the vertices of the
digraph in a 1linear c¢rder wtich preservee thre relation
defined by the arcs of the digraphe. A standard algorithas to
perform this task is given in [189]. If the digraph can in
fact be sortedy, tren Feout is wunifiable, and the mgu can be

determined from tte resulting linear ordere.

4ele3.1: Detiniticp: I1If C is a set of ccnstraints for which
TRANSFORN(C) succeedsy returning Fe.outy, then D(C) is a
digraphy, where V(ID(C)) = Fe.outy and E(D(C)) is defined as
followse Suppcse there are n classes 9f Feout containing
terms, and let tgjseeest, be m terms such that [t] = [t;] if
and only if 1 = je Suppose also that t; = 1‘(piggooo.pini)
for all i € {l14eeeym}, then:

E(D(C)) = {([t;Jelpi;]1) | 1 € {lyeeoym}y J €@ {Llyeeesnili}

We note that given a particular partition Fe.out, D(C)
is uniquee. This follows from the fact that if a class of
Feout contains +termsy then those terms all begin with the

same function symbcl by lemma 4ele2e2; and by lemma 4.1.2.3,
the set of arcs leaving a particular vertex is independent

of the term we chocse to represent that vertexe

4ele3.1

89

Because of tre ncndeternministic nature of TEANSFORM, we
cannot assume that the output partiticn or digraph are
uniquee. It happensy however, that thies 1s the case; this

fact will be proved later in the chaptere.

delede2: Lepma: If C is a set of constraints, then C 1is
unifiable 1f and c¢nly 1if tte digraph D(C) can be

topologically scorted (3e.e¢e iff D(C) has no cycles).

Ihis is proved in [5].

We combine lemmas 4dele2e2 and 4elede2 into the
following thecrem, which is tte basis o¢f the results

presented in tre rest of this chaptere.

4eled4: Theorem: A set of ccnstraints is unifiable if and
only if TRANSFCEN(C) succeeds returning partition Fe.out and

the digraph D(C) ccnstructed from Fe.ogut has no cyclese.

4.2: The modified unificaticn alggritbo

All unification algorithms detect unification failure;
however, as we illustrated in example 4.0, 1f a deduction
system is to backtrack intelligently, it must be able tc go

further than this, and locate the source of unification

failuree The unification algorithm as described in section

4.2

100

4.1, halts at tte first sign of nonunifiability. 7This does
not guite suit our purposes since a set of ccnstraints may
be nonunifiable Ffor more than one reascn, and we wish to
remove all sources of nonunifiabilitye. Consequently, we
modify the algorithm so that the transformaticnal stage
coentinues to merge sets even though they may cantain terms
beginning with different function symbolse. Tre modified
algorithm classifies the subfcormulae oc¢f C into sets of
formulae: if any of these sets contain incompatible terms,
we must then discover how to remove constraints in order to
subdivide the sets g0 that the resulting partition contains
no such functicn symtol clastese.

The sorting stage of the algorithm must. be similarly
modifiede The aim of perforning a topological soart on the
digraph D(C)y, is +to determine if a cycle exists. We must,
however, enumerate the cycles in order to eliminate them

alle.

4e2.1: Ihe algorithm CLASSIFX

As with TEANSFORM, the input to CLASSIFY is C, the set
cf constraints to be unifiede. When the algorithm halts, it
returns a partiticn Feout of the subforsulae of C, and a
partition Peout o0t the subformulae of C which are terms.
Recall that a term is a formula that is not a variable
(242.6). CLASSIFY manipulates three sets: a set S of

constraints with initial wvalue Cy, a set F, which is a

101

partition of tre set of subformulae of Cy, and a set P, which
is a partition of the set of all terms which are subformulae
cf Ce F is 1initially Fein, the rpartition in which each
class contains only one memberes Similarily P 1ieg initially
Pein in which each <class contains only one membere As
beforey C is uniftiable with mgu €, if and only if Fe.out is
unifiable with mgu 6. Each class in F always contains
either no classes of P or entire classes of F throughout the
execution of CLASSIFY, and if two terms in the same class of
F begin with ttre same fumncticn symbcl, then they also belong

to the same class of FPe.

4e2elel: Definiticpn: If t 1s a term which 1is a subformula
ot C, ;e denote by <t>;, the <class in P containing t, and
write tq = t2 nod P if and coly if <t32p = <t3”pe When no
ambiguity is likely we will write <t> for <t>p. This

rarallels definiticn 4dele2¢1 caoncerning classes of Fe.

The modified transformational algorithm is:

4.2.101

102

algorithm CLASSIFY(C);
§ <-- ¢C;

F == Feiny

P <—-- Pein;

»hile S # ¢

o

do

elete a ccnstraint {pg,p2} from &3

if [pa] # [£2]

r
then | T <-- [pe]s;
| sbhile T contains a term tg = f(qgggseeesdan)

r
|

|

|

|

|

| | r

| | do | Delete from T all terms in <tz >;
| | | i [p2] contains a term

| | | ta = f(gagreeerqgp;,)

| | | r

| i | tten | Add to S the pairs:

| [i | {da4+92e} seces {Qansaznls
| | | | Replace <t4> and <t2> by

| | [| <t42U <t2> in P

| | L L

| | BRerlace [pg] and [p2] by [pa JU [p2] in F
L L

In the remainder of sectiocn 4.2.1, we prove several
rroperties of the algorithm CLASSIFY, and in particular, we
show precisely how TRANSFCEM and CLASSIFY are relatede
These procfs refer to the flowcharts of the algorithms,
shown in figures 4.1 and 4.2. In the Zflowchart for
CLASSIFY, each decision box is labelled, and each branch out
of a decision tox is labellede. Hence we can specify an
execution (or rart of an execution) ct CLASSIFY by an
alternating sequence 0of decision boxes and branchese.
Suprose a path is specified in this way, then we will use
the notation S(C3,n) (for example)y to denote +tre value of
the variable S at the n-th encounter with the decision box

labelled C3 on that pathe.

de2e1.1

103

(TRANSFORM(C))

S<C
F <« F.in

¢

Y
< Is § empty? > = D : STOP)
A No¢

Delete {p,,p,} from S
PT1 ¢
< Yes < [p‘] = [pz:l? >

éNo

< Doesﬂ[pjj contain a term fy(q,...,q;,,) \ Yes | PT3

and [p,] contain a term fy(qyye.,q5,) ? y 4 <
Ne EXIT
Add to S the pairs:
191092052 {10020}
A
~
Replace [p,] and [pzj
byl p, Ulp,]inF
A
—<

The flcwchart for the algorithm IRANSFCRN.

Eigure 4.1

442011

104

('1_,.»\5511:\’((73

S« C
F <« F.in
I <« P.in

ls S empty?

Yes > PCl STOP

A Delete {p,,p,} from S PD(C3)<
‘ Does T contain a term
No t = f((hp---v(‘hn)?
PC3 AY PC6| Yes

ipd=0[p,]?
0 LpyJ=Lp,] > Delete all terms in \
es PC4{No <t,> fromT 4

Tlnd PCS :
@

AN 4 .
<Does [p,containa > PCD7

= ?
é <} tcr"l‘)t(zjg llz;:;-sﬂ(hn) y No

Replace [p, land[p,] .)-\dd to'S the pairs:
byl p, JULp,Jin ¥ (PPN PYY RIS P P A

+ Replace <t,> and <t,>

by <t,>U<t;,>in P

1 N

The flowchart for the algorithm CLASSIFY.

\v4

Figure 4.2

4e2.1.1

105

All our troofs of properties of CLASSIFY are of the
same general fcrme Ve define some assertion H about the
state of the variables, and attempt to show +that it always
holds at the point C€1 in the flowcharte This invclves
investigating tte two paths PC3 and PFCS5 from C1 to C1,
showing that if the asserticn holds at C1 at the heainning
of such a locpy it again holds on returning +to Cle To
complete the inductiony, H must be shown tcg hold at the first
encounter with C1 in the execution of CLASSIFYe The path
PCS includes a 1loop from C3 to C3, so in general, we must
establish the invariance of some other assertion at C3 in
crder to prove tre main resulte An overview of techniques

for proving properties of programs is given in [29].

de2ele2: Example Figure 4.3 illustrates an execution of
CLASSIFY(C)y, wirere C is the set of constraints:
{ {F(x9x)y v},
{vey F(f(a),h(y))},
{FCuyf(y))y, F(h(g(b))yul}
{b(u), n(£(a))} 3
‘and a and b are constants. The set of subformulae of C is

prartitioned intc six classes:

4.2.1.2

106

Feout = { {F(xex)y F(f(ad)yh(y)), v},
{F(u,£(y)), F(h(g(b))yul},
{h(u), n(£(a))},
{xy uy £(a), £(y)y h(y)y hig(b))},
{as ¥y (1)},
{n} 1
The set of subformulae of C which are termsy, is partiticned
into eight classes:
Peout = { {F(xyx)y F(£f(a)yh(y))},
{F(uyet(y))y F(h(g(b))lyuld},
{h(u)y, n(£(a))},
{f(a), £(y)},
{n(y), b(g(»v))},
{a},
{g(p)},

{p} }

4e2el.2

107

TeF sINITI
(*SDT o8evd oo psnuyiuod) *IUSIQU ISITT BF JUTVIIOUOD BY3
42FYa 39 ID YaiTA J23IUNODUS B3 SOIVDTPUY UMN]0D ,PBAOCHAY, 24 $L1I91TETS :sivadde L6ITF FUFCIRTUID HOYPROASDIIOD
ayy YOTYA 3% JI2eUOMO1IY 243 UT ID YITA I23UNODED ey3 S33edIPOY S yPa3dNpozzuy, pm»1124e] TENIOD SY3} UTF J2gENu
V *T°I-f°y e1dmex?s JO SIUTRIINUGOD JO 38§ 8y} Sf O Ixsyn $(D)XJISSVID JFO UDFINDIX® UP $231VX}13INQ1T O1Q93 STYL

| g T T T —— Ll

1 a | ((=)F)ux | ((o)r)g | ((e)ryyq | (ie)rya |

I | | | 1 |

| (q)s | (n)Yx | () | (nyy | ()}

I } | } -———] - I Y v 1
i (caj)@y | a | a | T | a | (s £} | z1] orxl
] |— 1 | } -— I ===
} (£)r | (a)a | ()8 | (q)3 | (a)s | fo t4} “ uﬁu cﬁw
i | | | | - —— -1 -]
n “ ((x)z2)q	((a)s)g	(Cayay)y	((a)®)y	fto)x ¢n} _ oun s
I	Rt } I-	—=)—-		
£	(£3F (4 (a)ZH)udas (04 ((a)FHg)z J(ns(q)®)1)g	} o 2(L)r) “ 6) ¢		
} I	i I } —=f——1			
(£)yq	n	()	(£)r	()
	-1 } I	}——1-—-		
i v	£ LU n	n	{csr)q ¢x}	L
		!	l ——] -—=]--=1	
] te)x	(&)	((£)F4n)ge	((£)x¢n)g	((A)x*n)g
]	! ! —_——	J-——) ==}		
] x	s	£ £) £ fcewyrdg S(oyn}	s	¥
I] -] I	-==]--=1		
] ((e)z)qg	x	(£)yg	} (f)yag	} (£)9
j—— -1 ————]e—— e I-	-==] ===			
(n)ya	(e)r	v	v	e
I - } ! I--] J—1=-==				
J(nd((aIBrgy)s j(né((aj)dyuys	(e)x	(®)r	(e)r	fa S(xtxyx} y 2 1}
			-—	el B - —-1-—1
1 ((£)zr*nya	((&)xsn)s	X (LU eIF)ax {((£)H)ys(e)IF)T	I D	
]]] -~ I ! 1 21			
A		A x A	2	
"ll.!..!.'.l.l.—!.Oi..OOOO'QOO—0!!...00000"!— — “'l— — — b d —				
1CCA)us(e)IFIT	((A)4*(®)I)d	(CLHU(v)IX)x	a	x
— — — —OOOCOOOOOOIIl'— — m — 2 — P —				
! (xfx)3	(x*x)3	(xsx)3	(xéx)ax	(x*x)3
)] -1~ ! j-—- } o} =				
	i	} I L T A		
i (S*10)1 1 (F410)4 } (e*12)4 1 (T*10)4	(1¢1D)d=071%a	2] v		
} (s*10)d] (p*1D)3	(e410)4 i (Z%10)4a	(r%1D)3=ur*gq	- S I	
W nY L 2 L ——— Ny [l L)				

4.2.1.2

108

(*PYUTT) FoF SIMITI
*d OF

8995V JIT2Y3 1Us3I3’IdET 0O} PIIDB10S SBO0U} OIV 4 U [ITM PONIUM SHIBL *P3PN1DUY 300 32XV SHIUVTIVA I3YL 3IVY) OWINOD
¥o 3dedXa ¢g JO S28SU1D IPTAYP SaUF] P3330p puw B3UT]1 PF1OF *J UOF3ITFravd oUyl O S0ESUVD OPTAYP ¥20F] 1v3UOZIIOqQ

(né((a)2yq)s

((A)Fén)g

(né((a)?)y)g

((£)Fin)yg

(né((a)®)q)g (né((a)3)y)g (né((a)2)u)g (4 (q)8)y)g (né((a)d)u)a

((£)Fén)g ((£)Fén)yg ((£)Frén)g ((&)F*n)a aghuw:-.vm

A

es sessccancerass

((£)g4(®e)x)a

A

((L)uéce)z)g

A A A A A

Q.OOOOQ‘.O'Q!I.—'.!'OQO!.'OO"I—0'00.."0.'00.'—to...l..l.'o.'.—!Il.ltt-.'t.ll

S ey S — S —— " m— " ——
D ey s ey Nt T O W — —

((£)942)F)d | ((L)us(e)F)g | ((£)3¢(%)x)d | €ct&)yadge)r)ya ((£)qs(e)r)a

T s S ey S gy vin A W —— v —— ——y w——————

PY108 fumniod ydwas Ul *ID YITA SIBIUNOOUS SAYSS8ION8 3¢ J PUR g SUOYITIINd 243 3USSIIAIX SUNN]IOD MOIIVG afgy
o L4 L v Y T T pJ
1 a | a | a | a | L | T | a |
] 1 -1 — I] I |
| (a)a | ()3 | (9)8 | (qa)7 | (ays | Ty | (ayy |
—000.00|0u000|00_ — — ’— |'|||— — —
! £ 1 £ | £ (£)Fx | (£)r | (e | ((a)s)y |
—QOOOOlll'DQQOGO—oulo.'..o.t!l'l— ~ll.l'.0'000’ll'— — — —
] v] = | v | ((a)3)uy | (tays)a | (&)r | (x|
— _ — —0!.!0000'!00'0.—COOI‘OI'.O..OO'— _ —
] (ta)e)g | (ta)z)y | (ta)sr)a | no | o no
] 1 |] | | -1 |
] (Hu | (HHu | (SHy | £) £ £ £ 1
—l.l...'tl'.l'..—..l..!..'..lll.—l.’..'...l"..._ 'l'— — "— _
| (£)r | (£)yr | (£)z | v |} v | L | (£)yqg |
I 1 i 1 |] -——=]-]
| vz | =)z | te)r | (£)q« | £)d | (5 L S v |
—10000000QI.'n'O—'Ot'.O'..!..'t.—I.QD.OOII.I.O'.—lt.tli..'l'l."—'ll'.'..tO.'llt_io...o.c.!lu'll- _
! n no n (®)xx | (e)F | (e)r | (e)r |
— — ..."'.'.....'.-'..'..."..'.'.—...'.'....'..'.—'......l....."—
| x x | x x x X i x |
] | |
" ((%)F)y ((e)ry)a | ((e)r)a ((%)x)u ((e)r)u re)y)Hu (=)ru |

| I
! (n)u (n)y | (g (n)y (o)y (n)u (n)g |
] ! |
| | |
1 | |
] |]
1 J 1
| | |
]] 1
i | |
| ! |
] | |
] 1 |
] | |
! ! 1

] |

| X 3

}
|] |
(x¢x)g (xtx)3 (xé¢x)3 | (x*¢x)3 | (x¢x)g |} (x*xyx | (x¢x)3

1-—- } —_ I |
| | I }

(ZTTI*T1D)d=3n0oyg] (171%1D0)4a (01%10)d) (8*10)d | (8%10)a ! (L*1D)Md | (9410)d

| (ZT41D0)a=3n0*3] (IT410)4 (01%1D)3 | (6°1D)1 i (3¢30)a } (L*TD)a | (9*1D)1
i . 3 L L

| N, 1

4.2.1.2

109

4e2e1ed: Defipnitiop: 1f Fq and F> are two partiticns of the
same set, we write Fy £ F, if and only if for every Ay € F,
there exists Ay € F3 such that A S Apze If Fg £ F, and x and
¥y are in the same class of F;9 then clearly x and y are in

the same class ocf Foe

4e2eled4: Lenmms: CLASSIFY(C) halts for every set of

constraints Ce.

