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ABSTRACT
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functionality. An instance of such a situation is the difference in level
of functionality between the query and update functions in a data base. We
introduce the concept of a higher order data type to model this idea. The
underlying algebraic ideas are outlined and sample applications of the
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1. INTRODUCTION

Most of the current work in programming methodology and langua -
ge design (notably for languages of the Algol family) recognizes the con—
venience of separating the algorithmic and data aspects of a program (e.
g., the title of Wirth's book: "Programs = Algorithms + Data Structures’).
This separation brought to bear several interesting perspectives for people
working in the area of program synthesis. This is because it allows  for
the independent synthesis of a correct program schema and a correct data
representation which together establish the meaning of a program. (It is
difficult to synthesize an Algol—like program because it implicitly mani-
pulates data structures). The recognition of the need for the referred
separation is analogous to the underlying idea which gave birth to an
important area of applications programming, namely: data base system. (In
fact, modelling of data base systems was a main motivation in the pursuit

of this work).

Some effort have been made to capture mathematically the semantics
of programs in which this separation between algorithm and data is precisely
characterized ([BUEJ, E@DJZ], [@Uf]). This work has served as a basis  for
the treatment of the problem of correctness of data representation. That is,
starting with an abstract program we can move to more and more concrete re-
presentations of its basic type until we get to a suitable implementation of

the type (that is, an operational program).

We claim that the algebraic approach to program semantics  can
further influence the current research efforts in programming methodology
and language design. In fact, the algebraic approach can precisely put into
perspective the role of what we call higher order data types and their
utilization in programming and in the modelling of programming concepts. In
fact, programs which accept as parameters variables oI type type and their
proof aspects can be characterized precisely through the algebraic approach.
Programs.that manipulate higher-order data types can be used to specify an

operational model of a data base system.



We should point out immediately that we do not consider such
"@ulti—level" data types as '"'sequence. of stacks" or "queueof sequences”
of‘"stack of stacks” as being examples of higher order data types in our
sense of the meaning of higher order. Higher order for us means more than
one functional level: we have operations which manipulate data (integers,
characters, etc.), operations which manipulate the operations which

manipulate data, etc.

Perhaps this concept can be explained more successfully with
respect to one for our motivating examples: models for data bases. In
thinking about data base systems, we make a clear logical distinction
between query functions and update functions in a data base.. Query pro-
grams on a data base differ from normal programs on "normal machines" in
the important respect that the result of exactly the same query may be
different before and after an update. (Clearly, if a query asked for the
highest salary paid to an employee of the company, the result of the query
is max dollars before the update changes max to max+y). Forgetting these
update capabilities for the moment, the basic query functions (i.e., the
ones built into the so-called query language) together with the valid sets
of data on which the query functions could be defined form a system similar
to the basic machine functions on a computer (addition, multiplication,
tests, etc.) together with the valid sets of data on which these basic
machine operationé are defined. That is, the query portion of a data base
is essentially a special purpose machine with basic query functions as

basic machine functions.

Since an update can change the meaning of a query, it must
obviously modify the special purpose query machine in some way. This change
is usually accomplished by changing the value of a basic query function at
some point in its domain from "undefined" or "error" to some defined value
or vice-versa. Thus updates can be viewed as operations which manipulate

“basic query functions (by changing the definition of the latter in some way).

The (multi-level) data type 'sequence of stacks" 1is not an

example of a higher order data type since the application of a sequence
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operation (such as car, cdr, cons, etc.) to a sequence of stacks does mnot
change the definition of the stack operatioms (such as top, pop, push).
Thus "sequence of stacks" is more akin to the usual notiom of machines
than to higher order data types. To summarise, higher order dataAtypeé have
the property that the definition of some of the basic operations defined
for the type vary with time and that this variation is accomplished by

means of some basic ''update" operations.

In the sequel, we intend to provide a mathematical development
of the theory underlying the use of such data types. Inm section 2.1 we
introduce some basic algebraic concepts. In section 2.2 we define higher
order data types and in section 2.3 we outline a method for proving  the
correctness of implementation of such data types. In section 2.4 we
overcome a shortcoming of the previous development - a need to take into
account possible non-termination of procedures implementing operations of
the type. In section 3.1 we outline the language MADCAP which is particu-
larly appropriate for illustrating the use of higher order data types.
Section 3.2 is devoted to a sketch of a program implementing the query and
update portions of a data base. The use of higher order data types as a '
tool in software engineering is outlined in section 3.3 in the development
of a line justifier program as motivated in [gRij. Part & then summarises

the paper and outlines possible developments.

(We assume a basic knowledge of set theory and some knowledge of
: %
algebra. The usual mathematical notation will be followed, including A for
the set of all finite strings on the alphabet A and A - for the empty

string in A).



27 ON THE CONCEPT OF HIGHER ORDER DATA TYPES'
i The concept of higher order data type is essentially an extension
of the algebraic approach to the specification of abstract data types; Thus

we will begin our development by quickly outliniﬁg the necessary algebraic
concepts together with some illustrative examples. (See also E@DJ@l,[@Ui])o
The concept of higher order data type is then developed in terms of an im—
portant motivating example of its use: mathematical models for data bases.
This is followed by a section on methods of verification for higher order
data types. We then go on to consider extensions of the theory necessitated
by the fact the implementations of (abstract) data types are programmed and
thus have the more genmeral properties of any program (e.g., the possibility

that the procedure implementing the operation of the type will not terminate) .
2.1. As mentioned in the previous section, an abstract data type is just a
collection of (families of) objects together with operations defined over

these (families of) objeéts. We begin by formalising this concept.

