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Abstract

The ultimate equivalence problem for DOL systems is shown to
be recursively decidable. In algebraic formulation this problem can be
stated as follows: Given finite alphabet » , two homomorphisms h]
and h2 on the free monoid z* and two words Wis W, in I* , does

there exist m > 0 so that h?(w]) = hg(wz) for all n=m?

1. Introduction

In [2] the DOL sequence equivalence problem has been shown to
be decidable, i.e. given a finite alphabet £ , two homomorphisms h],
h2 on r* and Wis Wy in $* , it is decidable whether
h?(w]) = hg(wz) for all n =0 . Since the positive answer is possible
only if Wy = W, we could simplify the formulation by giving only one
starting word. However, this is not the case for the more general
ultimate equivalence problem stated as an open problem in [9]. Here we
are asking whether the two sequences Wy h1(w]), h%(w]), ... and
Wy s hz(wz), hz(wz), ... are ultimately identical, i.e. whether they
agree after some arbitrary long initial period. More precisely, wé are
asking whether there exists m > 0 so that h?(w]) = hg(wz) for all
nz=m. A very special case of the problem, namely the case h] = h2
has been shown decidable in [3] and for nonerasing homomorphisms in [5].

Both the sequence equivalence and the ultimate equivalence
problems for DOL systems are very important fbr.bio]ogical applications.
DOL systems are the most important of Lindenmayer systems as a useful

mathematical model of cellular development. In that context the decidability



of our problems means that it is possible to check mechanically whether
two developmental programs (genetic encodings) in filamental organismé
developing without interaction are equivalent or ultimately equivalent,
i.e. whether they determine identical or ultimately jdentical organisms.
We base our solution on the results and techniques of [1] and
[2] showing the decidability of DOL equivalence problem, and on a recent
result in [7], [8] or [9] showing that it is decidable whether a semi-
group generated by a finite number of matrices is finite. This later
result allows us to check whether, in terminology of [2], a pair of
normal DOL systems has bounded balance and if so compute the lowest bound.
This not only allows a better algorithm for testing DOL-equivalence (see
Section 5) but alsoenables us to give a procedure which terminates if
two DOL systems are not ultimately equivalent. To detect ultimate
equivalence, i.e. to assure termination if the given systems are ultima-
tely equivalent, is easy when an algorithm for DOL equivalence test is
available. However, the termination in the negative case, which is
trivial for DOL equivalence, is not easy to assure in the case of

ultimate equivalence.

2. Prejiminaries

Givén an alphabet X , I* denotes the free monoid generated
by & with unit (empty string) e . st = 3% - {e} . For integer
w, |w| is its absolute value, for we * , |w] {is the Tength of w,

specifically le| = 0.



A poL system is a 3-tuple G = (X, h, o) consisting of alphabet
by » homomorphism h on I* , and starting string o ¢ Z+ . DOL system
2

(

G generates the sequence s{G) = o, h(c), h“(c¢), ... and the Tanguage

L(G) = {h"(0) : n >0} . System G 1is reduced if there is no A c I s0
that L(G) < A* .

Two DOL systems Gi = (Zi’ hi’ o.) for i =1,2 are sequence

j
equivalent (or just equivalent) if S(G]) = S(GZ) » they are language

equivalent if L(G]) = L(Gz) s G, and G, are ultimately (sequence)

1
equivalent if there exists N =0 so that h?(c]) = hg(qz) for all
n=>N.

A pror system is a tuple G = (g, hys «--s hos o) where 3
is an alphabet, hi is a homomorphism on 2* for i=1,...,m and

o€ E+ is the starting string. DTOL system G generates the language

L(G) = {hi](hiz("' hir(c) o) ir 20,1 < ij

<m for 1 <j <r}
We will now remind the definitions of er-systems and normal

systems as given in [2]. For w e £* Jet

alph(w) = {a e Z : a occurs in w} . Let G = (%, h, o) be a DOL

system. We define the function m : P(z) » P(Z) , where P(Z) 1is the

set of all subsets of I by putting

m(¢) = ¢
m({a}) = alph(h(a)) for ae¢ 3z ,
m(A v B) = m(A) u m(B)

A DOL system G = (Z, h, o) is called an %r-system if
L= uz Ul is a decomposition of & 1into three nonempty disjoint

sets such that for



a e Zg , h(a) e ZKZE 5
ael.  , h(a)e Zé’ H

. -
ae , h(a)e RONE

and o ¢ % Z*Z
27c’r

A reduced or-system G = (I, h, o) 1is called normal if
aem(b) for some j >0 implies a e m(b) for all a,b ¢ I, -

For L 5_Z+ , let Pref(L) = fwe £ :wuel forsome u e I*}.

3. The 10west‘bound on balance

In [2] it was shown that each pair of sequence equivalent
normal systems has "bounded balance". We extend this result to ultimate-

ly equivalent systems.

