THE DESIGN AND IMPLEMENTATION OF A
SPARSE MATRIX PACKAGET

by
Alan George
and
Joseph W.H. Liu
Research Report CS-77-21

Department of Computer Science
~ University of Waterloo
Waterloo, Ontario, Canada

June 1977

Research supported in part by the Canadian National Research Council
under grant A8111.

ABSTRACT

Software for solving sparse systems of linear equations typically
involves fairly complicated data structures and storage management. In many
cases the user of such software simply wants to solve a system of equations,
and should not have to be concerned with the way this storage management is
actually done, or the way the matrix components are actually stored. In
this paper we describe a‘sparse matrix package which effectively insulates
the user from these considerationﬁ, but which still allows the user to con-

veniently use the package in a variety of ways.

§1 Introduction

Computer subroutines for solving the dense linear equations
problem involve conventional numerical data types such as one and two
dimensional arrays of floating point numbers, which are already available
in the programming languages normally used for numerical compuﬁation. The
array storage for these subroutines is known as soon as the number of
equations to be solved is prescribed, and the number of parameters to such
procedures is usually quite modest, typically only four or five. Finally,
the number of subroutines which are used to solve a problem of a particular
type is seldom greater than two, and often only one. All these aspects of
software for solving the dense linear equations problem make the intellec-
tual overhead involved in learning to use thé subroutines fairly small.

The user is already familiar With the way the data is stored, the number of
data items to keep in mind is modest, and the number of subroutines used is
also small.

Unfortunately, almost none of the above is true about subroutines
which implement algorithms for solving sparse linear systems. Most of the
déta structures used are sufficiently unconventional thét they are not
provided as data types in the language of implementation. The amount of
storage required is usually unpredictable, and is not known until at least
part of the overall sequence of subroutines has been executed. The overall
method of solution is multiphase, with ample opportunity (and usually the
necessity) for storage overlays. Finally, due to the complicated data
structures employed, the subroutines tend to have Tong argument lists,

most of which have little or no

meaning to the user of the subroutine unless he cares to know how the
data is stored.
In this article we describe the design and implementation of what

we loosely refer to as a user interface for a Fortran sparse matrix package

developed at the University of Waterloo. This interface is a layer of soft-
ware between the user, who has a sparse linear system to so]ve, and the
numerous subroutines which implement the various phases of the solution pro-
cedure (described in detail in section 2). This layer of software provides
storage management services, insulates the user from the complicated data
structures used by the subroutiﬁes, and provides a convenient means of com-
munication between the user and the subroutines. It also provides sequen-
cing control, so that subroutinés are called in the correct order, and con-
venient checkpoint/restart facilities. A]thdugh we describe the interface
only as it relates to solving sparse positive definite systems of equations,
it will be obvious that the method used to implement the interface is
applicable in a much wider context. The actual package handles both symmetric
and unsymmetric problems, but if assumes that the matrix structure is sym-
metric, and that row and/or column interchanges are not required to main-

tain numerical stability.

§2 Problem Overview

In order to appreciate the need for an interface as suggested in
the introduction, we review the important subtasks in the overall solution
scheme, and identify the ways the package might be used. For definiteness,
and to provide notation and a framework for subsequent discussion, suppose

the sparse N by N,positive definite system of equations to be solved is
(2.1) Ax = b.

For some N by N permdtation matrix P, Cholesky's method is applied
to PAP, yielding the triangular factorization

(2.2) PAPT = LL",

where L is Tower triangular. Then the two triangular systems Ly = Pb and
LT (Px) = y are solved. Thus, instead of (2.1), the formally equivalent

system
(2.3) (PAPT)(Px) = Pb

is solved. The crucial practical point is that the reordered system can
lead to enormous reductions in storage and/or computation compared to
applying Cholesky's method to the original problem (2.1), (assuming of
course, that sparsity is exploited)}.

It is natural to view the above procedure as consisting of four
distinct phases:
Step 1 (Order) Find a "good" ordering (permutation P) for A.
Step 2 (Data structure set-up) Determine the Tocation of the nonzeros in

L, where PAP" = LL", and set up the appropriate data structures.

Step 3 (Factor) Factor PAP' into LL'.

Step 4 (Triangular solution) Solve Ly = Pb and L'z = y, and then set x = P'z.