Let S be a set of sorts. A many-sorted alphabet sorted by S is an

indexed family of sets I = {Z_ }

% . An operator (or operation
w,s <w,s>ES x5 —P——«f—a— (or operation

name) f € ZW s is said to be of [type <w,s>, arity w, rank &(w} (where

>
%(w) is the length of w), and sort s. A (many-sorted) L-algebra AE is an

indexed family of sets A = {As}sgs

assignments o = {a } for «a : X > (A X ... XA > A) of
W, S W,5 W,S s, s, s

operations to operation names (where w = S - Sy and for sets B and C,

together with an indexed family of

(B+C) is the set of functions from B to C). Note that we have dropped the
*
indication of the indexing set (<w,s> € § x S), from {uw S}. We will
>

often do this when the indexing set is obvious from the context.

We denote aw’s(f) by fA for £ € ZW . We call A the family

>
of carriers of AZ and we call AS the carrier of sort s of AZ'




Exampie 2,1.1:

Let S = {N,S,B}. Let ZA,S = {A},):)\’B = {1,F}, ES,N = {TOP},

¥ = {poP}, g p = {EMPTY}, and T

= {PUSH}. For all other
$,S

NS, S
%
<w,s>€S8 X S, Ew,s = @ . Consider A = {AN,AS,AB} where AN = {0,1,...} ,
%
AS = AN’ AB n
names in & a follows: A, = X (the empty string in Aﬁ), TA = true,

FA = false, and for v € A; = AS and n € AN we have

It

{true, false}. ©Now define the operations assigned to the

s

I
s

TOPA(nw) =

H
“EI

POPA(nW)

EMPTYA(W) = if w =3 then true else false,

PUSHA(n,w) = nw.

We have now defined a stack of integers with the obvious operations assigned

to the names (see [ADJ2]).

Let AZ’BZ be I-algebras. A I-homomorphism h: AE > BZ is an

indexed family of mappings hS:AS - BS such that for f € Zw s and

?

W
<a ..,a> e A =A x ... xA_ ).
n s s

1 n

12"

hs(fA(a ,...,an)) = fB(hS (a ),...,hsn(an)).

So homomorphisms are mappings which "commute" with the application
of operations in algebras. I-homomorphisms which are injective, surjective
and bijective are called ZI-monomorphisms, T-epimorphisms, and Z-isomorphisms,
respectively. The composition of two I-homomorphisms is a Z-homomorphism

and composition of I-homomorphisms is an associative operation.



An algebra Iy is said to be’initial in the class of algebras A

if and only if IZ € A and for each AZ € A there exists a unique

Z-homomorphism byl > As.

Example 2.1.2:

Given ¥ , define the family T. = { by:

N TZ,S}SES

(i) zl,s c TZ,S for each seS;

.. ‘ \
F < . >
(i1) or f € zw,s and ts ,tn £ TE s

fe, ...t e T
1 n
T can be made into a I-algebra by defining, for f € I ,

sz(tl,...,tn) =ft ... tn.

It is well known that Tz is initial in the class of all ZX-algebras. [

An abstract data ‘type 1is a I-algebra for some appropriate % .

Note that we do not require an abstract data type to be an initial algebra
(see &UlJZE). This is because not all abstract data types are initial

algebras as is demonstrated by the following.

Example 2.1.2:

Let S = {n,N}. Let I- = {array} and ¥_ =0 for all
n,N W, 8

other <w,s>. Let AE ={1,...,n} and AN = {0,1,2,...}. Define

array, Aﬁ - AN by arrayA(i) =0 for i =1,...,n. Thus AZ is an array

of zeros (see also EBO@]). Note, however, that AZ is not an initial

algebra as defined above for any reasonable class containing it. 8]



A data structure is an element of the carrier of sort s (for‘some

.

s € S) of an abstract data type AZ' Thus in example 2.1.1, AZ is an
abétract data type and "012340" is an example of a data structure. (We
could extend the definition of data structure in a straightforwared manner

by allowing a combination of elements from the carrier of AE)'

2.2. We now proceed to discuss the concept of higher order data types.
Consider the motivating example of a data base. The basic query functions
have the property that the same function name may have different operations
assigned to it before and after an update. So we must consider some way of

mirroring this change.

Let L sorted by S be names for basic query functions and { sorted
by S' be names for update functions. At any given moment in time, the data '
together with the current query operations forms some Z-algebra AZ’ After
an update we get another 'query algebra" BZ' Skoe must characterise this

collection of different qﬁery algebras in some way.

A category C is a collection of objects {g! and a family of sets

of morphisms C(A,B) for each <A,B> € 12[ X [g! such that:

(i) For each A € |C! , there is a distinguished morphism 1,

in C(A,A) called the identity morphism;

(ii)  For each f € C(A,B), g € C(B,D), there exists a morphism
gof € C(A,D) called the composition of f and g. o

Moreover, these classes of morphisms have the property that:

(iii) For £ e C(A,B), 1, 0 f =1fo0 1A;

B
(iv) For f e C(A,B), g ¢ C(B,D), and h € C(D,E) we have
(hog)of = ho(gof). i.e., composition of morphisms is

assocliative.



We have introduced categories because our group of "query machines” will

erm a category.

Let AlgZ denote the class of all I-algebras with all Z-—homomor—

phisms between them.

Lemma 2.2.1: AlgZ is a category

Proof: The objects are of course I-algebras and the morphisms are IL-homo—

morphisms. Identity homomorphisms exist and %-homomorphisms are closed
under composition. It is also well known that T-homomorphisms satisfy (iii)

and (iv) above. : . 5

However, élgz is too 1arg? a category to really model our
collection of query machines. This obviously because not every Z-algebra
can be a "query machine" in a given data base since a given data base is
tied to some particular representation of the data. So let R be some re-
presentation of the families of data being considered. (Se R = {RS}SES)'
Let élEE(R) be the class of ZI-algebras with carrier R and all Z-homo-

morphisms between them.

