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Abstract

We consider decision problems of the following type.

Given a language L and two homomorphisms hl and h2 , One

has to determine to what extent h1 and h2 agree on L

1 and h2 are equivalent on L

For instance, we say that h
if hl(w) = hz(w) holds for each w e L . In our main
theorem we present an algorithm for deciding whether two
given homomorphisms are equivalent on a given context-free
language. This result also gives an algorithm for deciding
whether the translations defined by two deterministic gsm

mappings agree on a given context-free language.



1. Introduction

Although homomorphism is a very simple and, at least
from the point of view of mathematics, the most important
operation defined for languages, some of the very basic ques-=
tions concerning homomorphisms have turned out to be very
difficult or are still unanswered. The best example of the
former is the DOL equivalence problem, cf. [1] and [2], which
was open for a long time. .This paper investigates problems
of the latter type.

The basic set-up is as follows. We are given a
language L (belonging to some specified family of languages)
over an alphabet I and two homomorphisms h and h

1 2

ping I* into Z{ , Where Zl is a possibly different

alphabet. We want to know to what extent hl and h2 "agree"

map-

on L . More specifically, we want to know whether or not
the eguation

hl (w) = h2 {w)

holds (i) for some w ¢ L , (ii) for infinitely many w ¢ L ,
(iii) for all w e L , (iv) for all w ¢ L with a finite
number of exceptions. Questions (i)-(iv) give rise to four
decision problems for each particular family of languages we
are considering. It is easy to see that the HDOL (sequence)
equivalence problem is simply problem (iii) stated for the
family of DOL languages. We feel that solutions to problems

of the kind described often give important information



concerning the structure of the languages considered.

A brief outline of the contents of this paper follows.
After the basic definitions and preliminary reéults presented
in Section 2 we consider in Section 3 the problems (i)-(iv) for
regular and context-sensitive languages. Section 4 deals with
the same problems for the family of context~free languages.
In particular, we show that problem (iii) is decidable for
this family. This main result of our paper.,we feel,is rather
surprising because several related problems‘are undecidable,
as will be pointed out. The results in the final Section 5
concern problems slightly different from (i)-{(iv) in that, in
Section 5, iterated homomorphisms will be considered.
However, they can be viewed as problems similar to (i)~ (iv)

for DTOL languages.



2. Preliminaries

We assume that the reader is familiér with the
fundamental theory of formal languages including the basics
of L éystems, cf. [4]. However, L systems will be
referred to only in some parts of the paper. For convenience,
some of the definitions will be given here.

A DOL system is a triple G = (£, h, w) , where I

is an alphabet, h is a homomorphism on I* and w is a
nonempty word over I . The lanquage (resp. sequence)

generated by G 1is defined by

L(G) = {hi(w) | 12 0} (resp. S(G) = w ,h(w) ,h2(wW),...).

An HDOL system Gl consists of a DOL system G and
another homomorphism hl mapping ZI* into ‘Zi ; for some
alphabet Zl . The language and sequence defined by Gl are
obtained from L(G) and S(G) by an application of the
homomorphism hl :

A DTOL system is a tuple

G = (L, hl' ey hm' W) ’ m é‘l ’

where (I, h., w) 1is a DOL system for each 1 . The language

i

generated by the DTOL system G consists of all words of

the form
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The length of a word w is denoted by |w| . For
the empty word A , |A] =0 .
We now introduce the basic notions of this paper.

Assume that 1L is a language over the alphabet I ,

and that hl and h2 are homomorphisms on £* . Then we
say that
(i) hl and h2 are compatible on I if, for some w ¢ L,

hl(w) = h2(W) ;

(ii) hl and h2 are strongly compatible on L 1if, for

infinitely many w ¢ L , hl(w) = hz(w) ;

(iii) hl and h2 are equivalent on I. if, for all w ¢ L

hl(w) = hz(W) ;

(iv) hl and h2 are ultimately equivalent on L if there

is only a finite number of words w ¢ L such that

hl(w) # hz(W) .
As an example, consider the alphabet I = {a,b,c,d}

and homomorphisms h1 and h2 defined by

hl(a) aba , hl(b) =b , hl(c) = d4d , hl(d) = ab

i

hz(a) hz(b) = h2(c) = ab , hz(d) = ¢cc .