Proof: Ve refer to the flowchart for CLASSIFY 1in figure

4.2,

First we show that S§ is always finite at Cl1l, and that
every path from Cl1 to C1 is executed in finite time. Since
S is initially finite at Cl, having been initialised to C,
we need only investigate each path from Cl1 +to C1,
demonstrating that the finitenmess of S is rresgervede Note
that this investigation will also show that each rpath 1is
executed in finite time.

(1) Consider tre path returning to Cl via PC3.

S(C1,2) = S(C1,1) - {{pasr2ll},
s0 S(C1,2) is finite if £(C1,1) is finite.

(2) Now <consider tte path returning to C1 via PCS5. We
observe that for each i, 1f S(C341i) 1is finite then
S(C3,1it+1) is alsoc finite, and that T(CJy,itl) contains
less terms than T(C3si)e. But T(C3,1) = [pa]e which
contains a finite number of terms, and S(C3,1) |is

finitee Thereforey, TfTor saome integer ny E(CIen) 1is

4e2.1.4

110

finite and T(C3yn) contains no termse In view of the
latter facty C3 is not ercountered again; instead PCS is
followed tc Cl after the n—th encounter with C3y so that
S(C1,2) = &(C3yn)y which is finiteeo
We now note that each lcopr +that returns to C1 via PC5
reduces the number of classes in Fe. But F is initially
finite, so this 1loop can be traversed only a finite nunber
of timese Alscy each traversal of the lcop returning to C1
via PCJ reduces the size of S, so this loop can be traversed
only a finite number of times in successione Hence C1 can
be encountered only a finite number of times in an execution
of CLASSIFY(C), and since each 1loop from C1 ta C1 is

traversed in finite time, CLASSIFY(C) must halte.

4e2¢1e5: Lemma: During the executicon of CLASSIFY(C), it is
always the case at C1, that for +two terms s8; and s5:
<s4?2 = <82> if and only if sq and s, begin with the same
function symbol and [s4] = [s2]e

Proof: Let H(FPyF) be tre assertion:

"<ge> = <sp> iff s; and s begin with the same function

symboly and [sa] = [s2]"

Since the classes of Fein and Pe.in contain only one formula
eachy H(P4F) holds initially at Cl; sc to establish +the
result, we need ocnly show that B(P,F) is invariant at Cl1l, by

investigating each path from C1l to Cle.

4.201.5

(1)

(2)

111

Consider tte path returning to C1 via PC3.

F(C1,2) P(Cl,1)

[}

F(Cl1,2) F(C1,1)
so the result is trivial in this casee.
Now consider the path returning to C1 +via PCSe. We

define the following three assertionse
A(P) asserts:
nif (sa)] = [82) and s4 and s begin with +the same
furcticn sysbol,
ihen <8¢> = <sz>"
B(P) asseris:

(s2] and sq and s2 begin with tre same

"if (sa]
functicn sysbol,
then either sq € T or <s¢”> = <gp>"
D(P) asserts:
"it {sg4> = <gp>
then sa and s begin with the same functicn symbecl

and either [sq4] = [e5]

[e2])

[pd 1)

or ([s4] = [Fe] and {s2]

or ([sa]) = [£2] and [s2]
We show ttrat if A(F), E(FP) and D(P) hold at C3, they
again hold at C3 after tke loop PC6 is traversede.
(a) Suppose [sq] = [s2] and that s¢ and =2 begin with
the same function symbol, then:
81 = s> mod P(C3,1) by A(P(C3,1))
Eut P(C3,1) £ F(C3,2)

e o« 853 = 8 maod P(C3,2)

4.2.1.5

112

e o A(P(C3,2) holds
(b) Suppose [s3] =[paly [s2] = [(p2] and that 84 and s
begin with the same function symbole. Then by
B(P(C3,1)):
eitrter s4 € T(C3,1)

or 8¢ = s mod P(C3,1).

Suppose sq € T(C3,2), then we have two casese.

cage (1) If sq4 € T(C3,1), then s; = t4 mod P(C3,1),
so by D(P(C3,1))y, sq and t4 begin with the same
function symbole Alsc [s2] = [B2)y ana s,
begins with the same functicn symbol as s; (and
hence tg)y 80 that path PC8 is followede Let

t2 € [p2] be the +term selected: then t2 and s>

begin with the same function symboly and
[s2] = [t2] S0 by A(P(C3,1)), we have
s2 ¥ t2 mod P(C3,1), and therefore,

S3 = s2 mod P(C3,2).

case (ii) If sq ¢ T(C3,1) then sq = s mod P(C3,1),
and since P(C3,2) 2 P(C3,1), we have
S3 E s2 mod P(C3,2)e

So in roth cases, B(P(C3,42)) holdse

(c) Suppose sq = s, mod P(C3,2); then we have two casese

case (i) s¢ = s2 mod P(C341), s0 by D(P(C3,1)):
sg and s, begin with +the same function svmbol
ands:

eitter [s83] = [82]

4¢2e1.5

113

(£a] and [s2] =[p2])

or ([s;]

or ([sq] [(pal and [s2] = [ed D)
case (ii) 83 = t3 mod P(C3,1)
and sz E tp mad P(C3,1)
So by D(P(C3,1))y s4 and tgq begin with the same
functicn symbole But t4 and t-> begin with the

saxe function symbaol,y 0 8; and s begin with

the same function symbol. Alsoc by D(P(C3,1)):

[(sl = [ta] 1
or ([s4] =1[p1] and [t3] = [p2])
| or ([ea) = [p2] and [ta] = [m])J
and
| [e2]=[t2] -
or ([s2] = [pa] and [t2] = [p2])
or ([g2] = [p2] and [t2] = [m])_1
Now [ta) = [pals [t2] = [p2] and [pa] # [p2]s so

the akove reduces to:

[tsed = toal '
or ([2a] = [p2] and [t4] = [1=iz])‘I
and
- -
[s2] = [p2]
or ([s2] = [pa] and [t2] = [p2])

Frcm this we can deduce:

[ee] = [s2]

4e241e5

114

(p2])

[ps] and [s2]

or ([sq]

or ({eq] = [p2] and [s2] = [ps])

So in koth casesy D(P(C3,2)) holdse

Now consider tte path frcocm Cl to Cl via PCS5, and suprose
that C3 is encountered o times on this path. We assume
H(P(C1l,41),F{(Cl1l41)) holds, sc that sy = s mod P(Cl,1) if
and only if both §q = s mod F(Cl,1) and s34 and s» begin

with the same function symbole

But F(CJd,yl1) = F(C1l,1)
P(C3,1) = P(C1,1)
and T(C3,1) = [pa]

Therefore A(P(C3,1))y, B(P(C3y1)) and D(P(C3,41)) hold, so
by the inpvariance of Ay, B and D at C3, we have
A(P(C3ym))y BE(P(C3ym)) and D(P(CIym))e
Now F(C1,2) = F(C1,1) - {[palelp2]} U {[palUlp21
and P(C1,2) = P(C3ym)
(A) Suppose that sy = s mod F(C1,2) and that s5 and s>
begin with the same function symbcl, then:
elther sS4 = s mod F(C1l,1)
8o by A(P(C3ym)) we have:
8¢ = 83 mod F(C3ym)
e e« Bg = 82 mod P(C1,2)
or Sg = pg mod F(Cl,1)
and sS2 = p» mod F(C1l,1)
but by E(P(C3;m) we have:

£ € T(Ca,m)

de2e1e5

or Sg

p2 mod P(CJym)

However, since CJ3 is encountered only

T(C3eym) contains nc termse

e e S3

e e E£9

(B) Surpose that

then

sz mod P(C3,ym)

2

mod

F(C1,2)

= 82 mod P(C1,2)

Z sp mod P(C3ym)

so by D(P(C3.m))'

functicn symbal

either sq
s0 sg
2 Sq
and s
« o Sg
and s>
but pg
e e Bj
Q2r Sa
and S»

SO by

alternative:

So for the

]

i

82

82

Pa

P2

Ba

B2

B2

s2

P2

Pa

the

and:

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

same reasoning as in the

s3 and

F(C1,1)
F(C1,2)
F(cl1,1)
F(Cl,1)
F(C1,2)
F(C1,2)
F(C1,2)
F(C1,2)
F(C1,1)

F(Cl,1)

S22 mod P(C1'2)

path

from

H(P(C142)4F(C1,2)) holdse

115

B times,

S2 begin with the same

since F(C1,2) 2

since F(C1,2) 2

F(C1,1)

F(C1,1)

second

C1 to Ci via PCS,

4e2e1e5

116

Hence H(P,F) is invariant at Cl, and since H(P4F) holds

initially at C1, the result is proved.

We now show how the algorithms CLASSIFY and TRANSFORN

are relatede.

delele6: Lepma:

(a) If TRANSFORM(C) succeeds returning partition Fe.out, then
there is an execution of CLASSIFY(C) returning partition
Feouty where in each <class of Fe.out, all terms begin
with the same function symbole.

(b) If TRANSFOEM(C) fails, then there is an executicn of
CLASSIFY(C) returning partition Feout, where some class
of Fe.out contains terms beginning with different
function symbolse.

Proof:

(a) Let H(F',S'") be the assertion:

Win each class ¢f F', all terms begin with the same

function synmbel

and there exists an execution of CLASSIFY(C) during
which S§ and F have values S§' and F' at some

encounter with Ci19

Consider an execution aof TRANSFORM(C). Clearly H(F.S)

holds initially at Tl We now showy by investigating

4024146

118

(1) Suppose [pa] contains no terms, then path PCS is

follcwed tc Cl, where:

F(C142) = F(C341) - {[palelpr21} U UpclU (221}
= F(C14y1) - {[palelpr21} U {[palU [p21]}
S(C1,2) = S(C3,1)

S(C141) - {{pesp2}}

(2) Suppose [peg] contains a term tg, 80 that by (iii),
[pP2] contains no termse Path PCé6 is followed to

C4, wkere:

T(C491) = T(C3y1) - <ty>
= [pa] = <t

But ty B(F(TI1,1),S(11,1)), all terms in [pyg] begin
with the same function symboly, so by lemma
402¢1e5y all terms in [pg] are in <tg4>y, soc that
T(C4,51) contains noc termse.
Now [p2] contains no terms, so path PC7 is
followed toc C3 where:

F(C342) = F(CJ3,1)

S(C3,2) = S(C3,1),
and since T(C342) = 9T(C4,4,1) which ccontains no

termsy, path PC5 is followed to Cl, where:

F(C142) = F(C342) - {[palelr213y {[pa]lu (P21}

F(C141) = {[paJelp213U [palU [p2]1}

S(C1,2) S(C3,2) S(C3,1)

S(C1,1) - {{prasp2l}

But B(F(I141),S(T191)) holds so that:

F(Cl,].) = F(Tlgl)

4e2ele6

119

and S(C1l,1) = S(T1,1)

So in both cases:
F(C1,2) = F(T1,2)
and S(C1,2) = S(7T1,2)

Hence H(F(T1,2),S(T1,2)) holds for this pathe

Path PIJ: Cn returning to T1l, we have:
F(TI141) - {[padelp213 U {[palU {p2]}

S(1141) - {{pesp2}}

F(T1,2)

1}

and S(T1,2)
U {faaar924} seees {danr1a2nl}
Also, fcr this path to be traversed the following
conditions must hcld:
(i) S(T1,1) # ¢
(ii) [xad # (»2]

(iii) bpoth [pe] and [p2] contain terms, respectively

tg fa(qenreeesqemd)y and t2 = £2(q2gseeesqzn)
(iv) f£4 = £,

Every class of F(TI1,2) is either a class of F(T1l,1),
in which <case all terms in it begin with the same
function symtol, by B(F(T1,1),S(T1,1)); or it is the
union of classes [pa] and [pa] of F(Ti,1)e In the
latter casey, since t; € [pg] and +t4 begins with
function symbol f4q, all terms in [pg] begin with f4,
by H(F(T1,1),S(I1,1)): similarly, all terms in [p2]
begin with foa But fs=f» hy (iv), so that all terms

in [pe]JU[r2] begin with the same function eymbole.

426016

120

Now by (1) and (ii)y CLASSIFY can follow PC2 and
PC4 to CJ3, where:

F(C3,1) F(C1,1)

S(C3,1)

(]

S(C1,1) = S(C241) - {{pssp2}}
By (iii), path PCé6 is followed tc C4 where, by the
same reacsoning as that enployed in case (2) for path
PT2 abovey, 7T(C4,1) ccntains no termse Again, by
(iii), path PC8 is followed to C3, where:

S(C3+2) = S(C391) U {{asa992a} seeey{gansqzn}}

F(C342) = F(C3,1)
Since T(C3,42) = T(C4,1) which contains nc terms,y path
PCS is fcllowed to C1 where:

S(C1,2) = S(C3,2)

= 8(C1y1) - {{pasp2l}
U {{da19924} seecy{gansqgza}}

F(CI41) - {[ralelr2]} U {[padU [p2]}

= F(C141) - {[paJelp21} U {{paldU [p2]}

But H(F(711,1),S(T1,1)) g0 that:

F(C1,2)

F(C1,y1) = F(TI1,1)

and S(C1,1) = S(T1,1)
Therefore:

F(C1,2) = F(11,2)

and S(C1,2) = S(7T11,2)

Hence H(F(T142)9S(T142)) holdse for this pathe

de2ele6

(b)

121

This proves the invariance of H(F48) at T1l, so since
H(F,S) is initially true at Tl, H(FyS) always holds at
Tle Consequently if TRANSFCRN(C) succeedsy returning
Feout, then there exists an execution of CLASSIFY(C)
which encounters C1 with values F.out and 2 for F and S

respectively, and the result is provede

Now suppose TRANSFCEM(C) failse. By part (a), there
exists an execution of CLASSIFY(C) which encounters C1
with the same values of S and F that obtain at the last
encounter with T1 in the executicn of TKANSFORN(C).
Since TRANSFCRN(C) fails, the path EXIT must te followed
to the point FAIL, so that [p;] and [p2] contain terms
te and t, respectively, which begin with different
function symbolse Since [pa) # [p2]y CLASSIFY can
follow the locp returning to Cl1 via PCSy, and as a
result:

F(C1,2) = F(C1,1) - {{palslp21} U {[pelUu [p21}
Hence F(C1,2) contains a class in which +two terms,
namely t; and t3, begin with different function symbols,
and since Feout2 F(C1,2), the same can be said for

Feoute

We now praove another property of CLASSIFY that will he

important later on: namely, if +two terms beginning with the

4e2ele6

122

same function symbol are identified by CLASSIFY in that they
are placed in the same class, then corresronding subformulae
of those terms will be similarly identified. More
precisely:

4e2+1e7: Lemma: Suppose tte output partitions of CLASSI1FY
are Feout and Peoute It S8a = g(pP1aseceryPam)y
2 T g(p2aseeeyb2m)y and s34 = s mod Peouty, +then for each
i € {lyeeeym}y ray = P2y mod Feoutes

Proaof: Let H(F4PyS) assert that:

"if 84 = 82 mod P, then for each i € {l,eeeym}y, there exists

an integer k21, and formulae rygeeesTy yWaseeesW, such that:

Pei = T

P2i Wk

Ty wj mod F for all j € {1l,eeeyk}
{fwj sr; 34} € S for all j 6 {lyeeegk=-1} "

Ve will ultimately show that EB(F,P,S) always holds at Ci1;
firsty, however, we show that if H(F,P,S |J{{pssp2]}) holds at
CJy then it again holds at C3 after the loop PC6 has been
traversede.
Path PC7: On this pathy, values of F, P, and § are unchanged

so the result hcldse.
Enth PC8: In this case:

F(C3,2)

F(C3,1)

P(C3,2) F(C3,1) - {<tl>,<t2>} U {<t‘>U <t2>}

S(C3,2) = S(€3,1) | {{asasazal seces {ainsaznll}

Now if sq = g2 mod P(C3,2) then:

eitber s;a €2 mod P(C3:2),

de2al.?