Our situation is that we possess a collection of subroutines for finding
orderings, determining the corresponding structure of L, setting up various
data structures, and performing the actual numerical computation. That 1s,‘
we have several computer implementations for each of the phases above; ' for
purposes of discussion we will label these program modules ORDERi, SET-UPi,
FACTORi, and SOLVEi, i = 1,2,g:.,m, where m is the number of distinct order/
set-up/factor/ solve combinations we have available. We refer to each com-

bination collectively, as a method or strategy. In specific circumstances,

each method has advantages over the others; however, note that we are not
concerned here with the development of these various ordering a]gorithms,
storage schemes, etc. Our objectiye is to package this software so
that it can be easily used by those who have problems to solve, but who do
not have the time or the inclination to learn any details about how it is
done.

In order to make this packaging effective, we must identify how
‘these modules might be used, assuming a user was prepared to learn the
appropriate calling sequences and the exact nature of their parameters. The
most obvious way would be to choose method i, and call the sequence of sub-
routineSIORDERi, SET-UPi, FACTORi, and SOLVEi. However, different methods
will in general require different storage and computation, and the best

method to use depends on the size and origin of the problem. In principle,

these quantities are known at the end of step 2, so the user could execute

ORDERi and SET-UPi for several dififerent i, choose the most attractive method
k, and then execute FACTORk and SOLVEk. Ideally, to avoid re-executing
ORDERk and SET-UPk, the raesults from the currently best SET-UPi should be
saved until k is determined. |

When the user has selected a method i and executed SET-UPi, he may
use FACTORi and SOLVEi in several ways other than the normal case where he
has a single problem to solve. In some contexts many problems having the |
same zero-nonzero structure must be solved. Since ORDERi and SET-UPi depend
only on the structure of A and not its numerical values, they do not have to
be executed more than once, and if FACTORi and SOLVEi are to be executed over
an extended time period, the output frdm SET-UPi should be saved so that
execution can begin with FACTORi for each new numerical problem. In still
ather gituations many problems which differ only in their right hand sides
must be solved, again sometimes over an extended time period. In this case
only SOLVEi need be used repeatedly, and the output of FACTORi may be
saved and recovered for each new right side.

The above discussion identifies four modes in which a user might
use the software modules which implement steps 1-4 above. In addition to
the normal case where four modules corresponding to one method are called
in sequence; additional modules may be called, and/or some may be repeatedly
called, in order to a) select the most desirable method, b) solve many prob-
lems having the same structure, or c) solve many problems differing only in
their right hand side.

We have now discussed some important problems a user could deal

with, given the software modules and the patience to learn how to call each

of them. Our claim is that this investment in time is likely to be high."
As we noted earlier, the elaborate data structures usually mean that the
argument lists are lengthy. In order to use the modules efficiently, the
user must determine which arrays must be preserved as input to the next
module, and whiéh ones can be destroyed (réused) by that module. 1In all but
the standard mode of usage discussed above, the user must be aware of all
information that needs to‘be preserved if the computation is to be restarted
at a later time. Finally, perhaps the most persuasive argument for in-
sulating the user from all these considerations 1is that storage require-

ments for some of the sparse matrix subroutines is often unpredictable. The

user must guess how large some arrays must be declared; if he guesses low,
the module will not execute successfully, and if he guesses high, some

storage will be wasted.

§3 Design Considerations

3.0 Introduction

-In the previous section we identified what could be Toesely de-
scribed as the functional capabilities that our sparse matrix package should
possess. In this section we descend to the operational level and examine
the actual components of the interface, from the user's view. Althaugh we
defer most of the discussion of the actual implementation of the interface |
until section 4, it is helpful in thfs section to be aware of the basic
approach. Briefly, the user of/fhe package supplies a single one dimensional
array S along with its declared size MAXS. All array storage is a]Tocated

from S by the interface, and the origins of these arrays are transmftted from

module to module in a COMMON area. Other inforhation about the data structures
along with control information is also passed from module to module through a

COMMON block.

We now describe the interface components. We first augment the
list of steps discussed in section 2 to include the poimts of information
exchange between the user and the software modules discussed in the previous
sections. We then discuss the respohsibi]ities, desirable features,and pos-
sible abnormal completions of the implementation of each step in this aug-
mented list.

Step 1 (Initialization)

Step 2 (Input nonzero structure) Input the (i,j) paifs for which Aij $ 0.
Step 3 (Order) Find a "good" ordering for A (i.e., find P).

Step 4 (Data structure set-up) Determine the Tocation of the nonzeros in L

and set up the appropriate data structures.

Step 5 (Input A) Input the numerical values for Aij‘

Step 6 (Factor) Factor PAPT into LL.

Step 7 (Input b) Input the numerical values for b.