Then hl and h2 are ultimately equivalent (but not eguiva-

lent) on the language L(G) , where G 1s the DOL system

G = (I, h abc) .

ll



Clearly, this implies that hl and h2 are strongly
compatible on L(G) , such an implication being valid with
respect to any infinite language.

The four notions introduced above define in a natural
way four decision problems with respect to every effectively
specified language family. Thus, we may speak of the
"homomorphism compatibility problem" for regular languages.
If there is no danger of confusion, we may drop the word
"homomorphism" when discussing these problems.

It should be emphasized already at this point that
the problem of homomorphism equivalence is not the same as
the problem of deciding whether or not hl(L) = hz(L) holds
for a language L in the family we are considering. Indeed,
the latter problem is undecidable for context-free languages.
(This can be shown as follows. Consider arbitrary context-
free languages Ll and L2 . By providing all letters in

the terminal alphabet of L2 with a bar, we construct the

"barred version" fé of L, . We define now

L

L=Ll

5 + hyla) = hz(%‘i) =X, hl(E) = h,(a) = a,

for all letters a . Then hl(L) = h2(L) if and only if

Ll = L2 .) However, in Section 4 we shall prove that the
problem of homomorphism equivalence is decidable for context-
free languages.

A very important tool in the proofs below will be

the notion of balance defined as follows.



Consider two homomorphisms h and h defined on

1 2
I* and a word w ¢ I*¥ . Then the balance of w is defined

by
B(w) = lhl(W)I - In,w) |

(Thus 8(w) 1is an integer depending, apart from w , also on
hl and h2 . However, we write it simply B8(w) because the
homomorphisms, as well as their ordering, will always be
clear from the context.) Note that the balance of w in [2]
was defined as |B(w)| in our notation.

It is an immediate consequence of the definition

that

B(wlwz) = B(wl) + B(wz) .

A repeated application of this equation shows that the balance
of a word w depends only on the Parikh vector of w .

We say that the pair (h h2) has bounded balance

ll
on a given language L 1if there exists a constant C such

that
[B(w)| = C
holds for all initial subwords w of the words in L .

The property of having bounded balance gives a method
of deciding homomorphism equivalence. More specifically, we
can state this as follows.

We call a family [ of languages smooth if each of

the following conditions (i)-(iii) is satisfied:
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i) L is effectively closed under deterministic gsm mappings;
ii) The emptiness problem is decidable for languages in L ;
iii) For each language L 1in L and each pair of homo-

morphisms (hl, h2) ; Whenever h and h2 are equiva-

1
17 hz) has bounded balance on L .

lent on L then (h
(Certain fixed finite representation for languages from L
is considered.)

An obvious modification of the proof of Theorem 2.1

in [1] gives now the following

Theorem 2.1 The problem of homomorphism equivalence is

decidable for any smooth family L .

As an example, consider the family of regular lan-—
guages. That it is smooth follows directly from the proof of
Theorem 5 in [2] . This can be established also by the
following argument. Consider a regular language L and two
homomorphisms hl and h2 equivalent on L . We consider
the minimal finite deterministic automaton accepting L .

Any word w causing a loop in the automaton (i.e., mapping

some state into itself) must satisfy

B(w) =0 .
(Otherwise, we would have B(wlwnwz) # 0 and wlwnw2 e L ,
for some words Wy and W, and some sufficiently large
number n . Hence, we would have

n n
hl(wlw w2) # hz(wlw w2) ’
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a contradiction.) Thus, an upper bound for the balance of
initial subwords of the words in I can be computed by con-
sidering such words w only which cause a transition from the
initial state to one of the final states without loops.
Clearly, the number of such words w is finite.