123

50 the result holds in view «f the fact that

F(C342) = F(C3y1) and S(CI,1) ¢ S(C3,2)

8q £ t3 mod P(CJ,1)
82 £ t2 mod P(CJ,1),
s0 f=g and n=m, and by hypothesis, for each

i€ {1lyeaeym}:
(a) there exists kg21, Taseee sl sWareeoywW, such that:
Pai = ra ‘
ai = Wi
ri = wj mod F(C3,1) for all j € {lyceesky]}
{wj 975 44} € S(€3,1) U {{pgsp2}}

for all J € {lgooc'ka-l}

(b) there exists k21, r;,....ré ,w;,....wg such
that:
F2; = rq
az1 = wi,

r{ = W; mod F(CG.l) for all J e {lyooo.kzl

{wisr{+a} € S(€3,1) U {{pgyp2}}

for atltl J e {1,ooo'k2-1}

But {ga4i992;} € S(C3,2)

S(C3s1) £ S(C3,2)

and F(C342) = F(C3,1)
Now if we let k=k +ky, rename rE.-..,r; asS WypeeeyWk 41

» » -
and rename 11,...,w5 as rk.-...rﬁ +a2a9 then:

3 k21, f‘....,rk,w1,.o.,wk such that:

4e2.1.7

124

Fay = Tq
E2i = wyg
Ty = wj mod F(CJ,y2) for all j € {l,eeeqsk}
{wisr; e} € S(€3,2) U {{p1,p2}}
for all j € {ljeeek—-1}

This is the required resulte.

Having shown that HB(F4sP,S U {{p;s,02}}) is invariant at C3, we
are now in a position to show that H(F,P,S) always holds at
Cl. Initially, F = Pein and 83 = 82 mod Pein implies
Sa = S2y sSince each class in P.in contains only one formulae
Therefore, for each i'. Pai = D2i ¢ so that
Pai = pP2i mod Feiny and H(FyFyS) holds initially at Cl. ¥e
must now investigate each path from C1 to Cl, showing that
B(F4.Py8S) is invariant at Cle

(1) For the path returning to C1 via PC3y we have:

F(C1,2) F(Cl,41)

]

P(C1,2) P(Cl1l,1)

and S(C142) = S(C1,1) - {{pgyp2}}

]}

where gga P2 mod F(C1l,1)
Suppose s34 = s2 mod P(C1,2)
then s¢ = s mod P(C1l,1)

s0 by H(F(C1,1),P(Cly1)4S8(C141))y, there exists an

integer k21, and formulae rgjeeeyry, yWaseeesW, sSuch that:

4e2e1e7

125

Fii = rg
F2i = Wk
riy = wj mod P(Clgl) for all J € {lyooo'k}

{w,,r,+g} € S(CI'I) for all J e {lgooo'k-l}

which is equivalent to:

Paj = ra
F2i = Wk
ri = wj mod F(C14,2) for all J € {lgo.o'k}

{wj or; 4a} € S(€1,2) U {{payp2}}
for all J € {l1j,eee9k}
where pg = p3 mod F(C1,2)
Next we derive the same result for tite other path, then
show that it is equivalent to the result we require.

(2) For the path returning toc C1 via PCS5, we have:

F(C152) = F(C341) ~ {[pglelp213VU {[p11U [p21}
P(Cl1l,2) = P(CA,1)
S(C1'2) = S(C3.1).

where C3 is encountered 1 times on the path.

Now H(F(C1,1),F(C1,1),8S(C1,1)) holdsy by hypothesis,and

F(C341) = F(C1l,1)
P(CS,I) = P(C3.1)
S(C3,1) = S(C1,41) - {{pasp2}}

so that B(F(CS,I),P(CG,I),S(Ca,l) U {{p"pz}}) holdse.
But H(F,P,SU {{paepr2}}) bhas been proved invariant at C3,

so that H(F(CS,I),P(CG,I)'S(Ca.I) U{{pg.pz}}) holdse

4020167

126

Suppose £4 = s mod P(C1,2)
then €4 = 82 mod P(C3,1)
and therefore, for each iy there exists k21, Taoeeeylyy
WgseeeyW) such that:
Pai = rg
F21 = wk
rji = wj mod F(C3yl) for all j € {l,eeeqk}
{wjsriea} € S(C3,1) U {{pgyp2}}
for all j € {ljgesesk-1}
Since F(C142) 2 F(C3,41), this is equivalent to:
Faj = 1
P2i = Wk
ri = wj mod F(C1,2) for all j € {lyeeesk}
{wjsr;ee} € S(€1,2) U {{pgyp2}}
for all j € {lyecesk—-1}
where pg = p mod F(C1,2)

This ie exactly the result cocbtained in case (1).

If for all j € {ljeeceyk-1}, {wjsrjss} # {pasp2}s then the
result is proved, so0 we assume the contrarye Now let jq; and
J2 be the least and greatest integers respectively, such
that:
{wy, srie4} = {Pasp2} = {w;, vej,eal

Then T = Wy = rieq = Wi, = riea wies mod F(C1y2)e So if
we let kg = k-Jo+.ja—~1: rename Wi,4e sesesWk A€ Wjeessoswii and
rename ruﬁzgoooprk as rhfgynoo,rﬁ, we then have kg21 since

15J‘SJ2<k, so that:

4e2a1.7

3 kazly l‘a,o.o'r]&' “l!"'!'kl suc
Pa; = rg

Fay = Wi,

]

r; w; mod F(C1
{'j'!‘j +¢} € S(C1.2) for

which is the required result.

Ibherefore B(F4PyS) holds at
B(F.out.P.out,E), so03
If sg = s mod Peout, then for
exists k21, and Tageceyl yWageoe
Pi1i = rg
EF2; = Wy
ry = w; mod Feou

{Wjurj+g} € ¢ for all

127

h that:

'2) for all Jd € {lyooo'ka}

all J e {lpono,k"‘l}

c1, and in particular

each i € {l4eeeyn} there

' Wy Such that:

t for all J € {l'ooo'k}

€ {lgooo'k—l}

In view of this 1last result, k=1, and therefore

Pa = p2 mod Feoute

A-2-2:mmmnm;ssmmmm

CLASSIFY(C) divides the se

t of subformulae of C into

classes of formulae which must be wunifiable for C tc be

unifiable: therefore, if two

terms t; and t2 begin with

different function symbols and occur in the same class, then

C 1is not unifiable. By 1insp

ecting each classy we can

4.2.2

128

discover every such pair of incompatible termsee %e now
introduce a mechanism for determining why +two incompatible
terms are in the same class: that is, for finding all the
constraints respcnsible for this situatione. Example
4¢2¢2415 at the end of this section, illustrates the

concepts introduced heree.

de2e2e1: Definiticp: I£f C is a set of constraints, denote

by M(C) the set of all function symbols cccurring in Ce VWe

then define:

max degree(f)
£EN(C)

degree(C)

and NMC) = {i | 12iZdegree(C)}

de2e22: Defipiticp: If C is a set of constraints, then

A(C) is a labelled, directed graph, where:

V(A(C)) = {p | p is a subformula of Cc}
I(A(C)) = ¢ U (M(C) X N(C))
E(A(C)) = TRANS(A(C)) U PUSH(A(C)) U PGP(A(C))

where TRANS(A(C)), PUSH(A(C)) and POP(A(C)) are mutually
dis joint sets c¢f arcs defined by:

TRANS(A(C)) {(pavfyp2) | {pasp2} = ¢ € C}

{(py(£41)yt) | p and t are subforamulae of Cy
t=f(p|'ooo'pn)’ and p=pi for
some i € {lgooo'n}}

PUSH(A(C))

{Cty(£4i)yp) | £ and t are subformulae of Cy
t=f(DeasacasDn), and p=p;, Lor
some i € {lgeseyn}}

POP(A(C))

de2.2.2

129

If e = (pgylabelyp,) € E(A(C)), we denote by e-1 tpe ordered
triple (pa2ylabel,yp,). Then (e 1) 1ze ; e € TRANS(A(C)) if
and only if e ! € TRANS(A(C)); and e € PUSH(A(C)) if and
only if e~1 @ FCP(A(C)).

Note that A(C) can be regarded as a nondeterninistic,
finite, pushdown automaton {1], where VI(A(C)) is the set of
Statesy (which we will alsc refer to as vertices of A(C),
and subformulae of C), and the transition function is
defined in the obvious way by the arcse The npda A(C) has
unspecified initial and final states; Jipput alphsbet C; and
Rushdown alphabet MN(C) X N(C)y which we will tenceforth
refer to as Ze. Accordingly, we «call A(C) the avtomaton for

Ly» and make the fcllowing definitionse

4e2e2e3: Definitiop: It X is any finite sety a word gof
length n over 3, is any sequence of elements of X of length
ne The word cf length O is dencted by @; the set of all
words of positive 1length over X by X*; and the set of all
words over X by X%, We will denote the length of a word x

by |x|, and derncte concatenation of words by juxtapositione

AQ_ZQ‘Z.A: Mﬂm: It a € C*, Y € Z%, and r € V(A(C)),
then (pya,?) is called a contfiguration 9f A(C), and Fea and
i 4 are called tte gtate, input and Stack of the

configuration, resrectivelye.

4e2.2.5

130

de2e2e5: Defipitiop: If e € E(A(C))y, we define a relation
el on the set of confligurations of A(C) as follows: let
e = (paylabelyr2)y then (qgeeaze¢Ya) led (g24a22,72) if and
cnly if:
(1) aqq = rav 92 = P2
and (ii) (a) if e € TRANS(A(C)), and label = ¢ € C
then ag = ¢a2
Y = VY2

(b) if e € PUSH(A(C)), and label = (£,1i) € Z

then a; az

I &) (£4i)7;

(c) if e € POP(A(C)), and label = (f,i) € Z

then a3 = ap
7‘ = (f.i)‘)’z
de2e¢2«6: Definitiaon: An alternating sequence of nt+l

configurations and n arcs of A(C):

(pasaesYi)req s(p29829Y2)s00es(Prran1?ndrens(PnetrdnsarTnsn)
is called a chain of lepsth n in A(C) from (perage?s) to
(Fn+l'°n+l'7n*l)’ if and only if:

(Di ’a'i 971) "el‘i (pl+||ﬂi‘-['71+‘) for all i € {11.¢o,t)}

4e2e¢2e7: PeXinition: For each integer n20y we define a
relation }® on the set of configurations of A(C) as follows:
(i) (pasaas?a) }9 (p2sa2,Y2) if and only if pa=p2s ag=82y

and Yg=Y>2

4e2e2e7

131

(ii) If n>0, (pgeags?a)d " (pD2ya2,7Y2) if and only 1f there
is a chain of length n in A(C) from (pgesage?e) to
(p2ra2:72)

We abbreviate }! as }y, and also define the relation }* on

the set of configuraticns of A(C) as follcws:

(Pesaas?a) k* (pasazys72)

1ff (pasags¥e) " (p2sa2,Y2) for some n20

4e2e28: Some obvious consequences of the above definitions
are:
(1) (pPsay?) bP* (gyby7Y2) if and only if
(pyacy¥a) t* (qebceY2) for any c € C*
(ii) If (peas¥e) b* (qebyY2) then for any g € Z%
(prasyYaB) b* (geby728)
(iii) If (psae?s) F (geb,yT} tren either a=b or VYg=72
(iv) If (pya,?38) | (Qyby728) then (prasYs) F (qeby72)

(v) $* is transitive.

de2e2.9: lemma: If (pgrags¥alrearseceve,s(prear@8nearYn+a) is
a chain in A(C)} such that a_ 43=@y then there exists a chain
(P o+19b+a17 ¢1)senlyeee 1€1ly(pasbgy¥Ye) where bg=@ and
hn+l=3¢- ¥e define a as the word cbtained by arranging the
elements of a in reverse order.

Proof: By induction on ne

Basis: n=1, VWe have three cases to consider:

(a) e = (rav%ep2) € TRANS(A(C)).

4.2.2.9

132

in this case ag=%, Ye=72 and
eg! = (p2y%ypa) € TEANS(A(C))
Clearly (p2s%e72) btegdld (P1sBe72)y so that
(p2981+72)s €ily (P1s€s7a) is a chain in A(C).

(b)) ea = (par(£4i)ep2) € PUSH(A(C)).
In this case ag=as=Qy Ya2=(£41i)7g and
eg! = (p2y(£41)ypg) € PCP(A(C))
So therefore (pasasgsyY2) teil{ (pas+8a+7e)e and hence
(p2sags¥2)s €ily (p292y73) is a chain in A(C).

(c) eq = (pes(fyid)yp2) € POP(A(C)).
In this case ag=aps=0, Ya=(£91)Y2, and
eg! = (pay(£fyi)ypa) € PUSBCA(C)).
Therefcre, (p2sass¥2) texld (perags”a)y so that

(p298geY2)y €ily (pPge2s7a) is & chain in A(C)

Induction: Assume the result holds for chains of length

<ne
Now (pa2saz2eY2)sezy eeevse s pPr+a98,+2a97,+2) is a chain of
the given form of length n-1, €0 by the 1induction
hypothesis, there exists a chain:
(1)eeceel(En+asbnsasTn+alrenlsccersesrl(pasbarr2)

wtere bn+¢=32. and bo=Ce
Consider tte «chain (pgsags?aly €ar (2982372)e Now if
eq = (paesfer2) € TRANS(A(C)), then az=fagy 7Y2=7ay and
egl=(p2+%sre)y so that:

(11)..oo-(FZI¢'72) l'e:l'l (pl. ’677‘)

402028

133

If we let cj=bj¢ for all j € {23eeeyntl}, we obtain from

(i) and (ii)y the chain:
(Pp+arvCosar¥nsadeentsccereils(parcae?a)

where cg=@y and Cn4g = bn41® = a2% = @z

Finally, if eq € PUSB(A(C)) U FOP(A(C)), then ag=az so

(pasDsVedy egy (P292yY2) is a chain of the given forme

Therefore (p2+2¢¥2)9y eily (pPes2eYa) is a <chain, where

bo=bg=€. Frcm this and (i) we get a chain:

(Pn+11hn+117n+1)16311-0~'0110(91'b1'7l)

where bg=9, and bn+1=32=31.

4e202.10: Pefipnition: If p and g are two subfcronulae cf C,
then p is said to be attached to g in A(C) if and only if
for some a € C¥, (pray@) I* (gs1249)e Ve denocte this
P = g mod Ce We alsc say that p is attached to g Ly the

yord ae.

