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THE COMPLEXITY OF UMIFICATION

Abstract

by
LEWIS DENVER BSAXTER

It is shown that the problems arising from the
unification of expressions yield a rich class 6?'complex-
ities, The unification problem is to determine whether or
not there exists a substitution of varfables by expressions
which, applied to two given expresslons, makes them equal.
The measure of complexity is the time taken to solve the
unification problem,

An  algorithm which solves the first-order unification
problem is presented and shown to have a complexity which is
linear times a very slowly-growing function related to the
inverse of Ackermann's function, This is an Improvement
upon previous algorithms whose complexity was exponential or
quadratic., Our algorithm is composed of a transformational
stage followed by a sorting stage. The transformational
stage manipulates a partition of expressions. Expressions
are represented by trees and the partition is represented by
a forest of trees. By performing certain operations on this
partition using the technique of path-compression on
balanced trees, we obtain an efficient transformational
stage whose complexity is linear times a very slowly-growling

function. The sorting stage attempts to topologically sort a
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directed graph which 1is induced by the output partition.
This stage has linear complexity.

We prove that two unification problems: first-order
subsumption and second~order instantiation have complexities
equivalent to that of the well-known problem of recognizing
tautologies. In each case, we construct, from an instance of
the <closely related problem d;}determining if a formula in
clause form is satisfiable, an instance of the wunification
problem,

At the upper 1Timit of the class of complexities, we
show that a version of the third-order unification problem,
in which the number of arguments in expressions is
restricted to be at most two, Is undecidable, We use a con-

struction involving the undecidable Hilbert's Tenth Problem.
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INTRODUCTTI ON

We examine the problem of unifying expressions from a
computational complexity viewpoint, The unification problem
is to determine, given two expressions e, and & containing
variables, whether there exists a substitution of these
variables by expressions which, applied to ey and ey, makes
them equal., We are interested in the number of steps (time)
taken to solve various classes of unification problems.

The unification problem originally arose from theorem-
proving which 1Is concerned with the automation of logical
inferences. In simple logic we have the valid syllogism:
infer from the premisses "A implies B" and "B implies C" the
conclusion "A implies C," This idea can be generalized to
first-order logic, in which we allow variables to occur in
expressions. For example, we can infer from the statements,
"for all x andy, A(y,F(x),x) implies B(G(x),y)" and "for
all u and v, B(u,F(v)) implies C(F(F(v)),G(u))" the result,
"for all x, v, A(F(v),F(x),x) implies C(F(F(v)),G(G(x)))."
The reason is because the lTogical expressions, 8(G(x),y) and
B(u,F(v)) can be made equal by substituting G(x) for u and
F(v) for y. Applying this substitution to A(y,F(x),x) and
to C(F(F(v)),G(u)) we obtain the correct conclusion., We
thus see that unification can be used to elegantly combine
substitution and syllogism to form a rule of inference known
as "resolution" [27]. Unification can also be used in com-

bining substitution with the rule of replacing equals by



equals, to obtain an inference rule known as "paramodul a-
tion"™ [2617,

Many wuseful computer programs use uniflcation in order
to make logical inferences. Examples of these are in program
analysis/synthesis, deductive question~answering systems and
robot planning programs [5], Also some new programming
languages of artificial intelligence, such as PROLOG {321,
use unification as a mechanism tn invoke subroutine calls by
pattern-matching.

Historically, in 1921, unification was mentioned under
the name of "L.C.M." [25] (in analogy to the arithmetic
process of least common multiple) by Post, who was in-
terested in the matching problems associated wlth
generallizations of classical axiomatizations of
propositional calculus. In 1955,ANewe11, Shaw and Simon [211
designed a computer program, "The Logic Theorist" which at-
tempted to heuristically prove theorems of propositional
calculus. This program used a matching process very similar
to wunification., Unification gained its official title in
1965 when Robinson [27] presented a unification algorithm in
order to mechanize his rule of inference, resolution. This
algorithm was discovered independently bv Guard, under the
name of "matching" [123. Their algorithms elther reported
that unification was impossible or output the most general
uni fying substitution., Their correctness was proved,

The above algorithms solved the unification problem for



first-order expressions, in which all the variables were of
first-order, that 1is, vranged over individuals of some
domain. In order to incorporate equality, induction, the
axiom of choice and other higher-order concepts in theorem-
proving, we must allow our variables to also range over
functions. That is, we must allow second-order expressions.
The corresponding second-order unification problem is com-
plicated by the fact that there may be several or even an
infinite number of independent unifiers. Gould [11] first
recognized these difficulties in attempting to produce the
"most common instance" of two expressions, a problem which
is not as general as the unification problem. Pietrzykowski
gave a procedure to enumerate all the unifiers of two
second-order expressions [23], This was later generalized
to w-order expressions by Pietrzykowski and Jensen [24].
Huet gave a semi-decision procedure to determine . the ex-
istence of a unifier forw -order expressions [141],

We now discuss the complexity aspects of these unifica-
tion problems., The need to analyze the efficiency of the
unification and related problems was first seen by Allen and
Luckham [213:

"Wle do not have any thecretical study to tell us

the most efficent way to implement the basic

operations at the lowest _level of the [theorem-

provingl program (e.g., the tests for unification,

alphabetic variants and subsumption).®



The purpose of this thesis is to provide such a study.

Robinson's original first-order unification algorithm
was abstract, in that no representation was specified for
expressions, However, implicit in the accompanying examples
was that expressions are represented by a string-like data
structure and that substitutions are expliclitly applied by
physically relocating and inserting new strings. Conse-
quently, his algorithm requires exponential time, since ex-
pressions of exponential length, in relation to the length
of the input expressions to be unified, may appear during
unification,

In 1970, Robinson motivated the search for efficient
first-order unification algorithms by presenting a new al-
gorithm, in which expressions were represented by a tree-
like data structure [28]). Quoting from his paper:

"The author thinks the [unification] program s

very close to maximal efficiency, and offers it as

a challenge."

Unfortunately, this algorithm also required exponential
time. A paradoxical situation arose: an expression, which
requires linear space to store in the form of a tree, in
which common subexpressions are represented by the same sub-
tree, may require exponential time to determine if a certain
variable occurs in the expression. Nevertheless, the idea of
using trees to represent expressions and of manipulating

pointers to these trees to perform substitutions laid the



foundations for more efficient algorithms. In 1975
Venturini-Zilli remedied the paradox by using a simple
marking scheme, and to speed up the checking of whether a
variable occurs in an expression, she maintained a 1list of
variables associated with each subexpression [33]. She
proved that the algorithm requires quadratic time.

In 1973, Baxter (3] presented an algorithm which
avoided the previous source of inefficiency: the continual
checking to determine if a given variable occurs in an ex-
pression. This algorithm consisted of two stages: a
transformational stage followed by a sorting stage. Some
aspects of the former stage are similar to those in a
higher-order procedure presented by Huet [14]. The basic
idea was elaborated upon in a later paper [ 41 in which a
better choice of data structures gave an almost linear time
bound, From personal communications, it appears that a
similar idea was independently investigated by Huet [15] and
Roﬁinson (291, although their results have not been
published,

We present this algorithm here., During the transfor-
mational stage of this algorithm, we manipulate a partition
of expressions; classes in this partition are merged and the
class containing a given expression is found. By using the
well-known method of representing a partition by a forest of
trees and by performing '"path compression' on these balanced

trees, we are able to show that the time required by the



8

transformational stage 1Is practlcally linear. That is, the
time reqlired is of order nG(n) where n is the length of the
input and G is a very slowly-growing function related to the
inverse of Ackermann's functlion. The partition which s
output by the transformational stage is unifiable if and
only if the input set of expressions is unifiable., Further-
more, it is easy to determine if the output partition can be
unified - this is done by the sorting stage. During the
sorting stage a directed graph is constructed from the out-
put partition., If this graph contains a circuit, then
unification fails, otherwise It can be topologically sorted
to g?ve the most general unifier. The time required by the
sorting stage 1is Jlinear and is based uﬁon a well-known
topological sorting algorithm [181].

A problem related to wunification is the subsumption
problem., Given two sets of expressions {e1,...,%n} and
(E],...,§1}, in which no variables occur in any Ei’ the sub-
sumption problem is to determine whether there exists a sub~-
stitution s such that {G(QI)""’U(em)) is included in
{E],...,q]}. This problem arises from theorem;proving, as
it gives a condition for eliminating certain lemmas found
during a éearch for a particular theorem, In his pioneer
paper, Robinson introduces the subsumption problem and
justifies the use of the elimination conditlion [271].

We prove that this problem is NP-complete in the sense

of Cook and Karp [8,173 . That is, the subsumption problem is



as computationally complex as the problem of recognizing
tautologies - which is of exponential difficulty if the
famous P=NP conjecture holds., COur main result is the con-
struction, from any formula of propositional <calculus (ex-
pressed in <clause form), of an instance of the subsumption
problem, Thus, an efficient algorithm to solve the subsump=-
tion problem implies an efficient algorithm to solve the
tautology problem, |

Another unification problem which we prove to be
NP-complete is the second-order instantiation problem. Given
two second-order expressions e and E, in which E contains no
variables, this problem is to determine if ¢ and E <can be
unified., Our main result also uses a construction of an in-
stance of the instantiation problem from a formula in
propositional calculus, We note that the decidability of
the general second-order unification problem remains open,
even if the expressions can have only one argument. Some
research into this monadic case (string unification) is
presently in progress [30,34]. An obvious corollary of our
work is that if the second-order unification problem s
decidablie, 1ts complexity must be no less than that of
recognizing tautologies,

The third-order unification problem is known to be un-
decidable [13,19] by a construction involving the un-
decidable Post Correspondence Problem. We present a new

proof of this, which improves upon the previous results by



restricting the degree (number of argments) that the third-
order expressions may have. Whereas the earlier results made
no such restriction, we prove the stronger result that the
third-order second-degree unification problem is un-
decidable. Our construction in this proof uses the recently
proved undecidability of Hilbert's Tenth Problem. We con-
struct, from a Diophantine equation an instanée of our
unification problem with the property that the equation has
a solution if and only if the constructed expressions can be
uni fied,

In Chapter 1 we define our language of expressions and
substitutions in order to define the unification problem., In
Chapter 2 we present our practically linear first-order
uni fication algorithm, prove its correctness and analyze its
complexity., In Chapter 3 we show that the first-order sub-
sumption problem is polynomially-complete and in Chapter &
we do this for the second-order instantiation problem, In
Chapter 5 we prove that the third-order second-degree
unification problem is undecidable,.

Just as this thesis was being completed, it was learnt
that a linear first-order unification algorithm was
discovered by Paterson and Wegman [22]. This algorithm com-
bines our transformational and sorting stages. In the appen-
dix we briefly outline this linear algorithm, explain why it
is linear and compare an incremental property of our al-

gorithm with that of the 1linear one. That is, we ask:
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Having unified a set of expressions, how easy is it to unify
the union of this set with an additional pair of expres-
sions?

In the conclusion we outline possible directions for

further research into the complexity of other unification

problems,



CHAPTER 1
QUAGE

In this chapter we will define the notions of types,
expressions and substitutions. This consolidates the notlons
found in earlier papers [6,14,24]. Finally, we will define

the unification problem.

1.1 TIYPES. Informally, a function has tvpe (ty,.o0,ty7tg)
if it maps n-tuples of entities of type H,.00,t, into en-
tities of type ty Thus the unique type of a symbol or ex-
nression can be regarded as a metallﬁguistic variable which
indicates its position in a functional hierarchy.
Formally, a set T whose elements are called types Is
defined inductively from a fixed set Ty of basic types by:
(1) te Tyg implies t e T;
(2) t7,...,tp e T (n21) and tgeTg imply (ty,0.v,ty>tg) ¢ T,
Note that we exclude, for example, the type
((real*realt)>(real>real)), which might be considered to be
the type of the derivative operation in calculus., This is
easily overcome by making the derivative have two arguments:
DERIVATIVE(F,x) = 1im (f(x+e)-f(x))/¢
E+0
so that

typel DERIVATIVE] = ((real+real),real>real),

1.1.1. Qrder. We define the arder of a type to reflect its

"depth of nesting", that is, as a mapping from the set of

10
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types T to the set of integers by:
order[t] ={1 Pf teT,

1+ max(order[tiJ | 1<isn > if t=(t],...,%l+t0)

A.1.2. Degree. We also define the degree of a type as a
mapping from T to the set of integers by:
degree[tjlf{o if teT,
n if t=(t1,...,tn+t0)
We will later extend grder and degree to the symbols which
comprise our expressions, Informally, the order of a symbol
indicates whether the symbol s an individual, function,

functional,... and the degree of a symbol Indicates the

number of arguments it has,

1.2, EXPRESSIONS. UJur expressions are based upon the normal
form of A -calculus expressions of Church 7], where the for-
mal arguments are given explicitly and also prefix notation
is used,.

Our presentation differs from that of Church's in the
following way. Church composes expressions from atoms, ap-
plications and abstractions and subsequently shows, using
the Church-Rosser theorem, that each expression has a normal
form. The application of a substitution to an expression,
e, can then be definad as the normal form of a certain ex-
pression constructed from e by abstraction and application,.
In contrast, we define an expression directly from the nor-

mal form, thus avoiding the notions of application and ab-



straction, However, our definition of substitution is now
more complex. Our presentation is in fact self-contained,

but we will occasionally relate our expressions with those

of Church,

1.2.1. Symbgols. Expressions are constructed from symbols
which are eilther yariables or constants and from the fol-

lowing five punctuation mérks:_k » » ( ). Associated with
each symbol is some type., For each type we have a
denumerable set of variables of that type. We also have a
set of constants of arbitrary given types.

Symbols are constructed from strings of letters: we use
lower-case letters for varlables and upper-case letters for
constants.

We wuse s as a syntactical variable which ranges over
symbols. As with all our syntactical varlables we often add
subscripts and/or superscripts, hence sy and s" also denote
symbols, We use u and v to denote variables and f to denote
constants.,

The type of a syMbol s is written type[ s].

1.2.2. Jrder and Degree. We extend order and degree to sym-

bols by the definitions
order(s] = orderltype[s]]

degree(s] = degreef{type[s]].

1.2.3. Definition of exnpression. We now define our expres-

sions and their types by inducticon on the number of occur-

12
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rences of symbols,

An expressign is of the form
‘lul,...,qn.s(e],...,en)

where Upseee, U, are mz0 distinct variables which

m
denote "formal arguments';
s ~is a symbol, with degreels] = n,
followed by the n20 expressions:
€ s.0.,e, which are the "arguments'" of s
and where for some basic type ty:
type [s] ={t0 if n=0
(type[e}],...,typeien]*to) if n21,
The tvpe of the expression is then defined to be:

type[ku],...,um.s(q reecseg)]

= ty if m=0
(type[u1],...,type[um]+g)) if m=1,

We denote expressions by e and E.

4.2.4, driting conventions. The above definition of an ex-
pression 1s unambiguous; however, we will often delete punc-
tuation marks if it is clear from the context which expres-
sion is intended, In particular, if m=0 we delete "A." and
if n=0 we delete "()", For example, F(x) abbreviates
AJF(A L x()). Since we allow strings of letters for symbols,
the commas are generally necessary in "Auj,...,4," in order’
to avoid ambiguity; however we will usually delete them.

If nzl then s I's not an expression, but

,lu]...un.s(u],...,un) is, where the variables u; have ap-
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propriate types. We often abbreviate the latter by simply

writing it as s. For example, if

typel x] typelyl = s,

type(h] (s> t),

and typelgl ((s> t), s> t)
then Ahx.gliy.h(y),x) can be abbreviated to A hx.g(h,x)

which, in turn, can be abbreviated to g.