Lemma 2.2.2: Alg (R) is a category. -

In fact, Algz(R) is a subcategory of Algz in the sense that objects and
morphisms of the former are also objects and morphisms, respectively, of
the latter. Moreover, composition in Ang(R) is just a restriction of

composition in Algz.

éng(R) is still too large a category for our collection of query
 machines because we usually require that the cperations assigned to the

names in I have certain properties. For example, it is clear that in a stack,‘
as defined in example 2.1.1, TOPA(PUSHA(n,w)) = n. We would fequire that any
definition or implementation of a stack have this property. We can impose
this kind of requirement on our collection of query machines as is shown

in the sequel.
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A I-equation of sort s€§ is a pair <t ,t,> € TZ(XW)S (for some sES). We
usually write t,;= t, rather than <t ,t,>. We say that AZ satigfies
t =t, if and only if for all assignments a:X_ - 4, ;(tl) = ;(tz)- . In

1 2
other words, evaluating t, and t, after consistently substituting values

for variables in both gives the same result in all cases. Now let E = {ES}
be a family of sets of equations. AZ satisfies E if it satisfies each

equation in E separately.

Let %EgZ,E be the class of all Y-algebras which satisfy E
together with all ZI-homomorphisms between them. (Classically, %&§Z,E is
an example of a variety (see [EOQJ)). Let %éEZ,E(R) be the class of all
Y-algebras with carrier R and all I-homcmorphisms between them. Clearly,

we have the following result.

Lemma 2.2.3: Algz E and AlgZ E(R) are categories.‘(In fact, they are
b 3

subcategories of Algz and Ang(R), respectively). OJ

At this juncture it is important to point out that R represents
all objects which could be manipulated by the "query functions" of the data
base. The physical addition or deletion of data in the data base is modelled
by resetting the result of a query function to some defined value in the

former case and some undefined or error value in the latter.

Let us now consider updates. Updates are made using some basic
update operations. So let ! be an S sorted alphabet which will be used as
names for basic update operatioms. The operations corresponding to the names
in @ will manipulate operations assigned to the names in X, among other
things. Thus, in changﬁg the operation assigned to a symbol in X, an update
causes a mapping of some AZE éng’E(R) into some By € élgE’E(R). Eor .
simplicity, we will assume that updates manipulate the IL-algebras in AlgE,E<R)
rather than the operations assigned to symbols in 2. Thus the updates define

an algebra Uo where U = {Us}seg and fAlgz’E(R)i = U for some seS.



10.

Example 2.2.4: Consider the example of arrays as defined in example 2.1.3.

Let {1,...,n} be represented, for example, by binary numbers and {0,1,2,...}
by some binary representation. Call this family of representations R. L 1is
a two-sorted alphabet defined by: EE

= {array} and for all other
<w,s> e{n, N} x {n,N}, ZW

s =@, Thu;N élgE(R) corresponds to the class of
all one dimensional (non-negative) integer arrays with n entries. (Note

that we have not required any additional properties of the functions named
by "array'). Now consider an update to one such array, say A, € éng(R). In
a program, such an update is usually specified by some assignment statement

such as

A [i]:=e

for some non-negative integer valued expression e. The meaning of this
statement is that the i'th entry in Al is replaced by the value of e. That
is, we have changed the function array, into the function array , defined
by
array, (i) i#]
1
array, (j) =

2 . .
e i=3

To model this algebraically, let @ be a {n,N,r} - sorted alphabet defined

_ % _
by .- = {assign} and for all other <w,s>e {n,N,r} x {n,N,r},Q = 0.
rNo,r : w,8

Let B = {BE , B Br} where B- = {1,...,n}, By = {0,1,2,...}

N’
and B = Ang(R). Define assigny by

3551gnB(A1, i, e) = A2

~where A, € Ang(R), ie{1,...,n}, e has a value in {0,1,2,...} and A,

is defined to be the algebra in Algz(R) which has the operation array, as

defined above. 2

We shall not go into how the algebra B can be specified axioma-

tically but it is clear that, among other properties, we should have at least
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assignB(x,i,arrayX(i)) = x,

It is not immediately clear how such axioms could be used to define (if
possible) initiality properties of the algebra BQ. This is one of the open

problems not treated in this paper. I

Having modelled our motivating example and considered a very
simple and different example above, we are now ready to formally define
higher order data types. We actually define only brder two data types and
leave to the reader the generalisation of the concept to higher orders. Let
¥ be an S-sorted alphabet, 2 and S-sorted alphabet, and R ='{RS} some

family of representations for the data of concern. An abstract data type of

. . Co« S .
order two (or more considely, order two type) is a pair AlgE,E(R)’Bﬂ where

(1) E is some axiomatic specification of the properties of the

operations assigned to the names in I;
(ii) Algs E(R) is the category of I-algebras with carriers R,
>
satisfying E and all X-homomorphisms between them (as
defined above);

(111) BQ is an Q~algebra with BS ='!A1gz’E(R)l for some SES.

An order two (data) structure is an element (or combination of elements)

in the carrier of an order two type.
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2.3. Proof Properties of Higher Order Types

‘ As with the previously studied order one types, one of the reasons
for mathematically modelling these higher order data types is to provide
ways of studying properties of the types. One of the most important proper—
ties is the correctness of an implementation with respect to some abstract
definition of the type. For example, suppose that the stackAalgebra described
in example 2.1.1 is implemented by using binary representation for natural
numbers, linked lists for stack states,_O and 1 for true and false, respec-—
tively, and appropriately programmed functions to correspond to TOP, POP, etc.
This implementation defines an "implementation algebra' M. which,if it is a

Z

correct implementation, is isomorphic to A (See EADJQ] for a detailed

5
outline of this concept of correctness).