Step 8 (Triangular solution) Solve Ly = Pb and L7z = Yy, and then set x = P'z.
The discussion in section 2 concerning the various modes in which

the package might be used strongly suggest the need for a save/restart faci-

lity. The possible abnorma] terminations discussed in the following sub-

sections also illustrate the need for such a capability. Thus, we include

the‘f011owing two steps, whichni]oosely speaking) can be inserted anywhere

in the‘1ist above.

Step S (Save) Save the current results on a specified input/output unit.

Step R (Restart) Read results written by execution of Step S from a
specified input/output unit.

3.1 Initialization Step

This module is called before any part of the package is used. Its
role is to initialize certain variables, to set default values for options,
and perform some installation dependent functions such as setting the logi-
cal unit number for the printer, initializing the timing routine,etc. The

Fortran statement is simply
CALL INIT(S)

where S is the working stbrage array declared by the user for use by the package.

3.2 Input of the Matrix Structure

This step represents the first serious communication with the

package. Our algorithms for finding orderings represent the matrix structure

\

as a symmetric graph in the array pair (XADJ, ADJINCY); the nodes adjacent
to node i (columns subscripts of the nonzeros in row i of A) are stored in
ADJNcy(k), for k = XADJ(i), XADJ(i) + 1,...,XADJ(i+1) - 1. However, it is
unlikely (or at least not at all cleér) that the user will have this re-
presentation available. In many situations the (i,j) pairs for which

Aij £ 0 will become aQai]ab]e to the user in a more or less arbitrary‘order,
and thus the values of XADJ cannot be determined until the entire structure
of A is known. Thus, the user would like to be able to communicate |
the (i,j) pairs in any order he chooses. Our package records this
information, eliminating duplications, and when all pairs have been com-
municated, the appropriate internal representation is generated. The method
used to communicate the fact that Aij + 0 is the simple Fortran statement
CALL INIJ(I,J,S). When all pairs have been input, the statement CALL IJEND(S)
is executed to carry out the transformation‘to the internal (XADJ, ADJINCY)
format. Note that the user is insulated from all the various internal data
structures used in the recording and manipulation of the information. Thé

parameter S in the subroutine references is again the working storage array.

Recall from our discussion in section 2 that a user may wish to
investigate the relative merits of several different methods, which implies
that we should be able to restart the computation at the beginning of the

ordering phase, and avoid re-inputting the matrix structﬂre. To do this

- 10 -

we execute the Fortran statement
CALL SAVE(K,S)

where K is the Fortran logical unit on which the output of IJEND is to be
written, along with other information needed to restart the computation at
this point. If execution is then terminated, the state of the computation

can be re-established by executing the two statements

CALL INIT(S)
CALL RESTRT(K,S).

If a user wishes to return to this state of the computation during the same
execution, the subroutine INIT does not have to be executed.

§3.3 Finding the Ordering and Setting Up the Data Structures

For our class of positive definite problems, there are important
reasons for performing the ordering and data structure set-up tasks serially,
in separate subroutines. An important reason is that temporary storage used
by the ordering subroutine can be reused by the data structure set-up sub-
routine. However, from the user'sview, there seems 1ittle reason to seg-

‘regate the two steps. The output from the ordering routine is in itself of
little interest to the user, sincé it is simply a permutation vector (and
for some méthods a small amount of partitioning information). The user is

really interested in the implieations, in terms of storage and computation,

of using the ordering, and these are only known after the analysis of the
structure of L has been performed. Thus, in our package the user invokes

the execution of steps 3 and 4 (ordering and data structure set-up) by

-1 -

executing the Fortran statement
CALL ORDERi(S)

where i is a numerical digit indicating the method (order/set-up/factor/solive
sequence) to be used.

What can go wrong? First, there may not be enough storage in S to
execute the ordering algorithm. In this case the user can exdcute SAVE (if
he has not already done so at the end of the previous step)‘and after de-
claring a larger S, he can exdcute RESTRT and call ORDERi again. The out-
put of the unsuccessful execution of ORDERi tells the user how large S must
be to execute the ordering subroutine. The same SAVE/RESTRT strategy can
be employed if the ordering algorithm aborts during execution. The ordering
subroutinescurrently in the package do not terminate abnormally as a result
of exceeding the storage provided, since they all use a fixed predictable
amount. However, some implementations of ordering algorithms do require
unpredictable amounts of storage, and some of these might be included in the
package later.

When the ordering is obtained, the appropriate subroutine is called
from ORDERi to determine the structure of L and set up its data structure. A dis-
agreeable but inevitable characteristic of many of these subroutines is that their
storage requirements are unpredictable, because the number of data structure
pointers etc. is not known until the structure of L has been fully determined.
There may be enough storage available to execute the subroutine and thereby
determine the storage needed for the data structure even though the data

structure jtself cannot be saved.