1.2.5. Example, We will illustrate how an expression and
its type can be constructed from symbols by the example:
CAfn . SUM(ONE ,n, Aj . F(SQUARE(]))).
This is the formal counterpart of the mathematical ex-

pression:

n

IRy

3=1
Our symbols are the wvariables: f, n and j and the con-
stants: SUM, ONE and SQUARE. The types of these symbols

follow, where the basic set of types is {integer, reald),

(1]

typelj]

typeln] = type[ONE] = integer;

type[f] (integer->real);

type[SQUARE] = (integer~integer);

type(SUM] = (Integer,integer,(integer>real)~>real).

Now, j is an expression with tvpelj]l] = integer and
since typel[SQUARE] = (integer~integer), SQUARE(]) is an ex-
pression of type: integer. Hence, since typelfl = (in-
teger>real), Aj.Ff(SQUARE(j)) 1is an expression of type:

(typelj l»real), that is, (integer+real). OME is an expres-

sion of type: integer, n is an expression with typelnl =
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integer, hence, by considering the type of SUM, our example
is  Indeed an expression whose type is ((in-

teger>real) ,integer+real),

1.2.6. Llength. The appropriate measure of the size of our
expressions, length, is inductively defined from symbols by:
n
lengthliu, ...y vs(eq,...,8 0] = 1 + ;£7 Tengthle . 1.

(Note that when n=0 the summation is zero.)

1.2.7. Subexpressijon. We will now define the notion of
sybexpression by

(1 sle;,....e), ey, +.. ,e are all subexpressions

n

Of AU'lno-UmnS(e'!}cct’en);
(2) e is a subexpression of e;
(3) e is a subexpression of e, and

e, is a subexpression of e, imply that

e is a subexpression of e 3.

1.2.8. Free and bound occurrences. YWe now use the above
definition in order to precisely define the concepts of free
and bound occurrences of variables in expressions,.

An gccurrence of the variable v is bhgound in the expres-

sion E if v occurs in a subexpression of E of the form

,kvi...vn.e where v is some V; for i=1,...,n; otherwise the
occyrrengg of v is free in E., We say that v is free (bound)
in E if some occurrence of v is free (bound) in E. (Note

that the variable x is both free and bound in the expression

Fix,Axog(x)): the first occurrence of x is free and the
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second and third occurrences of x are bound in the expres-
sion.)

A pair of occurrences of a variable is linked in an ex-
pfession E if these occurrences are bound in E and if for
each subexpression e of E either both occurrences are bound

in e or neither of them is.

1.2.9. Equalitv. Two expressions e' and e" of the same type
are gqual, written e'=e", if e" results from e' by changing
only some bound occurrences of variables, providing that 1If
a pair of occurrences is linked in e' then the corresponding
pair is also linked in e" and vice versa, and that the type
of corresponding variables remalns the same,
As expected, equality between eXxpressions is an
equivalence relation on expressions,
For example,
AXy H(x,A z.z,t,Ax.x,2)
CAuv HCuAw,.w,t,Au.u,z)
Auv , H(u,Aw,w,t,As.5,2)
Auv.H{u, u,u,t,iu,u,z)

are all equal expressions,

1.3, SUSBSTITUTION. A suybstitution is a finite set of
ordered pairs

{<V.i’e'| >[0.0,<vn ,en>}
where the vi's are distinct variables and the ei's are ex-

pressions such that for all i=1,...,n typelvy] = tvpe[ei]-
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We also impose the condition that v, does not abbreviate ¥
(in the sense of section 1.2.4.). We write this substitu-
tion suggestively as:

-{v1+e],...,vn+%r}
and say that it pertains to the variables v],...,%].

We denote substitutions by o; the empty substitution is
denoted by €,

Informally, a substitution is applied to an expression
by simultaneously replacing the variables, to which the sub-
stitution pertains, by the associated expressions. ‘hen
doing so, we' must be careful that no conflict of bound
variables occurs. To ensure this, we choose a suitable ex-
pression which 1is equal to the origlnal, but in which no

conflicts arise.

1.3.1. Application. MWe now inductively define the
1i ion of a substitution 9 to an expression e written
a(e).

let V be the set of variables which pertains to or
winich occurs free in some e* where v* « e* belongs too , for
some v+, In order to avoid a conflict of bound variables,
choose an expression e' which Is equal to e, but in which no

variable in V is bound:
e' =_Au]...u .s(e

m 1’

If the symbol s 1is some u (i=1,...,m) or if s is a

oo.,en>t\

constant or if ¢ does not pertain to s then define

g(e) =_ku1...unfs(c(e]),...,c(en)).
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Otherwise, let

S+ AVys..Vq.E
" belong to ¢ and define

o(e) = duj...up. o' (E)
where
gt = {V]+U(e]),-,.,vn<-0(en)}.

(By ¢ (E) we strictly mean o'(AE),)

Of course the application of the empty substitution to
an expression, which Is the basis nf the inductive defini-
tion, is defined by:

e(e) = e,
Note that substitutions preserve type, that is,

typel ®(e) ] = typelel.

1.3.2, Well defined. It is not immediately obvious that the
definition of application is well defined in the sense that
the above method will always terminate., However, we can
prove using generalized induction that it will, To do this
we introduce a complexity measure for»app!icattons by:
compo ,el = (orderlc],lengthle])
where order is defined on substitutions by:
order® 1 = max{order{v] | 9 pertains to v},

To compute o(e) we must recursively compute
(eq),...,%ey) and possibly ¢'(E), We will show that the
complexity of these latter applications is less than that of
the application 9(e), hence by a generalized induction argu-

ment, the method will indeed terminate.
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We order complexities by well-ordering pairs of natural
numbers in the usual way:

Cif, i)y < (i, 0"y 0ff i'<EY or (it'=j' and 1"<;").
Using this ordering,

comp{c,eij < complo,e]l] for i=1,...,n

since
Iength[ei] { lengthl[e'l.= lengthlel.
Also,
compl¢',E] < complo,e]
since

order[o'] = max{order[vi] | 1<isn)
= order[s] - 1
{ order[s]

< orderfo 3],

1.3.3. Example. We illustrate the application of a sub-

stitution o to an expression e by taking

e = Axyz, f(g(A),flg(x),gly), x) H{z))

and

g {feixyz.y, g+M.F(u,x,w), z<A}.
Since ¢ pertains to f, g and z and since x and w are
free in Au,F(u,x,w), V equals {f,g,z,x,w). Wé choose
e' =Ax'yz', fFlg(A),flglx"),gly),x") H(z"))
because e=e' and no wvariable of V is bound In e'.
Therefore,

o(e) = Ax'yz!' {xea(g(A)),y«o (flg(x"),gly),x")),
z«a (H(z'))>(y)
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(since o pertains to f)

Aaxyz' o (flg(x"),gly),x")))
(since the appropriate ¢' is &)
= ax'yz', o(f(g(x"),g(y),x"))
(by the basis of the inductive definition),.
In general, if v + e belongs to o then o(v) equals e,

therefore

o(e) Ax'yz' {x«o(g(x")), y«olgly)), z«x"X(y)
(since o pertains to f)

= Ax'yz', o(gly))

= Ax'yz'  {uww (yIX(Flu,x,w))

(since o pertains to g)

Axt'yz!'  F(Queoa(y)I(uw) ,{uco (yIX(x),{usraly)I(w))

(since F is a constant)

]

Ax'yz' JF(o(y),x,w)

(since {u+(y)} pertains only to u)

Ax'vz!' F(y,x,w)

(since o does not pertain to y),.

1.4 UNIFICATIAN, We will define the concept of a set being
unifiable, show that we can assume that this set contains
only two expressions and finally, we define the wunification

problem.

l.b.1. Unifiable. The substitution o ynifies a set of ex-

pressions {31""’en} iff

U(e1) = d(e,) = ..., = O(en).
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Since substitutions preserve types, this definition implies
that e},...,en must all have the same type. Note that
trivially, any substitution unifies the empty set and any
set of one expression,

The substitutionoc upifies a gollection of sets of ex-
pressions iff o unifies each set of expressions in the col-
lection,

In the following definltion, X may be a set of expres-

sions or a collection of sets of expressions.

X is unifiable iff 3o unifies X).

1.8.2. Reduction. We will show that the problem of deter-
mining if a set is unifiable can be reduced to the case when
the set contains two expressions.

By introducing a suitable constant symbol, say F, of
degree n, we can reduce the set of n22Z expressions,
{e],...,%q)-to the set of two expressions,

{F(e],ez,...,e ,en), Fle ,e ,...,%1,e})}.

n-1 273
Clearly dunifies this set iff g unifies {e],...,en}.
A further reduction can replace the collection of sets
of expressions
{ {e‘,eu};--.;{e',en} }
1771 m°m
by the set of two expressions,
1 ¥ " "
{G(el )otaem)’ G(e-] ’aoo[em)}

where G is an appropriate constant of degree m., Again the

reduction is valid.
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l.4.3. Unjification Problem. The unification problem Is to
determine, given two expressions e] and e_, whether or not

2
{e1,e2} is unifiable,
We now define particular unification problems whose

complexity we will be interested in,

1.4.3.1. Ihe first-order unification problem. This problem
is obtained by making the following restrictions on the
general unification problem:

(1) the set of basic types is a singleton;

(2) the order of all variables is one;

(3) the order of all constants is one or two;

(4) all expressions have no formal arguments,

These restrictions are necessary in order to coincide
with the language of first-order expressions as defined in
the papers [12,27,331.

This is tantamount to defining a first-order expression
inductively as either a variable, or a constant of degree n
followed by n first-order expressions, and thereby aban-

doning the A -notation.

1.4.3.2., Ihe n-th order wunification problem (n>2). This
problem is obtained by making the following restrictions on
the general unification problem:

(1) the order of all variables is at most n;

(2) the order of all constants is at most n+l.

The second restriction is necessarvy to avoid a certain
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kind of instability, where during the unification a variable
of order greater than n may have to be Introduced. This

phenomenon was noticed in [ 16].

1.4.2.3. The n-th order p-th degree unification problem
(n21,p20). This problem is obtained by making the following

restriction on the n-th order unification problem:

(1) the degree of all symbols is at most p.

l.8.3.4., The n-th order instantiation problem (n2l1l). This
is the n-th order unification problem for two expressions in

wiich one expression contains no free variables.



CHAPTER 2

A PRACTICALLY LINEAR UNTFICATION ALGORITHM

We present an algorithm for solving the first-order
unification problem. We prove that it is correct and that
the time taken by a suitable model of computation is of the
order nG(n) where n is the finput size and G is a very
slowly-growing function, related to the inverse of Acker-
mann's function. This complexity lies between 0(n) and
O(nloglog...logn) (with any constant number of "log" fac-

tors).

2.1 T ION. We first present a unification algorithm

wiich embodies the methods used by Robinson [27] and Guard
[123, It «determines whether or not two first-order expres-
sions are unifiable. (MNote that the concept of composition
of substitutions will be defined later.)

algorithm UNIFIABLE(g ,e,):
begin
o +g comment assipgn tog the empty substitution ;
repeat until ole1) = o(ey)
begin
let e, el be occurrences of subexpressions in
o (e1), 9(ex) such that e/=el and that
all corresponding symbols to the left of
these occurrences are identical :
if el and e% begin with different constants
then return (false)
else assume that e{ is a variable,
otherwise swap el and ed in:
if el occurs in e}
then return (false)
else o« {e'+el} o; comment compose {el«e'n and o;
end ;
return (true) ;
end,

24



25

This algorithm is abstract, in that we nelther specify
the data structures used to represent expressions and sub-
stitutions, nor the method of manipulating these data struc-
tures: of applying a substitution to expressions, of com-
posing two substitutions and of determining if a variable
occurs in an expression. However, Robinson and Guard clearly
intended a simple representation using strings of symbols
and simple, but costly, operations of physically
manipulating such strings. It is easy to show that such a
naive implementation has exponential complexity by con-
sidering the unification of the two expressions:

e} = F(x],xz,...,ﬁ])

and

e = F(G(x ,xo),G(x],x]),...,G(x 1.

2 0 n-1""n-1
Venturini-Zilli [33] improved upon Robinson's more ef-
ficient algorithm [28] by representing expressions as trees,
In which wvariables are shared, and by efficiently deter-
mining if a variable occurs in an expression. This improved
implementation has quadratic complexity.

Unfortunately, it appears that all such implementations
of this type of algorithm cannot have better than quadratic
complexity. The reason for this is that the algorithm con-
tinually‘ checks for the occurrence of a variable in an ex-
pression (in the case that one of ea and eé is a variable).

An analogy can be made with the graphical problem of deter-

mining if a directed graph contains a circuit., If the entire
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‘graph is available, a linear algorithm can be used.
However, if the edges of the graph are glven to us edge by
edge, and at each stage, we check for a circuit due to the
additional edge, then the algorithm will have quadratic
complexity. It appears that no such "on-1ine" method of
determining if a graph contains a circuit has better than
quadratic complexity, This explains our remarks made at the

beginning of this paragraph.
2.2. MODEL OF COMPUTATION.

2.2.1. Random Acgess Machine, We choose as our model of a
computer the random acgess machine (RAM) {11, The RAM con-
sists of a read-only input tape, a write-only output tape
and an infinite number of registefs, each of which can hold
an integer of arbitrary size, Since we assume that the
unification problem is small enough to fit into the memory
of a computer, and that the number of distinct symbols
(represented as integers) is small enough so that each may
fit into one computer word, our choice of model s

justified,

2.2.2. lInstructions. The lIpnstructions of the RAM are
typical of those found on any computer and include: arith-
metic, comparison, logical, character, input/output,
load/store, branching and indirect addressing operations.
For example, if the registers are RO'RT'RZ'... then typical

instructions are: '"store the sum of the contents of Ri and
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of Rj into R, "if the contents of R; is less than that of
% then execute next the k-th instruction", "load R; with
the next Input symbol", "print the contents of Ri", "store

the number j in register Ri" and "load R; with Rj where j is

the content of q<.”

We will not actually present a RAM set of instructions
to implement our algorithm, but will instead present a
structured program which can readily be translated into an

appropriate RAM program having the desired complexity.

2.2.3. Uniform gost. In assigning a complexity measure of
time to a RAM, we apply the uniform cost criterion and as-
sume that each instruction takes unit time. This is ap-
propriate since we assume that the number of distinct sym=
bols is small enough so that each may fit into one computer

word,

2.2.4, Problem size. The complexity of algorithms is rela-

tive to the size of the problem. For the first-order
unification problem of determining whether or not two ex-
pressions e and & are unifiable, we take the size to be
the total number of occurrences of symbols in the expres-

sions e and es,

2.2.2. Complexity. By the complexity of an algorithm we
mean the worst-case time mplexity, that is, the maximum
time taken by the RAM instructions over all input problems

of size n, We will be interested only in the asymptotic time
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compliexity which expresses the functional variation of
complexity rather than an exact estimate. We wuse the "V
notation accordingly: g{n) is . 0(f(n)) if there exists a

constant ¢ such that g(n)scf(n), except for a finite number

of values.

2.3, EIRST-CORDER UNTFICATION., We will define the notions of

term, composition of substitutions and most general unifler.

2:3.1. JTerm. We define a term to be a first-order expres-

sion which is not a variable.