On the other hand, the family of context-free lan-
guages is not smooth. A simple example showing this is

provided by the language

I, = {a"b

%l nz1}
and homomorphisms hl and h2 defined by
hl(a) = hz(b) = aa . h2(a) = hl(b) =a .

Clearly, hl and h2 are equivalent on L Dbut the balance
on initial subwords a° is unbounded.

We will show in Section 4 that, in spite of the fact
that the family is not smooth, the homomorphism equivalence
problem is still decidable for the family of context-free
languages. The argument will show that situations (like the
one in the example above) caused by the Pumping Lemma are,
in fact, the only ones where the balance may grow unbounded.

We note, finally, that it is still an open problem
whether the family of DOL languages satisfies condition (iii)
given in the definition of smoothness. (This is really the

essential condition. The other two conditions can be modi-

fied in various ways without affecting the validity of
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Theorem 2.1.) It is also an open problem whether or not
homomorphism equivalence is decidable for the family of DOL
languages. As regards this problem, we can>give the follow-

ing reduction result.

Theorem 2.2 Homomorphism equivalence is decidable for

the family of DOL languages if and only if sequence equivalence

is decidable for HDOL systems.
Proof The "if" - part is obvious. To establish the "only
if" - part, assume that homomorphism equivalence is decidable

for the family of DOL languages. This enables us to decide

whether two given HDOL sequences
h (w,)) d h,(h(w,))) , n=0,1,2
h3( 1wy an 4( 5 (W, ) »n=20,1,2,... ,
coincide as follows. Assume without loss of generality that

h, : 2% > % , h, : 2% > £* , h_ : Zi + A* h4 : 23 > A*

where Zl and 22 are disjoint. Considexr the DOL system

G = (Zl u 22, h, wlwz) with h{a) = hi(a) for a e Zi '
i=1,2 . Define two homomorphisms h5 and h6 by
h5(a) = h3(a) for a e Zl ’ h5(a) = X for a « 22 '
h6(a) = A for a e Zl ’ h6(a) = hé(a) for a ¢ 22 .

Then h5 and h6 are equivalent on L(G) if and only if

the original HDOL sequences are the same.



3. Decidability Results for Regular and Context-Sensitive

Languages

The following two sections establish the decidabili-
.ty status of the four decision problems, mentioned in Section
2, for the language families in the Chomsky hierarchy. We
consider the hierarchy up to deterministic context-sensitive
languages only because already at this level all problems
become undecidable. As corollaries we obtain also some
related results, for instance, concerning the equivalence of
two deterministic gsm mappings on a given language L .

Intuitively, decision problems concerning homomorphism

compatibility are more difficult than those concerning homo-
morphism equivalence. Also deciding ultimate equivalence is
harder than deciding equivalence. The results and proofs
below show that this is indeed the case.

Theorem 3.1 The problems of homomorphism compatibility

and strong compatibility are undecidable for the family of
regular languages.
Proof The theorem is a direct consequence of the fact that

an instance PCP of the Post Correspondence Problem

(a'll AR 4 an) r (81' LN Bn)

can be viewed as a compatibility problem on the language
{1, ..., n}* . PCP has a solution exactly in case it has

infinitely many of them.