4e2e2:11: lenmp: = mod C is an equivalence relaticne

Proof: Since (ps2:2) }° (py242) for every subformula p of
Cy, attachment is reflexive. By 402249y, attachment is
symmetric since ¢ is attached to q bty a if and cnly if q is

-~

attached tao ¢ by ae Finally, it Pa = p2 mod C and

4.2.2011

134

£z = p3 mod C then (P13a1:2) F* (p2:2,4R2) and
(p2sazy@) % (p3+92,2) for some agy a2 € CX%e So by
4e2¢248(i) and (v), (paraeaz99) % (p39242)e Therefore

Pa = p3 mod Ce.

The follcwing lemma establishes the relationehip
between the cutput partitions cf CLASSIFY(C) and the
autcmaton for C: namely, that the equivalence classes under
Z mod C are exactly the classes of Fa.oute In the
corollaries, we nocte the resulting uniqueness of the
partitions outrut by CLASSIFY, and the exact relationship

between CLASSIFY and TRANSFCEN.

de2e2012: Lenmso: If Fe.out is an output partition of
CLASSIFY(C), then P = q mod Feout if and only if
r = q mod Ce
Eroof:
(A) Suprose p = q mod Cy then for some a € C* and n20:
(pyas2) }° (g22.2)
We use inducticn on n to show that p = q mod Feoute
Basis: If n=0, tten by the definition ocf }9 p = g so
that p = g mod Feoute
Induction: Assume the result holds for n<k and suppose
that (p.a,e)‘}k (qes2)e Then ttere is a chain

(pasagsYadregreceserxo(Preas@x+a¢¥x4e) in A(C) such

4.202412

that (p1sage?1) = (pyay,@) and

(Pr+arak+a91¥r+a) = (qe8y2)e

There are two cases to consider:

cage(a) es = (pee¥yp2) € TRANS(A(C))
In thie case {pgsp2} € Ce Consider an execution oif
CLASSIFY(C)e At Cl, £ initially contains {pq.p2}
but at the last encounter with Cl, S is emptyy €0 on
some lcop from Cl1 to Cl, {pasp2} is deleted frcm S.
Either [pa] = [p2] at the beginning ¢f this loogy or
[pa] and [p2] are merged during the loope In either
casey, on returning to €1, [psa] =[p2]e so that
Pg = pz2 mod Fecoute

Now (p2saze?2) ™! (presrdk+e9¥x+a)

But 72 = Y4 since eg € TRANS(A(C))
= @
Te+a = @

ay+1 = 2
e e (P2ea2+92) ™1 (prea12+2)

e o P2 = Fy+a mod Feout

by the induction hyrothesise.

e o Pa = Fy+a mod Feout

leeces p q mod Fe.out

case(b) eqg = (pas(Lyi)yp2) € PUSH(A(C))
Let m te the greatest integer such that n22, and for
all j € {2,eeasmls 3 8, € Z* such that ¥, = 8 (£,1);

then Y, = (£,1i) = 72, Ymat = £ and

en = (Ene(fe4idepmes) € POP(A(C)).

4022012

136

Now (p;va, ¢8;(£4i) | (pjseva 4218, +a(£41))
for all jJ € {29ecegm—1}
So by 4e2.2.8(ii):
(p;1a,48;) t (P, +218; 4118, +a)
for all J € {29eeeym—1}
e e (p2yazeB2) ™" (pray16,)
But B> = B, = £y and ap =ba for some b € C*e So by
de2e2.8(1):
(p29be2) ™1 (p,vQ,2)
Since n-2<kx, we can apply the induction hypothesis
to obtain:
(i)eeeccesncccnceepz = p, mod Feout

(pa+s(£4i)yp2) € PUSH(A(C))

Now egq

(pm,(f.i).pm+a) e POP(A(C))

and e

So that:

(11)ooooooocoooo¢-p2 .‘f(nggooo,qzr)

and pm = f(gmageee 9 Qmr)
for some Qgzggeeec9dpy
and gmgeeeeggmr
where pg = q2;
Pm4d = Qn

Since pz and p,, begin with the same function symbol,
by (i) and lemma 4e201.55 vwe conclude that
P2 = p, mod Peout and therefore, because of (ii),

that:

(iiid)eecccccocescepy = ppes mod Feout

40202412

137

Finally, (Prear8metsYmea) ™ (Preevar+as¥u+a)e
But 7Y_ 44 = € = VYmear and ames = bameg for some
b € C¥,y, s0 by 4e2e2.8(i):
(Pmea1bs@) ™ (prsa1€99)
e e Pm#i = Pkea mod Feout

From this and (iii), we obtain:

Px+e mod Fe.out

1]

Pa

lsee P q mod Fe.out
(B) Now suppose that p = q maod Fecute Let H(F,S) assert

that:

"jf p = g mod Fy or {psq} € S

then r = ¢ mod C "

Consider any loop from (3 to C3 via PCéy and suppose
that HB(F(C3,1),8(C3,1) U {{pasp2}}) holds. We show that
H(F(C342):5(C3,2) U {{pasr2}}) holds. Since neither F
nor S are changed on tre path returning to €3 via PC7,
we need only consider the path returning via PC8« For
this path we have:

F(C3,2) F(C3,1)

S(C3,2) S(C3,1) U {{gaa192a} veeco{qanraanll

I1If p = q mod F(C3,2)y then p = q maod F(C3,y1)y so by
hypothesisy, p = q mod C. I1f {pesq} € S(CIy2)y either
{pya} € S(C3,1), so again the result holds, by
hypothesis; or {pyq)} = {gai1+92i} for some i. Suppose

without loss of generality, that p=qii1 and g=g2;+ theni
(1)-ooooooo(p'(iui)'tg) € PUSH(A(C))

and (tz2,(£41)9q) € FCP(A(C))

4.2+.2.12

138

Alsa t3 = p3 mod F(CJ,1)
and p = t2 mod F(C3,1)
So by the induction hypotheesis:

-
-

ta Pa mod C
t2 mod C
and pg = pz mod C
t2 mod C
So for some a € C*:
(tgesaysl) % (t242,0)
and therefcre; by 4e2e2.8(1i):
(tosay(£41)) ¥ (t2925(£,41))
So because of (i):
(pras2) }* (qgy0,9)

e e p - q mod C

Therefore H(F,S U {{payp2}}) is invariant at C3. VWe now
show that B(F.S) always holds at Cl. Initially, at C1
if p = g mod Fein, then p = gy since each class of Fein
contains «c¢ne elementy, €0 that p = q mod cCe. 1t ¢ =
{psa}l € C,y then (pyf4q) € TRANS(A(C)) s0 that
(ps%58) } (g42,2)3 that isy P = q mod C. It remains to
show that for each lcop from Cc1 te¢ C1, ix
H(F(C1,1),S(C141)) holdsy then HB(F(C1,2),S(C1,2)) holdse

(1) Path from C1 to C1 via PCJ3:

F(C1,2) F(C1,1)

S(C1,2) S(C1,1) - {{pasn2}}

40202012

(2)

139

If p = g mod F(C1,2), then p = q mod F(Cl,1); if
{pyq} € S(C1,2), then {ps1q} € S(Cly1)e In either
case p = q mod Ce

Path from C1 to C1 via PCS:

F(C3,1)

F(C1,1)

S§(c3,1) = S(C1,1) - {{parp2l}
Since H(F(C1,1),S(C1,1)) haolds,
H(F(C341)9S(C3,1) U {{p1sp2}}) also holds. Suppose
C3 1s encountered m timesy then by the invariance of
H(F,SU {{pasp2}}) at C3,
H(F(C3,m),S(C3ym)U {{pasp2}}) holds.

Now F(C1,2) = F(C3,2) - {[palelp213U {{palU(p21}

S(C1,2) S(C3ym)

It {psg} € S(C1l,2}, then {psq} € S(C3ym) so by
H(F(C3,m),S(C3,m) ({{pasp2}})y p = g mod Ce If
p = q mod F(C1l,2) we have two cases:
either £ = g mod F(C3ym)

g0 by B(F(C3ym)yS(C3,m) U {{parsr2}})y we have:

P = q mod Coe

ar r ve mod F(C3ym)
g = p2 mod F(C3,4m)
so by B(F(C3,m)¢S(C3ym) U {{paesp2}}) we have:

£ - pa mod C

1

q p2 mod C

it

Fa p2 mod C

«e"e £ - g mod C

Hence B(F,S) always holds at Cl, so in particular:

4.202.12

140

P = g mod Feout inplies p Z g mod C

4e2e¢2e¢13 Corollary: The output partitions Feocut and Pe.out
of CLASSIFY(C) are wunigue: that isy, independent of the
choices made during executlicne Because of this result, we
henceforth refer to Feout and PFesouty outgut by CLASSIFY(C),
as Feout(C) and Peout(C).

Proof: The unigqueness of Fecut is o¢bvious <from lemma
4e2¢2¢12, and implies +the wuniqueness of Peout by lemma

4e2¢1.5.

de2¢2¢14: Corollary: TRANSFORN(C) succeeds, returning
partition Feout if and only if CLASSIFY(C) returns partition
Feout where each class of Feout contains at most one class
of Peoutes
Frogf: By applying corollary 4¢2¢2.13 to lemma 4¢2.1.6.

0
Note that corcllary 4e2.2.14 establishes the uniqueness of

the output of TEANSFOEN(C) and of the digraph D(C)e.

4020215 Examzle: Consider the set of constraints C of

example 4¢2<e1¢2. We denote the constraints in this set by

Zeoees¥s as followses
zg: {F(X.X)g V}

€5 {ve F(f(a),n(y))}

4e02.2415

141

232 {F(usf(y))y F(n(g(b))lyu)}

o

{h(u)y, h(2£Ca))}
The automaton A(C) for this set 1s illustrated in figure
4e4e Note from figure 4.3 that:
a = g(b) mod Feout(C)
S0 by lemma 4e¢242.12:
a = g(b) mod C

Figure 4.5 shows a chain demcnstrating this attachkment.

4.2.3: The Unifticatiop Graph for C

Recall that if the transformational stage of the Baxter
algorithm succeedsy the resulting partition 1is wused to
construct a digraph which must be torologically sorted
(section 4e¢1e¢3)e Similarly, from the output partition
Feout(C) of CLASSIFY(C), we construct a labelled digraph

U(cC)l.

4e2e3e1: Definitiapn: If C 1is a set of constraints, the
unification grach U(C) for Cy is a labelledy directed graph,
where:

vu(cy)) Feout(C)

I(UCC))

M(C) (definition 4¢2+2+1)

and the arc set is detined as followse ESuppose there are m
classes in P.out(C)y, and let tigjgeece9yt, be m terms such that
<t,2 = <¢,> it and only it 1=Je Suppose

t, = fi(pinyo.o’pi ni) for all 1 € {lgooo'ﬂ}’ then:

442.301

142

Ihe automaton A(C) for the set of constraints
C = {q9%29%39%4} 02 example 4¢2.2.15. An unarrowed line
between vertices p and q represents two TEANS arce from p to
q and g to po. An arrowed line from p to q represents a PUSH
arc from p to q and the corresponding POP arc frocm q to pe

Figure 4.4

4.2.3.1

143

— e e e e e e —— =
| | | |
: State : loout [S3lack |
| |
- e ———_—————————————— t-—————- ———— 4
| | | |
: a | Cal3lol 1 8q4%%,%3 | e i
| | |
: £(a) | Coal3f 84948 2%,%3 | (£41) |
| | | |
| h(£(a)) | Faf3fa8,19,%2%4%3 | (hy1)(£41) |
| | | |
| h(u) | £38,84%4%284%3 | (hy1)(£,1) |
| | | |
| u : Eaf 84837 ,%4%3 | (£,1) |
| | |
| F(h(g(b))lyu) | E3fa€1%:884%3 | (Fe2)(£,1) |
[i | |
| F(uyf(y)) | afq¥aP2%e%3 | (Fe2)(£,1) |
| | i |
| £(y) | Lof1%4F284%3 | (£,1) |
| | | |
: y | 228 %1%2%4F%3 |] |
| | | |
| h(y) | £o%.%a%2%4%3 | (h,y1) |
| | | |
| F(£f(adesh(y)) | Eof 8a82F84%3 | (Fy2)(h,e1) |
| | | |
I v | £efa?2%4%3 | (Fy2)(h,1) |
| | | |
| F(xyx) | CeZof4%3 | (Fy2)(hyel) |
| | | |
| x | Faf2%4%3 | (he1) |
l | (|
| F(xyx) | Lafofef3 | (Fel1d)(hel) |
| | | |
| v | 2o€,%3 { (Fyel1)(h,l) |
l | [|
| o - 4 4
| |
| |
| This table shows the configurations of a chain of {
| length 24 in the automaton illustrated in figure |
| 4e4e The chain demanstrates that a is attached to |
{ (D) by £423F2%,%,%2%4%3 € C¥y where C is the set |
| of constraints of example 4¢2¢2¢15. (Continued on |
i page 144.) |
| |
| EFlgure 4.3 :
|

4.2.3. 1

147

4e3.2: lLempa: I C is a set of constraints and U(C)
contains a closed walk from [p] to [p]s then there is a loop
on p in A(C).
Progf: Let [palseqsecesene(pnsal] be a walk in U(C). Ve
show by induction on n that there is a chain in A(C) from
(Pn+a189@) to (pe12+47) tor some a € C* and ¥ # Q.
Bagig: »n=1.
Suppose eq = ([p;],i.[pz])o Then there exists some ternm
t € [pa] such that t = 2(Qaseesecsqx)y Where k = degree(f)
and q; € [p2] for some 1 €@ {lyecesk}e By lemma
40202012y J ay9az € C* such that:
(paraze@) |* (q+249)
and (tyaqe8) }* (pg,240)
But (q; ¢(2y1)yt) € PUSH(A(C))
e (q1 9990) | (£42,(£,1))
Hence by 4¢2.2.8(1)y, (1i) and (v):
(p2vagzags®) * (pe12e(L£4i))
80 in this case a chain with the required properties
existse.
Induction:s Assume that the result holds for walks of
length k<ne
Now [palseaseees @p—ge[Pn] is a walk of length n-1<n,
and [ppleenslpnes] 38 a walk of length 1<o. So by
hypothesisy for some agsag € C¥ and scme Vye¥Ys 8 2
(Paesaengs@) b* (poe@97e)
and (pos82¢8) H* (pes@e72)

Thereforey by 4¢262.8(1)y (1ii) and (v)3

4.3.2

148

(Pneavagaz @) F* (pg9Q97e?2)

Againy a chain with the required praoperties existse.