2.3.2. Lo ition. We define the composition of substitu-

tions 01 and 02, written G]GZ'

1f S {v;+ e!', . .. ’W%+ eé} mz0

. = " H n_ o oh
and if 02 {v]+ e], . . 'Vn en} n>0

then oo, = {vleoa (eH), . e ,v$+ 02(%;)}

as follows.

[

21 1 2
U {v$+ eq [ 9 pertains to v? and
I, does not pertain to v%}.
The meaning of 0201 is to first apply the substitution o,

and then to apply 02.

The following properties of substitutions and expres-
sicns allow us to dispense with parentheses:

gdc,qg ) = (0.0, )9 and (010 Y(e) = 01(02(6))

123 1273 2
for all substitutions G}, 02,03 and for all expressions e,
2.3.3. Most general wnifier. In this definition, X is

either a set of expressions or a collection of sets of ex-
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pressions,

c is a moskt general unifier (mgu) of X iff

g unifies X andV o'[o' unifies X implies3o"(c'=0c"s)],

Not only do we wish a unification algorithm to deter-
mine if two expressions are uniflable, but also, when they
are, we would like to obtain their most general unifier. In
fact, all such algorithms do indeed provide the mgu. For ex-
ample, in the algorithm in section 2,1, the mgu can be ob-
tained from 9, The mgu will be expressed in the form of a
composition of singleton substitutions (corresponding to
successive replacements) rather than a general substitution
(corresponding to simultaneous replacements) since the

latter form could have exponential length.

2.4%. DESCRIPTION JF THE ALGORITHM, Our algorithm consists
of two stages: a transformational stage followed by a
sorting stage. The transformational stage inputs the two
given expressions and outputs a partition of expressions;
this stage may detect failure of unification due to the at-
tempt at unifying two expressions beginning with different
constant symbols. The sorting stage constructs from the out-
put of the transformational stapge a directed graph (digraph)
and determines if it contains a circuit by trying to
topologically sort the digraph, If a <clrcuit 1is found,
unification fails because we cannot unify a variable and an
expression in which the variable occurs., If no <circuit |is

found, the topological ordering induces a substitution which
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is a most general unifier,

2.4.1. Iransformational Stage. This stage inputs, in
general, a set of pairs of expressions to be unified, S; and
transforms them into a partition of classes of expressions,
FO. The two main sets used in this stage are S, a set of
unordered pairs of expressions, and F, a partition of ex-
pressions. We allow S to contain repetftions. F, in fact,
is a partition of the subexpressions occurring in SI. We al-
low repetitions in each class of the partition, F, and we
allow repetitions of the classes in F. As usual, two classes
are either equal or disjoint., e insist that if the same
variable 1is an element of two classes, then these classes
must be equal, and that all the terms belonging to a class
must begin with the same constant.

Initially, S is SI and FI, the initial value of F, con-
sists of all the subexpressions occurring in SI, each in a
class of its own. Slince we are not interested in the
equality. of two subexpressions, unless they are variables,
we allow FI to contain several identi;ai classes centaining
the same term.

At the end of the transformational stage, S 1Is empty
and F is the output partition, % . We can intuitively con-

sider that we are unifying S subject to the constraints

represented by F.

2..1.1. Abstract algorithm. e present the transfor-
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mational stage in the form of an abstract structured
program, This will be expanded in more detall 1later.
algorithm TRANSFORM:

begin
Initialize S to S, and F to F

I'd
repeat until S isIempty: I
begin
Delete a pair of expressions, (e;,e ), from S;
if e;=zey
then begin
Find classes T;,T, ¢ F
such that e;e¢T) and ey eTy
ifT,=27T,
then begin
if T, contalns a term f'(e},...,e")
and T, contains a term f"(e?,...,gﬁ)
then if f' = f"
then UNIFICATION FAILS
else Add to S the pairs:
(e{,e%),...,(gﬁ,eﬁ) :
Merge T, and T, , that is,
replace TT and T, by T; v T
end;
end;
end;
end.,

We will now specify the data structures used to
represent expressions, sets and partitions and the method of

manipulating them in order to obtaln an efficient algorithm.

2.4.1.2. Data structures. We represent expressions by trees
(strictly, directed acyclic graphs), in which variables are
sinared; the set of pairs of expressions, S, by a stack; and

the partition F by a forest of trees.

2.4.1.2.1, Expressions. The expressions are represented by
trees in which different occurrences of the same variable
are represented by different pointers to the same vertex of

the tree. GEach vertex of the tree corresponds to some sym-
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bol occurring in the expression, If a vertex corresponds to
a constant symbol of degree n, then each son of the vertex
corresponds to an argument, Figure 2.1 illustrates the

representation of an expression,

2.4.1.2.2. Sex of pairs of expressions. The set S, con-
sisting of pairs of expressions, is represented by a stack
of.pairs which indicate the corresponding tree representa-
tions of the expressions. Figure 2.2 illustrates such a

representation.

2.8.1.2.3, Partitions. The partition F is represented as a

forest of trees. Each class in the partition is represented
as a tree, each vertex of which points to an expression,
Since we must know if a class contains a term, the root of 3
tree points to some arbitrary termwithin that tree. This
term is known as the designated term of a class. Also, the
root of a tree is effectively the name of the class which it
represents. Figure 2.3 1illustrates this representation.
Strictly, the stack entries of S point to the corresponding

vertices in F.

2.4.1.3, Data manipylation. YWe will describe the important
operations on these data structures occurring during the

transformational stage.

2.4.,1.3.1, Expressions. In the algorithm, TRANSFORM, rather

than checking if e, and e, are equal expressions, we only



The tree representation of the expression:

F(G(H(F(A,G{w,2),x%)).%),A,F(y,x,H(G(x,H(z)})))).
Figure 2.71.

The stack representation of S, the set of pairs of expressions:

Wy FOGGIY)) Y, {G(F(F(y,x)sz))s G(wW)} }
Figure 2.2.

)
@fff:%i?}))) (He)) @%
D) )

The forest reprasentation of the partition:

Clus vy G(F(wsx)), G(2)]s DxGH(W)LH(E) 8T, [F(w,x),y,z,F(r,s)], [w,r,t] &
The big arrow indicates the designated term of each class.

-

Figure 2.3.

33
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check if the pointers representing e and e are equal. The
tree-like data structure for expressions facilitates finding
the arguments of a term, that is, given a pointer to a term,
f(e],..,,en), we can easily find the pointers to 1its argu-

mnts, ellgtulent

2.8.1.3.2. Manipulating S. Since S is representéd as a
stack, it is easy to determine if S is empty, to delete a
pair from S (by "popping off" the top pair from the stack)
and to add a list of pairs to S (by "pushing" them onto the

top of the stack),

2.4.%.3.3. Manipulating FE. The efficiency of the transfor-
mational stage depends upon the method of performing two
operations on F: to EIND which class in the partition an ex-
pression belongs to and to MERGE two classes of the parti-
tion, These operations were analyzed by Tarjan [31].

To FIND which class an expression belongs, we traverse
a path from the vertex of the tree corresponding to the ex-
pression to the root; this root is effectively the name of
the required class, The cost of a FIND is proportional to
the 1length of the path from the vertex to the root. This
will be reduced if we employ a gollansing heuristic: after
finding the root, we <c¢ollapse the path directly onto the

root., Formally, if ViVt oy,

n-1""n is the unique path

from theg vertex vy to the root v, then we replace the edge

n

VitV by the edge ViV for i=1,...,n=2, Figure 2.4 1i1-



35

lustrates an example of a FIND,
To MERGE two classes, we make one tree representing one
of the classes a subtree of the tree representing the other

o~

class, To decrease the average path length and hence the
cost of subsequent FINDs, we employ a balancing heuristlic:
make the "1ight'" tree a subtree of the "heavy" tree, where
the comparatives refer to the number of vertices in the
tree, 1In the case when the "heavy'" tree contains only
variables and the "1ight" tree contains some term, we have
to ensure that the neQ root points to the designated term,

Figure 2.5 illustrates the process of merging.

2.4.2. Sorting stage. The output partition FO of the
trans formational stage has the special property that the
uni fiers of Fy and of $; are the same. (We will formally
prove this later.,) It is now easy to determine |if Fy Is
unifiable by examining a naturally induced graph for the ex-
istence of a circuit, We will attempt to topologically sort
this digraph by embedding its vertices in a linear order., If
this is not possible, then the digraph contains a «clircuit
and FG is therefore not unifiable, If it is possible, the

sorted digraph indicates the most general unifier of FO.

2.4.2.1. Topological sorting. Given a digraph, that is, a2
set E of relations of the form v»w (directed edges) on a

finite set of vertices, V, the problem of topological

.

sorting is to embed the digraph in a linear order, that 1Is,



Both trees represent the class of expressions: fei,e0,...5e15],
before and after FINDing the class which contains the expression es.

The vertices e;s, e1;, eg and e5 on the path from the given expression
€15 to the root are collapsed directly onto the root.

Figure 2.4.

This tree is obtained after MERGing the first and third trees
of Figure 2.3. It represents the class:

[ u, vy G(F(w,x)), G(z), Flw,x), ¥, 2, F(r,s) ]
in which the designated term is F(r,s).

Figure 2.5.
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to arrange the vertices into a linear sequence vy ,...,V
such that whenever Vi>vy we have 1<},

There 1is a well-known algorithm [18] which determines
If a digraph can be topologically sorted and, if so, outputs
the wvertices in linear order. The time complexity of this
algorithm is O0(lengthfVl+lengthlE]) where length{ V]l is the

number of wvertices and length[E] is the number of directed

edges in the digraph.

2.4.2.2. Digraph GConstruction. From Fo we will construct a
digraph. First we will construct an abstract intermediate
digraph which is naturally induced by Fo- The final digraph
is constructed from this by examining the repiesentation of
b as a forest of trees.

The intermediate digraph has as vertices the classes in
the partition Fy. Its edges ére cons tructed by examining
each <c¢lass in FO. Given a ¢lass T in ﬁ}, let e be any term
in T. (If no such term exists, then T contributes nothing to
the set of directed edges.) Let e equal f(ey,...,e ) and let
ej belong to the class Ty (i=1,...,n). Then T contributes
the set of directed edges: T +T1,000,T> Tye The digraph is
well-defined because it is independent of the particular
choice of a term in a class. The reason is that % has the
special "hereditary" property: if f(e{,...,e;) and
f(e?,...,e:) belong to the same class in ﬁ} then for each
i=1,...,n %’ and e? also belong to the same class. This will

be proved later. Figure 2.6 illustrates this constructed
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(: [ u, vy G(F(wsx}), G(z) ] i:)(:j [ x, s, H(t)s H{w) ] j)

v
(::[ F(wsx), 2, F{rys), y 1] [w, r, t] T)

‘The directed graph associated with the partition:
£ Luov,G(F(w,x)),6(2) 1 DxH(W),Ht) s T, [F(w,x)sz,F(rss),y]s Tw,rst] .
The underlined expressions denote the designated term of a class.

Figure 2.6,

The directed graph associated with Figure 2.6., using the forest
representation of Figure 2.3.

Figure 2.7.
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digraph.

In practice, we must construct a related digraph
directly from the forest vrepresentation of Fo. From this
final digraph, the mgu, if it exists, can be constructed.
The vertices and edges of this digraph are obtained as fol-
lows. For each vertex, v, in the forest, which corresponds
to a variable and which is not a root, let r be the root of
the tree to which v belongs; add the directed edge: wrr,
Also, for each root, r, let f(e],...,en) be the designated
term of the tree having root r and let r. (i=1,...,n) be the
root of the tree to which e, belongs; add the directed
edges: P> r e Figure 2.7 i1lustrates this digraph.

A detailed algorithm, CANSTRU'CT DIGRAPH, is given in
the next section to construct from F0 the digraph, which is
then used by the topological sorting algorithm,

It is evident that the number of vertices and the
number of edges in this constructed digraph are linear,
relative to the size of the input set, SI'
If this digraph can not be topologically sorted then

the input set S _ cannot be unified. If it can be sorted,

I
then 1its vertices can be embedded into a linear order. Let

Viese sV, be the subsequence of this linear order which cor-

responds to variables only. Then the mgu is

{vT*e}} R T

where e, is the designated term of the class to which Y4

belongs; if no such designated term exists then e is the
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variable which corresponds to the root of the tree to which
Vs belongs. The algorithm, OUTPUT UNIFIER, inputs the ver-
tices of the digraph in their linear order and outputs the
mgu, If v],...,% Is the output of the topological sorting
algorithm, then QUTPUT UNIFIER(VI),...,OUTPUT UNIFIEP(vn)'J

gives the required unifier.

2.4.3. Flowchart. UYWe present the transformaticnal stage of
our algorithm in the form of a flowchart. This flowchart
will be used later in the proof of correctness and in the
timing analysis., The flowchart inputs a set, % , of pairs of
expressions to be unitied and either exits with failure due
to the attempt at unifying two expressions beginning with
different constant symbols, or exits with the output parti-

tion % . See Figure 2,8 for the flowchart.

2.4.4, Example. We illustrate the transformational stage of
the algorithm for the case when SI={{e],e2}} where
e, = P(x,G(F{x,w)),v,F(F(u,u),t),x,G{w))

and

e, = PCF(G(y) ,G(2)),u,G(F(r,s)),y,Flu,v),G{w)).
Figure 2,9 gives the status of the program variables S and F
for each cycle of the transformational stage,

Here, the stage exits with output partition FG ecqual to
{leq, e,l,

[G(F(x,w)), u, G(y), v, G(F(r,s)), G(z)],

[F(F(u,w,t), v, F(x,w), F(r,s), 21,
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(Flu,uw), x, F(G(y),G(2)), Flu,v), r3,

[t, w, sl 2.

2.4.5. Programs. Since the flowchart we presented was ab-
stract, in that the data structures were not specified and
the method of performing the operations waédnot described,
we also give a structured program,ATRANSFGQM. This uses
several subprograms: DECOMPCSE, which attempts to unify two
terms by examining their corresponding arguments, FIND,
which determines the class of the partition a given expres-
slon belongs to, and MEPGE, which constructs the unfon of
two classes in the partition,

Each expression is, in fact, a pointer to a list of its
attributes: SYMBOL, VARIABLE, ARGLIST; PARENT, TEPRM and
WEIGHT, The first three describe ﬁhe expressions and hence
never change and the last three attributes are used in the
represeéntation of F as a forest of trees.

SYMBOL s the first symbol of an expression, VARIABLE
indicates whether the expression is a variable or a term and
if it is a term, ARGLIST points to a list of its arguments.
In the forest representation of the partition, PARENT in-
dicates the next vertex towards the root of a tree, If
PARENT is null, then the expression is at the root of a tree
in which case, if the class associated with the tree con-
tains a term, TERM indicates the designated term., WEIGHT is
the number of vertices in the tree and is used to balance

trees during a wmerge operation. Initially, for all subex-
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Does TI contain a \\
term ei and T2

yes

ye

| MERGE
PATH, Ty and Ty

\ 4

Let ei=f’(e%,...,e’)
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linear unification algorithm.