- 12 -

Thus, the interface module ORDERi may terminate in several dfsé
tinctly different ways:

a) there was not enough storage to execute the ordering subroutine.

b) the ordering was successfully obtained, but there was insufficient
storage to even initiate execution of the data structure set-up sub-
routine.

c) the data structure set-up subroutine Was‘executed, and the storage re-
quired for the data structure pointers etc. was determined, but there was
insufficient storage for those pointers.

d) the data structure was successfully generated, but there is insufficient
storage for the actual numerical values, so the next step cannot be
executed.

e) ORDERi was successfully executed, and there is sufficient storage to pro-
ceed to the next step.

If any of the above conditions occurs, the user may execute SAVE,
and reinitiate the computation after adjusting his storage declarations
(either up or down) and executing RESTRT, If a) or b) occurs, information
s supp1ied indicating the minimum value of MAXS needed so that c) will
occur upon re-execution. If c¢) occurs, the minimum value of MAXS needed
for d) and e) is provided.

‘When c) occurs, after executing SAVE, adjusting our storage de-
clarations, and executing RESTRT, we must again call ORDERi. However, the
interface will detect that the orlering has already been found, and will skip
that part of the computation. Note that if the user is simply using the
package to select a particular method, c) may be an acceptable termination

state,

- 13 -

§3.4 Input of the Numerical Values for A and b

After having successfully set up the data structure for L, and
determined that enough storage for the numerical values is avai]abie, the
user may now input the actual numerical values for A and b. The position
of step 7 in the sequence of steps in section 3.0 is arbitrary; the only
restriction is that numerical values for b should be input after step 4
has been executed, and before step 8 is executed. Numbers can be trans-

mitted by subroutine calls of the form
CALL INRHS(I,VALUE,S)

where 1 refers to the subscript of the original given ordering, and not Pb.
Similarly, input of the numerical values of A is achieved by repeated sub-

routine calls of the form
CALL INAIJi(I,J,VALUE,S)

where again I and J refer to the subscripts of the unpermuted A, and VALUE

is the numerical value of A1 Thus, the user is insulated from the fact

i
that the problem, as he knows it, has been permuted. Note that there is a
“different matrix input subroutine for each method, because the data struc~
tures used are different. However, the parameter lists for all the methods
are the same, and the subroutine names are the same except for the last
digit which distinguishes the method.

In some situations, such as in certain finite element applications,

the values of Aij and b1 are obtained in an incrementallfashion. That is,

Aij may be equal to VALUE1 + VALUE2, with VALUE1 and VALUEZ being computed

- 14 -

atAdifferent steps in the user'é prbgram, which is utilizing the sparse
matrix package. For this reason, INAIJi simply adds VALUE to the appropriate
current value of Afj in storage rather than making an assignment; we can then
handle such incremental calculation of numerical values. The same remarks
apply to treatment of the right hand side. Note that this strategy implies
that the storage used for L and b must be initially set to zero before nu-
meriba] values of A and b are supplied. This initia]ization is performed
automatically by the interface during the first calls to INAIJi and INRHS,
through the use of a "state variable" called STAGE, discussed in section 4.24.

Our package has no provisions for explicitly storing the nonzero
components of A in compact form, which imp]fes that the position of step 5
in the sequence of tasks in section 3.0 is significant. The nonzero com-
ponents of A supplied by the user are placed directly into the data struc-
ture for L, and are overwritten by L during the factorization of the matrix.
Thus, the numerical values of A and b cannot be accepted by the package until
the determination of the structure of L has been completed. Theradvantage
of this approach is that it conserves storage; storage used for the ordering
and data structure set-up can be reused to store the numerical values.
Moreover, once the permutation P and the data structures are determined, the
matrix structure of A is not needed by the package, and can be (and is) dis-
carded. Finally, our experience is that in many applications the structure
of A is known much earlier than its numerical values anyway.

This decision to put the numerical values of A directly into the
space to be occupied by L has a disadvantage as well. Obviously, if the
(i,j) pairs for which Aij + 0 and the numerical values Aij are naturally
availabie at the same time, the user must save the numerical values until
after ORDERi has been successfully executed. Our advice is to write out the
(I,J,Aij) triples on an auxiliary file at the same time INIJ(I,J,S) is

called, and then later read the file and insert the numerical values using

- 15 -

INAIJi. The right hand side b .can be handled similarly if it is inconvenient

to compute it when it is needed.