Consequently, if U(C) containse a closed walk from {p] to

[p]y then there is a lcop on p in A(C)e

4ed.d: Lemma: If (peracsVe)ds@prcccerens(PneasBneneTnee) is a
chain in A(C) such that Yy = D, and
Yo+e= (Lpedmdecec(fy4d2)ey then there are =m unique states
Qarecesd,y m Stacks Agrece9a,y and m» integers igyeceyi, such
thats
(1) 1<1¢<12%00 o<1 <n+1
(2) q4 = Pi; v @ =7, for all § 6 {lseececom}
(3) qj is a term beginning with £, , for all J € {ljeececym}
(4) vl 2 la; | tor x2i
(§) it =221y ([q; Jo2; o[a;-a]) € E(U(C)) Zor all J € {25eceym}
6) (an] = [Pres]
(7) ([qgulst; o[ral) € ECU(C))
Proof: Ve use induction on m.
Basis: m=le Llet r be the largest integer such that
Y, = @; let i3 = rt+1l, Q¢ = DPrear 8nd @&y = VY; gae then:
(1) 1<i4%n¥1
(2) holdas trivially
(3) Since ¥, = @ and ¥, 40 = 02
e = (P o (2y9dmdep; ¢a) € PUSH(A(C))

e“e Preed 18 a term beginning with 24

44343

149

dees gq is a term beginning with fa
(4) Since 7, = @ and Y, # ¢ for kDr, we cany, for each
K2rt1l, write Yy in the form By(fgydq) for some
8y, € 2%
But Y,4a = (£39d¢) = aq

o o 7yl

v

laal for k¥ 2 1,4
(6) (Prraxs¥x) teyd (pk+;10k+107k41)
for all k¥ € {lyeeeyn}
But 7, = 8,(fgysdq)
for all ¥k € {r+l,eeeyn}
e"e (Pxrsayefx) bexd (pPressarsarBrea)
for all k € {r+l,eeeyn}
Now B,4¢ = 2y fpes = 29 and a,4+q = bajss for some
b € C*
e e (D, 4av8,4¢12) F* (Pregr@s2)
So by lenma 4e2e2.12:
[pasel

dsee [qe] = [pPped]

L}

[Prea]

(7) (Byeaye?y) beyd (PresvoreasVien)
for all k¥ € {lyeeeyr—-1}
But 7 = 7, = @, and aq = ba, for scme b € C*
e "¢ (pDaebs8) b* (p,10,0)
So by lemma 4e2¢2.12:
[ped = [»,]
Now e, = (p,e(fLevda)sp.4a) € PUSH(A(C))
e e Pyea = La(qerecesqy)

for sSome (Qgyeeesqgy

4343

150

and p, q;

1
So ([p,en)otaslp,]) € ECUCC))
dses ([ae)sfeelpa]) € ECUC(C))
Induction: assume ttre result holds for chains whose final
configurations have stacks of length less than m.
Let r be the greatest integer such that:
VY= (£ gordmradeceel(fg9da)
Then (pgr18297s)seggecere,—q9(p,sa,9Y,) 1is a chain such
that Y¢ = € and |7, .| < me. So by the induction
hyrothesis, states ggreecesq, 41 stacks aggecega 29y and
integers l1ggecesi g exist, satisfying the conditions.
Let i = r¥1, q_ = p,4+¢ and a, = Y,4q¢ then:
(1) 1<1g<eee<i —¢Sr by tte inductiocn hyrothesis
« e 1<ig€eaegi, = r+1 < nt+i
(2) holds trivially

(3) Obvicusly Y:r4+4 = (fmgdmdlecee(£a9je)

(pre{faodaedepr+e) € PUSH(A(C))

e o €r
e e Pre+e is a term beginning with £,
ieee gqm is a term beginning with f4
(4) We can write ¥x in the form BxY:+q¢ for each k2rt1l
e“e |7l 2 |7:r4el = laml for k2im
(5) For J € {lyeeesm—-1}, by the inducticn hypothesis:

([la;)et;ela;—0]) € ECU(CC))

Now e, = (pys(EmydmdlePr+a) € PUSH(A(C))

So Pre+t = Tl Qeeecergx)
for sSome ggyees9 gk
and p; = qj

m

4¢3.3

151

e e ([pr+l]'1m’[pr]) € E(U(cC))

By the induction hyrothesis, [q,-e¢] = [p,]

e“e ([am)estmelam-a]) € ECU(C))
(6) (Brrayx ey) texd (pressageasVren)
for all k € {lyeeeyn}
But 7, = By7Ti+a

for all k¥ € {rtljeeeen}

Now B,4a = @y Bo4+4a = @y and a, 43 = ba,4qa For some

b € Cx*

o e (Prea18,4012) F* (Ppree1942)

So by lemma 4e2.2012:

(poeal

[P, 4]

(pn+l]

dsee [an]

(7) Holds by the induction hypothesise.

4342 Corcllaxy: If +the chain in 423ed 1&g a loopy
conditions (5), (6]} and (7) can be replaced by:
(5') ([a; Jeg; sla;-a]) € ECU(C)) for all j €, {2,eeeym}
([aalstasla,]) € ECu(C))
Proof: If the chalin is a loopy Pg = Dp+ey 80 from (6) and
(7):

([ga)staslan,]) € E(U(C))

4ed.8: Corollary: U(C) has a closed walk if and only if

A(C) has a loore

4e3.5

152

Proof: If U(C) has a closed walky, then A(C) has a loop by
lemma 44324 If A(C) has a loop, then U(C) has a closed

walk by corollary 4.3.4.

g
4eleb: Definiticon: It A(C) has a loop
(paragsVadsearsecerers(Prneervan+ar1¥nsady wtere | Yneal = my

then the m states ggreeeygm defined in lemma 433 and
corollary 4«34 are called the characteristic stateg of the
loope For each characteristic state gxy we define a loop on
gx called +the gx—canonical forx of the original 1loops as
followse Suppose qyx = pjy then [7;]l 2 7] for 1 2 e
Thereforey, for each i2j, we can write 7; in the <form B1 7]
for some f8; © 2%, Alsoy aq = ca; for some c € C¥. Then the
ax—canonical form of trke original loop is:
(pjvajcyBj)eej geccee sens(pPrnenscCeBnenlrens
(pP21ceT2hnet)eeasenesej—52(Dj +@+97; Bns1)
which is a locp since f; = @y and 7; S,4¢ # © (since Vo3 =
Bn+a?; and Y 4a # 9)e
Note that:

{2 | # occurs in aq} = {£ | ¢ occurs in a;c}

de3e¢7: Defipiticp: A chain in A(C):
(pgrageYadrseqgrecerens(pPrecranear¥n+e)
is said to be semi-simple 1f and only if for all i and J

such that 125i<jS<n+1l, either p; # p; or 7i # 7 «

4¢3e7

153

43+8: Definiticn: A chain in A(C):
(ParaarYadsenreecse, y(prsarapearVpen)
is said to be gimgle if and only if it is semi-simple, and
for all i and j such that either 15i<j<n+1 or 1<i<jSn+1:
iz P = Py
iben J k € {itl,eee9j-1} such that:
vl < 17yl

and [r | < |7y

4¢3.9: lemma: lLet A be the set of all simple chains in A(C)
for which the stack of the initial configuration is ¢, and
the input of the final contiguration is Q. Then A |is

finitee.

Proof

Suppose (peraa1Y¢)regrcccre 9(pP wer0,4a0¢7,4a) i8 a
simple chain in A(C), where Ya = 2 and
[7aeal > [PUSHCA(C))]| + 1.

Let m be the greatest integer such that Ym # 7n4qs then
lrml > |PUSH(A(C))],

Since 74 = €, each element of ¥y, is added by some arc e
in the chain, wtere e € PUSH(A(C)). Bencey since |Tml >
IPUSH(A(C))|, two elements of ¥, are added by the same arc
in PUSB(A(C)), so therefore there are two integers i and
such that 15i<{j<m<n+1 and:

(i) e; = e; € PLSH(A(C))
and (1i) for all k € {i*+l,eeesnl,

d By € Z* such that ¥, = B8x7;

44368

154

Eecause of (i)y we have p; = pjy and from (ii)dy |7kl 2 |7 |
for all k € {itl,eeeyj-1}, contradicting the fact that the
chain is sinmplee.

Therefore, tre length of the stack in any ccnfiguration
of a simple ctain is bounded by |PUSH(A(C))| + 1. But the
stack alphabet is finite soc that the set:

V(A(C)) X {r | [lrIslpusBCACC))] + 1},
is finitee Let tte silze of thie set be my then every sinmple
chain has length Zm, since in any longer chain, there are
two contiguraticns with the same state and stacke.

Now suppose (pesagsYe)rearecesens(Pasar8nsas¥nsr) and
(patbee7a)drearcecse, 9(pPrtarsbntar¥nt+a) are two chains in the
set A. Since a 44 = b4y = €y it is cocbvious that a; = b
for all 1 € {1yecepnti}e. Hence the sequence
(PavYe)reqoeceve, y(pPreasYp4a) uniquely defines a chain in
the set Ae. But as we have already shown, each such sequence
bas length <m, sc since the nusmber of state-stack pairs and
the number of arcs in E(A(C)) is finite, the number of

chains in the set A is finitee

4e3.10: Lepma: If there is a chain of length n in A(C) from
(pyay”?) to (gybya)y where either p#q or Y#a, then there is a
semi-simple chain of 1length =n in A(C) from (pycy?) to

(gybya)y, for some c € C*k,

4.3.10

155

Proof: Suppose (pg.a;,?‘).e‘,..~,en,(pn¢¢,an+;,7n+;) is not
semi-simpley and that either pa#p,+er Or 73#¥, 42+ then p, =p,
and 7, =Y; for ecme i and J suct that i<j and either i#1 or
J#ntle Now a; = da; and a; =ka; vy for scme deh € C¥*,

"o (parda; s7¢) H ™1 (p;sa; 7) = (pj sa; 47)

Also (pyea; +7;) "1 % (prsar@nsas?nea)

o"e (parda; y7q) U1 (p ygra,e29Vn40)
Hence there |is a chain of length n-(j-1) < ny from
(pesda; +71) to (p seva 40 1Y 4a)e

Since the original chain is <finite, after a finite

number of applications of this process, we must obtain a

semi-simple cheain satisfying the required conditionge

4e311: lenpa: If A(C) has a semi-simple chain of length n
that is not sinmple, then A(C) has a simple loop of length
<ne
Eroof: Suppose (parags?alsegrecese, s(p 4198n4097n4e) is a
<bain in A(C) that is semi-simple but not simple. Then
there exist integers i and j such that i<{j, either i#1l or
Jtntl, p;=p; s 7;#7; and for all k 6 {ljesey i}y either |7] 2
17 | or l7vel 2 |71
cage(al: |7, |1 < |7 |

In this casey |7yl 2 |7;| for all &k € {iseeeed}s S0 for

each k € {ijseeesdls 3 Bx € Z* such that ¥x = Bu7:i e

But (ppraxe7x) bexd (Preasax+arTeen)

for all kx € {1,..01J°1}

4.3.11

156

e o (pyyaye8y) beyd (pBreavayenrBren)
for all k € {ijgeesyj—1}
But for all k € {ijeeeyd}, 3 b, € C* guch that a, = bya .
e e (p o0, 98,) be d (creasbrenrbrsa)
for all k¥ € {igeeeyg.j—1}

Therefore (plghi'ﬁ,),el,-..,e,-;,(p,'hj,ﬂ,) is a chain in
A(C) such that §,=0, b;=€, p;=p; s+ and §; #@ since 7;#7; .

The length of this chain is (j-1)-i+1 = j-i which is
less than n since either i#1 or j#n+tl. Hence there is a
loop in A(C) of length <ne.

sase(h): l7v;| = |v,|
In this case |7,| 2 I?,I for all k € {igeeeyd}ls and by
pursuing an argument similar to that presented in case
(a)y, we obtein a chain in A(C):
(D vb; 08; Jee;recege;_19(pj yb; 48,)
where 8;=8, L;=€y D;=p; ¢ B; #Qe
By lemma 4+2+.2.9, therefore, there is a chain in A(C):
(pjscy 98)eeTlogecesery(p; 9cy 98,)

such that c;=€e.
The length of this chain is J-i < ne Therefore there is

a loop in A(C) of length <ne.
Since the original chain is <finite, after a finite

number of applications of +this process, we must obtain a

simple loop of length <ne.

403011

157

4312 Definiticp: A loop in A(C) is said to be

Ifundamental if all its canonical forms are simplee.

4edeld: Lepma: If A(C) has &a loopy then A(C) has a
fundamental locpe
Proof: Suppose A(C) has a loop of length n that is not
fundamental; tlen cne of its canonical forms, which is also
of length ny ie not gimplee So by lemma 4¢3410y A(C) has a
semi~simrle locyr of length Zn, and by lemma 4311y, A(C) has
‘a simple loop of length <ne

Since the original 1loor is finitey, a finite number of
applications of this process must result in a fundamental

1009.

4ed.14: Detinitiopn: If p and gq are subformulae of C and
there is a simple chain from (pjya,@) to (qy2y92) <for some
a €6 C¥y then p 1is said to be gsimply attached to g by a in
A(C)e It is easy to verify that simple attachment is an

equivalence relatione.

4eJe198: Lepma:
(1) If p is simply attached to g by ay, and p#q, then a#Ce.
(ii) If there is a sinple loop on p with value a, then a#gQ.

Proof: Let (raraasY1)s€1s5¢ccerens{ Preasdnsas¥ner) be a

simple chain such that 734=0, and ag=@, then:

e, € PUSH(A(C)) U POP(A(C))

4.3.15

158

far 511 ie {11..0,0}

Now Y4=0, e4 € PUSH(A(C))y s0 let Kk be the smallest integer

such

that ex € PCP(A(C)), tten:

(pPx—a9e(£91)ypx) € PUSH(A(C))

ek—3
and ex = (prke(£f9iderke+a) € PCP(A(C))

and Yx—1 = Yxea

Now p;, = f(Qayesesqy)
for some qgqgeseesqy
and p,—¢ = q; = pr+s for some | € {lyeeceym}

e e Pk—1 = Pk+4a

and Tx—g = Vx4

which contradicte tre fact that the chain is simplee.

(1)

(1i)

e e € € PUSH(A(C)) for all 1 € {lyeeeyn}
Suppose tte chain demcnstrates that pg and pne: are
simply attached by agy then Yg = Ynea= QBoe I a3 = 3,
then as shocwn above, ei @ PUSH(A(C)) tor all
i€ {1yeeeynl, which implies that Yne+2#23 a
contradictione
e e ag 2 @

Suppose the above chain is a 1loopy then pi1=ph+1 and
Ya=@e If ag¢=€y, tken as shown abcve, e € PUSH(A(C))

for all i € {1,..-.n}.

let ¢ (pi.(11,J1)991+l)

for all i € {lgcoogn}
Then pj+a = £, (QjaveeesGin)
for some gjgyeseyqjn

and for all i € {lyeeeyn}

443415

and p; q9i; for some j € {lyeeeyn,}
oo ord(p;) < ord(p; 4¢) for all i € {lyeeeyn}
e e ord(pg) < ocrd(p,4s)

which contradicts the fact that py = pjes

»o‘o ag # €

4ede16: Lemma: If Cq4 S C and a € C3t, then:

(i) If p is simply attached to q by a in A(C), where p#q,
then p is simply attached to g in A(Cq)e.