Figure 2.8.
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"C" indicates at what cycle a set was created.
"D" indicates at what cycle a set was deleted.

clol F lclp F ¢l olp s +e
0| 1ledl | 1] |legse,] O 1[4} {ey,e,)
0| 2|[x] 2| 6|[x,FGyGz] T\ 2|3} {x,FGyGz}
0] 3|[GFxw] | 3| 8|[GFxw,u] T1 3} 3] {GFxw,u}
O\ 11| [Fxw] | 4| 9|[v,GFrs] 1t 413] {v,GFrs}
0[14|[w] 511 |[FFuut,y] 1| 5{3| {FFuut,y}
0| 4|{[v] 6|13{[x,FGyGz ,Fuv] 1 6{4| {x,Fuv}

0| 5|[FFuut]l 7| {[Gw,Gw] 1] 7| 4| {Gw,Gw}
0|13|[Fuul | 8|16|[GFxw,u,Gy] 6| 8/4| {Gy,u}

0| 3|[u] 9(16|[v,GFrs,6z] 6| 9|4| {Gz,v}
0{14/rt]  |1117|[FFuut,y,Fxw] 70101 {w,w?

0| 7|[ew] |12|17|[Frs,z] 8(11]4 | {Fxw,y}
0] 1 [92] 13|18|[Fuu,x,FGyGz ,Fuv] 9112|31 {Frs,z}

0| 2|[FayGz]14|19|[t,w] 11{13]4 | {Fuu,x}

o| 8/[ay] |16| |[6Fxw,u,Gy,v,GFrs,Gz]| 11[1413| (t,w)

0| 5|[y] 17 [FFuut,y,Fxw,Frs,z] 13i15!2 | {u,Gy}

0| 9|[6z] 18 [Fuu,x,FGyGz,Fuv,r] 13116|4 | {u,Gz}
0112|[z] 19 [t,w,s] 16{17]4 | {Fxw,Frs}
0| 4|[GFrs] | 17(18{3 | (Fuu,r}
Q[12|[Frs] 171913 {t,s}
0[18|[r] 20(0

0119|[s] C=0 indicates F = Fi C=0 indicates S =
0| 6{[Fuv] D=f f indicates F = FO P=0 indicates S =
01 7| [Gw]

"PU pefers to the particular path in the flowchart taken during
a cycle. Underlined expressions are the designated terms of classes in F.

The left table indicates FI’ the middle table indicates the rest of F
during the algorithm and the right table indicates S.

Figure 2.9.
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pressions of SI’ PARENT is null, WEIGHT is one and for
terms, TERM points to itself, otherwise for variables, TERM
is null,

algorithm TRANSFORM:
begin
Initialize STACK and FOREST;
repeat until STACK is empty:
begin
POP a pair of expressions, {expr',expr') off STACK;
if expr' =z expr" (by virtue of different pointers)
then begin
root! <FIND(expr'); root"<«FIND(expr™);
if root' = root"
then begin
if TERM[root'] = null and
TERM(root" ] 2 null
then DECOMPOSE(TERM[ root'y,
TERM[ root'"]) ;
MERGE(root', root');
end;
end;
end;
end.

algorithm DECOMPOSE(expr',expr'):
begin

if symBOLlexpr'] = SYMBOL [expr' ]

then EXIT with FAILURE

else for each argument pair: arg', arg"

found from ARGLISTlexpr'l, ARGLISTLexpr']
do: PUSH arg' and arg" onto STACK;

end,

algorithm FIND(vertex):
begin
comment use the top of STACK as a temporary LIST;
Vv € vertex ;
repeat until PARENTLv1 = null:
begin
add v to LIST; v <« PARENTL vI;
end;
return(v); comment since it is now the root;
comment collapse the path directly onto the root;
for each w on LIST do: PARENTIwI + v;
end,

algorithm MERGE(root',root"):
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begin
assume that WEIGHT [root'] < WEIGHT[root"]
otherwise, swap root' and root" in:
begin
lTight « root'; heavy <« root";
PARENTL1ight] « heavy ;
WEIGHT Cheavy] « WEIGHT[heavy] + AEIGHTC lightd ;
comment if necessary, update the new designated term;
if TERM[1ight]l = null
then TERM heavyl <« TERML1ight];
end;
end,

algorithm CONSTRUCT DIGRAPH:
begin

for all variables, v, in F0 do:

if PARENT[v] = null

then add the directed edge, v - FIND(v);

for all roots, r, In FO do:

if TERMCrJ =2 null

then for each argument of TERM[r] do:

add the directed edge, r - FIND(argument);

end.

algorithm QUTPUT UNIFIE®(vertex):
begin
if VARIABLELvertex ]
then comment CONSTRUCT DIGPAPH has previously made all
variables point directly to the root;
i f PARENT [vertex] = null
then If TERMl vertex] = null
then output {vertex « TEPM[vertexl };
else if TERML PAREHT [vertexl] = null
then output {vertex < TEPMIPARENT. vertex1l}
else output {vertex « PAPENTL vertexI)};

2.5, ECT S. We will prove that if our algorithm com-
prising the transformational stage and sorting stages halts,
it does so correctly. That iss If failure of uniflcation is
reported then indeed the input set S is not unifiable and
i% @ substitution 1is output then indeed this is a mgu for
SI' That our algorithm halts will be evident from the

complexity analysis of the next section.
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We will prove that If failure is reported during the

transformational stage then SI is not wunifiable., If this

stage exits successfully, we will prove that %

the same mgu. During the sorting stage, if a «circuit Iis

and SI have

detected (that is, the induced digraph cannot be

topologically sorted) then we will prove that F is not

0
unifiable, and hence SI is not unifiable. If a substitution
is output we will prove that it is a mgu for F and hence

0

also for SI'

4.2.1. Iransformational stage. Our correctness proof uses
the techniques of program verification [10] . We will show:
Yo (o is a mgu of S iFf:cr is a mgu of FO).

This is a consequence of the simpler condition:
VLo unifies § iff o unifies Fp)
by virtue of simple properties of expressions.

To prove this simpler condition we consider the fol-

lowing assertion, A(S,F), concerning the state of the al-
gorithm given by the values of S and F:
A(S,F) iff Voo unifies SI iff o unifies S and o unifies F),
We will prove that A is an invariant assertion at the point
of the transformational flowchart labelled "=*", that is, if
A is true at "+" then A remains true if control returns to
Mgt

Initially, A is true since A{S,F) iff A(SI'FI) and
since each class of Fi is a singletoﬁ. If we can prove that

A is invarlant, then if the exit is successful, S is empty
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and F equals Fy hence A(S,F) iff A(¢,F0) which is equivalent
to cur simpler condition.
To prove that A remains invariant it suffices to prove
B(S',F',s",F") where this is defined as
Yoo unifies S' & o unifies F' |ff
‘g unifies S & o unifies E" )
where S' and F' are the old values of S and F at "=*" and S"
and F'" are the new values of S and F when "#" s next
reached, The reason is that:
B(s',F',8",F") implies [ A(S',F') implies A(S",F'") 1,
To prove that B holds, we must examine each possible
path in the flowchart which starts and finishes at "=",
Proof: PATHT: Consider PAT% of the flowchart, Here
S' = 5" + {ey,e) (that is, s" {{e,823}) and F'=F",
B(s" + {e1,e2},F',S“,F*) is true since e;=e, implies that ¢
unifies {ey,e ).
PATH,: Again B(S”+{e],e2},F',S”,F') is true since
ey « T} and e, « T, and T] = T2.
PATH,: Here, S' = 8" + {e.,e} and If F'=F y {T;,T 2
then F' = Fuy LTy v T, 3. B(S"+le;,e,2, FulTy,Ty),s8",

FU{TT uT,}) holds since o unifies {e],ez} and ¢ unifies T,

and c unifies T2 iff o unifies ﬁ U '&.
PATH ,: Let st = S 4+ {e],ez} then S" = Sy
{{e',e">,...,{e",e")}> where e'=f'(e!',...,e") and
1 1 n n 1 n
e''=f"(e",...,e"). Let F' = F v {T;,T,> then F" =
T - n

FuodTy v T2 B(S',F',s",F") holds since



48

o unifies {ej,ep} and o unifies Ty and ¢ unifies T
iffo unifies {(e;,eq},...,{e',e"}} and o unifies Ty u T,.
" (end of proof)
Having proved that A is invariant at the point "=*" we
can now prove that if any path ends in failure, then S; Is

not unifiable because:

f'= f' implies ¢ does not unify {f'(e',...,e'),f"(e?,...,e")}
n m

%.52.2. Sorting stage. We will first show that if a circuit
exlsts in the constructed digraph (that is, the Iinduced
digraph cannot be topologically sorted) then Fo is not
unifiable, By the construction of the digraph, a circuit
implies a sequence of trees in the forest Fo: ToTy,e0e0 T,
and a sequence of roots of thesé trees: rg,r1,...,ryp (n20)
with the following property: the class corresponding to T
contains a term e; which has some argument, &' » which
belongs to the «class corresponding to T;47 « (Addition 1s
modulo n.)

Therefore, if o is a unifying substitution:

7 unifies Fg

implies o unifies each tree in Fo
implies in particular, o unifies Tg/T1eee.. Ty

implies d(el) =0 (r) = g(e;) for i=0,1,...,n

H

implies length{o(e!) ] lengtﬂcr(% )1 > dength[o(el, )]
implies iength[d(ed)] > .. D Tength[U(e%)] > Iength[c(eb)].
The contradiction implies that Fg is not unifiable.

We will now prove that if a substitution is output by
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the sorting stage, then it is a mgu of ﬁ).

First, we prove that a hereditary property holds of the
output partition, FO: if f(eﬁ,...,eﬁ) and fCEf*,...,e;*)
belong to the same class of F0 then, for all1 i=1,...,n ex
and e** belong to the same class.,

%his will be a corollary of a subsequent result, First,
let us introduce notation which abbreviates the above con-
cepts.,

e

. e, mod X 1ff IT(T X and ejeT and e,eT).

When X is a partition, F, then &, e, mod F means that e and

e, belong to the same class of F, When X is a set of pairs
of expressions, S, then eze, mod S means that {e},ez}
belongs to S.

Also, define e'ze'" mod#*(S,F) by

He]...Ben[e'=e1 & en=e" & 1<i<n implies

e . d
(eT e1+] mod S or %

Note that e15 e2 mod*(p ,F) iff e}s e2 mod F.

To prove the hereditary property, consider the fol-

e, mod F) ] .
i+1

lowing assertion, H(S,F), concerning the state of the
transformational stage, given by the values of S and F,
defined by
H(S,F) (ff
fle*,,...,e*) = f(ex=*,,, , ,e**) mod F
1 n 1 n
implies Vi[ex = exx mod*(s,F) 1.
i i
“Je will prove that H is an invariant assertion at the

point of the flowchart 1labelled "=*", Initially, H(SI'FI)



holds, since each class in FI is a singleton. After proving
the 1invariance, when the flowchart exits successfully,
H(¢,FO) becomes :
f(ei]*,...,en*) E f(e?*,...,e*ﬁ*) mod Fg

implies Vi[ei* = exx mod FO}.

The proof of the invariance of H is similar to that of
A (in section 2.5.1.). For each path, starting and finishing
at "*", we prove that H(S',F') implies H{S",F") where S' and
F' are the starting values and S" and F'" are the finishing
values of S and F. |

Proof: PATH]: The invariance depends upon the following

simple properties,

e' = e" mod S + (e 1,e2} implles e' = e" mod S or
e' = e" mod {'{el,ez}}, and e T & implies e!' = e" mod
(e ],ez}} implies e' = e" implies e' = e" med F. From

wnich, H(S+{e 1,ez},F) implies H(S,F).

PATHZ: The relevant result is

efe mod S implies e'=e"

5 mod ({e] ,ez)} implies e'=e" mod S,

PATH ,: Since not both of the classes T

3 1 and T2 contain

terms,

IH]

F(e%]'r,...,eﬁk) ‘F(e’f*,...,eiﬁ*) mod €T, v T,> implies

f(eﬁ,...,en*) f(e’f*,...,ez*) med {Ti} for i=1 or 2.
Also, e'Ze" mod C{e1,92}} and e'ze'" mod (TT'TZ} both imply
e'= e" mod (T] U TZ}'

PATHQ: The difficult case is when f(eﬁ,...,e;{)e‘l’] and

f(etl*,...,e**)eT (or vice versa), Here,
n 2
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f(ef,...,e;) = f'(e{,...,e;) and f=f' so, for all i,
e;.tze'_j mocl"r(S%('e:],e2 },FU(T1,‘I'2 >)
and e;s*se'; mod*(S+{e],eZ),Fu(T1,T2 ).
Now, e' =" mod {{é],ez}} implies e'=e" mod (I]uTZ} hence
e{feg mod*(S,Fu{T]uTz}) and similarly for exx, e?. Conse-
quently,
n
= * 1] 11
e*_'i e_i-** mOd (S U121{e1 Ie_i}IFU{T-]U TZ})-
(end of proof)

If the digraph can be topologically sorted, we will

show
Vo{ois a mgu of % iff o is a mgu of F)
0
where F* = {(T+ | T ¢ F. D>
0 0 0
and T* = {e | e<T and (e is a variable or
e is the designated term of T)).

Clearly, o=*, the substitution induced by the output of the
topological sorting stage is the most general unifier of Fﬁ-
We will prove that o+ is the mgu of F, and, bv the preceding

0

section, the mgu of § It suffices to prove the easier con-

I!
dition:

VU( g unifies FO

Proof: The "only if" part is trivial; the "if" part

iff o unifies F5).

will be proved by considering the statements, D;(c), defined
by:
D.(o) iff Vr(1<r<i implies o unifies T#) and
Vr(i sr<m implies ¢ unifies T.)

for i=0,1,...,m where T],...,T is a linear ordering of the

m
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classes of FO. In order to prove
Vcbnps):mpnes %(0)]
we will prove
\/OEIIﬁU) implies D, (o) ] for i=1,.,.,m,
The main result used to prove this is:
Vc{‘& uni fies T$~&'Vs(r<ssm implies o unifies Ts) ]
implies o unifies R*}

and a consequence of our hereditary property:

1 ! = 1l "

fley,ovv,ef) = fle)y.o..q") mod .2

implies

1]

Vi]s)r[e% e;.’ mod (Ts}] .

To prove the former, if Tr contains no terms, then the
result is trivial, else let e*=f(eﬁ,...,eﬁ) be the desig-
nated term in Tr' Now ¢ unifies ﬁ, iff

g unifies T* and for all terms, e, 9(e)=0(ex),
Let e=f(e],...,qq) then d(e)=c(ex*) |ff, for all i,
G(ef)=0(e?). We have r<ssm implies

g unifies T, Implies O(ei)=0(eg} implies 0 (e)=0 (e%),

2.5 TIMING ANALYSIS. We will show that the time complexity
of the transformational stage is 0(nG(n)) and similarly for
the time taken to construct the digraph. The time complexity
of the sorting stage is O(n)., Consequently, the time
complexity for the unification algorithm s 0{nG(n)).
Throughout this section n is the length of the input set,

SI‘
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2.6.1. A slowly-growing function.
Define the function A, related to Ackermann's function,

for pairs of non-negative integers by:

A(O,x) = 2x for x=2 0
A(i,0) = 0 for i > 1
A(1,1) = 2 for i > 1
ACi,x) = ACi-1, A(i,x=1)) for i > 1 and x = 2.

It Is easily shown that A{1l,x)=2 for x1 and A(2,x) =
242 4, ..42 where "t" denotes exponentiation and there are x
occurrences of 2, Thus A(3,8) = 2+2+,..42 (65536 occur-
rences of two).

Define o as a kind of "inverse'" of A by:

alm,n) = min{z=2l | Alz,4lm/nlD> > Tog,n } for m,n2 1,
Finally define G(n) = a(n,n). G grows extremely slowly:

G(n) <3 for all 'practical” values of n, that is, for all
n £ 2A(334) .