We want to generalise the methods of proof of correctness of an
implementation as described above to higher order types. Let Y, = <A1gZ E(R)’Bﬂ>
>
be an order two type defined in terms of some abstract representation (say,

set theoretic) of the data. Let Y, = <A(Q),C,> be some purported implemen-

Q
tation of the above type. Y and Y, should somehow be the "same" if Y,

correctly implements Y,. In the case of BQ and CQ, the requirement is again
obviously isomorphism as §~algebras. To define sameness for Ang E(R) and

A(Q) we need the following definitionms.

Let A and B be categories. A functor F:A > B is a mapping defined
in terms of a mapping ]Fi:]A{ > ]BI, called the object part, and a family
- of mappings {F, [:A(C,D) > B(|F|(C), iFl(D))}<C RYSSINEINE called the o
morphism part, such that

(i) F(ap) = Le ) for all Ce |a]

'

(ii) F(gof) = F(g)oF(f) for feA(C,D), geA(D,E)

(Note that we have dropped the absolute value signs from around |F[ and the -

subscripts from F for the sake of readability). So functors are mappings

C,D
between categories wich preserve identities and composition. Two categories
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A and B are isomorphic if and only if there is a functor F: A->B and

a functor G: B -+ A such that GoF = 1A and FoG = lB (where composi-

tion of functors is defined in the obvious way in terms of composition of
the object and morphism parts of the functors) for the identity functors
lA and 1B defined on A and B, respectively. (The reader may already have
asked himself why we demanded that the first component of a two—-level type
be a category rather than just a collection of algebras with a common
carrier satisfying a common system of axioms. The reason shoud mnow be
obvious: we were anticipating the result below. Checking the isomorphism
of two categories is a much better structured problem than checking the

"sameness" of two collections of algebras).

It should now be clear that Y, and Y, are the "same'" if and
only if BQ and C9 are isomorphic as Q—-algebras and Algz E(R) and A(Q)

are isomorphic as categories.
We will not belabour the point here, but many of the techniques
described in [}DJ@] for order one types, can be generalised to higher

order types in a straight-forward manner.

2.4, Programmed Higher Order Data Types

We now come to a discussion of a serious shortcoming common to
this treatment so faf and many previous discussions of abstract data types.
The main purpose of a mathematical definition of abstract data types is to
check the correctness of some implementation of the data type. However, any
implementation is via programs used to define the operations involved. As
such, these implementation types are subject to the usual problems of pro-
grams in general. For example, a call to a procedure implementing some
operation may not terminate. This problem is partly foreseen ihAEADle where
the problem of defining what the definition of TOPA(k) should be is
discussed. (Note that A is the empty stack whereas '['OPA must give some re-
sult in {0,1,...}?. To introduce "error' elements into the carriers of
the algebras involved (as advocated in.[EDJil) is not enough because non-

termination is not a detectable error condition. (This is not to say that
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”eror” elements may not play a useful role for explicating other pheno —
ména). So to correct this fault, we must use the methods used by seman-
ticists to treat the problem of non-termination of programs. Luckily,
alfhough theiunderlyiﬁg mathematics is more complicated, the proof rules

remain generally the same.

We do not propose to motivate the use of the following mathe-
matical treatment for the study of the semantics of programming languages.
(For this we refer the reader to EéDJIl,[;E@]). We quickly présent some

definitions and appropriate extensions of material in the previous sections.

We proceed to introduce into our domains elements denoting non-
terminating computations and undefined results (i.e., the "result" of a
non-terminating computation). We will use these new elements to partially
order our domains. For example, we can say that the completely undefined
function 7| "aproximates' any function in the sense that where they are

both defined,'they agree.)Also, the program segment

if b then (S;1loop) else null
(where null is a statement meaning do nothing and loop puts the program in
a non—terminating loop) approximates in the same sense as above the program

segment

while b do S.

Let us formalise these ideas. A partially ordered set (or poset)

is a pair (D, ©) where D is a set and ' is a reflexive, antisymmetric,
and transitive binary relation on D. We usually write just D for (D,E).

. XE= D is said to be a countable chain (or w—chain) if X is totally ordered.

We usually write the w-chain X = {xo,xl,...} as X, £x, € ... or as

{Xi}iEN’ A poset D is an w-complete partially ordered set (or cpo) if and

only if D has a least element denoted by | (called bottom) and every
w-chain X in D has a least upper bound. The least upper bound (or lub)
of a set X'E_D, denoted by UX, is an element =xeD such that for all yeX,

y< x and if there is some zeD so that for all yeX, vy © z, then x cz.
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Let D and E be partially ordered sets., £:D > E is monotonic if
and only if for xcy in D, f(x) © £(y) in E. f is said to be w~conti -
nuous if and only if f(UX) = U£(X) for all w-chains X © D whenever , UX
exists in D..Let X be a many-sorted alphabet. A Z-algebra Ay is said
to be an  w-continuous w-algebra if and only if each AS is a cpo and each
fA (for feEw g» some <w,s>) is continuous as a function from its domain to

>

its codomain. (The domain of fA is AS X ... X AS which is a cross—pro-
1
duct of cpo's and so is a cpo. See [BDJ@} for further elaboration). A I-

homomorphism h:AZ+ BZ for continuous Z-algebras A. and B. 1is w-con-

% z

tinuous if each hS 18 w—-continuous.

We now modify our definition of abstract data type by requiring
that the algebra involved be a continuous Z-algebra for some‘Z . We now
generalise Example 2.1.2 to obtain an initial algebra in the class of all
w-continuous X—algebras together with w—continuous L-homomorphisms between

them. (We now drop ® from w-continuous and w-complete).