(ii) If there is a simple lcor cn p with value a in A(C),
then there is a simple loop on p with value a in A(Cy)e

Proof: Suppose (pearagsYelrseqrecesens(Pnsgs@nsasTnss) iz a

simple chain in A(C) such that 7;=0, a,4+1=€ and ag=ae. We

note the following facts:

(a) e; € TRANS(A(C)) implies p; opi 42 € V(Cq)

(plt¢rpl+l)

"

Proof: Suppose e
Then £ € Cp4 since ag € C¢*
But {p, »p, 44} = ¢
e e Biv P +2 € V(A(Cy))
(b)) e, € PUSH(A(C)) implies e, 44 ¢ POP(A(C))
Proof: Suprose e = (p; y(£9J)9p; 42) © PUSH(A(C))
and € 41 = (p; +a9(L9J)ep; +2) € POP(A(C))
then p; 4+¢ = £(qpyecesqpy)
for some Qggyesesdm
and p; = q = Py #+2

also 7, = 7 42

4.3.16

(c)

(d)

160

contradicting the fact that the chain is simplee
If p; € V(A(Cq)) and e; € PUSH(A(C))
then p; +¢ ¢ V(A(Cq)) and e; +2 © PUSB(A(C))
Proof: Supxocse p;+4 € V(A(Cq))
Now e; € PUSB(A(C))
say e = (p; +(£93)ep; 4a)
e Pi+a = £(Qgyecesqgy)

for some Qgeeesyq,

and qy By

«“e b, € V(A(Cyq))
which is a contradictione.
Therefore, by (a), since r; +a ¢ V(A(Cq)):
e, ¢a ¢ TEANS(A(C))
But e, € PUSH(A(C)), s0 by (b):
e; +a € POP(A(C))
e"e €44 € PUSB(A(C))
If p; € V(A(Cq)) and e;-.q € FOP(A(C))
then pi—¢ ¢ V(A(Cq)) and e;—2 € POP(A(C))
Proof: Suprose pi—a € V(A(C,;))

Now ej—-3 € FGP(A(C))

(Pi-ae(£9j)epi1)

say ej—g¢

e o Pi—g = f(Qggeeseeggm)

for scme ggyeeesgm

and pj qj

e ¢ pi € V(A(C,))

which is a contradictione

Therefore ty (a)y since p;j—3 ¢ V(A(Cq)):

4e3.16

161

ej—2 € TRANS(A(C))
But e;j.¢ € POP(A(C))y so by (b):
e;—2 ¢ PUSH(A(C))

e ¢ €52 € PCP(A(C))

We now prove tre required resultse.
(1) Now suppose pg ¢ V(A(Cq))
then e; € TEANSCA(C)) by (a)
" eq € PUSH(A(C))
So by inductiony, using (c):
e; € PUSH(A(C))
for all 1 6 {lyeeeynti}
So since a,4+¢=2y 84=@y which is a ccntradictione
«"« pa € V(A(Cq))
(2) Suppose fcr some i € {2yeeeyn}, that p; ¢ V(A(C;)).
Then by (a), neither e; -4 nor e; are in TRANS(A(C)).
(A) Suppose e;—-g € PUSH(A(C))
then e; € PUSH(A(C)) by (b)
Therefore by induction using (c):
e,+1 € PUSB(A(CI))
and posa & V(A(Cq))
In case (i) of the lemma, 7,44=2y so that:
e,+a ¢ PUSH(AC))
which is a ccntradictionre.
In case (ii):
Pneas = p1 € V(A(C:))

which 1s again a contradictione.

43016

162

(B) Now suppose e;.q4 € PCP(A(C)), +then by induction
using (d), eq € POP(A(C)), which is impossible since
Ya=Ce
(3) Finally, for case (i) of the lemma, suppose:
Prneta € V(A(Cy))
Tten e, € TRANS(A(C)) by (a)
and e, ¢ PUSH(A(C)) since 7,449
e e e, € POP(A(C))

So by induction using (d)y, e3 © FCP(A(C)), which is

impossible since Y¢=Ce.

Thereforey pr4a € V(A(Cq)) and For all i € {l;eeeynl},
P; € V(A(C4s)) end e; € E(A(Cq))e So in both (i) and (ii),

the chain in A(C) is also in A(Cq)e

4e3.17: Lemma: If Cq and C, are sets of constraints such
that C3 € C2y then every chain in A(C4) is also a chain in
A(CCz)e.

Progf: A(Cyq) is a subgraph of A(C2)y s0 the result is

obviouse.

4ede18: Definiticn: If C is a nonempty set of cconstraints,
a labelling for € is an ordered pair [L,LEL], where:

(i) L is a finite set called the 1label set,

4.3.18

163

(ii) LBL is a function frcm C into 2 - {2}, called the

label fupctiopns such that:

U LBI(Z) = L
Zec

Note that every set of constraints has a labelling; namely

[CyLBL], where LBL(%) = {¢} for all £ @ C

4e3.19: Definiticpn: If [L,LBL] is a labelling for a set of
constraints Cy and L4 £ Ly we define a subset C|{Lq,LBL]
called the resiriction of € 1¢ La usder [L,LEL], by:
Cl{LasyIBL] = {£ | £ € C and LBL(Z) N L, 2 @}
Since we never have occasion to consider more than one
labelling at a time, we abbreviate this to ClLsgy and say
that Cl|Lg is the xestriction 9f C 1o Lie If Cq is8 a subset
of C such that Cq = C|Lgq for some I, Ly we say that C; is
a restriction ¢f C+ Note that C is a restriction of itselft,
since C = C|Ly and that Ly £ L, implies C|Ly S ClL3e. It
La € Ly then the labelling [L,IBL] of C induces a labelling
[LesLBLg] of Cq = C|Lgy where LBLg:Cq—>24 ~{@} is defined
by:

LBLa(#) = LBL(#) N 14 for all £ € Cq

430202 pDefipitiopn: If [L,LBL)] is a 1labelling for a set of

constraints Cy and Lgq € L, then L, is said to be correct if

CiLs is unifiable. L, is paximally correct with respect to

L if there is pno L2 C L such that Lg¢ # L2y Lg C Lo and Ly is
correcte I£f C is wunifiabley, 1L has ocnly one maximally

correct subset, namely L itselfe.

4.3.20

164

The relevance of constraint labellings toc deduction
lans is as fcllows. If G is a plany tten 1its constraint
set C(G) has a lavelling [SCL(G),LBL], where:

LBL(£) = {e | e € SOL(G) and ¢ € C(e)}

The "label" attached to each constraint in C(G) 1s the set
cf all arcs in SCL(G) which caused the introduction of that
constrainte. It the plan G is not correcty, tren SOL(G),
considered as the 1label set in tre above labelling,y, is not
corrects So if we can find a maximally ccocrrect subset E' of
SOL(G)y; then we know that the graph which results when we
remove the arcs SCL(G)-EF £from G is correcty and that we
cannot obtain a correct graph by removing any subset of
SOL(G)-E"*,. Our next task 1is to show how the smaximally
correct subsets of a label set canm be founde

In the followingy we assume a familiarity with Boolean

algebra, a good description of which may be found in [9]

4¢3.21: Definition: If L is any finite set, denote by J3(L),
the set of all Ecclean expression over L constructed without
complementations If B € B(lL), denote by [B] +the function

from 2Y -=> {0,1} detined by:

[0J(La) = O for all Iy C L
[1](Lg) = 1 for all Ly € L
[L](rg) = 0 iff 1 € L,

[Be+B2)(14) [Ba J(Lq) *+ [B2](L,)

[BaeE2]J(1g) [BeJ(Lg)de[B2](Ly)

4+3.21

165

4.3.22: Definiticp: If C is a set of constraints we define

several sets as fcollowe:

(i) If p and q are subformulae of C:

ATTACB(pysq)

{a | p is simply attackted to g by a}

(i11) CONFLICT {{pva} | (8] = [q] and <p> 2 <g>}

(1iii) For any subformula p of C:

LOOP(r) = {a | J a simple loop on p with value a}

(iv) For any arc e € E(U(C)):

TAIL(e) = {t | t begine with £,
where e = ([t)y£,(p])}
(v) CIR = set of all cycles of U(C)

(vi) Let H be the asserticn defined by:
B(E) iff for all x € CIR, § N E(kx) # @
Then let CCVER be any subset of E(U(C)) satisfying the
condition:
ICOVER| = min 1&1
€< E(U(CY))
and H(E)

Clearly if CIR = €, COVER = @

4¢3.23: Definiticn: ' Ve now define several Boolean

expressions over L as follows:s

(1) It a € C*, B (a) = 3 T 1
' foccurs 1€LBL(#)
in a

4.3.23

166

(ii) If p and q are distinct subformulae of C=
B,(rsq) = 1 if ATTACH(pyq) = @
1T By(a) otherwise

a€ATTACH(p,yq)

Note that by lemma 4e3.15 if a € ATTACH(p,q) then a#g@,
so that Bw(u) is defined. Alsoy by Llemma 4.3.9,

ATTACH(pyq) is finitee

(iii) Econ = | 1 if CONFLICT = @
TT B,(pyq) otherwise
{psq} ECCNFLICT
(iv) For any subformula p of C:
B, (g) = | 1 if LOCF(p) = @

TT By(a) otherwise
a€LOCPF(p)

Note that by leama 4.3+15, if a € LOOPFP(p), then a9,

so0 that E (a) is defined; and by lemma 4439, LOOP(p)

is finitee.
(v) For any e € E(U(C)):
B.(e) = TT B, (t)

t€TAIL(e)

Note that TAIl(e) # @

4.3.23

167

(vi) BCYC = 1 if COVER = @

TT B,(t) otherwise
e€COVER

(vii) B B B

uNI F- Pcon®Pcyc

In the rest of this section, we consider a set of

constraints C with a labelling [L,LBL].

4¢3¢24: Lenmma: If Ly ¢ L, and a € C*, ttren:
[Bw(a)](lg) = 0 if and only i2 a € (C|Lg)*
Proof: For all £ € C:
£ € ClLy iff IBL(%) N Lq # @
iff 3 1 € LEL(#) N L,
iff J 1 € LBL(#) such that [1J(L;) = 0

ifs [17 1](1..) =0
1ELBL(#)

e“e a © (ClLg)* ittt £ € C|Ly for all £ occurring in a

iz [TT 1](L¢) = 0
1€LBL(#)

for all ¢ accurring in a

ittt [B(a))(Lq) = O

4.3.24

168

434253 Lepma: If 14 S L, and A(C|L;) either has a loopy or
has a chain that 1is semi-simple but not simple, then
(Bymrl(Le) = O,
Proof: If A(C|Ly) bas a semi-simple chain that is not
simpley, by lemma 4¢3¢11y A(C|Ly) has a locpe

If A(Cl|Lyq) has a loopy then by lemma 4.3.13, A(C|Lg)
has a fundamrntal 1locpe. Suppose this 1loop has value
a € (ClLa)t. By corcllary d.3.18, this loop is also in
A(C)e Let dgseeesqg, be the characteristic states o1 this
locopy then by corollary 434, there is a <closed walk
[ga]seas[a2]seeesla dee s[qga] in U(C)e Either this walk is
a cycley or some subset of its arcs form a cyclee In either
casey for some jJ 6 [ljyeceym}, e; 6 COVER and g; € TAIL(e;)
by lemma 4¢3¢2 condition (3)e Since the 1loop in A(C) is
fundamental, its g ,-canonical form is simple, s0 that Byl{b)
is a fector of the product Bynme where b is the value of
this canonical forme Also:

{2 | 2 occurs in b} = {¢ | £ occurs in a} < ClL,,

so that [B(p)](Lq)

0y ty lemma 4.3.24

e e [Byypl(La) = 0C

Aede26: Lenma: If Lqg ¢ Ly then:

[Byype J(Lg) = 1 iff C|Lq is unifiadble

Proof:
(A) Suppose ClLgq i= not uvnifiable, then by theorem 4+.2.3.3,

we have twc cases:

4.3.26

169

case(a): There exist subformulaee p and g such that

P = q mod Feout(C|Ly) anu p # g mod Peout(C|Lg)e By

lemma 4e2e2¢12, p = g mod C|Lgy €0 there exists a

chain in A(C|Ls) from (pyas@2) to (qgy2,2) for some

a € (Cllg)*, so by lenmma 43410y there is a

semi-singple chain in A(C|L;) from (psbe@) to (ge2,2)e

Note that b € (C|Lg)*e We have two cases:

(i) Suprose this chain is simplee By lemma 4.3.18,
it is a chain d1n A(C); and by lemma 4¢2.1.5,
since p and q begin with different function
syasbolsy, p #¥ g mod Pe.out(C)

"« {ps1q} € CONFLICI
and b € ATTACH(pyq)
Therefore B (b) is a factor in the product B ynip®

But b € (C|Lg)¥*, s0c by lemma 4.3.24:

[B(b)l(Lg) = 0

0

P [BUNIF](I"')
(ii) If this chain is not siuspley, then by lemma
dele25:

[B HLg) = 0

UNIF

case(b): U(ClLgy) has a cyclee In this case,y, by

(B) Now

cas

corollary 4.3.5, A(C|L;y) has a 1loop;y =0 by lemma

443252
[EUNIF](I") = 0
suppose that [B . 1(Ls) = 0. Then we have two
es:

case(a): [BE r¢) = 0

cYcC

4eJe26

170

In this case¢y for scome subformula p ot Cy, there is a
simple loop in A(C) on p with value a € C*y such that
[By(a)]l(Lg) = 0. Now by lemma 4.3.15, a € Cc%*, so by
lemma de3.24, a € (C|lLg)*, and therefore by lenma
4.3.16, there is a simple loop on p with value a in
A(C|Lq)e Ccnsequently, U(ClLyg) has a cycle
(corollary 4.3.5) sc finally, by theoren 40233,
ClLg is nonunifiable.
case(b) [Bgoy J(Lg) = 0

In this case, for some subformulae P and q of C,
P = g mod Feout(C), p # q mod Peocut(C), and p is
simply attached to q by a € C* in A(C), where
[By(a)] = 0« By lemma 4.3.15, a € C*, sc by lemma
4¢3¢24y a € (ClLg)*, and therefore by lemma 4.3.16, p
is simrly attacked to q by a in A(C|Lg)e Bence
p Z a mcd ClLgy so by lemma 44202412,
P = g mcd Feout(C|Lg) But p and 9 begin with
different functicn symbols, by lemma 4e.2<1e5, so by
the same lemma p # q mod Peout(C|Ly)e Therefore, by

theorem 4¢2+43¢3y Cl|L; is nonunifiablee.

It B is a Eoolean expression ccnstructed without
complementation, thken there exists [9] a unique (modulo

commutativity cf Boolean sum and product), sum <f products
expression B' with the properties:

(a) No product in B' sutsumes any other rroduct in B'.

4.3.26

. 171

(b) No product in E' contains repeated variablese.
(c) B' defines the same Boolean function as Be.