2.5.2. Iransformational stage. By neglecting the cost of

FIND and MERGE instructions, we will show that the number of
steps required by the transformational stage is linear rela-
tive to the input length. Consequently, there can only be a
linear number of FIND and ME®GE instructions.

To show this 1linearity, we examine each step of the
flowchart, Most operations require a constant time. For ex-
ample, to determine (if a «c¢lass contains a tarm requlires
merely the inspection of the TE®M field of the tree which

represents the c¢lass,. The exceptional case is the opera-
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tion: "add to S all the pairs of arguments'", since the
number of pairs depends upon the degree of the constant sym-
bol. However, we can easily "absorb™ this additional cost
by effectively counting the edges rather than the vertices
in the tree representation of an expression.

Proceeding formally, let TIME[S,F] be the additional
time taken to process the sets S and F when the algorithm
reaches the point labelled "*" in the flowchart. We now set
up a system of recursive equations involving TIME, by con-
sidering all paths in this flowchart,

PATHO: If the exit is taken after finding S empty, we
have ‘

TIME[¢;F0] = G
wiere < is the constant time taken to determine if S |is
empty.

PATH]: Here

1]

TIME[S+{e1,eZ};F] TIME[S;F] + S5
where S is a constant.

PATHZ: Similarly,

TIME[S+{ey ,e,2;F ] = TIME[S;F] + c4
wihere we initially neglect the cost of a FIND,
PATH3: Where the cost of a MERGE is ignored,
TIMEL S+Cey L@ 35 FudTy LTl = TIME[S;RU(TuTX] + .
PATH4:
TIME[S+{eI,e2};Fu{T],TZ}] =

TIME[Su{{q',e?},...,{eé, "I);FULTiuh >+ cgm + g
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if f'=f"
cy if fr=f",
Here, cgn is the time taken to add to S the m pairs of argu-
ments and Cg» €y are constants.
To simplify these equations, we absorb the Cgm term in=-
to the TIME measure by the transformation:
TIME*[S;F] = TIME[S;F] + cg.pairs[s]
where pairs[S] is the number of pairs in the set S. Also in
each equation, we will replace each equality by "<" and each
< by their maximum, Crax * Finally, the transformation
TIS;Fl = TIME[S;F] / Cnax
trans forms each < into unity. Without loss of generality we
can assume that c1=c7=0. Slnce
TIME[S;F] < TIME=[S;F] = Crax * T [5:F]
once we show that T is linear, it follows that TIME is also.
Our set of equations become
PATHG: TL&FGl = 0

Tls;F] + 1

1A

PATH{: TIs+(eq, e ;F]

IN

PATH,: T[S+€eq,e2;F] = T[s;F] + 1
PATH3: Tls+Ceq,82;F YTy, TN < TIS;FuCT; vT,>] + 1
PATH : Tis+(eq,e3:F T, T,
{s TlsudCel, ef'>, . . Qo) e FudTy uT, 0] + 1 if fl=f"
=0 if f'=f", '
\le now prove that‘T[S;F] is 1linear relative toc the

lengths of S and F, In fact, we will prove that

TLS:F] < pairs[s] + degree [F]
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wnere we first define "degree" for expressions by
degree [f(e sovese)] = om,
We extend degree to sets of expressions in which all terms,
if any, begin with the same constant symbol:
degreel T] = {degree[e] if T contains a term, e
0 if T contains only variables.
Finally, we -extend degree to a partition containing such

sets:

degree [F] = 1 degree[T].
TeF
We now prove our time estimate by induction on pairs[s]
+ degree [F].
Proof: PATHO: T[¢;F0]=O < patrds] + degree[ Fo] is
trivially true for our basis of induction.

PATH] or PATH, :

TIs+Ceq,e025F] < Tls;F] + 1

IA

palrs[s] + degreelF] + 1

pairs [S-*-{e1 ,ez}] + degred FJ.
PATH 52 T [S+{e 17823 FULT L, T,0]

TEFUTET,>] + 1

pairs[S] + degree[FU{HUTz}] + 1

IA

N

pairs[S*-{e} ,ez}] + degree[ F] + degree[Ty]
+ degree[Tz}
(since one of T, or T, contains no terms)
= pairs [S+{e] ,ez}] + degree[ FU(.T1 ,T2}] .
PATH ,: The result is trivial when f'*f", otherwise,

T [S"'{e'[ rez}; FU{T-I ;Tz}:]
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A

TISU((eH,e“P,-.-;(b&,e§}};FUfT]U Tz)ﬂ + 1
pairs[SU{(q',e¥ sevn e, ey)]
+ degree[FU(TiuTz}] + 1

IN

PairsfS] + m + degree[F] + m + 1

pairS[S+{e1,e2}] + degree]}U{T!,Tz}]

(since degree[Tl] = m= degree[Té]).

Hence, in particular,

| T[SI;FI] Spair's[SI] + degree[FI]
which is clearly proportional to the Jlength of % .
Therefore, ignoring the cost of FIND and MERGE instructions,
the time taken during the transformational stage is linear,
relative to the length of S;+ Note that T[S;F] can be inter-
preted as the number of cycles the flowchart takes, and
since
pairs[s;] + degree [F{] = Iength[SI]

the number of cycles taken altogether is bounded above by
lengthls;].

We must now include the cost of the FIND and MERGE in-
structions. We will wuse the following result of Tarjan,
taken from [31], in which FI!ND and MEPGE operations are
processed by path-compression on balanced trees.

"If T(m,n) is the maximum time required by a se-

quence of mZn FINDs and n-1 intermixed MEPREs on a

universe of n elements, then there exist constants

ky and k, such that

kymalm,n) < T(m,n) < kzwn(m,n).“
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We must justify using this result for our special case.
For the upper bound, the time required to process the FIND
and MERGE instructions is bounded above by kon®(n,n) where n
is the length of St.

To establish a Jlower bound, we note that Tarjan's
fesult applies to an arbitrary sequence of FINDs and MERGEs,
whereas our sequences have a special character.

The iower bound result of Tarjan implies that, given n,
there exists a set of n elements and a sequence of n FIND
and n-1 MERGE instructions requiring 0(n%(n,n)) time. This
enables us to construct a unification problem of size un
which requires O(n«n,n)) time, implying that given n there
exists a wunification problem requiring O(nG(n)) time. The
unification problem will be to unify F(ui1 yeoe s Us ) and

Ton-1

FOv: soevov ) where the u's and v's belong to a set of n

i i
] 2n-1
variables (corresponding to the set of n elements) and are

defined as follows. Consider the above sequence of FIND and
MERGE instructions. If the r-th instruction is FIND(e) then

let U, correspond to e and let Vi correspond to the ele-
r r

ment which is at the root of the tree containing e. If the
r-th instruction is to MEPGE the classes T] and T2 then let

Y corresnond to the root of the tree representing Ty and
r
let v; correspond to the root of the tree representing 5 .
r

To solve this unification problem our algorithm essentially
processes the original seauence of FIND and MERGE instruc-

tions and hence takes J(nG(n)) time.
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Consequently, the total time taken by the transfor-

mational stage is 0(nG(n)), that is, practically linear.

2.8.3. Sorting stage. The algorithm to construct the
directed graph also involves some FIND instructions. The
number of edges E and vertices V in the digraph are linear
relative to the length of St since V is, at most, the number
of subexpressions in S; and E Is proportlonal to the length
of S;. Hence the total time taken during this construction
is also practically linear.

The topological sorting stage requires linear time,
that is, O(V+E) time. The algorithm which «constructs the
mgu from the sorted digraph is alsc linear, since it ex=
amines the vertices V.,

In conclusion, thé total time required by our al-
gorithm, comprising the transformational stage, the digraph
construction, the topological sorting stage and the unifier
construction is practically 1linear, that 1is, requires

0(nG{(n)) time.



CHAPTER® 3

JHE COMPLEXITY OF SUBSUMPTION

In this chapter we will prove that the problem of sub-
sumption 1Is polynomially-complete, that is, has com=
putational coﬁplexity equivalent to the problem of deter-
mining if a formula of propositional calculus is satis-

fiable,

2.1. PROPOSITIONAL CALCULUS. In order to define the
SATISFIABILITY problem we first present ocur notation for

propositional formulas,

3.1.1. Notation. We use the following Jlogical connectives
in our formulas: —.(negation), v (disjunction) and & {con~-

junctionl}.

An atom is the basic constituent of all our
propositional formulas. We will use P, Q, R, P, Q1, Pj,...
for atoms.,

A literal is either an atom or a negated atom,

A ¢clause is a disjunction of literals,

A system is a conjunction of clauses.

A pdnf (perfect disjunctlive normal formula) is a dis-
junction of conjunctions of literals such that each atom oc~
curring in the formula occurs exactly once in each conjunc-
tion. Although there are systematic methods of converting a

formula into a logically equivalent pdnf, we are only in-

60
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terested in converting clauses containing at most three

literals, that is, in the following wvalid equivalences,

where L], L2 and L3 are literals,

Ly iff oL

Lyv L, PFF (L aly) vy &l ) vy aLy)

Ly vy vLg TFF (L &LyR1 I viL 8L, 85 I V(L 8T, &Ly viLy &L ,815)
V(L) 8L,EL P VL8, &l v DAL, aLy) .

Here f} équa]s K} if Li equals the atom Ai otherwise equals

Aj 1If L equals a negated atom, E}. For example, the pdnf

which is equivalent to the clause P v Q is:

(P&Q) v (P&Q) v (PaQ).

2.1.2., Truth-valuation. The semantlic notion of satis-
fiability is made precise by defining a truth-valuation as a
mapping from the set of atoms to the truth-set,
{true,false), and which 1is extended to any formula of
propositional calculus by the usual truth-table method. e
use 1 to denote truth-valuations. The definitions of
satisfies and gatisfiable follow,
T satisfies the formula F iff t (F)=true.
F is satisfiable iff J1 (1 satisfies F).

2.1.3. SATISEIABILITY, The SATISFIABILITY problem is to
determine whether or not a given system is satisfiable,

The SATISFIABILITY3 problem is to determine whether or
not a given system, in which each clause contains at most

three literals, is satisfiable.
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2.1, Length. We will later need the following measure of
size for formulas. We define the length of a formula as the
total number of occurrences of atoms in the formula. In par-
ticular, If S is the system 81&...&q1 where clause Ci con-
tains 1; literals then

n n
length[s] = : length[01] = I 1y.
.=] .i=

i
3.2, PUT ONAL COMPLEXITY. In order to make precise
statements about the complexity of problems and the

equivalence in complexity of problems we summarize the

definitions found in the literaturels,17].

2.2.1. Problem. A problem can be rigorously defined as a
particular set of strings from some alphabet; an instance of
the problem is then a specif{ed etement of that set of
strings. A Turing Machine (or algorithm) solves a problem
if, given an instance of the problem as input, it halts in

an accepting state (or returns the value, "true'),

2.2.2. P and NP, We are only interested in the time
complexity of problems, the fime being the number of steps
taken by a multitape Turing Machine to solve the problem.

P 1s the class of problems which can be solved within
time t(n) on a deterministic Turing Machine where t is some
polynomial and n is the Jlength of an instance of the
problem. For example, the problem of determining whether or
not a truth-valuation satisfies a formula, beiongs to P

since there is an algorithm for solving this in linear time,
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using the well-known method for compiling and evaluating in-
fix formulas.

NP is the class of problems which can be solved within
polynomial time on a pon-deterministig Turing Machine. A
non-deterministic Turing Machine differs from a deter-
ministic one in that, in general, the next state in a com-
putation is chosen from a set of states. A non-deterministic
machine accepts an input if some sequence of choices of
states results 1in an accepting state. The time taken by a
non-deterministic Turing Machine is the number of steps in
some sequenge of choices. For example, SATISFIABILITY
belongs to NP since the following non-deterministic al-
gorithm solves this problem by "guessing'" a truth-valuation
and determining if it satisfles the system.
algorithm SATISFIABLE(S):
begin

for each atom A in S do
choose from one of:
choiceT: let 1(A) = true;
choicer: let t(A) = false ;
return (SATISFIES(t,S));
end.

The non-deterministic feature of this algorithm s
given by the Kkeyword, g¢hoose, which srecifies that the
statement to be executed is chosen from the alternatives
given by <choicer and choicep. SATISFIES(t,S) determines
whether or not T satisflies S and requires only linear time.
Every sequence of choices has length ecual tc the length of

S therefore it should be clear that every sequence takes

polynomial time, Consequently, SATISFIABILITY belongs to
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NP,

3.2.3. Polynomial-reducibility. A problem P37 s
Rolvnomial-fime reducible to problem Py, written Pys,Py, If
an instance of problem Pq can be solved In polvnomial time

on a deterministic Turing Machine which consults an external
gracle to sofve problem Py ; the time taken to consult the
oracle is unity and the time required by the oracle is ig-
nored,

If P]ﬁﬁﬁ then loosely speaking, an efficient algorithm
to solve Py implies an efficient algorithm to solve P .

In all our constructions we will present a method, re-
quiring polynomial time, which converts an instance I7 of
problem % into an instance % of a problem P, such that L

iff 12. This is a sufficient condition that P15pP2.

3.2.4. NP-complete problems. A problem P is NP-complete if
it satisfies:

(1) P belongs to NP
and (2) If Q belongs to NP then Q:%P.

By a theorem of Cook [8], (2) can be replaced by

(2') SATISFIABILITY Sp P.

For example, the following problems are known to be
NP-complete[8,17]: HAMILTON - to determine if a graph has a
cycle which includes each vertex exactly once; TAUTALOGY -

to determine if a formula of propositional calculus is

satisfied by every truth-valuation; SATISFIABILITY 3 - hence
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condition (2') can be changed to

(2")  SATISFIABILITY3 s, P.

2.3, SUBSUMPTION. The SUSUMPTION problem is to determfne
whether or not a set of expressions, A, subsumes another set
of expressions B, The expressions in A and B are of first-
order and B coﬁtains no variables,

A subsumes B iff  Joo(A) S B where 0(A) = {a(e) | e ¢«
A,

Theorem 3: SUBSUMPTION is an NP-complete problem,

Proof: We will show that SUBSIMPTINN belongs to NP and

that SATISFIABILITY 3 Sp SUBSUMPTION,

3.3.1. Non-deterministic algorithm. To show that
SUBSUMPTION belongs to NP we present a non-deterministic al-
gorithm for determining whether or not a set of expressions
A subsumes a set of expressions B which contain no
variables,

algorithm SUBSUMES(A,B):
begin
if A is empty
then return (true)
else begin
delete any expression e from A;
choose an expression E from B;
if there exists ¢ such thato (e)=E
then return (SUBSUMES({c (4),B)
else return (false);
end;
end.

A subsumes B if there is some sequence of choices of

expressions from B resulting in “true" being returned.
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2.3.1.1. CLorrectness. The correctness of the algorithm is
justified by the results that @ subsumes B and that A U e}

subsumes B iff

JECE ¢B8 &30 [0(e)=E & o(A) subsumes B]).