Theorem 3.2 The problems of homomorphism equivalence

and ultimate equivalence are undecidable for the family of
deterministic context-sensitive languages.
Proof It is well known that the equivalence problem for
deterministic linearly bounded transducers (the memory is
linearly bounded by the length of the input) is undecidable.
To show the undecidability of the homomorphic equivalence
problem for the family of deterministic context-sensitive
languages, we consider the following reduction of the equiva-
lence problem for deterministic linearly bounded transducers.
Let M and M, be two given deterministic linear-

1 2
1y bounded transducers with input alphabet I and output

alphabet A . We provide first the outputs of M2 be
primes, yielding the alphabet A' . (We assume that % , A
and A" are pairwise disjoint.) Clearly, the language

L={xyz | x e £*, y e A%, 2z e (0A")*, M, (%) =y, M, (x} = z}

is deterministic context-sensitive. We now define two homo-

morphisms h1 and h2 by hl(a) = hz(a) =a for a e I,

hl(a) = a , hz(a) = A, hl(a') = X , h2(a') = a for a e

Then Ml and M, are equivalent if and only if hl and h2

are equivalent on L .
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The undecidability of the ultimate equivalence
problem is shown in the same way, beginning with the fact
that the ultimate equivalence problem is undecidable for

deterministic linearly bounded transducers.

Theorem 3.3 The problems of homomorphism eguivalence

and ultimate equivalence are decidable for the family of
regular languages.

Proof The statement concerning egquivalence follows by
Theorem 2.1. The decidability of ultimate equivalence is
shown by the argument preSentéd in Section 2 to show the
smoothness of the family of regular languages. In fact, if
hl and h2 are ultimately equivalent on a regular language
L then B(w)}) = 0 for all words w causing a loop in the
automaton accepting L . Thus, h and h

1 2
equivalent on L if and only if they are equivalent on the

are ultimately

regular language Ll obtained from L by removing all words
of a length smaller than the number of states in the
automaton.
O
We conclude this section byva result showing how the
decidability of homomorphic equivalence implies the decidabi-
lity of deterministic gsm equivalence. More specifically, we
say that two deterministic gsm's M and M

1 2
on a language L if Ml(w) = MZ(W) holds for all w ¢ L .

are equivalent
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Given a family L of languages, we can in a natural way
speak about the deterministic gsm equivalence problem for L.

Theorem 3.4 Assume that L 1is a family of languages

effectively closed under deterministic gsm mappings and that
the homomorphism equivalence problem is decidable for L .
Then the deterministic gsm equivalence problem is decidable

for L

Proof Consider an arbitrary L ¢ L , L < £*¥ , and two

1 2
output alphabet A . We first provide the output letters of

deterministic gsm's M and M., with input alphabet I and

M2 with primes, yielding the alphabet A' , and assume with-

out loss of generality that ¥, A and A' are pairwise
disjoint. We then replace Ml by the deterministic gsm Mi
obtained from Ml as follows. Each instruction (sl,a; w,sz)

is replaced by (sl,a; aw,sz) . (The instruction

(sl,a: w,sz) means: 1in the state sl when scanning the

input letter a , go to the state S, and output the word

w .) Thus, the input alphabet of Mi is % , output alpha-

bet being I v A . Finally, we replace M2 by the determi-

nistic gsm Mé obtained from M, as follows. For each

state s of M2 and each letter a of A , the instruction

(s,a; a,s) 1is added. Thus, the input alphabet of Mé is

L u A , output alphabet being A u A' .

Consider now the language Ly Mﬁ{Mi(L))
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Given a family L of languages, we can in a natural way

speak about the deterministic gsm equivalence problem for L .

Theorem 3.4 Assume that [ 1is a family of languages with

the following properties:

(i) L is effectively closed under deterministic gsm
mappings;

(ii) the emptiness problem for L is decidable;

{iii) the homomorphism equivalence problem for L is
decidable.

Then the deterministic gsm equivalence problem is decidable

for L .

Proof Consider an arbitrary L ¢ L , L < I* and two deter-

ministic gsm's Ml and M, with input alphabet I and

output alphabet A . Let R, = dom M. o i=1,2, and R

3
is the symmetric difference of Rl and R2 . Clearly, Ri
is regular, i = 1,2,3 . Now, Ml and M2 are equivalent
on L 1iff they are equivalent on L' = L n Rl n R2 and

Ln R3 = ¢ . Since intersection of L with a regular set
can be expressed as the result of a deterministic gsm mapping

applied to L we have L' ¢ L and L n Ry € L . Since the

emptiness problem for L is decidable we can check whether

L n R3 = 0 , if so we proceed to check the equivalence of Ml

and M on L' . We remind that L' ¢ L and Ml, M are

2
defined (Mi(w) #¢ , 1 =1,2) for each w e L' .