U % X . Consider the set
<w,s>e8S xS “w,s

of all partial functions from some set A to some set B, denoted by

Let I ambiguously denote

EA-—G—*+B]. We can order [A——0*~+E] by set inclusion on the graphs of the
partial functions (considered as subsets of AxB). It can easily be shown
that with this ordering we have a cpo. If £f:A = B is a partial function,
let def(f) = {a|<a,b>€f . def(f) is the domain of definition of £. For each
se5, let CT

*
5 s be the set of partial functions t:N»I  such that
3

(i) If X € def(t), then t(A) has sort s;

ata

(ii) we N, ieN, and wi € def(t), then
(a) w e def(t);

(b) if t(w) has arity Syeee S tken i<n and t(wi) has

sort s. .
1+1



Let CTE = {CTZ } and define f for f e X by:

s S CT W,S
(1) If w=2X\ (and so f is a constant or nullary), then’

fCTZ = {<x, B}

(ii) 1If ti > CTE,si for i<i<m, then

fCTZ(tl,...,tn) = {<\, 0>} U ign{<iu,g>|<u,g>ati+l}.

Thus CT. is a ZI-algebra and is in fact a continuous Z-algebra. Moreover,
if Qél;z is the class of all continuous ZI-algebras with strict, continuous
X-homomorphisms between them, then CTE is initial in Célgz . (A I-homomor—
phism is strict if it maps the least element of the domain onto the least

element of the codomain).

We can now define CAng(R) analogously to the definition of AlgE(R)
for some family R of cpo's and show that CAlgz and CAng(R) are categories.
If we now want to specify properties of continuous ZI-algebras, we can use
inequations of the form t, Ct, for t,,t, € CT(XW)S . (CTZ(Xw) is
defined analogously to TZ(XW)')’ t, = t, is now a short form for the pair
~of inequations t1 ct, and t, c t, . The concept of a continuous ZX-algebra
satisfying an inequation t, = t, is defined in the same way as before. Denote
by CAng,E and CAng,E(R) the generalisations of Ang,E and Ang,E(R)
respectively, CAng E and CAlg2 E(R) are clearly categories.

H] H

A (generalised) order two type is a pair <CA1gZ E(R)’Bﬂ> where:
>

(i) E is some axiomatic specification using inequations of the
properties of the operations assigned to the names in I;
‘o _ . . . :
(ii) R {RsIseS is family of cpo's and QAng’E(R) is the

category defined above;

(iii) B, is a continuous §-algebra with B, = |CA1gE E(R)[ for
— L]

some S£S.
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There is one point in the above definition which needs some clarification.
If B, 1s a continuous algebra, then each B_ must be a cpo. However,
9] > . g

[Qélgz E(R)| is just an umstructured set of algebras. We now show how we

. .
can regard this set as a cpo in a very natural way. Since C’I.‘Z is initial
in the class of all continuous Z-algebras, for each AZEICAng E(R)l

Tl

there exists a unique, strict,‘continuous Z~homomorphism hA:CTZ + AX'
Thus we can represent iCAng,E(R)Iby the set H = {hA;CTZ+AZ|A28[CA1gZ’E(R)i}.
Order H by hA E.hc if and only if for all t € CTZ S (any s€8),
hy(t) ©ho(t) in R_ . (Recall that for amy Ase |CA1gZ’E(R)[, h,(t) € R ).
This is clearly a partial order on H. We must now show that H is a cpo. Let
DZEICAlgE,E(R)} be defined by: For any fE:ZW’S, fD(al""’an) =~Ls € RS.
That is, all operations in DZ are completely undefined. Clearly, hy is the
least element in H. Now let {h(l)} be a chain in H. We will define an
‘ (i)

- . (1),
algebra AZ so that hA = Uh,(i) for h CTy > A

For £ ¢ Zw g define fA_ by

>

fA(al,...,an) = lJfA(i)(al,...,an).

It is obvious that {fA(i)(al,...,an)} is a chain in R and so fA is well
defined. We must show that AE as defined is a con:inuous E-algebra; i.e.,

that each fA is continuous. For this, it is enough to show that

(i)

fA(al,..., jgNa ,....,an) = jgN fA(al,...,a ,...,an)
for some chain {a(j)} in RS » 1<k<n.
k
fA(al,...,jgNa(j),...,an) = iLEJN fA(i)(al,...,jlé'N a(j),...,an)
(i)

[

U U s (
iEN(jEN fA(l)(al,...,a ,...,an)

since each fA(i) is continuous

(i)

i

N(IEN fa(i)(a;,-..,a seeena )

§] &),

JEN

fA(al,...,a ,...,an).
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I;‘should be clear that h, is an upper bound for {h(i)}. It is not hard
to prove that it is the least upper bound. Thus H is a cpo and by the one
to one correspondence between H and 1Q§l§Z’E(R)| , 80.1s lCélEZ,E(R)!°
Thus there is no inconsistency in saying that B is a continuous ZI-alge-

bra.

The proof methods outlined in the previous section have clear

analogies in this new setting.
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3. ON THE USE AND IMPLEMENTATION OF HIGHER ORDER DATA TYPES

In the following sections we will present two examples which - use
higher order data types. The first of these examples in section 3.2 is an
implementation of the query and update portions of a data base with respect
to some given representation of the data. In section 3.3 we illustrate the

use of higher order data types in the synthesis of programs by writing a

linejustifier program for a text editor.

Both these examples make use of the novel features of an extended

version of the language MADCAP which is presented in section 3.1.