3.3.1.2. Efficiency. Each sequence of choices in the non-
deterministic algorithm, SUBSUMES, takes polynomial time in
relatlon to the input length, This is due to the length of
each sequence being no greater than the number of elements
in the set A and to the time taken by each operation being
polynomial. In particular the time taken to find a unifier
for Ce,E)} is linear., Consequently, SUBSUMPTION belongs to
NP,

3.3.2. Redycibility, We will prove SATISFIABILITY3 < o
SUBSUMPTION by constructing an instance of the SUBSUMPTIMN
problem from an instance of the SATISFIABILITY3 problem,
From a system, S, in which each clause has at most three
literals, we will construct sets of expressions E] and E2
such that

(1) Ey s ubs umes E2 iff S is satisfiable

and (2) E} and E2 can be constructed efficiently from S,

3.3.2.1. CLonstruction. Let S be a system in which each
clause contains at most three literals., We will construct an
instance of the SUBSUMPTI?IN problem, that is, sets of ex-
pressions E; and E, in which varid@bles occur only In Eq e

will now define the symbols occurring in E; and § .
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2.3.2.1.1. Symbols. Llet (R ,...,P)> be the set of atoms oc-
curring in S. Then {Py,...,5 > will be the set of variables
occurring in Ej. We define a bijective mapping, ¢, which
establishes a correspondence between these sets bv:

olPsy = p for i=1,...,m.

T and F will be constants of degree zero, corresponding
to "true" and "false'". We define another bijection, &, which
estab]isﬁes this correspondence by:

8(true) = T and B(false) = F.

Associated with each clause of the system 1is a con-
stant, Let the system, S, have n clauses, S = €14..,.&Cy, in
which the i-th clause, Cj, contains 3 (=1,2 or 3) literals,
Introduce Gj as a constant symbol of degree 1; for

i=11||0[n-

3.3.2.1.2, ressions. Using these symbols (p1,....Pp,
T,F,G1,+..,G,) we will now construct the sets of expressions
Ey and B . Only Ef will contain variables.

let the system be S = C1&...8CG and let P ,...,PiJi
be some fixed orderihg of the atoms which occur in the 1i-th
clause, Cj, of S. (For example, let the order be induced by
the left to right order of the atoms in Cj.)

We construct E] by first constructing expressfons E;
by:

E% = Gi(pi,1""’piﬂi ) i=l,...,n

where p; . = a(Pi,

N
pressions E] is

; ) for j=1""'1i‘ Then the set of ex-
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E] = {E![”"’EY':}’
We now construct E, according to:
E2 = Ec[l'c'l:l u . . « U EC[n’Cn]o
Let clause C; have the equivalent pdnf given by
C; Iff D‘i,'l Vo o o V D'i,S- (Si = 211"1)

i
then we define the sets of expressions Ec[i,Ci] by:

Ec[s,g] = CEpli, 0y qdovea gl 1,05 (1> i=1,...,n.

1,8,

i
Let the disjunct Di,j equal Li,jﬂ & ... & Li,jJi where the
literal Ly 5, is either Py or 'ﬁi,k for k=1,...,14, then

we define the expressions ED[i,Di J.] using the symbols G :
Epli Dy 51 = 6y lLy 5 4] ,...,EL[Li,j,]i} )
for i=1,...,n; i=l,v..,s5. Finally, we define E| by:
BLLi g ={T Tlhigk T Pk
F if Li,j,k = Pi,k .
Note that Eo does not contain varlables,

2e3.2,1.3, Example. YWe will now illustrate the construction
by examining the system:
S = PA(PvQ &Ra(@vRrRvVP,
Let p, q and r be the variables corresponding to the atoms
P, @ and R, Then
Eq= €CGq(p), Gylp,q), G3(r), Gylq,r,p)>
and
Ey= Egli,Pl v El2,Pvalu e.03,RIu ELly,QvRvRl,
where for example, since the pdnf equivalent to PvaQls

(P&Q) v(P&a)v(paaQq)

we have
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EC[Z,I—D v Q]
<eplz,Psal, Epl2,Ped, EplPsald

= e [PLELAD, 6 [FI,E [A), axE[PLE[AD>
(Go(F,T), GF,F), G, (T,T)D,

Altogether, E2 equals
CG](T),
Gy (F,T), Gy(F,F), Go(T,T),
Gy (F),
Gy (F,T,FY, G (F,T,T), Gu(F,F,F), Gu(F,F,T),
G (T,T,F), GuT,T,T), Gu(T,F,F) D,

3.3.2.2. ¥Yatidity. e will show that our construction is
valid,

Lemma: Let S be a system in which each clause contains
at most three literals and let E; and E, be the sets of ex-
pressions constructed from S, Then

E1 s ubsumes EZ iff S is satisfiable,
that is,
dolotg ) c €, iffdclc satisfies sl

Proof: A simple correspondence between the substitution
of wvariables by T or F and truth-valuatlons establishes the
lemma., The relation is given by:

1 =8 loa and o = Bta !
where o and 8 are bijections defined in section 3.3.2.1.1.
For example, the truth-valuation:
T(P) = true, t(Q) = false, T(P) = true

is associated with the substitution:
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G <«<T,q<F, r«T).
The following equivalences establish that
T satisfies S iff 0(51)5. Es
where o and 7 are related as above. The lemma then easily
follows., The following equivalences are due to simple
properties of - truth-valuations, substitutions and the
definitions used in the constructicn.
T satisfies § = Cir & . .. &C,

ifFVYi 1 satisfies Ci;= 91,1 Vo . v Dy

S5
1

TFF Vi) 1 osatisfies Dy 5= Ly 4 &...&Li,j,]i

iff Vi 3j¥k 1 satisfies Li,5 .k

PFF Wi dj Yk Ly j,k) = true

VTV DLy 5 = Py &7 (P50 = truel v

[Ly 5,6 = Pik &t (Py ) = falsel>
iff Vi d; Yk G(pi’k) = EL[Li,j,k] where Pi,k = ot(P.i’k)
FFVE T otpy ) = gl 500 a..a i) EL[Li,j,Ii]
RS AR O’(Gi(pi’],...,p-}’]i )) =
G;(g L Li,j,1] seve gl !"i,.]',TT-] )
PFFVid) o(ey) = e L,y 5
i ff Vi o(E{) « (ED[I,Di’]],...,ED[i,Di’si]}
Pff Vi oo(E)) < gL1,6]
ifF Y oo(ef) < gL1,cqlu . Lo gla,g]
(since i*j implies Voo(g') ¢ Eclj,cyD
i ff Vi o(E)) < g
iff o(CEY, . ., E0>) < Ey
Pff O(E7) £ Ej.
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2.3.2.3. Efficiency of construction. e will now show that
the construction can be performed efficiently, that s,
within polynomial time relative to the length of the input
system, S, The main point to note is that, although the
conversion of a clause f; an equivalent pdnf generally re-
quires exponential time, this is not the case here since
each clause of the svstem has at most three literals. In
fact, since there are only three cases, we will construct
directly from tables the equivalent pdnf, rather than use a
general conversion algorithm.

The construction can be performed in linear time rela-
tive to the length of S. This is evident from examining our
construction. We will only elaborate upon the construction
of EC[I,Cil when clause Cj contains } =3 literals. For ex-
ample, let the clause be Q v R v P, (7,R,P is then our fixed
ordering of the atoms in this c¢lause,) Since this clause
contains 3 literals, the following table will be used, It
indicates the pdnf which is equivalent to any <clause con-
taining three literals, Ly v b v Lz ((Me will also have a
table used for clauses containing two literals; the one

literal case is trivial.)

Fl+ |+ |+ | ==

+ + - - + + -

+ | =+ | =]+ =14+

The 1i-th row of the j-th column of this table indicates if

Lj is to appear negated (-) or not negated (+) in the j-th
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disjunct of the pdnf which is:
(Ldlaal3) v (L alyaly) v (L1l dLy) v (i 8L,8ly v
(Ljalyaly) v (Lalpaly) v (L4l &Ly,
Using this schema we can directly construct the pdnf
that is equivalent to Q v R v P:
(Q&R&P) v (Q&R&P) v (QAP&P) v (Q&REP) v
(Q2R&P) v (Q&R&P) v (N&RLP)
and hence the set of expressions, EC[i:ﬁvR§ﬂ which equals:
G (F,T,F), Gy (F,T,T), G;(F,F,F), G (F,F,T),
Gy(T,T,F), G4(T,T,T), Gy(T,F,F)D.

Note that the Jlength of EC[i,Cij is only a constant
multiple of the length of C; since €; contains a bounded
number of literals, 7

The time taken by the construction is essentially that
required to output the constructed sets E; and B, We will
conclude the demonstration that the construction can be per-
formed efficiently by showing that the lengths of E1 and E>

are linear relative to the length of S,

lengthl 1] = tengthlCeY, ..., )]
n

I ] ength {:Ef']

(]
—
e

2

length[Gi(pi 1reeesB ].ﬂ
i ’ T

(1 + ]-])

{13 e N LI o N
— TS

—d

=2 lengthls ],

Also,



lengthlE 2]

]

A

A

i1

;] 1engti{ G.] (E L[Lf ,j,]l Y

;'] length [ ‘D[i'Di,

EL[Li’j’-li]) ]
iy (1 2131 tengthlE) [1; 5,11 )
S. 1.

(1 endp D
1

=1 14 sinc:es1-=21-1S

14 lengthl s1.

7
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CHAPTER 4

THE MPLEXITY OF INSTANTIATION

In this chapter we wlll prove that the problem of
second-order instantiation 1is NP-complete,. In order to
relate our definition of a second-order expression with
others, we note that we could define a second-order term as
a first-order variable or constant, or as a second-order
variable or «constant followed by the appropriate number of
second-order terms. A second-order expression could then be
defined as a second-order term, possibly preceded by A and a
sequence of distinct first-order variables, The following
are examples of seccnd-order exprgssions: W, 3,

G(A,y, f(x,y)), A xy.x, Axyz.F(x,g(y,z)w,v).

4.1, INSTANTIATION. The INSTANTIATION probtem is the
second-order unification problem in which one expression
contains no variables, That is, it is toc determine, given
two expressions e and E in which E contains no variables,
whether or not there exists a substlitution ¢ such that

¢ ({el)=E,

L.,2., COMPLETENESS. Theorem b INSTANTIATION is an
NP-complete problem,
Proof: We will show that INSTANTIATION belongs to MNP

and that SATISFIABILITY Sp INSTANTIATION,

3.2.1. on-deterministicg algorithm. To show that

7h
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INSTANTIATION belongs to NP we present a non-deterministic
algorithm for solving a special case of the INSTANTIATICON
problem. We will ignore the types of the expressions and we
will assume that the expressions do not contain formal argu-
ments, that Is, formally, every "A" is immediately followed
by ".", We do this in order to simplify the algorithm,
however, we can extend the algorithm to solve the general
case by cﬁecking types to determine if certain substitutions
are applicable and by including simple tests when expres=-
sions contain formal arguments. For example, none of Auv.v,
FCA), XMuv.F(u) s an instance of Axy.x. Having shown that
the special algorithm operates in non-deterministic polvno-
mial time, it is easy to show this for the general al-

gorithm,

4.2.1.1, Elementary unifiers. Pietrzykowski [23] presented
a method for enumerating the unifiers of two second-order
expressions and Huet [l4] gave a prncedure for determining
if two expressions are unifiable, however his nrocedure does
not, in general, halt. We apply their methods to the sne-
cial case of second-order Instantiation. First we define the

notion of elementarv unifier.

let e = fleg ,...,ep) and E = F(Ey,...,E,) be two
second~order expressions in which E contains no variables
and f is a variable. If orderlfl=2 then define
PROJECTION(e,E) as the following set of m substitutions:

PROVECTION(e,E) = C Cfdup. . ugoup, o, CF“hugniiuou > ),
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Also define IMITATION(e,E) as the singleton set:

C{f « M Flgp e, gd, g Cu e, ug))d> D
wiere g, Is a "new" m-th degree varlable (i=1,...,n). A
"new' variable is one which is different from all others in
the appropriate context, Note that when orderlfl=1, m equals

zero and the set becomes ({f « F(gy,...,g,)2>.

We can now define the set of elementary unifiers for e
and E:
Eu(e,E) = PRGJECTIGN(E,E) u IMITATION(e,E).

The usefulness of this definition is evident from the fol-
lowing lemma,

Lemma: Let S be any set of pairs of expressions
{<e3,§]>,...,<en,§1>}. Variables do not occur in the ex-
pressions E, Eq,..., En and e begins with a variable. All
expressions are second-order. Then

S u (Ke, E>)> is unifiable
iff
Jdolo belongs to EU(e,E) &0 (5 u (<e,E>)) is unifiable 1,
wiere
g(S u Ke,BE>)) = C<O(e]),E1>,...,<G(g]),g1>, <o{e) ,E>D.
Proof: The lemma 1is a special case of a more general

completeness result found in [ 14].

L.2.1.2. Algorithm. We now present the non-deterministic
algorithm which determines if the expression E is an in-

stance of the expression er.
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algorithm INSTANCC(e I) :
begin
S « { Key, E1> 2
repeat until S is empty
begin
delete a pair <e, E> from S ;
let e= f(e1,...,Q3) and E=F(E7,...,Ey) ;
if f is a variable
then begin
choose from one of:
choicer :begin
let 9 belong to IMITATION(e,E) ;
apply 0 to S ;
add to S the n paiws:
<E’](0(e]),...,ﬁ(3m)) Ej>
( for i=1,...,n ) ;
end ;
choicep:if orderlfl =1
then begin
choose o from PROJECTION(e,E);
applv c¢cto S;
add to S the pair: <o(e),E>;
end;
end
else {f f=F
then add to S the m pairs:<e1,E}>,...,<ep,Ep>
else return (false) ;
end;
return (true) ;
end,

El is an instance of ef if there s some sequence of
chcices which causes this algorithm to return the value,

"erue!,

L.2.1.3. rr ness. The correctness of the algeorithm s
justified by the lemma and the results: 9 is unifiable and
if f is a constant symbol equal to F then

€ <fley,uuu,e), FGE7,...,E)> > Ts unifiable iff

1§1 'C<e1,Ei>} is unifiable.

I
b.2.1.8. Efficiency. To show that INSTANTIATION belongs to

NP we will show that each sequence of choices requires only
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polynomial time relative to the input length,
length[el]+]ength[E1]. We will show that each operation of
the algorithm requires polynomial time in the lTength of the
input to the algorithm and that the length of a sequence of
choices Is bounded by a polynomial of the input length.

| Many of the basic operations of the algorithm require
constant time, for example, "delete a pair from S", "is f a
variable?" and Mapply CFAup.oupuid” If suitable data
structures are used. '""Add to S the m pairs" requires linear
time and "apply the substitution (given by choicey)" re-
quires quadratic time to introduce m.n new pointers in a
tree-like data structure for express ions in which subexpres-
sions are shared.

We must also show that the size of this compact
representation of S cannot increase exponentially during the
algorithm, We first note an invariant of S: the number of
occurrences of any variable in S is always bounded (by the
length of e;). This is initially true. Also the applica-
tion of an imitation to an occurrence of a variable f in-
troduces m new variables gi,...,7,. Each suchA application
increases the size of the compact representation of S by a
bounded amount (m vertices representing the variables
&1ev+44+8y Plus m.n edges indicating the n arguments for each
gir where m and n are always bounded by the 1input 1length)},
Since we will shortly show that the search denth Is bounded

polynomially, it follows that the size of the data structure
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representation of S is bounded polynomially relative to the
input Tength.

| It remains to show that.  the depth of a search for
"true" (that is, the length of a sequence of choices ending
in "true") is of polynomial order. By considering two fea-
tures of expressions: the number of variables in S and the
lengths of the second components of the palrs in S, we can
show that the depth is bounded quadratically relative to the
input length.