2

Now, we provide the output letters of M2 with primes,
yvielding the alphabet A', and assume without loss of generality

that ¥ , A and A' are pairwise disjoint. We then replace

M, by the deterministic gsm M] obtained from M, as follows.

1 1
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Each instruction (sl,a; w,sz) is replaced by (sl,a; aw,s2).

(The instruction (sl,a; w,sz) means: in the state sl when

scanning the input letter a , go to the state s and output

2

the word w .} Thus, the input alphabet of Mi is I , out-

put alphabet being I u A .  Finally, we replace M, by the

2 2

and each letter a of A , the instruction

deterministic gsm. M! obtained from M as follows. For each

state s of M

2
(s,a; a,s) is added. Thus, the iﬁput alphabet of Mé is
L u A , output alphabet being A u A' .
Consider now the language L, = Mé(Mi(L')) over the
alphabet A u A' . By the assumption, L is in the family

1
L and can be effectively constructed. Define two homomorphisms

h and h by

1 2
hl(a) = h2(a') = a, hl(a') = hz(a) = )X for a e A .
Then Ml and M, are equivalent on L' if and only if hl
and h2 are equivalent on Ll .
O

The following result is an immediate consequence of
Theorems 3.3 and 3.4. It can be obtained also directly using the
fact that the equivalence of deterministic gsm's is decidable.

Theorem 3.5 The deterministic gsm equivalence problem is

decidable for the family of regular languages.
Applying Theorem 3.5 to the language I* we get
another proof of the fact that the equivalence of determini-

stic gsm's is decidable.
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former is obvious. The latter consists of checking, for
k=0,1,2,... , whether or not hi and hé are equivalent
on L' with balance bounded by k . This can be done by
deciding the emptiness of the context-free language Mk(L') ’
where Mk is a deterministic gsm with a "buffer" of length
k 1in its finite control.

We now begin the proof of Theorem 4.2. Without loss
of generality, we assume that L - is an infinite language,
generated by a reduced context-free grammar G , where every
nonterminal generates an infinite language and there are no
productions of the form A -+ B with A and B nonterminals.

The following observation will be used throughout
the proof without explicit mentioning. When analyzing G ,
if we meet a situation showing that hl(w) # hz(w) for some
w e L , we may stop the construction immediately {(and choose
L =L'). Thus, we may assume that such situations do not
arise during our construction.

The following simple lemma is of basic importance.
Lemma 4.3 Assume that B =>* vBx 1is a derivation
according to G , where v and x are terminal words. Then
B{vx) = 0 , or else hl and h2 are not equivalent on L .

Lemma 4.3 is established as follows. For some u,

w, Y, all words

n_n
P = uvwxy

are in L . Thus, B(vx) # 0 implies that B(Pn) # 0 , for



all sufficiently large n .

By Lemma 4.3 and the observation preceding it, we
assume that in all situations encountered in our process we

actually have B(vx) = 0 .

Lemma 4.4 For every nonterminal B of G , B(w) is
constant for all terminal words w such that B =>* w (or
else hl and h2

constant, say B(B) , can be computed from any terminal word

are not equivalent on L ). This

generated from B .

The proof of Lemma 4.4 is obvious. Also the follow-
ing lemma is easily established by the "shifting" argument
used in [1] . (In fact,rthe situation here is much simpler
than the one considered in the proof of Theorem 3.2 in [11)
Lemma 4.5 Assume that B =>* vBx and B(v) # 0 .