Definition Given a pair of homomorphisms h h2 on I* , the

'l’
balance of a string w in I* 1is defined by B(w) = |h1(w)[ - [hy(w) .
Note that the balance B in [2] was defined as 5(w) = B(w) . When-
ever a pair of DOL systems is considered the balance is understood with

respect to their homomorphisms. Note that B is an additive function.

Definition Let Gi = (%, h.

i Oi) for i =1,2 be two DOL systems

and B the balance with respect to h1, h2 . We say that the pair G1,
G, has bounded balance if there exists C > 0 such that [B{w)| <C
for each Ww e Pref(L(G])) . We say that C 1is the lowest bound if there

isno C' <C so that {B{w)| < C' for each W « Pref(L(G1)) .



Theorem 1 Let Gi = (%, hi’ oi) for i =1,2 be a pair of normal

ultimately equivalent systems. Then the pair G], G2 has bounded

balance.
Proof Since G1, 62 are ultimately équiva]ent there exists m= 0
so that G;, G, are sequence equivalent where G% = (z , hi’ hT(Oi))

for i = 1,2 . Therefore the balance is bounded on Pref(L(6;)) by
Theorem 3 in [2]. The balance is also bounded on finitely many prefixes
of {h?(o]) L0 <k < m}  hence it is bounded on Pref(L(G])) .

d
Lemma 1 Let G, = (z, hi’ 01) for f‘= 1,2 be two DOL systems.

The balance is bounded on all prefixes of L(G]) iff it is bounded on

all substrings of L(G1) .

Proof Assume that B(w) < C for all w e Pref(L(G])) but the balance
B is unbounded on substrings of L(G]) . Then there must exist

X,¥YsZ € I*¥ so that xyz e L(G1) and |B(y)| > 2C . By additivity of B

v

we have |B(xy)| = |B(y)] - |B(x)| and since B(x) < C we get

IB(xy)| >2C - C=C a contradiction.
‘ 0
We contihue by showing that for every DOL system G a DTOL

system T(G) can be constructed generating all prefixes of L(G) .

Definition Let G = (¥, h, ¢) be a DOL system with
m=max({|h(a)] : ae 2} u{lo]}) . Let T=1{a:ac3},

' =Y uru{s} for sd¢3 . For i=1,...,m and w e ¥ ,

W= W W s Woe D, T skss, Tet pi(w) = Wy o o W W if



s <i, pi(W) = w1w2...w1_]W% if s >1 . Finally, let <t(G) be the

DTOL system (%', h], e hm, s) where for all i =1,...,m
(i) h(a)
(i1)  h;(@) = u,(h(a)) for aer,

a for ael,

i

I

(111) hy(s) = u;(a) .
Example Let G = ({a,b} , h, ab) where h{(a) = aba , h(b) = b .
Then <(G) = ({a,b,a,b,s}, h], h2, h3, s) where

hi(a) = aba for i =1,2,3

hi(b) =b for 1 =1,2,3

h](a) =a , h2(a) =ab , h3(a) = aba

h#5)=5' for i =1,2,3

h](s) =a , hi(s) =ab for i =2,3
Lemma 2 Let G be a DOL system and L(G) E_Z+ . Let g be the
homomorphism defined by g(a) = g{(a) = a for all ae I . Then

g(L(t(6))) = Pref(L(G)) .

Proof It is easy to verify by induction that the DTOL system 1(G)
generates, when bars are ignored, in k+1 steps exactly all prefixes of
h*(a) | | 0

Now , we are ready for the crucial auxiliary result.

Theorem 2 Given two normal systems G = (¥, h, o) and
G' = (%, h', 0') , it is decidable whether the pair Gy G' has bounded

balance and if so, the lowest bound can be effectively computed.



Proof Consider T(G) = (Z', h], vy hm’ s) as defined above. We

choose a fixed ordering of &' , let ' = {a1, cees at} >33 =S . We
extend h and h' to ' be defining h(a) = h(a), h'(a) = h'(a) for
act,h(s)=o0,and h'(s) =o' . Hence, B(a) = B(a) = |h(a)| - |h'(a)]
for acz and B(s) = |o] - |o'| , and Tet n be a column vector

n = (B(a]), ey B(at)) . Further, let M, be the growth matrix (see

[9]) of the DOL system (', hys s) for i=1,...,m . As an abbreviation,
+

for ve {1,...,m} ,v-= VieesVy s 1 < vj <m, for j=1,...,r, we
define HY(x) = h_ (... h, (x) ...) for each x e £* and
Ve i
v
M =M M M
Vi Vo Vi

By Lemma 2, for each w in Pref(L(G)) there exists
v e'{l,...,m}+ such that w = Hv(s) where w is w with bar over the
last symbol. Therefore the Parikh vector of w with respect to I' is
(1, 0, ..., 0)M¥ , and thus B(w) = (1, 0, ..., 0)MYn . 1In terminology
of [9] we have exhibited a Z-rational function whose coefficients are
exactly the balances of all the prefixes of L(G) . Therefore the pair
G, G' has bounded balance iff the corresponding Z-rational function has
finitely many distinct coefficients. This problem has shown to be
decidable in [6].