3.1. The Language MADCAP-S

MADCAP-S [MDR, MKN] is a block structured and very high Ilevel
language which has been designed to facilitate program structuring and
verification. It is a very high level language in the sense that it uses
general sets and sequences (of the kind introduced by the SET-L  language
[SCH] as data types. It facilitates the structuring and verification of
programs by using a special version of the cluster [LIZ] mechanism and by
disallowing side-effects in its various features (thus enabling a Hoarelike

[HOZ] axiomatization of the language semantic).:

In MADCAP-S the concepts of function and procedure are similar to
the ones used in EULER and ALGOL-68. A function definition describes the
input parameters (if any), the computation to be performed and valﬁe to be
returned. A function is a value belonging to the type FUNCTION and as such
can be assigned to a variable or shared as part of a structure. In genéral,
a function has the following form:

>f
<< [P;] S[;+f] >>

where P stands for the parameter part which is a list of explicitly typed
variables, S stands for a non-empty list of statements and f stands for an

expression, which is the value to be returned by the function. The following
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is an example of a function

<< a in REAL; b in FUNCTION;

x < b(a); » x> + 3a>>

In MADCAP-S a data type is a domain over which values of variables
of that type may range. A data type may be either unstructured or structured.
The following are unstructured data types: reals, integers, naturals, positive

integers, atomic strings, boolean and funtion constants.

The structured types are SET and SEQUENCE. If we call UNIVERSE the
- set of all values which can be manipulated by a MADCAP-S program, that is

bl

def
UNIVERSE <= unstructured types U structured types

then

SET E»ZUNIVERSEV

and

<& *
SEQUENCE = UNIVERSE . (= UNIVERSE ).

In the definition of structured types and ol the type function
constant, the following entities can be used: standard data types, data type

identifiers and data type expressions.

A data type expression is either a data type identifier or a
special expression involving the following operators and other components:

(i) Powerset and binomial (e.g., if T = 27N LOER,

(INTgGER

type T is
the set of all sets of integers; if T ), type T is the set of all

sets of integers with cardinality 3};

(ii) Cross product and integral exponentiation (e.g., 1if
T = REAL x INTEGER, type T is the set of all pairs forned by a real and an

integer; if T = INTEGER?,type T is the set of all pairs of integers);
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‘ (iii) Standard data types (e.g., the use of the type identifiers
INTEGER and REAL in the examples i and ii above);

(iv) Data type identifier <(e.g., if A = INTEGER x INTEGER is
followed by T = ZA, type T is the set of all sets of pairs of integers).

A type function constant is defined by expressing the domain and

the range of all functions that belong to the type. That is,
T = <<T , T, oo, T > T'>>,
17 2 n

A variable declaration of the form x in T + f; establishes the

fact that x € T and assigns to x the value of the expression f.

A function cluster or simply a cluster in MADCAP-S [LUC, LAU] is

a special type of external function. The general form of a cluster specifi-

cation is the following:

\ cluster <<Declaration of formal parameters;
Declaration of variables and shared variables;
S3
F < <<P ;D ;S ; > £ in T >>;
1 17171 1 1
F < <<P ;D ;S ;> £f in T >>;
2 2”270 2 2 2

F_+ <<P ;D ;S ;3 > £f in T >>;
n " n" n n-— n
> <F1,F2,...,Fn>_o_r_ {FI,F2,...,FH}>>

where:

' . <o
(i)  The varisble V is of type cluster <<FP ;FP ,...;>FUNCTION S
where the FPi are its formal parameters. (If the cluster returned a set of
functions, that is, +{F1,F2,...,Fn}, the type of V would be cluster

FUNCTION>>

<<FP ;FP ;...; 2 ).
1 2
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(ii) S is a list of statements acting on variables of the cluster.

(iii) The declaration of shared variables in V 1is a 1list of
MADCAP-S declarations that specify the types of a set of variables that can
only be modified by the functions F1’F2""’Fn (i.e. they are shared by
FI,FZ,...,FH). Note that this is the only situation in a MADCAP-S program in |

which globals can be assigned values.

(iv) rFl’Fz""’Fn are variables of the type functlom constant that
contain the specification (Pi;Di;Si;fi)(lfign), of the cluster operations

whose effect is defined over the shared variables.

If Al,...,AN are variables of the type function constant, and V

is a variable of the type cluster, then the assignment

<AL, ..., AN> + V( );

would make Al = FI, A2 =F ,...,AN = Fn for a cluster V without parameters,
5 A

(If now A is of type set of functions, the assignment
A<+ V()
would make A.F =TF ,A.F = Fz’ etc.).
1

Actual referente to the operations encoded in a function cluster

are made through the operation do. In the case of the above assignments

do Al; do A2;...; do AN
(and do A.F ; do A.F ;...; do A.F )
— 1 — T2 — 'n

would execute the operations of the cluster. The first operation in a program
referring to a cluster also initializes it. The effect of a do is felt only

on:the shared variables which then retain their values until the next invoca-—

tion of the cluster.
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3.2, A Data Base Implementation

We want to implement a data base in a way which clearly indicgtes
the logical difference between queries and updates (see MATL], [MAT2]). We
use the concept of cluster since this construct implements abstract data
types. There will be two clusters illustrated: a (variable) QUERY cluster
and an UPDATE cluster. The QUERY cluster uses some given representation REP
of the data that can be stored in the data base. The UPDATE cluster  uses
RE? as well as the QUERY cluster.

a) The body of the UPDATE cluster:

cluster <<REP, QUERY = FUNCTION ; -
w in REP < ¢ body of REP cluster ¢;
v in QUERY < ¢ body of QUERY cluster ¢;
updatel + <<¢ the update function uses those access
functions of REP which alter the state
of REP's data structures ¢
¢ body of updatel ¢

<y ), v, W), ...,v (0)> >>

updaten « << ¢ body of updaten ¢

> <V (w), v, (W)’f"’vn (w)> >>

-+ <updatel,...,updaten> >>
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b) The body of the QUERY cluster:

cluster <<
queryl < << REP in FUNCTION<°° 5 z in REP;
‘ ¢ the query function uses those access -
functions of REP which do not alter the
state of REP's data structures ¢

¢ body of queryl ¢ >>

.
.
.