Denote by L the language generated by B . Then there is

B

a word p (referred to as a period of B) such that
* : g
hl(LB) cp s h2(LB) o ’
where for some words Py and Py s
= =
P PPy p PPy

(or else hl- and h2 are not equivalent on L).
Using Lemma 4.5, we shall classify nonterminals of
G as "periodic" or "nonperiodic". Lemma 4.5 shows that in

recursive situations B =>* vBx we can have B(v} # 0 (or
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B(x) # 0 , cf, Lemma 4.3) only in connection with periodic
nonterminals B . Iﬁ our algorithm we will test nonterminals
for periodicity in all simple derivation loops. Nonterminals
found to be periodic and consistent with the assumption that
hl and h2 are equivalent on L are finally replaced by
their periods, yielding the language L' of Theorem 4.2.

To describe the algorithm more formally, we intro-

duce some terminology. We say that the derivation

=>%
B alBaz

is a simple recurrence situation (SRS in short)for the non-

terminal B if (i} B does not occur in the intermediate
steps (if any) in the derivation, and (ii) no nonterminal
other than B occurs twice in any path in the derivation
tree.

Thus, if B + aBABBA 1is a production of G then
the derivation

B => aBABBA

is an SRS for B . In fact, we can interpret this derivation
to be an SRS in three different ways because there are three
possibilities for the choice of the pair (al, az) .

With each nonterminal B we associate the finite
language FB consisting of terminal words derived from B

without loops, i.e., no path in the derivation tree contains

two occurrences of the same nonterminal.



Consider now, for each nonterminal B , derivations
B =>* yBx

such that the pair (v, X) 1s obtained from ﬁhe pair (ul, uz)
in some SRS for B by replacing every occurrence of a non-
terminal A with some word in FA . (Different occurrences
may be replaced with different words.) Clearly, there is only
a finite number of such derivations.

For each such derivation, we test whether there are

words p and p' , p' obtained by shifting an initial

subword of p to the end as in Lemma 4.5, such that
{hl(vnwxn) | nz0, we Fgl < p*

and

v

{hz(vnwxn) | n=z0, we FB} c p'* .

If the answer is "yes", we choose the period p to be the
shortest period and classify B as "periodic". If the answer
is "no", we classify B as "nonperiodic". Periodic non-
terminal B satisfying B{(v) # 0 (in the derivation

B =>* yBx we are considering) is teferred to as "properly
periodic".

We associaﬁe with each nonterminal B classified as
"periodic" the pair (p, p') . For properly periodic non-
terminals, this pair must be the same in all situations
encountered, and they may not be classified as "nonperiodic"

at later stages. (If we encounter a situation violating either
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one of these conditions, we may stop the process with the
condition that h1 and h2 are not equivalent on L .) On
the other hand, periodic nonterminals mayAbe classified as
"nonperiodic" at later stages. Thus, whenever we are about
to classify a nonterminal as "nonperiodic", we have to check
that this nonterminal has not been classified as "properly
periodic" at previous stages. Once a nonterminal is classi-
fied as "nonperiodic”, the classification cannot be changed
at later stages. If B 1is properly periodic with periods
(p, P') , we replace it at later stages of the procedure,
when going from (al, uz) to (v, x} and then taking the
homomorphic images, simply by the periods p and p' .
After going through all of the derivations
B =>* yBx (as defined above) for all honterminals B , we

introduce for each nonterminal B <classified as "properly

periodic" with periods (p, p') a new terminal letter ag -
The homomorphisms hl and h2 are extended (extensions
being denoted by hi and hé) to the larger alphabet '

obtained in this fashion by defining

hi(a) = hl(a), hé(a) = hz(a) for ae ¥ ,

J— L} —_ 1
hi(aB) =p, hz(aB) =p for each ap .