It remains to show thaf we can effectively compute the lowest
bound in the case the pair G1, G2 Ahas bounded balance. Let
BY = (B¥, cees Bz)T= MVn for.arbitrary ve {l, ..., mt . We already
know that B) = B(H'(s)) . Similarly, BY = B(H'(a;)) for i =2,....t .

1
By Lemma 1 the balance 1is bounded on all prefixes iff it is bounded on



all substrings. Since G is reduced, Hv(a) with the bars removed for

each a € £ 1s a substring of L(G) , therefore the set

{BY:]

; i<t,v e'{l,...,m}+} is bounded and thus there is only

IA

finitely many distinct vectors BY for all v e'{1,...,m}+ . We can

v

easily find the finite set B = {B TV e'{1,...,m}+} as the closure of

{n} under multiplication from left by matrices M s M Finally,

12 oo
the Towest bound C is obtained as C = max{[B;| : (B

m

, B.) ¢ B} .

| E t)

0
Note that we could have omitted the argument using the
Z-rational function and started by computing set ‘B . We have shown that
B is finite iff the balance is bounded and by [6] or [7] or [8] the |

finiteness of B 1is decidable.

4. Ultimate equivalence problem

Lemma 3 The ultimate equivalence problem is decidable for DOL systems
iff it is decidable for normal systems.

Proof An obvious modification of the proof of Theorem 1 in [2].
Theorem 3 The ultimate (sequence) equivalence problem for DOL systems
is decidable.

Proof In view of Lemma 3 we can restrict ourselves without loss of
generality to normal systems, clearly we may also assume that they are
over the same alphabet I . Given two normal systems G, = (z, hi’ oi) .
for i =1,2, we test first whether the pairs (G], GZ) and (GZ’ Gl)
have bounded balance which is decidable by Theorem 2. If either pair has
unbounded balance the systems are not ultimately equivalent by Theorem 1.
If both pairs have bounded balance we compute the Towest bounds by

Theorem 2, let C be their maximum.



Now, we construct the deterministic g.s.m. MC , i.e. with
buffer of length C , from the proof of Theorem 2.1 in [1]. Using
further the notation from [1], we compute the language TC(L(G1)) where
TC is the translation defined by MC . We note that G] and 62 are
equivalent iff TC(L(G])) = ¢ which is decidable since TC(L(G])) is
a g.s.m. image of a DOL language and therefore it is generated by an EOL
system which can be effectively constructed. We check TC(L(Gi)) ,

i =1,2 for finiteness which is also decidable (see [4]). If TC(L(G]))
or TC(L(GZ)) is infinite, then h](x) # h2(x) for infinitely many x
and G

in L(G1) or L(GZ) and therefore G , are, clearly, not

1
ultimately equiva1ent._ If TC(L(G1)) and 'TC(L(GZ)) are both finite,
then there is p > 0 such that h1(x) = hz(x) for all
X e {h?(cl) :k=2ptu {h;(cz) : k 2 p} . Since the DOL equivalence
problem is decidable [2], we can effectively find the smallest such p ,
namely the smallest p = 0 such that the DOL systems G?’i and Gg’i
are equivalent for i = 1,2 , where Gg’i = (z, hj, h?(ci)) for
1 <i,j<2.

Now, clearly G] and 62 are ultimately equivalent iff there
exists m > p such that hT(cl) = hg(oz) . For m=p,
hg(oz) = hg'p(hg(oz)) = h?_p(hg(oé)) , therefore the required m exists
Ciff there exists k >0 such that hf(hP(c;)) = hi(hB(0})) . The

existence of such k 1is decidable by Theorem 1 of [3].
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1’ h2 on z* and

strings Oys Oy in Z? it is decidable whether there exists m,n = 0

Theorem 4 Given alphabet I , homomorphisms h

so that hm+k(0]) = hn+k

1 9 (02) for all k =0 .

Proof Similarly 1ike for the ultimate equivalence problem (Lemma 3)
we can also here restrict ourselves without Toss of generality to normal
systems. Then we proceed exactly as in the proof of Theorem 3 only the
last paragraph need to be modified as follows.

Now, there exist m,n > 0 so that hT+k(o1) ='h2+k(02) for
all k =0 iff there exist m,n = p so that hT(c]) = hg(oz) . For
n=p, hg(cz) =.hg'p(hg(02)) = h?'p(hg(oz)) . fherefore we are asking
whether there exist wm,n = p such that hT"p(h?(c])) = h?'p(hg(oz)) .
This is decidable by Theorem 2 of [3].
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5. DOL-equivalence problem

As it is clear from the previous section, the possibility to
compute the best bound on balance gives also a simpler algorithm than
the one given in [2] for testing equivalence of DOL systems G], G2 .

For each pair of normal systems we compute the Towest bound C , construct
g.s.m. machine Mo and then test TC(L(G])) for emptiness.

However, this does not simplify essentially the proof of decid-
ability of the DOL-equivalence problem since the very difficult result
that equivalence implies bounded balance (Theorem 3 in [2]) is still
needed.
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