We now define two such measures which reflect these
features. Let S be a set of pairs of expressions in which
variables occur only in the first component. Let wvars[S]
equal the total number of distinct free variables occurring
in S, Define the length of S by:

lengthls] = I Esdength El.
Define Mle] to be the maximum degree of all subexpressions
occurring in e by the inductive definition:
MDW p . ouosley,on,e 0] = max(l, n, Mlel,..., Mgl).

lle now set up a system of recursive equations involving
depth[s], which is the maximum number of choices which have
to be made to reach either "true" or "false" in the non-
deterministic algorithm. The equations are constructed from
examining the algorithm,

Dy depth [#] = 0
Dy depth [s v Ufle,ou,ey), E>D> ]
< max(1l + depthl o4(S uig1 Kgileq,ianngy), E522],
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1+ depth[g](s u {<e 1 E>})]’

1+ depth[cm(s u C<§n, E>»)] )

where E=F(E],. ..,En),
g

A {f*—Au]...um.F(g](u],...,um),...,gn(u],...,um))},

C.
and ;

Cf+9\u1...um.u]-} for i=1,...,n.
Dyt depthl S v {<F(ey,.uuse), FOE o 0, E )00 ]
< 1+ depthls v ;l; ey, ED ]

wihere F is a constant symbol.

Note that if order(f)=1 then in Dy, m=0 so we ignore
G]""’gm‘

Using these equations we now prove by induction that:

depth[S] < M.length[S] + vars[S]
where M = M[EI] .

The basis for induction, equation By - is trivially
true, We now prove, using the induction hypothesis on the
right sides of equations Dy and D,, that it is also true for
ti1e left sides,

Dy: 1+ depthlo (S o ;) Ccgytq ,.nvse), EOD
<1+ Miengthlgsu b Caytey, g, &2 ]

+ VarS[GO(SUigi {(g.i(e'lfof.,em)/ E.j>})]
<1+ M (length[s 1+ Ii_jength[E D)
+

Val"S[S U {<f(e][c‘a'§n), F(ET;..-,En)>}] + n - 1

{since 99 replaces f by the n< variables F1reeesly)

in

M.lengthls v (<fley,...,8), F(Ey,...,E,)>D]
+ vars[s v Cflersnnn,e), F(E],...,En)>}].
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Also for i=1,...,m

1 + depth [o;(S u (Key, E>D)]

IA

1 + M.lengthlo (S v (e ,E>D) ]
+ varslo $(s v (Key ,EXX) ]

1A

M.(length [S] + length[E]) +
vars [01-(8 U‘C(ei,E>})] + 1
s M.lengthls v €<Ffley,...,ep), EDX]

+ vars[s v (Kfley,...,ep), EXD]

(since o; is a projection which removes the variable f),
By considering the maximum of all these m+l results we prove
the induction result for equation Dy.

: depthls v (<F(ey,...,en), F(E soonsBy )X
B> 1 m 1 En

+

< 1+ depth[s v 0 ey £ 2]

< 1

+

M.length[ Su 1-?__}] e i Ei>}]
+ vars[Su 1@1 Ke 1.,E1.>}:|

IA
ey
+

M.(length[ S] *+ Ii_jength [E4])
+ vars[ S U 1-@1 {<e1.,E1. >>]

IA

M.length[ S v C<F(e] sesesel), F(E? ,...,En)>}]

* vars[S U (KF(ey,...,e ), F(E,...,E 10> 1

Having proved depth[S] < M.length[S] + wvars[S], in par-
ticular, initially when S=C<eI,EI >

depth[ ey 'EI>}]
< M.lengthl{e,E PX] + vars[{Ke 1 Eq >>]

H

M.1engthlE (] + varsfe ]
(1engthle;] + Tength [EI])2

IA

(since M < lengthle;l and vars le;] < lengthlegl).
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Thus the depth of the search is bounded quadratically

by the length of the input.

L.2.2. Reducgibilityv. We will prove SATISFIABILITY <5
INSTANTIATION by constructing an instance of the
INSTANTIATION probiem from an instance of the SATISFIABILITY
problem. From a system, 5, we will construct two expressions
e and E such that

(1) E is an instance of e ({ff S is satisfiable,

(2) e and E can be constructed efficiently from S.

L,2.,2.1. Construction. Let S be a svstem. We will construct
an instance of the INSTANTIATIAN problem, that is, two ex-
pressions e and E in which variables occur only in e. e
will now define the symbols occurring in e and E. We let the
basic set of types be a singleton, hence we effectively ig-

nore types.

4.2.2,1.1. Symbols. Let {Pq,...,P> be the set of atoms oc-
curring in S, then Jjust as in section 3.3.2.1.1,, pi,...,pm
will be some of the first-order variables where p; = al(Pjy)
for i=1,...,m. Let S be the system C;& ..8C, in which the
i-th clause Cq contalns 1; literals., Then we Introduce the
remaining first-order variables:
4,7 fori=1,...,n; i=1,...,14.

The second-order variables are g; (i=1,...,n) where 3

has degree 1 4.

The constants are T and F (first-order, zero-degree)
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corresponding to ''true" and "false"; and second-order sym-

bols: G; (lj-degree) for i=1,..,,n, H of degree two and K

of degree 2n.

4.2.2.1.2. Expressions. Using these symbols {pj, Xi,j+ &
T, F, Gj, H and K) we will now construct the expressions e
and E. Only e will contain variables. e will be construcfed
from expressions e{ and e'{ and £ will be constructed from
expressions E; and E?, defined as follows,
e; = Hlgi{(T,...,T), g (F,...,F)) for 1=1,...,n
winere there are 15 T's and 13 F's as arguments of gj.
E; = H(T,F) for i=1,...,n.
Let the i-th clause of S be
Ci = Li,1 v. . v Li’li
where the literal Lj,j equals elther the atom P j or the

negated atom Py 3 for j=1,...,15 and Py 5 is an atom oc-

curring in S, We then construct e" from expressions e;'f
i sJ
by:
el = Gi(e''l, .., ) for i=1,...,n
1 1,“ .l’]-i
where
e;lj‘ :g‘i(xi’j'°‘°’pig\jlt~n’>{‘i’j) for i=1,...,n; j=1,a.|]i
b

where all of the 1§ arguments of g are xi, j except for the

J=th argument which is Pi,j = alPi,j).
Expressions E; are constructed from E;'; by:
E‘.' = G'i(E'_'l/...,E.'.‘ ) for i=ll""n
i 1’] 1,11
where
E'YL = T if Ly,j = Pij
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i, = Pi;

for i=1,...,n; j=1,...,1

Foif L

i
Finally, our constructed expressions are:

e = K(e;/ooo)e',e"’01-;e")

n 1 n
and
E=K(E',...,E',E",... E").
1 n 1 n
4,2.2.1.3. mple. We will illustrate the construction by

examining the system:
S=P & (PvQ & R & (QvRvP,
Let p, g and r be the variables corresponding to the atoms
P, Q and R, Then
e = K(H(g ((T), g1(F)),

H(g £T7,T), g (F,F)),

H(g £T), g3(F)),

Hig £T,7,T), gu4lF,F,F)),

Gy(gq(p)), .

Golgalp,x2,1), 82(x2,2,9)),

G3lgslr)),

Galgala,xq,1,x4,1),840%x 4 2,7, %x5,2),

g4xq,3,%4,3,P)) )

and
E = K(H(T,F),
H(T,F),
H(T,F),
H(T,F),
G (M,
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GZCF,T),
G3(F),
G4(F,T,F) ).

4.2.2.2, Malidity. We will show that our construction s

valid. »
Lemma: Let S bera system and let e and E be the expres-
sions constructed from S, Then
E is an instance of e iff S is satisfiable
that is,
do [o(e)

Proof: First we motivate some aspects of the construc-

]

E] iff 3 <[t satisfies S].

tion in order to intuitively understand the formal proof. E

is an instance of e |ff Eﬂ is an instance of e{ and E" is an
i i i
for all i. Now E' is an instance of e' jff
i i i
H(T,F) is an instance of H(gi(T,...,T),gi(F,...,F)). This

instance of e"

forces gy to be some projection, Au1...u1‘.uj rather than an
i

imitation ku1...u1_.T or ku]...ul..F. (This could have been
i i

achieved by forcing M, u to be an instance of Au,g.(u,,..,u)

<3

however for simplicity we prefer to avoid expressions con-

taining formal arguments.) Since E" must be an instance of
i

", the substitution {g{*>u]...u]..uj} forces the instantia-
1 N

5
tion of py i with T or F according to whether or not the
3

e

literal Lij is or is not negated. (The role of the

variables X33 is to trivially satisfy the remaining instan-
3

tiations.) The instantiation of p; corresponds to the

N

truth-valuation, T(Liij)=true. By considering all such
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instantiations, we effectively test $ for satisfiability,
Before we formally prove the lemma, we first present a
fact which justifies why we can virtually ignore the "dummy!
variables X4,
Fact: Let A, B; be formulas containing expressions and
the substitution ¢ but which do not contain the variable, f.
Let E; be expressions which contain no variables, then
doa e dibemr=e; &80y iff Jo (A g Fis;),
The prodf of this depends upon a similar result:
do (A a9(f) = E) iff do A,
The following equivalences establish the lemma.
E is an instance of e
iff Joo(e) = E , .
Pff o o(K(e, ..o, en e, o)) =KCEY, o v ELLEY, oL ED)
(by the definition of e and E)
iff Jok(ate)), v, , 0le]),olef),. .., oel)) =
K(Ef,..‘,Eh,E{,...,E%)
(since K is a constant)

iff Jo¥i Locel)

E'y & o(ey) = gl'l
iff JoVi [G(H(gi('i',...,T),gi(F,...,F))J = H(T,F) &
))=Gi(5"']‘,.nt,E1'"'|{

1

E% ej™ and E")

GiCey'{, ..o ') :
(by the definitions of e},
iFf Jo Vi [o(gi(T,.00,T)) = T 8 o(g (F,...,F)) = F &
Vk 0(8”}() = E‘Ij,tk' ]
(since H and G; are constants)

iff 2o Vi [d50 (2 Zi) = Aup., u1 &
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Y11y - pri
Yk G(ei,k) Ei,k]

(since g; cannot be an imitation)
iff EO'Vi EJ. [O'(g‘!) )\U],..U'liou‘j & Vk O’(eil:k‘)=E'_i"L ]
i £F 30Vi3j[0(gi)=)\u1...u1.uj &
i

vk G(g‘i(xi,k ""'pi,k""’xi,k))=E-j':k’
(by the definition of e]!'k'

iff Jo Vidi b (g SAUpeey Yy dolpy ) = BY&

Vik=j olxy () = EL') ]
(by applying o to g;)
. f . — LN |
|ff30“%3.‘ [O(Pi’j) = Eﬁ’j]
(by using the Fact for the variables g; or Xy s

1,3

H i 1 . .=P. . . =

iff Vi35 [(Ly 5=Py 5 &olpy ) =T v
(Li5=Pig

(by the definition of E}'[),

&O(p.lj')=F) ]

We now use the relation between ¢ and 1 (see 3.3.2.2.):

T = B loa and o = Bra !

to obtain the next equivalence:

i Jo Vi J50 (Ly 5=Py 5 &5(F 5 ) = true) v
(L1,J=P13j &T(Pza‘] ) = false) ]

) o= true ]

iff JVi 350 wLy g

iff Vi dj © satisfies Ly

ifFf dtVi t© satisfies L . V ... VL
1,-[ 7311
iff 31\7’? T satisfies C]-
(by the cgefinition of Cj)
iff dtt satisfies Cy & ... & ¢,
iff dtt satisfies S
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(by the definition of $)

iff S is satisfiable,

4.2.2.3. Efficiency of construction. We will now show that
the construction can be performed efficiently, that is,
within polynomial time relative to the length of the input
system, S. It should be obvious from the construction that a
suitable scanning algorithm suffices to cons;ruct the ex-
pressions e and E. The time required will simply be propor-
tional to the lengths of e and E which we will now show to
be quadratic relative to the length of S,
lengthle ]

= 1ength[K(e1,...,en,el,...,egﬁ
= 1

+

Z?=]iength[ei] +Z?=Ilength[e$]

+

= 1 Er}_}Tength[H(gi(T,...,T),"- (F100°IF))]

+

1 Ilength{h (e"},...,e{ﬁ' )]
=1+l w21y + 2 (1 s ZJ 1ten~th[e"'])

= 1 + 3n + 22 h + N

1
+ 1]3]]‘3‘”?“7[%,{)( ’e ..,pi’j,...,x}.’j)]
= 1 + 4n +22 h +z1131{1+ R
i
=1+1m+22.}1 (1+11-)
n ,2
< 925y .
n 2
< 9z )

2

1]

n
9(zi_jengthlc.])
9(1ength[8])2

i

Also,

Tength[ £ ]
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il

Tength [KCE", oo ELLE, oL ED)

n ' n
1 +Zi=1]ength[§ﬂ +zi=1]ength[Eq]

n n
1 + 15 qVength(H(T,F)] *Ef=]]ength[Gth%h""°’E%:fi)]

n 1.
1+ 30 +2y (1 +Zj;] Iength[E;:j D

n _1.
1+ L4n + Ei=12j§11

IA

n
621

6length[s].

[

Thus the sum of the lengths of the constructed expres-
sions e and E is at most 15(1ength[8]f and therefore the
time taken to construct e and E from S is polynomial (in

fact, quadratic) relative to the length of S.
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CHAPTER

third-order

THE UNDECIDABILITY OF QBQ-QEQEB 2-ND DEGREE UNIFICATION.
will show that the
of

In this chapter we
unification problem (in which all-degrees are
This refines the results

con-

second-degree
is undecidable,.
Huet[13 ] and Lucchesi [19] who independently proved the un-

at most two)
decidability of third-order unification, but under the
Whereas they reduced
problem,

the degree is arbitrary.
there

dition

that
the Post Correspondence Problem to the unification
we will reduce the Diophantine Problem of number theory,
imply that

The results of Huet and Lucchesi
a kK2 such that the third-order k-th degree unifica-
follows from the fact

This
kK24 such that the Post Correspondence

a
of the

exists
tion problem is undecidable,
exits
Problem with K pairs of strings is undecidable and that Huet
instance Post
instance

that there
from an
an

construct

Lucchesi
Correspondence Problem with k pairs of strings
This

and
of the third-order k-th depree unification problem.
PRIBLEM,
the

2-ND DEGREE UNIFICATION

3-R30 JRDER
problem is the third-order unification problem in which
N
occurring Iin the expressions is at

5.1.
of all symbols
Dionhantine Problem is to
solu-

degree
The

most two,
PROBLEM,

RIGPHANT INE
determine whether or not a diophantine equation has a

_S_c _?,_.

S0
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tion In natural numbers, that is, to determine |f
3m10013”h P[m],...,mN] =Q[m],...,H’|N]
where P and Q are multinomials (multivariable polynomials)

in the variables m,...,my and have non-negative integer

coefficients.

2.2.1. 4 inomial. A multinomial in the variables

Misse.,my Is defined inductively by:

(1) 1 is a multinomial

(2) my,...,my are multinomials

(3) if P and Q are multinomials then (P+Q) is a multinomial

(4) if P and Q are multinomials then (P.Q) is a multinomial.
The diophantine problem was first posed as Hilbert's

Tenth Problem in 1900 and was recently found to be un-

decidable by Matijasevic [20],

2.3, CONST TIJ4. From a diophantine problem we will con-
struct a third-order second-dezree unification problem by
first constructing from a multinomial in m],...,m an  ex-

N
pression,

5.3.1. Symbols. Our expressions will be constructed using

the following symbols: the variables: u, f, ¢7,...,¢y5 and

N

the constant: C. The types of these symbols are given by:

type(u] =t
typel f1 = (o t)
typel €] = (t,t>t)

typelp .1 = ((t=t),t>t) for i=1,...,d.
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bs
* 3 1
Each third-order varfable corresponds to an integer m; and C

is used to make a list of expressions.
The order of all symbols is at most three and the
degree is at most two, hence the constructed unification

problem will. be of third-order and second-degree,

5.3.2. Eﬁgzgggigng. ‘ysing the above symbols we will define
by induction an expression Ep associated with each multino-
mial P, The type of Ep is t and the variables f and u occur
free in Ep. Let E Pk',e”] denote the application of the sub-
stitution {f «e', u+ve'"> to Ep.