Alsoy for any two Boclean expressions By and B,
[Bal =[B2] if and only if By and B, define the same Boolean

functione

We are ncow in a positicn to rrove the main result of
this chaptere. This theorem allows us to find all the
maximally correct subsets of the label set of a set of

constraintse

4e3e27: Iheorem: It [L,LBL] is a labelling for a set of
constraints Cy then 14 € L is maximally correct if and only

if Ly = L - {lgyeseyl,} where lgeeel, is a rraduct in BYnir

(A) Suppose Lg = L - {1‘,...,1n} where lgeeel is a prcduct

]
in Biyp e

n
Then [lgeeel 1(Lq) = TT [1, (Ly)
i=1

= 1 since 1, ¢ L,
for all ie {1,...1“}

e e [B2

UNIF JLa)

i
[y

e e Lg is correct

Now suppose Lac Lz, and L is correct, tren there

exists a product mgeeem in BGMF such that:

k
[laoo.mk]‘Lz) =1

o e m, ¢ Lz for all 1 € {ly.oo'k}

4ede27

(B)

172

s e mi ¢ L. for all 1 e {1'ooo,k}

e e {mu.ooo'mk} S {1"...'ln}

If these sets are noat equal, then the product Mieocem
subsumes the prcduct 1....1n, which 1is impossible.
Therefore {mly-..,mk} = {1‘,...,1n}, €0 that Lgq = L,

e"e Lg is maximally correct
Suppose Lg C L is wmaximally correcte.
Let Ly = L - {lgseeeyl } e Now [BSy;r J(La) = 1, since L,

is corrects Therefore there exists a product mgeeem, in

Bynr r Such that:

i}
-

[mi](I.g)

e

e o m, ¢ Lsg for all i € {lgooo'k}

e {maveessm} S {Lygeceyrl,}

Let L =L - {m‘..-.,mk}. Then L, is correct by (A),
and Lg C Lze EBut I, is maximally correcty, so that Ly =
lae

e o 11...1n is a product in EaNIF

4ede28: Example:s Consider the set of ccnstraints C as

follows:

fe: {G(s9z)y G(Vv4F(y,y))}

223 {uy F(y,G(s,y2))}

£3: {u, F(H('w),G(x.r))}

£4: {F(H(H(u))yB(u)), F(B(H(v)),v)}

¢5: {v, F(y’y)}

403.28

173

u, v, S, z, X, r |
HF(H(w),G(x,r)), Fly,G(s,z)), F(y,y)]
{H(u), H(v)]

H 6

y
{G(s,z), G(v,F(y,y)), G(x,r)}
{H(w)}

@(H(H(U)),H(u)), F(H(H(V)),VD

The wunificaticn graph for the constraint set cf exazple
443.28. By the definition of U(C)y each vertex is a class
of Feout(C)e 7The sets within each vertex are the classes of
Feout(C)e The arcs are labelled with function symbols
according to the definitiocn of U(C); also, integer labels
l1yeeey?7 are attached in order that we can refer to the arcs
8 Clreeesltlo

Eigure 4.6

4.3.28

174

F(H(H(U)),H(UD

(F,1) \
P~
m A(F.2) CF(H(H(V)),D

(HDWR (F,1)
< !
Y,

° ¢y

F,2)
N

(

Gv,Fly,y)))R
D
\Z(F,2)

1) A
(G \(G2) °
A >
° ° ¢s

(F,1)

27 2)

The automatcn for the constraint set of example 4.3.28

Eigure 4.7

4.3.28

175

The unification graph U(C) for this set of constraints is
shown in figure 4e6. The classes of the partition P.ocut(C)
are specified within the nodes of U(C).
The set of pairs of incompatible terms is:
CONFLICT = { {F(H(w)3G(x,yr)), H(u)},
{F(H(w),G(x,r)), B(v)},
{F(y,G(syz)), H(u}},
{F(y,6(s,2))y H(v)},
{F(ysy)y H(u)},
{F(ys,y)y HB(v)},
{c(s42), H(W)]},
{G(vyF(yyy))yH(W)},
{G(xer), B(w)} 1}
The set of cycles of U(C) is:
CIR = { ([ulsedslylreas[uldy ([ulsersful) }
Ct the two possible "coverings" for CIR, we choose:
CCVER = {eq, e7}
So the sets of states of A(C) which must be investigated for
loops is:

TAIL(ey)

1}

{F(y-y), F(H(w)yG(x,s1)), F(yq G(ss2))}

TAIL(e7) fB(u), H(V)}
By investigating the automaton A(C) (figure 4.7) we obtain

the following:

ATTACH(F(H(w)yG(xyr))eH(u)) = {€3%,2,}
ATTACH(F(B(W)sG(Xyr))yH(v)) = {£32€,¢,%,}
ATTACH(F(y,G(£4yz)),H(u)) = {£,€,%,}

ATTACH(F(y,G(892))yH(V)) = {2,€,%4%,}

4e3.28

176

ATTACH(F(y,y),B(u)) = {2,}

ATTACH(F(y,y5)sH(v)) = {2,%,}

ATTACH(G(S92)y B(W)) = {£,€,C5Cg8483, £¢,85¢,85}
ATTACBOG(V F(y,y))gB(wW)) = {£3€,858,2,05, £32,2585¢,22%,}

ATTACH(G(X 91)}y B(W)) = {£30,%5CgC, %3, £3f o852 423}

LCCP(F(yq,y)) = {#3¢,€,%5}
LOOP(F(EB(w),G(xyr))) = @
LOOF(F(y+G(s92)) = {£2€,%5%,}
LCCP(H(u)) = {#5%4%,, £4%5}

LOCP(H(v)) = {2,}

Now consider the 1labelling [C,LBL] for C, where for all
¢ € Cy LBL(?) = {7}, Note that this labelling is not the
cne we will use when deciding how +to prune a plane In that
case, we will use tkte labelling defined following 4¢3.20.
In this example, tte set of constraints we are processing
does not originate from a plany, S0 we use tte sinrglest
possible labelling for illustrative PUrpoeEese.
We obtain the Ecolean sum of products over C:

Bidnir = fafy + £4%
Therefore the label set C has twc maximally correct subsets:

{#2, %3, %5}

and {fg4, %3, £g}

which are the maximal unifiable subsets of Ce

4.3.28

In this chapter we give examrles +to demonstrate the
features of deductign plans, and compare plans to other

deduction systemse.

£e1: Backtracking

We now informally describe the operation of a
constraint processing systen based on the results of charter
4« As we remarked following 4.3.20, the labelling uvsed is
[SO01(G)yLBL], where for all ? € C(G):

IBL(f) = {e | £ @ C(e)}

The following descripticn has an inductive structure +to
rarallel the ccnstruction of planse
Basis: If G is a tasic plany C(G) = @y =0 the input set S
to CLASSIFY is emrty, and the automaton for C(G) is a null
graphe
Induction: Suppose that a correct glan G has been
ccnstructed and that its constraint set C(G) has been
Erocessed by CLASSIFY, Froducing the partitions F.out(C(G))

and Peout(C(G)})se The input set ctf constraints S to CLASSIFY

is currently emrty, and the theorem—prover is attempting to

177 S.1

178

close an open subrroblem u of G by adding a new arc e to

SCL(G),y producing a plan G'. Then:

(a) (i) The rew constraints C(e) are added to Se

(b)

(c)

(d)

(1i) If p is a new subformula introduced by these new
constraints, then {p}] is added to Feout(C(G)), and
if p is a term {p} is added to Peout(C(G))e.

(iii) The autcmaton for C(G') is constructed from
A(C(G)) by‘adding a new vertex for every new
subfcrmula, and adding the corresponding new PUSH
and FOP arcse. If ¢ = {p;,.,p2} € C(e)-C(G)y two new
arcs (pge%ep2) and (p2y€ypa) are added to
TRANS(A(C(G)))y and the label tor ¢ ig defined by*

LB1(¢#) <-- {e}
If ¢ € C(e) N C(G)y, LBL(Z) is updated as follgows:
LBL(#) <~- LBL(#) U {e}

Execution of CLASSIFY is resumed at point Cy4 of the

flowchart and the new rartitions Feout(C(G')) and

Peout(C(G')) are produceds. If any class of Feout(C(G'))

is found tc contain aore than one class of Pecut(C(G')),

this class is markedy and the consequent nonunifiability
notede

The unification graph U(C(G')) is ccnstructedy and its

cycles (if any) are enumerated by ocne of the well-knaown

algorithms [40,17,34].

If C(G') is found to be nonunifiable during sten (b),

the marked classes of Feout(C(G')) are investigated to

Se1

17§

find all rairs {p,q} of incompatible termse. Booy is

then calculated.

(e) If C(G') is found to be nonunifiable during step (c), a
set COVER cf arcs of U(C(G')) is found which contains an
arc of every cyclee. BCYC is calculatede.

(f) BUNIF is determined and simpglified to BGN:F'

Once this informatiocn has been supplied by the

constraint prccessing systen, it 1is the tagk of the
theorem—prover to decide how tc use ite Removing the arcs
from G' which comprise cne of the products of BGNIF results

in a subgraph with a wunifiable constraint sete. Ihis
subgraph will not in general be a subplan, sinée if one of
the arcs remcved 1is in BEPL(G')y (vyw) say, then +the
subgraph obtained still contains the arcs into and cut of
the direct descendants of ve Furthermore, if the subgraph
is further pruned in order to ottain a subrlan, it is
rossible +that scme subset of the arcs removed in +this

pruning actually constitutes another product of Ba in

NIF?
which case, we en¢ up with a subrlan of a larger correct
subplane Consequently, we define a new Boolean expression
BMAX over SOL(G'") as followse If e' = (vyw) € REPL(G'),
let {eqyeeeye,} be the set of all arcs which eitkter close a
direct descendant of Vy or factor scme subprcoblem to a

direct descendant of ve Denote by e', the Boolean product

€e'eegecee,e Ncw we replace every e" in Blinipy df it is in

Sel1

180

REPL(G'), by ¢"; the resulting sum of products is BMax e
Clearly, if we now remove from G! all trhe arcs in some
product of Bj,y+ we obtain a correct subplan of G' which is
maximal in the sense that it is not a subplan of any larger
correct subplane Note that since C(G) is unifiable and
C(G') is noty G is cne of the maximal correct subplans of
G'; hence one of the products of Bluux will consist of the
single arc e, with which ttre open subproblem v of G was
closed to obtain G's If +there are no untried alternative
solutions to u, this product should be ignorede.

We illustrate tre backtracking process described above,

with the following example.

Selel: Exapple: Let § be the set of clauses:
{ {Q(x,y)y P(x), P(a)d},

{-P(x)},

{-Q(x3y)y S(y)y R(x,5)},»

{-R(x,x); -Q(yyz), P(x)},

{-s(x)y, T(x)},

{-T(x)y, M(x), M(y)},

{-N(Db)} }
where a and Lk are comstantse Figure 5.1 illustrates a
closed plan G for ¢$, in which the arcs in SO0L(G) are
labelled with integers indicating the order in which they

were constructedes Tke constraint set C(G) for this plan is
shown in figure £.2, and the partition Feout(C(G)) is given

in figure S¢3.

181

suB
A
&)
RLEPL 3 REPL 2
\/ \/
-Q(x3Y;) -P(x)
suB suB

A
R(x3Ys) FACT S

REPL 4

».

REPL 7

a<

suB

&)

a<

REPL 8

g<

sUB SUB

A
FACT 8
=)

e‘

REPL. 10

e‘

A closed plan G for the set cf clauses of example Selel.
The integer laortels on the arcs of S0L(G) indicate the corder
of construction of Ge

Elgsure S.1

€elel

132

¢

a3 {P(a)y, P(x4)}

2 {P(1|)y

P{x2)}

32 {Q(xq4+¥1)y Clx39y3)}

43 {E(x34y3), R(xq9x4)}

53 {P(x4y9 F(xq)}

63 {-Q(yasz4)y —G(x149y4)}

7° {s(y3),
8 {T(X5)9
93 {N(y¢),

1o0: {N(xg),

S(xs)}
T(xg)}
N(x¢)]}

N(b)}

The constraint set C(G) for the plan G of figure 5.1

Figure 5.2

G

is not

that LBL(¢#,)

correct since a

i Zf£or all

b mod Feout(C(G))e Note

]

£, € C(G)e By applying +the

procedure described above, we cohbtain:

]
BU’NIF‘

e Bu.x

where 4
i
8
2

[
. BMAX

i

I

1 +4+ 7+ 8+ 10 + 3.5

1+A+1+_8+10+a.5

4efeb

7.8.9.10

8.9.10

Jede5e6e7e8+9.10

1 + 4,5.6 + 10

th

el.1

183

{PCa)y P(x4), P(x2), P(x4)}
{CG(x19¥2)y QUx33¥3)y Qyarze))
{-Q(y4924)y ~Qlxa4y4)}
{R(x39¥3)y R(x49xae)}
{S(y3), S(xs)}

{TI(xs5)y T(xg)}

{NCye)y N(xg)y N(D)}

{Xay X209 X35 Xa9 XSy X6y Yar Y33 Yar Y63 Zs4y Ay b}

Tre partition Feout(C(G)) for
the constraint set C(G) of
figure 5.2

EFigure 5.3

Since M(xg) has no other sclution than that represented by
the arc 10, we will not backtrack by removing this arce
This leaves twc choices: remaove arcs 44 5 and 6, or remove
arc le If the strategy engloyed is to remove as little as
rossibley, we would remove arc 1. There is then only one
choice for closging P(a); that isy by rerlacement using the

clause {~P(x)} .

As the reader has trobably noticed, kacktracking to one
of the maximal correct subplans could result in the system
eventually generating a graphb which is not a plan, since not
all subplans sre prlanse This will not cause unsoundness,

however, in view of lemma Jelele

€elol

184

In example Selel, we used the criterion "remove as
little as possible" to decide hocw to prune the grlan: there
are undoubtedly many ways to make this choicee We will not
investigate here the problem of choosing tetween the maximal
correct subplans in racktracking, but suggest this as a
worthwhile topic for further research.

The utility of tte system described in this section,
obviously depends quite heavily on the existence of a go0od
algorithm for enumerating sianple chains in the autcmaton
between given configuraticnse The existence of an algorithm
is evident from the finiteness result of lenma 4.3.9.
Developing a rractical algorithm would invcolve a detailed
discussion of data structures, which is keyond tke scope of
this thesise.

Similarly, we omit the investigation of another topic
cf practical importance:s nanely, how to salvage as much
information as passible after a plan is prunede We can of
coursey completely reprocess the remaining ccnstraints +to
ocbtain the new partiticns ¥ and P, then build the
corresponding unification graph; however, depending <n the
data structure, it may te possible te reduce this
reprocessing in scme waye

Again, we suggest both the above as areas worthy of

further researche

£e1.01

185

Je2: Deduction rlans and linear deductigp

To each linear deductian rule there corresponds a rule
for plan constrthion; however, one of our rules,
tackfactoring, has no equivalent in existing deduction
systens. Backfactoring requires that a record is kept of
subproblems that have been solveds The linear systems which
have a reducticn rule are tte only ones which keep a record
cf some solved subproblems, but those which are Xept are
ancestors of tte rightmost literal of a chain and so cannot
be wused in factoringe. Hence any factoring in a 1linear
deduction systenm is sinplee.

An interesting property of the factoring rule for plan
construction is that in any complete subset of +the rules
which caontains factoring, completeness is preserved
regardless of which factoring rule we use; =0 we can
actually limit ourselves to factoring only +to subproblenms
which have been closede This suggests strategilies for
choosing clausée for vuse in replacement according to what
closed subproblems are available for backfactoringe.

Of the +three mininal complete subsets of the rules,
{€1)A, (2)} ccrresponds +tc the ME-deduction system of
Loveland [24,25,27], and the SL-rescolution system of
Kowalski and Euehner [23]. The set {(1), (3)A}, although
similar to the original simple linear deduction system of

Loveland [26]y, Luckham [28], and Zamov and Sharonov [44], is

actually more powerful in that more lemmas are available for

use in ancestor replacement (see below).

S.2

186

The racktracking bebhavicur of rlans is clearly superior
to that of exiesting deductian systense. This is illustrated

by the followirg example.

SeZel: Exapple: Consider tte set cf clauses § of example
Selels We omit tre set Eraces and number the clauvses thus:
(1) Q(x,¥)y P(x)y, P(a)

(2) -P(x)

(3) -Q(xyy)y S(y)y R(x,y)

(4) -R(xyx)y -C(yy2z), P(x)

(5) -sS(x)y T(x)

(6) -T(x)y M(x), N(y)

(7) -MNM(b)
Recall that a and b are constantse In generating the plan G
of figure 5.1, the order of clcsure of subproblems is right
to left, the order of applicaticn of the rules is factoring,
reduction, rerlacement, and the clauses for (simgple)
replacement are chosen in the above ordere. We now present a
deduction fron £ Using model eliminaticn with factoring,
with the same crdering of Subrrcblensy a similar ordering of
the rules (contraction, factoring, reduction, extensicn) and
the same order of selection of input clauses for extensione
In the following searchy A-literals are framedy and the
rules applied are recorded to the right in abbreviated form:
for example "ext(1)" means extension using clause (1).