§3.5 The numerical computation

The algorithm used to perform the numerical computation is the
standard Cholesky method. The actual implementations obviously vary across
the methods, since different data structures aré involved. However, this
again is a fact that should not concern the user.

Up to this point we have distinguished between the factorization
and solution steps, but in the actual interface both steps are initiated by

the single Fortran statement
CALL SOLVEi(S)

where S is the working storage array for the package, provided by the user.
It turns out that enough information can be retained by the inter-
face to allow the user to handle the various possible situations discussed

in section 2 (multiple problems having a common structure, multiple right

hand sides etc.). Again through the use of the state variable STAGE, dis-
cussed in the next section, the interface can detect upon entry to SOLVEi
whether the factorization of the matrix has already been performed, and

bypass executing that part of the module.

- 16 -

§4 Implementation and Features

The crucial feature of this sparse matrix package is the layer of
user interface routines, which relieves the user from the tedious and error
prone storage management task. As far as the user is concerned, he needs
oﬁ]y to know the interface modules, which are extremely easy to use. The

skeleton program below illustrates how simple it is to use the péckage. The
labelled COMMON block USER is discussed in section 4.1.
COMMON /USER/ MSGLVL, IERR, MAXS

REAL S(10000)

MAXS = 10000

CALL INIT(S)

Input of adjacency pairs by repeated use of
{ CALL INIJ(I,J,S) }

CALL IJEND(3,S)
CALL ORDERi(S)

Input of the matrix nonzeros by repeated use of
{ CALL INAIJi(I,J, ALJ, S) }
Input of the right hand side by repeated use of
{ CALL INRHS(I, BI, S) | }

CALL SOLVEi(S)

{So1ution is now in the first N locations of S}
STOP |
END

-17 -

In the previous two sections, we have discussed the functional
capabilities and the design objectives of the package. We now examine the
i%p!ementation details of the interface. Figure 4.1 shows that the user is
completely insulated from all the sparse matrix routines; communication is
méde possible via a handful of interface modules. In other words, fhe inter-
face serves as a bridge between the user and the set of sparse matrix rou-
tines and at the same time it provides communication among the matrix routines.
Communication is done through common blocks, most of which need not even be

considered by the user. We shall discuss them in detail below.

INIT

INIJ

TJEND |
ORDERi SPARSE
e roneresacon]

MATRIX
S INAIJi

E INRHS

ROUTINES

R SOLVEi

SAVE

RESTRT

PSTATS

USER INTERFACE ROUTINES

Figure 4.1

- 18 -

§4.1 User/module Communication

As noted earlier in section 3, the user supplies a one dimensional
rga1 array S, from which all array stofage is allocated. In particuiar, the
interface allocates the first N storage locations in S for the solution
vector of the linear system. After all the interface modules for a par-
ticu]ar method have been successfully executed, the user can retrieve the
solution from these N locations.

There is one labelled COMMON block that the user must provide,
having three variables: ,

COMMON /USER/ MSGLVL, IERR, MAXS.

The variable MAXS is the declared size of the one dimensional array S and

it must be set by the user at the beginning of his program. For each module

in the interface that allocates storage (e.g. INIJ, IJEND, ORDERi), MAXS is
used to make sure there is enough storage to carry out the particular phase.

| When a fatal error is detected, so that the computation cannot

proceed, a positive code is assigned to IERR. The user can simply check

the value of IERR to see if the execution of an interface module has been

successful. This error flag can be used in conjunction with the save/restart
feature to retain the results of successfully completed parts of the compu-

tation, as shown by the program fragment below.

CALL @RDERi(S)
IF (IERR.EQ.O0) G@ T@ 100
CALL SAVE(3,S)
STOP
100 CONTINUE

-19 -

In case an error is found in ORDERi, unit 3‘w111 be used to save
the relevant data in the storage array. The contents of the data saved
coU]d be the adjacency structure of the métrix, the ordering, or the or-
dering together with the data structure (depending on what went wrong,‘as
discussed in section 3.3).

| The first variable MSGLVL in /USER/ stands for "message level®,
and governs the amount of information printed by the interface modules. Its
default value is two, and for this value a relatively small amount of sum;
mary information is printed, indicating the completion of each bhase and the
values of some important numbers, such as the amount of storage used by each
module. When MSGLVL is set to one by the user, only féta1 error messages
are printed; this option could be useful if the package is béing used in
the "inner loop" of a large computation, where even summary information
would generate excessive output. Increasing the value of MSGLVL (up to 4)
provides increasingly detailed information about the computation.