The definition of Ep is by induction on multinomials:

E] = f{u)

Ep, $ uf(w,u) for i=1,...,N
1

i
= (P+Q)
E(p.0)
Note that E(pip) = E(q+p) » however this is not important.

Epliu.flw), gl

EPD\ U.EQ,LI].

We can now construct from the Diophantine Problem:
:‘]m]...HmN P[m],...,mN] = QE’:‘II,...,ITN]
the two expressions ey and & given by:
ey = kfu.C{¢1(ku.u,u),C(¢2(Ku.u,u),...,C(¢N( Adou,u) ,Ep)aa . ))
ey = Hu.CULC(u,u.,CQLEQ).H)).

2.3.3. Example. We will illustrate the construction by con=-
sidering the Dliophantine Problem:
3 2
.5n1f3n12( m o+t mm, = 3my o+ 2mp + 3 ).

e must first bracket the multinomials to fit our defini-
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tion. One such bracketing for mg tmmy is:
Pro= (Umpu(maumy ))+(m omp))
and for 3m$ * 2Zmog + 3 is:
Q = (((m].m]).(l+(1+l)))+((n12(l+1))+((1+1)*1))).

We find that

E(mz.(mz.mz)) bl AUy (AU b Ohu, FCU) ,u),u), u)
Eﬁﬁ.mz) = 9l AU dCAu, flu) ,u),w
E(1+(141)) = E((1+1)41) = FOFCFCW))

E(my. (1+1)) = o L FOFCU)) ),

Altogether the constructed expressions are:

e = MU.C(<H(Au.u,u),C(‘b(*u.u,u),Ep))

and
ep = Mfu.Clu,Clu,Eq))
where
Ep = &(ru. & (usdy (Au, W) ,u),u), H(Au, 9% (hu, F(u),u),u))
and
Eg = U AuaFOECF(WI), o), s u  FOF(W),FOF(F(W)))).
S.Lh, VMALIDITY, We will prove that the construction is

valid, from which our main theorem follows:

Theorem 5: The third-order sacond-degree unification
problem is undecidable,

Proof: Given a Diophantine 5}0b1em, we construct, as
above, two expressions e] and g . Ye will prove that:

anq...EmN P[mT,...,@Q = Q[ml,...,mN] iff

{e1, e is unifiable,

Since the Diophantine Problem is undecidable, so also is the
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third-order second-degree wunification problem because "is
{e yep> unifiable?" is an instance of it.

Before showing the validity of the constructlon, we in-
troduce a definition and prove a lemma.

Let £ (u) denote f(f(...f(u)...)) where f occurs m

times, for m=0.

2.4.1. Lemma.
o unifies Cw.¢( A, u,u), Auol>r iffFIdmloce) = ?\fu.fm(u)] .

Proof: (If) This is trivial since

Lo« A fu.flew>
unifies
QGu, ¢(rusu,w), *u.d> for me=0.

(Only if) Rather than defining and using the method
given by Huet [1y ], we give a self-contained proof based on
analyzing the symbols which occur in 0(9),

tet ¢« A fu,ey belong to 9 where eg = g (e Tev.sey) and

S is a symbol, then

o u,9( Ausu,ud) Ay, CF+o(X Uoud,uso(Wr(syleq, ... e ))

Au,CFf+Au, u, u*-u}(so(e-l,...,en))
since by renaming, we assume 9 does not pertain to u. HNow,
sg cannot be a constant since the right side of the equation
would be of the form Ku.so(...) whi':;h cannot equal *u,u.
Similarly, sy cannot be a variable different from f or
u.  If g5 Is the variable, u, then indeed:
CCAULP (Ausu,w)) = Au.CFC Au.u, utud(u) = Au,u.

If S g is the variable, f, which has dezree one, then
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o (Aue ¢lau,u,u)) = Au.{f «ry,yu, u < W {fle))

[}

Au.Cf *du.u, u * weq).
Let eg=s 1(e}',...,e'n]) then by repeating the above argument
eiﬁher sy is the variable u or s;=f and e|=52(e‘1,...,e}1'2 ,
etc. Collecting these results, we have:
¢ « kfu.fm(u) belongs to o, for some m21.
e could give a rigorous proof by induction on m in
o« er unifies Chud(Au,u,u), .

and lengthlel = m implies e = lfu.fm(u).

2.4.2. Validity proof. We will now prove
Em]...anN P[ml ,...,mN] = Q[m1,...,mN]
iff
{eq, &2 is unifiable.
Now (eq,e > is unifiable
iff Jo o unifies (e >
1ff Jo o unifies 131 (Chue 9 (hu,u,u), Aua D)
U (CMfu.Ep, Mu.Egr
(by the definition of e] and & and simple properties
of substitutions (C is a constant))
iffdo Vi o unifies Chub ;0w u, ), ‘o &
¢ unifies {?\fu.Eﬁ, Afu.EyD ]
iF6 30 [Vidms oC ¢ = Muf (w) &
| o unifies {)fu.Ep, lf{;{}.EQ} ] n
PFf Imy. o dmy 0% = Coperfun (W), ..., operfu.f (WD
unlfies Cifu.Bp, Afu.Eq.

We will now shew, by induction on multinomials, that
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G*(EP) = fP(u) where P is a multinomial in Myreea,Mys

(1) o%(E;) = ox(f(w) = fl(u)
(since 9 * does not pertain to f or u).

(2) 0*(Em1)

it

ow*( ¢1-()\ u.flu),u))

(by the definition of E_ ).

m, my

= f (u) (by applying o* to % ).
for all i=1,...,N,

(3) G*(E(P+Q) ) = c*(EP[)\u.f(u), EQ])

(by the definition of E(P+Q) ).

= fP(o*(EQ)) (bv hypothesis for Ep)
= fP(fQ(u)) (by hvpothests for EQ)
= #10 (u),

(4) G*(E(P.Q) ) = o*(EP[Au.EQ,u]) (by definition of E(P.Q) )
= (o*Cw.E)" () (by hypothesis for E
= (fQ)P(u) (by hypothesis for EQ)
= ¢-0 (u,
Hence (e;,e ) is unifiable iff Zm 1...3mN such that:
o* unifies G fu.Ep, Afu.EQ}
iff ox(Afu,Ep)

ax (A fu.EQ)
iff Afu,o*(Ep) = Afu, G*(EQ) .
iff Afu.fp(u) = )\fu.fq(u) (by the above result)
iff P = Q, N
We have thus proved the validity of the construction.,
Hote that the result is independent of the actual

bracketing chosen in the multinomials. Because, if P and N

are "equivalent" multinomials (that 1is, P=Q is true in



number theory) then

U*(Ep)

fp(u)

fQ(u)

=

w(%).
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APPENDTI X

We will briefly describe a recent linear first-order
unification algorithm discovered by Paterson and Wegman
[22], This is of interest because 1t theoreticallv improves
our practically linear time bound and also because of
similarities with our algorithm. Succintly, the linear al-
gorithm combines our transformational and sorting stages.

In order to present the 1linear algorithm, we first
present an algorithm, which determines if a digraph is acy-
clic (contains no circuits), based upon the linear
topological sorting algori thm [18]. our sorting algorithm
Is based on this algorithm, and also is the integral part of
the linear algorithm,

First, let wus define a root vertex of a digraph as a
vertex whose only edges are outgoing. Using this notion, we
present the algorithm, ACYCLIC, which determines if a
digraph G is acyclic.
algorithm ACYCLIC(G):
begin

while G contains a root vertex, r, do:
Delete vertex r and all of its outgoing edges from G ;
if G contains no vertices
then return {(true)
eise return (false) ; N
end,

The linear unification algorithm constructs an

equivalence relation ("=") on the vertices of the tree

representation of the expressions to be unified, This s

similar to our construction of the partition in section

g8
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2.4.1. This relation 1is 'propagated" from terms to their
~ corresponding arguments., (Refer to the hereditary property
in section 2.5.2.) However, the propagation is performed
whilst sorting the digraph induced by the equivalence rela-
tion.

Before we present the algorithm, UNIFIABLE, which is
the basis for the 1linear algorithm, let us define a rogt
glass to be an equivalence class of vertices (of the tree
representation of expressions) containing only root ver-
tices,

algorithm UNIFIABLE(e j,e5):
begin
Set €1 =€,
wili le there exists a root class, R, do:
begin
if R contains two terms beginning with
di fferent function symbols
then return (false) ;
if R contains a term
then let e’=f(ef,...,eh) be a term in R ;
for all expressions e" (ze') in R do:
if e" is a variable
then print {e' «e >
else begin
let e"=f(eY,...,ef)
comment: propagate the equivalence relation;
Set efe'Y,...,efze'} ;
end ;
Delete the vertices in R and their outgoing edges ;
end ;
if there are no classes remaining
then return (true)
else return (false) ; N
end.

We will not give details of the actual implementation
which results in a linear algorithm, but will point out a
few salient features, Our algorithm is practically linear

because we perform FINDs and WMEPGEs on a partition. The
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reason why the relatively expensive FINDs (which are
responsible for the non-linearity) are performed is because
we frequently merge two classes of the partition and then
find a term from each in order to propagate the equivalence
relation. In contrast, in the linear algorithm, by using
stacks, equivalence classes are constructed bv adding only
one element to them at a time., Further, only when a class
has been selected as a root class, is the equivalence rela-
tion propagated and then the root class is deleted.

Practically, it would be difficult to choose between
our practically-linear algorithm and the linear algorithm.
A more useful criterion may be based on the "on-line"
measure of complexity. The reason for this is that, in some
theorem-proving contexts, it is appropriate to repeatedly
unify a set of expressions incrementally. That is, having
successfully unified a set of expressions, E, we then add a
pair of expressions to E and unify this union, E'. Conse-
quently, we are intereseted in the additional time required
relative to the size of the additional pair.

It appears that our practically Jlinear algorithm is
more suitable for this incremental type of processing than
the linear algorithm. We cannot theoretically Jjustify this,
since, for example, an efficient "on-1ine" digraph sorting
algorithm is unknown, however we can indicate our reasoning.
Already our transformaticnal stage has the incremental

property since it is based upon an on-line processing of
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equivalence relations. In our algorithm, having unified a
set of expressions, an additional palr of expressions s
easily added to S and further transformations made. If we
do not detect failure of unification, it is necessary to re-
sort the new induced digraph. In contrast, in the linear
algorithm, since the transforming and sorting occur simul-
taneously, it is necessary to unify E' by reapplying the en-
tire algorithm, without being able to use information about
the prior unification of E. Specifically, having unified E,
it is difficult to quickly merge two classes in E', because,
in the linear implementation the expressions in a class are
identified by labels. Due to the sorting process during the
uniflication of E, these 1labels, once assigned, are never
changed. However, if we have to later merge two classes due
to the additional pair of expressions, the relabelling will
be time consuming.

Finally, we will illustrate the linear algorithm by at-
tempting to unify the pair of expressions :

{P(F(H(A,wW,B),x), z, G(F(u,x),w)), Ply, G(y,A), z)D>,

The tree representation of these expressions is ‘given in
Figure A.l., where an (undirected) edge joins the two ver-
tices corresponding to the two exprésslions to be unified.
Generally, the connected compnnents given by such edges
represent the equivalenca classes.

Initially, there 1is only one class and this is a root

class. The equivalence relation is pronagated to the cor-



102

responding arguments, that is, edpes are drawn between the
vertices corresponding to the first arguments:
F(H(A,w,B),x) and vy; similarly between 2z and G(y,A) and
between G(F(u,xj,w) and z. After deleting the root class and
its outgeoing edges the situation is given by Figure A,2,

Since the vertex associated with y'is not a root, the
unique root class is [z, G(F(u,x),w), G(y,A)]. The
Aequiva]ence refation is propagated so that F(u,x) and v are
made equivalent and w and A are also. After deletion, Figure
A.3, is obtained,.

Now the only root class is [F(H(A,w,B),x), v, F(u,x)]
and after propagation and deletion, Figure A.4, is obtained.

Now, either [x] or [u, H(A,w,B)] is a root class; we
choose the latter which is quickly disposed of since it con-
tains only one term. Figure A,5. illustrates the current
state,

Both [x] and [w, Al are now root classes; by choosing
[x] we obtain Figure A.5.; by next chooslng [w, Al we
finally get Figure A,7. Since there are no classes left,

uni fication succeeds.
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Figure A.1.
Figure A.2.
Figure A.3.
| =3
i ____| i @
() ;!
BAwWE --- @ z Figure A.4,

@@@ R i Figure A.5.
e e e e e e e e e e e e e A4
® .
@@@ _E Figure A.6.
® ® Figure A.7.

[Tlustrating the linear unification algorithm.
Dotted Tines represent undirected edges.



CONCLUSTION

We have examined several unification problems from a
computational complexity viewpoint and we see that their
complexities range from linear for the first- order unifica-
tion problem to wundecidable for the third-order second-
degree unification problem with the conjectured exponential
complexity of second-order instantiation in between.

Since our first-order unification algorithm is based
upon maintaining a partition on-line, and since the best al-
gorithm to do this, using the techniaue of path-compression
on balanced trees, is practically linear, so also is ours.
The existence of a linear algorithm for maintaining an on-
line partition remains an open auestion.,

As mentioned in the appendix, the context in which
unification appears can determine the usefulness of a
unification &dgorithm., Currently, research is under way into
a certain linear-resolution scheme in theorem-proving, which
uses unification in a global manner rather than the local
philosophy of previous deduction systems [9]. In addition
to the useful incremental property referred to in the appen-
dix, such a system incorporates a 'back-tracking" search:
if a certain line of reasoning is to be discontinued, it may
be necessary to back-track to some earlier decision point,
Thisr requires '"undoineg" parts of the unification process.
Due to our representation of a partition of expressions by

trees and the simple merging of classes in the partition,

104



105

this "undoing" s efficiently performed. 1In contrast, due
to the identification of classes by labels in the linear al-
gorithm, this "undoing" cannot be easily performed.

There remain a few gaps in the classification of some
unification problems according to their complexity, The
decidability of second-order unification is an open problem,
even for the first-degree case. This problem may be related
to certain algebraic problems of specialized semigroups.
For the second-degree case there appears to be no cor-
responding algebraic theory dealing with binary trees. The
decidability of the third-order first-degree problem is also
unresol ved,

The instantiation problem, in which one expression con-
tains no variables, has been solved completely for first-
order, It is easy to design a linear algorithm for solving
the first-order instantiation problem, based on a simple ex-
amination of the tree representations of the expressions. A
corollary of our result for the first-order wunification is
that our algorithm 1is linear in the special case when one
expression contains no variables,

The second-order instantiation problem we examined had
no restriction on the degree of the expressi ons; however our
construction can be easily modified, with some loss of
clarity, so that the degree is at most two, The first-
degree case is trivial, Further refinements may be sug-

gested by restricting the number of and degrees of variables
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and constants occurring in the expressions to be unifijed.
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