. < .
queryn < << REP in FUNCTION ® ;5 z 1n REP;
¢ body of queryn ¢ >>

-+ <queryl, ..., queryn> >>

The QUERY cluster needs very little explanation. Each operation
(of queryl, ...., queryn) defined in the cluster takes as argument
parameters of type REP where REP is the name of a cluster impleﬁenting the
representation of the data in question. (Thus REP is a sequence of functions
because the REP cluster defines the representation of the data in terms of
some simple operations defined on the data. These simple operations are then

returned by the cluster REP).

The QUERY cluster returns a sequence of operations <queryl, ... ,

queryn> defined on z of type REP.

The UPDATE cluster takes as arguments (global to the operations
defined in the cluster) the REP and QUERY clusters. The operations of the
cluster (updatel, ..., updaten) are defined in terms of parameters w of
type REP and v of type QUERY. Now updatei is defined by altering the state
of REP (either by adding more data, removing data, changing existing data,
etc.) and redefining the query functions queryl, ..., queryn so that they
are meaningful over this new state. Note that since v is of type QUERY and
query returns a sequence of operations, vj refers to the j'th element of

this sequence (i.e., queryj) and vj(w) refers to the changed definition of
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queryj making it meaningful for w, the new state of REP. Thus updatei
returns as a result the sequence of query functlons <queryl, ...,queryn>

redéfined over the new state of REP.

Note that the QUERY and UPDATE clusters are independent of the
definition of the REP cluster. A change in the REP cluster need not be
reflected by a change in the QUERY and UPDATE clusters (unless the change
in REP defines a new type REP' which implements an algebra not isomorphic
to the algebra implemented by REP). Similarly, the cluster UPDATE is also
independent of the definition of the cluster QUERY (with reservations
similar to those above). Thus redefining the basic query fuﬁctions should
not affect the meaningfulness of the update functions. This réflects the
idea that changing the access mechanism in a data base should not be

"visible" to the user.
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3.3. Higher Order Data Types as a Programming Aid

We illustrate the use of higher order data types as an aid in
program synthesis by developing a program to justify lines in a text editor.
(The problem is described in more detail in IGRI} although the philosophy

guiding the synthesis is very different from ours).

A line justifier inserts extra blanksvin the spaces between the
words on a line so that the last character of the last word on the line
appears immediately to the left of the right margin (i.e., in the last
column of the line). The number of blanks between pairs of words in a
justified line may differ by at most one extra blank. For aesthetic reasons,
the insertion of these extra blanks is done alternately on the left and on

the right depending on the parity of the line number on the page.

So, supposing we have some representation of a line (on a page);
we must write a justifier program which takes this representation an changes
it to the representation of the justified line. However, this justifier must
be alternatively transformed to insert extra blanks on theAleft or the right
depending on the parity of the line. This immediately suggests a higher order

data type approach and our resulting program is as follows:

Line Justifier Example

(i) Line justifier program:

"FUNCTION FUNCTION
<<r, y in 3 ; X in 2 ; £, g in FUNCTION;

y + UPDATE-LINE cluster <<...body of cluster>> (x;r);
Repeat A
f +—§2_y.input?1ine ()
if do f =1 then g « do justify-left ()
else g <+ do justify-right ( );

until do g >>;
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(i1) body of the UPDATE-LINE cluster:

UPDATE-LINE cluster << ¢ r stands for the set of access

functions of the representation ¢

. (FUNCTION) . (FUNCTION)
r 1—‘-— 3 b ] m H_ 2 ;

input-line < << do r.read( ) » {m.parity(x)} >>;

justify-left + << do r.assign(2, do r.select(2) + do r.
select(5) / (do r.select(4) - 1));
do r.assign(l, do r.select(2) + 1);
do r.assign(3, do mod(do r.select(5),
(do r.select(4) - 1)) + 1);
gg_r.assign(S,O);

> {m.last"line(r)f 5>

justify~right < <<do r.assign(1, do r.select(l) + do
A r.select(5) / (do r.select(4) - 1}):

do r.assign(2, do r.select(l) + 1);

do r.assign(3,mod(do r.select(5),

(do r.select(4) = 1)) + 1); 7

do r.assign(5,0); ‘
+ {m.last-line(x)} >>;
> {justify-left, justify-right,

input-line} >>;

(iii) body of the LINE~INFORMATION cluster:

x,m < LINE-INFORMATION cluster <<
) FUNCTIO
3

¢ checks 1f current line is the last line

last-line + << rep in N); boll in BOOLEAN;

in a text ¢

bool <+ if do rep.select(6) = MAX

then true

else false

-+ bool >>;
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FUNCTION X
3 3 p in Nj

parity < << rep in (
¢ indicates via 1 and 2 the parity of
the line ¢

P * ggvmod(do rep.select(6),2)

+ {last-line, parityl >>; T p >>;
(iv) ©body of the REP cluste:n:

r, rep « REP cluster << TUPLE = NG
% in TUPLE < § ;
assign + << i, j in Nj;
Q‘i <« ] >>;
select « << 1 in Nj
> Q,i >>3
read + << read(f) >>;

+ {read,assign,select} >>;

Let us explain our global strategy first. The main program starts’
by assigning to the variable y (of the type "set of three functions")  the
cluster UPDATE-LINE with parameters x and r. x is of type "set of two
functions" and will be used to name the operations deéfined by the LINE-IN-
FORMATION cluster. r is of type "set of three functions" and will be used
to name the operations defined by the REP cluster (and thus, indirectly, to

refer to the lines of text being justified).