In many circumstances, our package will be imbedded in still
another “"super" package which models phenomena which produce sparse matrix
problems. Messages printed by our package may be useless or even confusing
to the ultimate users of this super package, or the super package may wish
to field the error conditions and perhaps take some corrective action which.
makes the error messages erronsous. (See section 4.2.2 for an example,)
Thus, all printing by the package can be unhibited by setting MSGLVL to

zero.

- 20 -

If all phases of a method execute successfully, in addition to

the solution vector, the user may want to obtain statistics of the parti-

cular run. In view of this, the package provides a COMMON block for

statistics:

COMMON /STATS/ ORDTIM, ALOCTM, FCTIME, SLVTIM, FCTOPS, SLVOPS,

where ORDTIM
ALOCTM
FCTIME
SLVTIM
FCTOPS
SLVOPS
ORDSTR
ALOSTR
SLVSTR
OVERHD

ORDSTR, ALOSTR, SLVSTR, OVERHD

the time used to find the ordering.

the time used for data structure set-up.

the time used for the factorization step.

the time used for the triangular solution step.

number of operations required by the factorization step.
number of operations required by the triangular solution.

the storage used for the ordering subroutine.

the storage used for the data structure of the permuted system.
the storage used by the SOLVEi module.

the overhead storage for the problem.

However, the user does not have to know anything about /STATS/. A1l he needs

to sﬂpp]y is the statement

CALL PSTATS

at the end of his run to get the required information.

If the package is used as described in section 2 to select a

method, PSTATS could be called after executing ORDERi for each i, thus

providing storage information for each method. Of course, the user could

also obtain the storage information during execution by including the STATS

common declaration in his program and examining the appropriate variables.

- 21 -

In order to supply timing information, the package assumes the
existence of a real function DTIME which returns the processor execution
time that has elapsed since DTIME was last referenced. Thus, a DTIME

fwnction must be supplied for each installation of the package.

§4,2 Module/module Communication

There are two labelled COMMON blocks used for communication among
modules within the interface. They are the control block and the storage

map block:

JCNTROL/ STAGE, MXUSED, MXREQD, NEQNS, NEDGES, METHOD,

{other method-related control variab1es}

/SMAP/ PERM, INVP, RHS,

{data structure pointers}.

The /CNTROL/ block has ten integer variables and contains control information
about the specific run. There are fifteen variables in the /SMAP/ block and

they form a storage map of the array S.

- 22 -

4.2.1 Locations of Storage Arrays

Since storage management is the responsibility of the interface,
itjmust be able to tell the various modules where data should be stored or
has been stored. The fifteen variables in the /SMAP/ block are used to
keép.the locations (origins in S) of the various arrays used in the parti-
cular storage scheme. These storage schemes differ in complexity across
the methods, so the same /SMAP/ block must be used in the corresponding

routines CQRDERi, INAIJi and SOLVEi.

RHS >

right hand side vector
PERM —2>7

permutation vector
INVP —>

inverse permutation vector
XENV — >

index to envelope structure
DIAG —>

diagonal of the matrix
ENV —_— '

envelope of the matrix
Figure 4.2)h Storage allocation for the symmetric

envelope method.

- 23 -

In figure 4.2, there is an example of the storage allocation for
the symmetric envelope wmethod [3]. Since three vectors are sufficient for

the mati-ix structure, the corresponding /SMAP/ could be:

/SMAP/ PERM, INVP, RHS, DIAG, XENV, ENV, IPAD(9)

4.2.2 Save/restart Implementation

The SAVE routine saves the control information in/CNTROL/, theé storage
pointers in /SMAP/, as well as the storage veetor S. In this way, the state
of the computation can be re-established by executing RESTRT, which restores
the /CNTROL/ and /SMAP/ blocks, and the vector S.

The variable MXUSED in/CNTROL/is used to avoid saving irrelevant
data from S. After the successful completion of each phase, MXUSED is set
to the maximum number of stofage.]ocations used thusfar. It is then only
necessary to save the first MXUSED locations of S whenever the routine SAVE
is called.

Some operating systems allow a program to change the space it
occupies in main storage during execution. Thus, in some instailations the
user of our package might be able to dynamicd11y increase or decrease the
size of the working storage S. He can determine what the value of MAXS
should be by declaring the common block CNTROL in his mainline program,
and examining the value of MXREQD. At the end of each successfully executed
phase of the computation, MXREQD is set to‘the minimum value of MAXS re-

quired to successfully execute the next phase of the computation.