(1) Qxy¥)y P(x)y P(a) top

(8) Q(aysy)y F(a) fact

€e2.1

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

(30)

(31)

(32)

Q(a,yy)’II(E:D

Q(G'Y)
[o{aszy71,
M—. a:a

S(y)y R(a,y)

SCa)e[B(8:aT], -Q(w,z), P(a)
SCa)JJElazaT]ly -Q(w,z),[E{aY]
S(a)yJR(a33)]y -Q(wyz)

S(a) [E(asa]]

S(a)

[00a5277,I8TaT], T(a)

[0la,a7].I806]],[AaT1,
[Oa,277,.[8(3]],[ITa]],

backtrack

[o(a,a]1,[STa1],[X517,
[9(a:3)1,[5(a711,[ITa1],

racktrack
[O0a5a71,
[o0a%ad1,
I[0{a3a]],
[C(aa)],
= (15)
= (16)
= (17)
= (18)
= (19)

backtrack
= (20)

= (21)

N(a), NM(y)
M(a)

to (18)

N(a),[NTEY]

N(a)

to (14)

S(a)eJE{asa]][=0{x327], P(w), P(a)
S(a),JR{asad1,I=0{3a5z3], F(a)
SCa),[E(a+ad1,[=0{a:z31,[F{a]]
SCa),[F{a%a7],[=8a3z]]

ta (29)

187

ext(2)

cont

ext(3)

ext(4)

ext(2)

cont

red

coent

ext(5)

ext(6)

fact

ext(7)

cont

ext(1)

fact

ext(2)

cont

ccnt

cont

ext(5)

ext(o6)

fact

ext(7)

cont

€ele1

(33)
(34)
(35)
(36)

(37)

(39)
(40)

(41)

(42)

(43)

(44)
(45)
(46)
(47)
(48)
(43)
(50)
(51)
(52)
(53)
(54)
(55)

(56)

racktrack to (22)

188

[0la.al], sCe) [Xa331],[=00w5277s P(w),[BTaT] ext(2)

ICta.aTl, SCa)y[El(22a]],[=0(3:231s F(w)

[9Ta.ally SCa),[E(a32)],[=0Cw22Y]1,[F(w]]

[0Ta%a71, s(a),[R{a33171,[=0(w2z]]
= (15)
= (16)
= (17)
= (18)
= (19)
backtrack tc (40)
= (20)
= (21)
backtrack toc (1)
Q(xyy)y PF(x),[F(a]]
Q(xyy)y P(x)
Q(x,y), JF{Z]]
Q(x,y)
[O0XG¥71y S(y)y R(x,y)
TOCxLxTT, S(x),IBIXIXT]s —Qlwez)y P(x)
[0Gxex71, s(x),[E¥ (331, -Q(wyz),[FIxT]
IOTX.XT]y S(x),[E{x>x)]1s —Q(w,z)
IO0x5x7]y S(x)y RIx3x)]
[OTx5XT7], s(x)
[0 X0 ,I8TET], 1(x)
[0 x77.ISTx1],[IT3T]y M(x), M(¥)
[OTx 77 ,[ET53T],TITxT]y M(x)

cont

ext(2)

cont

cant

cont

ext(S)

ext(o6)

fact

ext(7)

cont

ext(2)

cont

ext(2)

caont

ext(J3)

ext(4)

ext(2)

cont

red

cant

ext(5)
ext(6)

red

tn

189

(573 I9(%%%37.[STE1],[ICEI],[N{E]] ext(7)
(58) IEIEIEJ],IEIEJ].[IIEI] cant
(59) IﬁIBIBJ],IEIE]] ccnt
(60) [O{h.p)] cent
(61) n cont
Six backtrackings are rerforned before the source of

ronunifiability is discovered: compare +this with the
backtracking rerformed in the construction ct the
corresponding rlan, in example Sel.l. Note also that when
the correct cutting point is finally discovered at clause
(43)y in the atgve deductiony all previocusly found subproofs
are lost even trough they are correct, and are reproduced in
clauses (45) to (56). In fact, between the various
tacktrackings, parts of +tre proof are generated several
times: for instance, tte subproblem M(x) corresponding to

the third literal of clause (6) in &y is closed seven times.

Most lineir deduction systems allow the use of lemmas:
that is, any clause which has been deduced in the course of
the current prcof mey be used as an input clause, as though
it belcngs to the set $, whose unsatisfiability the system
is trying to estaktlishe Tte linear structure of these
systemsy, however, precludes tke use of many lemmas which are

available in tte ccnstructicn of tlanse.

Se201

190

Se2e2:2 Exapple: Let & te tre set of clauses:
{ {-P(x), Q(x)},

{-C(y)y PCL(y))},

{P(z)y, -Q(n(z))},

{-P(£(£(Db)))},

{Q(h(n(n)))} }
where b 1is a constante Figure 5.4 illustrates a closed,
correct plan for £ the construction of which requires two
ancestor replacements using variants ¢1 and ¢> of clauses €1
and €, deduced ty subplans as indicated in the diagrame In
a linear system, once -P(x) in +the top clause is closed, it
is no longer available for use in a lemma; similarly tor
Q(x)e Cne of +these subproblems has to be solved first,
however, so0 that cnly cne of the two lemmas ¢, and €, used

in generating tke plan is availablee.

If a deduction system is to have access to the variety
of lemmas which are available in plan construction, each
literal used in a proof in that deduction system must be
represented at least oncee In a plany each literal is
represented exactly once, €0 among systems which use
ancestor replacementy ours attains the best possitle eccnomy

of representaticne

There have been other attempts at representational

economy in thecrem-proving Erogramse. Boyer and Moore in

Se2.2

191

\
{ ~Qh(»))) /
\ ' /
N 7 7/

~

S s ve e . e o

S R S T — . o w— —

CQ(h(h(b)))) (—P(f(f(b))))

A plan XIcr tre set of clauses of example 56262

Eigure £.4

£e2.2

192

[8], suggested a method fcr representing resolvents of
clauses by a system of pointers to parent clauses, and to
resolved literalse In their system, as 1in ocurs, each
literal is represented only cnces theirs, however, is
strictly a mettrcd of representation, and sclves none of the
rroblems associated with efficient backtracking, wuse of
lemmas, ordering of subgoals, etce Although claivses are not
explicitly created, they exist impticitly; also,
substitutions are performed irplicitlye. Therefore, in order
to perform a resolution, it 1is necessary to search
recursively ttrough the structure tc carry out the
unification and imrlicit construction of the resalvent.

The use of unification is also more economical in plans
than in other deduction systems, since the wunification
algorithm is vused only to verify the applicability of the
rules: whenever a plan is closed, we have a refutation
rrovided that tre ccnstraint set is unifiablee.
Substitutions sere tterefore never performedy and mgus are
not calculatede. In this regard, our system is similar to

Buet's higher—crder constrained resolution system [16].

A major «ifficulty with wusing problem-reducticn in
predicate calculus is that the subproblems are usually not
independente In sclving a particular subproblemy we may
aestroy our chances of finding a solution to ancther
subprobleme. To take advantage of the rroblem—reduction

nethod, therefore, we must process the subproblems 1in

Se2e62

194

Shostak [38] builds "clause araphs™ in which the
vertices are clauses and each vertex is divided into
"'cells", one fer each literal in the clauses. Tte edges are
undirected, each edge connecting two sets of cells in the
graph such that two cells at opposite ends of an edge are
literals with crrosite sign and the same atcme Clause
eraphs are nct true #raphs since edges do nct ccnnect
verticese. In order to refute a set of clauses g, it is
necessary to build a clause graph for # having nc "locops",
where a loop in a clause graph is approximately equivalent
to a cycle in an undirected gragphe If such a graph can be
built it is called a relfutatjon graph for tre set oi
clauses.

The resolutiop garaphs of Yates, Raphael and BHart [43]
are quite similar to Shostak's &raphse

In [39] Sickel describes glauge interccpnectivity
£#raphs which are identical to Kowalski's connection graphs
[22]e The vertices of these graphs are the literals of the
clauses in the set £ of clauses being consideredy, and there
is an undirected edge ccnnecting each pair of literals with
opposite sign and unifiable atconse Each edge is labelled
with the approrriate mgue To extract a refutaticn from such
a graph, Sickel marks all the nodes corresronding to some
clausey, then walks €ach marker through tte grarhy checking

the consistency of the substitutions being accumulated on

these walkse Traversing an edge (usyv) with a marker

18§

corresponds to resclving away the literal u, 50 the marker
is then removed for tte 1literal v and cories of it are
rlaced on all cother literals in the clause containing ve If
all markers can be completely eliminated by this pracess,
then the set cf clauses is unsatisfiablee In Kowalski's
systemy an edge in tre connection graph is selected, and the
clause obtained by resolving the connected literals is added
to the graph 1ogether with the appropriate new edgese The
edge which gererated tte resclvent is tren deletede. If a
vertex has no edges attached to it, the clause in which it
cccurs and all associated edges are deletede. Also, if a
clause is a tautclogy, it is deleted together with all the
associated edgese The set of clauses used to construct the

original graph is refuted when a null grarh is obtainede

[1]

[21]

[a]

(4]

[5]

(6]

[7]

(8]

[9]

[10]

SEEEBENCES

AhO AOVO and Ullman JeDe
Ibe Ibeoxy of Parsing, Irenslaticn, and Compiling.

Yolume 1: Parsing
Prentice-Ball (1£72).

Battani Ge and Nelcni He

Interpreteur de lepguage de orograemmation PECLQG
Groupe d'Intelligence Artificielley, UeE«Re de Luminy,
Marseille (1873).

Baxter LelLe.

Ap Efficiept Unificaticp Alsorithgm

Research [Report CS-73-23y Department cf Computer
Sciencey University of Raterloc (1973).

Baxter L.I,
Azwmwmm

Research HRerort CS-76~13, Department ¢f Computer
Science, University of Waterloo (1876).

Baxter LeLe

Ibhe Conplexity of Upnificaticn

PheDa Ttesis, Department of Computer Sciencey
University of Waterloo (1876).

Bergman Me and Kanoui He

Applicaticn of Mechanical Ihecrem Froving 10 Symkolic
Calculus

Groupe d'Intelligence Artificielley UeEeRe de Luminy,
Marseille (1S73).

Bondy JeAe« and Nurty Us.SeRe.

Graph Iheory with Applicaticps
MacNillan (1€76).

Boyer ReSe and MNoore JeSe.

dbe sharing of structure in theorem~xrroving prograns

in Machine Intelligence 7, 101-116,4 John Wiley and Sons
(1872)e.

Brzozowski JeAe and Yoeli Me

Digitol Networks
Prentice—-EHall (1876).

Chang Ce. and Lee ReCe

Symbolic logic apnd Mechapnical Iheorem Proving
Academic Fress (1973).

186

(11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

197

Colmera?er Aey Kancui He, Pasero Re and Boussel Pe.

Un systeme de ccmpunicatign bomme-machine en frapcais
Groupe d'Intelligence Artificielle, UeEeRe Luniny,
Marseilles (1972).

Cox PeTe and FPietrzykowski Te.

A Graphical Deduction Svstenm

Research FRerort CS-76-35y Department of Computer
Science, University of Waterloo (18976)e.

van Emden NeHe

Progrenming with resoluticp logic

Research Report CS-75-30y Department cf Computer
Sciencey University cof Waterloc (1875).

van Emden Ne.He and Kowalski Rede

Ibe Semantics of Predicate lLogic 2s a FEiggrampming
Language
JeACMy ve23 nced (Cctober 1976).

Hewitt C.

PLANNER: A lanpguase for trovipg theorems inp Xohots
Proce IJCAIl, 2S5-302 (18969).

Huet GePoe
Constrained resolution: a complete method for higher
ogrder logic

Report 1117, Jennings Computing Center, Case Yestern
Reserve University (1872).

Johnson DJFe.

Einding all tbe Elementarv Circuits of & Directed SGranh
Technical Rerort 145, Computer Science Departnent,
Pennsylvaria State University (1973).

Kanoui He.

Applicaticgn de la demcnstration avtomatigue aux
manipulaticns alsébrigue et 3 l'integratiop formelle
Sur ordinsteur

Groupe d'Intelligence Artificielley UeEeRe de Luminy,
Marseille (1273).

Knuth D.E.

Ihe Art of Copputer Prosramming, Yclume I: Fundamenptal
Algorithme

Addison—Wesley (1868).

Kowalski Kk ehAoe

Predicate l9ogic as a prosrasmine lapguage
Proce IFIF, £69-574 (1S74).

[21]

(22]

(23]

[24]

[25]

[26]

{27]

(28]

[29]

[30]

[31]

168

Kowaleki KeAe

Llogic for problem-solvipg

DCL Nemo 75, Department of Artiticial Intelligence,
University of Edinburgh (18974).

Kowalski Fe.Ae

A proof procedure using Lconnection graphs
JeACM 22, noe 4, 512-585 (1975).

Kowalski KeAe and Euehner De

Lipear z@ﬂﬂmjinn.LLnnsglggLuulIynsLum
Artificial Intelligence 2, 227-260 (1971).

Loveland LeWe

Mechapical tteorem-proving by model elimpipatiop
JeACM 15, noe. 2, 236-251 (1968).

Loveland T .¥We
A sinplified format faor the model €elipipetiop

theorem-provips xrocedure
JeACN 16, noe 3, 349-363 (1869).

Loveland T.VWe

A lipear format for resclutigp

Proce IRIA Sympe Autoe. Demoney, 147-162, Springer-Verlag
(1970).

Loveland LeW.

A unifving view of some lipear herbrand procedures
JeACM 19, noe. 2, 366-384 (1972).

Luckham D

Refinements in resoluticpn theory

Proce IRIA Sympe Autoe Demone., 163-190, Springer-Verlag
(1970).

Manna Z. and Waldinger K.
Ihe Logic <f Ccpruter Programming

to appear in Ccmputing Surveys

Nilsson Nede

Eroblem Sclvipg Metbods ip Artificijal Intelljigence
McGraw—Hill (1571).

Nilsson NeJe and Fikes ReEe

SIRIPS: A pew approach to the apclication 9f theorepn
Rroving tgc problenm solving
Technical note 43, Artificial 1Intelligence Group,

Stanford Research Institute (1970).

[32]

[(33]

[34]

[35]

(36]

[37]

[38)]

[39]

(40]

[41]

199

>
Pasero Re

£n vue de dialoguer avec up ardipateur
Groupe d'Intelligence Artificielley UeEeRe de Luminy,
Marseille (1£73).

Paterson NeS. and Wegmar MeN.

Lipear Unificatiop
Proce Symre on Thecry of Computing, SIGACT (1876).

Read ReCe. and Tarjan ReEe.

Bounds opn Eacktrack Algorithas Zfor listing cycles,
Paths and sranping trees

Memo ERL-M433, Electronics Research Laboratory, Cocllege
of Engineering, University of California, Berkeley
(1£73).

Roberts G
An Implementatiop of PERCLQG

MeMathe. thesis, Department of Computer Science,
University c¢f Waterloo (1877).

Robinson JeAe

JeACN 12, NNCe 1' 23‘41 (1965).

Rulifson JeFao

QA4 progremmine cancepts
Technical note 60, Artificial Intelligence Group,
Stanford Rese¢arch Institute (1971).

Shostak ReEo

Refutatiop Gravhe
Artificial Intelligence 7y 51-64 (1876).

Sickel Se
A Search lechnigue fgr Clause dnterccpnectivity Grachs

IEEE 1Iransacticons on Computers voleC—-25, no.& (187¢6).

Szwarcfiter JeL. and Lauer PoJEe.

Technical Report 68, Computing Laboratory, University
of Newcastle upcn Tyne (1875).

Venturini-Zilli N.

Copplexity of the wpification 2lgorithm for first-crder
eXxpressiors

Researcn report, Consiglio Nazionale Delle Ricterche
Instituto rer le applicazioni del calcolo (1§75).

[42]

[43]

[44]

200

Warren DeFe.De.

YARPLAN: 8 system for sepnerating Rlans
DCL Memo 76, Department of Artificial Intelligence,
University of Edinburgh (1574).

Yates Re., Raphael B. and Hart Te

-Resolutiox Graphs

Artificial Intelligence 1, 224-239 (1870).

Zamov NeKe and Sharonov Vel

Qn a class of strategies which can be used tg egtaplish
decidability by the resoluticp Bripnciple .

Issled, EO konstrukivnoye matematikye i
matematicteskoie logikye ved noe16, £4-64 (1969).