The language L' 1is now generated by the grammar G' obtained
from G by replacing every properly periodic nonterminal B

with aB .
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If hj and hé‘ are equivalent on L' then the
pair (h!, hé) has bounded balance on L' . This follows
because we have eliminated all situations where the balance
might grow unbounded; the balance is different from zero only
in the finitely many situations essentially corresponding to
derivations without loops. In more detail, if there are no
properly periodic nonterminals, then there exists constants
PyrPy > 0 so that every string u in L' can be reduced to
a string v in L' , |v| = P; + by omitting substrings of
balance zero and length no more than P, - .Therefore the
balance PRB(w) of every prefix w of L' 1is clearly bounded
by €, + C, , where Ci is the bound on the balance of the

1 2

prefixes of the finite language {x ¢ Z* : |x]| < p;} ., for
i=1,2.

It follows from the notion of a properly periodic
nonterminal and Lemma 4.5 that hl and h2 are equivalent

on L if and only if hi and hé are equivalent on L' .

D
We omit the proof of the following theorem. It is
essentially the same as the proof above, the basic observation
being that the discussions concerninj properly periodic non-
terminals remain unaltered. Thus, the finite number of
exceptions to the equation hl(w) = h2(w) , W e L , must
occur for words w whose derivation does not involve properly

periodic nonterminals. The only difference is now that we
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have to check the finiteness (instead of the emptiness) of a
language obtained by applying a deterministic gsm to a context-
free language.

Theorem 4.6 The problem of homomorphism ultimate equiva-

lence is decidable for the family of context-free languages.

The following table summarizes our results.

deterministic
regular context-free context-

sensitive
compatibility - undecidable | undecidable undecidable
strong
compatibility " " "
equivalence decidable decidable decidable
ultimate
equivalence " " "

Theorem 3.4 now yields immediately the following

result.
Theroem 4.7 - The deterministic gsm equivalence problem

is decidable for the family of context-free languages.
Since deterministic gsm mappings can be viewed as
translations, we have here a decidability result concerning

the equivalence of such translations of context-free languages.



5. Iterated Homomorphisms

In this final section, the problems considered will
be slightly different from those discussed above.

Consider two finite languages

f = {wl, ..y wm} . F' = {w!', ..., W&}

of the same cardinality m and over the same alphabet I ,

and two n-tuples of homomorphisms

(hlf LR LA § hn) r and (h]'-’ LR 4 hr'l)

defined on I* . Thus, each element of F together with the
n-tuple (hl, cony hn) defines a DTOL system. The whole set
F together with this n-tuple defines a so-called DTOL system
with finitely many axioms or, shortly, FDTOL system. Call the
two FDTOL systems obtained in this fashion G and G' .

We call G and G' compatible, strongly compatible,

equivalent, and ultimately equivalent if the equation

h, hi2 . hik(wj) = hil hiz cen hik(wé)

holds for one choice of the sequence il i2 e ik and
number j , for infinitely many such choices, for all choices
of the sequence il i2 .o ik and number j , and for all
but finitely many choices, respectively. When we in this
section speak of compatibility and equivalence problems, we

mean problems in this set-up.
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Note that, for m = n = 1 , the equivalence and
ultimate equivalence problem defined above coincide with the
equivalence and ultimate equivalence problem for DOL seguences.
For m =1 and general n , the equivalence problem may be
viewed as the equivalence problem for DTOL sequences. In
this case the equivalence problem is also related to the
homomorphism equivalence problem (in the sense of the previous
sections of this paper) for the family of DTOL languages.

Our starting point above is two finite languages.

We could also start, for instance, from two regular languages
with a 1-to-1 correspondence betweeh their words.

We shall prove that the compatibility and strong
compatibility problems are undecidable, whereas the status
of the equivalence and ultimate equivalence problems remains
open; we only give some reduction results for these problems.
We strongly suspect that the equivalence problem is decidable,
at least if the homomorphisms are assumed to be nonerasing.
One reason for this is that the techniques showing undecid-
ability (such as those in [5]) all seem to fail because one
is not able to keep track of the "matching" of the two sets
of homomorphisms. Note also that the equivalence problem for
DTOL languages is known to be undecidable but, thus, the
equivalence problem for DTOL Sequencesiremains open. In the
case of DOL systems, we can reduce either one of these

problem to the other, cf. [3]. This reduction does not work
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for DTOL systems.