.24 -

It is often the case that when this dynamic growing of program
space is provided, the effect is to increase the space allocated to un-
labelled COMMON, which is usually assigned the highest memory 1o¢ations in
the user's program area. In such a circumstance the array‘S in the user's
prdgram would have to be declared in blank common|

In this connection, we might have asked the user of our package
to always declare S in a blank or labelled common block, and consequently
avoided having the parameter S qppearing in all our interface modules. While
there were advantages and disad&antages to this, we felt that in balance our
current decision allowed the user somewhat more flexibility. in some ap-
plications the array S which the user passes to the sparse matrix package
may actually be a segment of the user's own wdrking storage arrays, and MAXS
is simply the amount of that array left over by his own program's computation.
It is sometimes inconvenient to arrange that the storage made available to

the package be in blank common, or an appropriately labelled common block.

4.2.3 Method Checking

As we discussed in section 2, using a particular "method" means
calling the appropriate interface routines ORﬁERi, INAIJi, and SOLVEi, where
the Tast character is a numerical digit denoting the method. These ordering,
input, and solve modules cannot be mixed since they in general involve dif-
ferent data structures for L. In order to ensure that these modules are not
inadvertently mixed by the user, ORDERi sets the variable METHOD equal to i,

and this variable is checked by subsequently executed modules INAIJi and

SOLVEi.

- 25 ~

4.2JlSfage(Sequence)Chécking

| Another control vériab]e that deserves special consideration is
the STAGE code. As its name implies, it is used to keep track of the
~current step or stage of the execution. This variable is particularly
imbortant in connection with the save/restart feature. In restarting the
system using the RESTRT routine, the STAGE code in/CNTROL/is restored, and
it indicates the last succeésfﬂ]]y completed stage before the routine SAVE
was called. In this way, the execution can be restarted without repeating
already successfully completed steps.

Another function of this variable is to enforce the correct ex-
ecution sequence of the variousﬂﬁﬁterface routines. Before the actual
execution of each routine, the STAGE code is used to check that all pre-
vious modules have been successfully completed. This avoids producing
erroneous results due to improper processing sequences, or accidental
omission of steps.

The content of the variable STAGE is on1y changed after a phase
has been successfully executed. When an error occurs during the execution
of the phase, the STAGE code remains unchanged. This prevents the execution
of all the subsequent phaées, even if they are invoked by the user. As
mentioned in sections 3;4 and 3.5, STAGE is a]so used by the modules to
determine whether some initialization is necessary in a module, or whether
part of the module has already saccessfully executed during a previous call to it.

4.2.5 Storage Allocation of Integers and Floating Point Arrays

The ANSI Fortran standard specifies that the numbers of bits used to
represent integers and floating point numbers are the same. However, many
vendors provide the user with the option of specifyihg "short" integers,
either explicitly in declarations such as "INTEGER*2", or via a parameter to

the Fortran processor which automatically represents all integers using fewer

- 26 -

bits than used for floating point numbers. Since a significant portion of
the storage used in sparse matrix computation involves integer data for
pointers, subscripts etc., it is desirable to try to exploit these short
integer features when it makes sense to do so.

Our interface contains a variable RATIO, set in the module INIT,
which specifies the~ratio of the number of bits used for floating point
numbers to the number used for integers. In our package floating pbint arrays
are declared REAL, integer arrays are declared INTEGER, and RATIO is set to 1.
However, if the size of the integer representation is halved, (either through
changing the integer array declarations, or specifying a system parameter, or
by some other mechanism), then the only change required is to set RATIO to 2
in INIT. The interface then uses{RATIOlto allocate only [p/RATIO]| elements
of S for integer arrays of length p. Since a good portion of the real storage
vector S is allocated for integer arrays, the provision for different lengths
of integér and floating point numbers may lead to word boundary probiems,
when the'integer arrays are passed to the sparse matrix routines. This is
overcome by always starting each array at a boundary of a floating point
number!in S. 1In other words, the storage pointers in /SMAP/ are defined
with respect to the storage vector S.

The variable RATIO would also be set to 2 if the floating point arrays
were declared to be double precision. However, we assume that the declara-
tion of S that the user makes in his program is of the same type as that used
for the floating point computation, so the user's declaration of the working
storage array would also have to be double precision. We also make the

reasonable assumption that RATIO = 1.

- 27 -

§5 Concluding Remarks

The numerous examples supplied in the Appendix serve to illustrate
that the interface meets the functional requirements outlined in section 2.A
The error messages printed also illustrate how the use of the internal
parameters METHOD and STAGE discussed in sectjon 4 serve to protect the user
from many of the potential blunders.