The major portion of the main line program then consists of a
repeat ... until ... statement which takes each line in turn and justifies it
by inserting blanks in the appropriate way. What is appropriate for a given
line will of course depend on the parity of the line. The first statement in
the line assigns to f (of type FUNCTION) the result of executing the function
named input-line in the set of functicns y. (Note that y.input—line takes no
parametes since in the cluster UPDATE-LINE the parameters T (representing the

operations defined in REP) and m (representing the operations defined in



29.

LINE-INFORMATION) are global to the definition of all the operations). Thus
f is assigned the function parity defined on the representation of  the

current line under consideration (namely r). '

The second statement in the body of the repeat ... umtil ...
statement tests the parity of r (by executing f) and, depending on the
result, assigns to the FUNCTION variable g the result of executing justify-—
left or justify-right. Now the execution of either of these funétions returns
as a result the definition of the function last-line with respect to the
representation r of the current line. (This execution also has the important
side affect of justifying the line!). Thus the statement do g results in
the execution of g (i.e., last-line) on r. Now, the execution of last-line
returns a boolean value as a result. This boolean value is true when we have
reached the last line of the text. Thus do g acts as the termination condition

for our iteration.

Thus two important updates are made. First, the functiom parity is
updated to define the parity of the current line under consideration. This
then allows us to choose between the execution of justify left and justify
right. Secondly, last-line is updated by the execution of justify-left or
justify right so that this function can be used to control the termination

of the iteration.
As to the three clusters involved:

(i) The REP cluster implements a representation of lines of text
in terms of a 6-tuple of natural numbers (to be described below) and three

operations defined on tuples:

(a) The operation assign(i, j) inserts the value j in the
i'th position of the 6-tuple. It returns no value as a

result.
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(b) The operation select(i) returns as a result the wvalue

of the i'th component of the 6-tuple.
(c) The operation read just reads a line of text.

The representation £ in TUPLE has componentes whose meanings are

as follows:

1 is the number of blanks before 23.
2 is the number of blanks after 93.

23 is the number of the word after which the pattern of blanks in

the line changes.
24 is the number‘of words in the line.

25 is the number of blanks after the last word in the line.
26 is the number of the line in the text.

Note that £ is initialized to "undefined" at the beginning (i.e.,
before any lines are read). '

(i1) The LINE—INFORMATION cluster is to provide just that: critical
information about the line under consideration. (This cluster has no global
variables or initialization). The operation last-line takes as argument a set
of three functions called rep (which is of type REP). Thus do rep.select(6)
executes the function named select in rep with the parameter 6 and results in
the line number of the current line. This number is then compared to  the
number of the last line in the text and the result of this comparison is the
result of last-line. Similarly, parity returns as a result the line number of

the current line {the result of do rep.select(6) modulo 2.
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(iii) The UPDATE~LINE cluster has two global parameters (to
represent the set of operations defined by REP and LINE~-INFORMATION). The
operation input-line reads a line of text (by executing do r.read( )) ~and
returns as a result the function named parity defined for the line just read.
The operation justify-left performs some calculations necessary to change the
representation of the line to the representation of the justified line (to be
described below) and returns as a result the operation named last-line defined
for the current line under consideration. There are four different calculations
made in the body of justify left (using the statements do r.assigﬁ(-——). Each
such statement assigns the result of the calculation to a component of  the A
tuple representing the line. The first statement assigns to the second

component the value (£2+Q5)/(24—21). (Ri is the result of do r.select(i)). The

calculations made in the other statements are just as easy to describe. Finally,
the analysis of the operation justify-right is analogous to that of justify-
left. A

We leave the analysis of this example in terms of algebras to the

reader.
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4, CONCLUSIONS

ll We hope we have illustrated the usefulness of a generalisation of
the concept of abstract data type. Higher order types arose from efforts to
model an important class of "objects" presently of great interest, namely da
ta bases. The model arose out of a need for a clear distinction between the
functional orders (or logical types) of the query and update functions in a
data base. The sample program in section 3.3 should also have illustrated

how these concepts may be used in the structuring of data (and thereby of

programs) .

A number of other programming applications of higherlorder types
come to mind. Consider a situation in which some attributes of variablés can -
change over time (in a non-predictable way) with the simple restriction that
the set of possible attributes is known ahead of time. This is the case, for
example, in SNOBOL where it is not clear whether get next x means the next
byte, half-word or word. However, an implementation could be written in which
there was only one get function which could be updated dynamically depending
on tﬁe current attributes of the variable. A similar situation occurs when
one writes programs for a network of heterogeneous machines. A ready instruc-
tion should be defined in a single cluster and be updated appfopriately
depending on which machine is being addressed. The portability of programs

could also be enhanced by using "updates'" in situations similar to the above.

Higher order types can be implemented by language features which
are used to model data abstractions. Among these, of course, are the concept
of cluster and the availability of types which can take functioms as values.
An important method of implementing higher order types which has not been
mentioned here is the concept of redefining a function by manipulating the
body of tte function definition. Such a facility is .available in LISP, but
is usually frowned upon as bad programming practice. (This view might
perhaps be explained by the previous lack of methods of viewing the use of

such changes in a structured way).
: ¢
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One can view the use of higﬁer order data types as a beneficial
structuring concépt. Data types can now be viéwed as hierarchical structures
which may be designed top down. Modularity is enhanced in a number of 'ways.
In the SNOBOL example mentioned above (as well as the related example which
followed) the tendency is to overmodularize: write a different module for
get for each different situation. The concept of a higher level type prevents
this overmodularization. The opposite extreme of undermodularization is
made less likely by having a new tool for the structuring of logically

different classes of operations.
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