Theorem 5.1 Compatibility and strong compatibility

problems are undecidable, even when restricted to the case
where m =1 and n = 2 .
Proof Consider an arbitrary instance PCP (ul, ey mk) ’

(Bl, cees Bk) of the Post Correspondence Problem. We choose
w, = A , wi = B
and define two pairs of homomorphisms as follows:

hl(A) = A hi(B) =B

1 r 1 !
= ! = 1 -
hl(Ai) Ai+l ' hl(Bi) Bi+l ;, 1 =1i=s k-1,
Ty — ' Yy : _
hl(Ai) = Ai+l ' hi(Bi) = Bi+l r 1 =2 1i s k-1,
= v
ry — ' 1y e
hl(Ak) A ' hl(Bk) A '
— vy — ' 1 = ' Yy = '
for 1 =i =2 k . For all other letters x ,
— ] J— — 1 —
h, (x) h; (x) h,(x) = hy(x) =x .

(It is assumed that the alphabet of PCP does not contain any
of the A's and B's introduced above.) Then PCP has a solution
(resp. infinitely many solutions) if and only if the systems

] [} ] 3
(Wl' hl, kz) and (Wl’ hl' k2) are compatible (resp. strongly

compatible).



Theorem 5.2 . Egquivalence problem is decidable if and only

if it is decidable for systems with m =1 and n = 2 .
Proof The "only if" - part in obvious. To prove the "if"
- part, we note first that assuming m = 1 does not restrict
generality. If we have an algorithm for the case, where both
of the systems have two homomorphisms, we can extend this
algorithm to the general case by introducing "idle steps" as
follows. Suppose we want to have an algorithm for deciding

the equivalence of the systems

) ) t T
(Wll hll h2! h3l h4) r (Wl’ hlr h2r h3l h4) .
We then define two systems
) 1

as follows. For each letter a of the original alphabet,

we introduce two new letters a' and a" and define

9 (a) = gj(a) =a' ,  g,a) = gya) = a” ,

gl(a') = hl(a) P gl(a“) = h2(a) ’ gz(a') = h3(a) p
gz(a") = h4(a) ' gi(a') = hi(a) ' gi(a") = hj(a) ,
gé(a') = hé(a) P gé(a") = h&(a) .

Clearly, the original systems are equivalent if and only if
the new ones are. An obvious inductive argument now generali-
zes the result to the case of arbitrary many homomorphisms.

g



Theorem 5.3 The decidability of the equivalence problem

implies the decidability of the HDOL sequence equivalence

problem.
Proof Consider two HDOL sequences, given as in the proof
of Theorem 2.2. Define two pairs of homomorphisms (gl, 92)'

(gi, gé) as follows:

g; (@) = g;(a) = h,(a) for a e I,
gl(a) = gi(a) = hz(a) for a e I, .
gl(a) = gi(a) = A for a e A ’
gz(a) = h3(a) » for a e Iy,

qz(a) = A , for a e I, u A ,
gé(a) = h,(a) , for a e I,

gsla) = A » for a e I, u A .

Then the systems
(wiWpr 910 90 v (WyWys 974 9p)

are equivalent if and only if the given HDOL sequences are.



6. Open Problems

The most interesting open problem in the discussions
above is the decidability of the equivalence problem intro-
duced in Section 5. We conjecture the problem to be decid-
able, at least if the homomorphisms are assumed to be non-
earasing. |

An interesting problem area is to study to what
extent Theorem 4.7 remains valid for other language families.
It might be still wvalid for EOL, ETOL, or even indexed

languages.
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