It is a relatively simple task to include an additional layer of
software around the various ORDERi, INAIJi and SOLVEi modules, to provide an
automatic method-selection feature in the package. The user would then call
SELECT, INAIJ, and SOLVE, where SELECT would determine the value of the in-

ternal variable METHOD by calling each ORDERi, and INAIJ and SOLVE would
.ca11 the appropriate INAIJi and SOLVEi modules according to the value of
METHOD. ~Of course,the selection of the methbd could depand on various
criteria, so SELECT might have some parameters.

There are advantages and disadvantages associated with this second
layer of software. One advantage is that the user must remember even less
about the package in order to use it, and will use the most efficient method
(according to the criterion SELECT uses). There is a danger with the
_package as it stands.in that a user may éimp]y choose a method and not bother
investigating other possibly more efficient ones included in the backage.
Obviously there is a tradeoff here that is difficult to quantify, since
SELECT exacts a price which might offset any gains realized through
choosing the best method. However, in taseé where many problems having the
same structure must be solved, it would appear that a strong case could be

made for having a SELECT module in the package.

We regard the case for having general INAIJ and SOLVE modules as
much weaker than that for having a SELECT modiule. The main disadvantage is
that under most operating system environments, all the INAIJi and SOLVEi
modules of the package would be loaded during execution of SOLVE, even
though only one of each would be actually executed. This problem was solved
in the EISPACK system [5] on IBM computer systems by using the exeéution
time linking and loading features provided by 0S/360. However, we reject
this approach because not all operating systems provide such facilities.

To summarize this point, we regard a SELECT module as desirable, and plan to
include one in a future version of the package. However, we do not think
the advantages of having a genefa] INAIJ and SOLVE warrant their inclusion.

The use of the interface routines INIJ and INAIJi provides great
flexibility in the input of the matrix structure and matrix components. How-
ever, for systems with large overhead in subroutine calls, the repeated use
of INIJ and INAIJi can be expensive. In view of this, the package includes
interface routines which allow the input of an entire row or subarray of non-
zero subscripts and nonzero components. This can be useful when the structure
and nonzeros are available in a more structured manner.

At the moment.}all our sparse‘matrix software lies within the
portable subset of Fortran specified by the PFORT verifier [4]. The same
applies to the interface routines, with only one exception: array types
are allowed to change across subroutines. We do not regard this as a
serious violation, since it is tolerated and handled uniformly by most
systems. As described in section 4.2.5, we have been careful to allocate

storage for arrays in such a way as to avoid the alignment problems which

sometimes occur, particularly on IBM 360/370 systems, when array types are

mixed in this way.

- 29 -

One of our objectives in creating the interface was to reduce the
time and effort required to use our sparse matrix software. We feel this
has been achieved. The parameter lists for the various interface modules
are short, and apart from the storage array S, théy all mean something
specific to the user and his problem. Furthermore, except for the Tast
character in the module names (which distinguishes the method), the names
of the modules are the same across the various methods. Thus, there are

relatively few things for the user to remember.

- 30 -

§6 References

[1] W.S. Brown, "An operating environment for dynamic-recursive computer
programming systems", Comm. A.C.M. 8 (1965), pp. 371-377.

[2] W.M. Gentleman and Alan George, "Sparse matrix software", in Sparse
Matrix Computations, edited by J.R. Bunch and D.J. Rose,
Academic Press, New York, 1976, pp. 243-261.

[3] Joseph W.H. Liu, "On reducing the profile of sparse symmetric matrices",
Report CS-76-07, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada (February 1976).

[4] B.G. Ryder, "The PFORT verifier", Software Practise and Experience 4
(1974), pp. 359-377.

[56] B.T. Smith, J.M. Boyle, B.S. Garbow, Y. Ikebe, V.C. Klema, and
C.B. Moler, Lecture Notes in Computer Science, Matrix Eigensystem
Routines Eispack Guide, Springer Verlag, New York, 1974.

[6] USA Standard Fortran. ANS X3.9-1966, Amer. Nat. Standards Inst.,
New York, 1966. ‘

- 31 -

APPENDIX

In this appendix we provide several mainline programs which
illustrate how the package can be used in the various modes discussed in
section 2, In order to keep the programs short, we utilize the subroutines
GRID, GRIDA, GRIDB1, GRIDB2, GRIDEl and GRIDE2, whose Fortran listings are
given below. An approximate solution to the Poisson equation U + uyy = f
is computed on the domain R = (0,1) x (0,1), using the standard 5-point
difference operator on a regular n by n grid, with grid points (ih,jh),
1 <1 s n, h = 1/(n+l). The subroutine GRID uses the sparse matrix package
routines INIT, INIJ, and IJEND to set up the structure of the coefficient
matrix A. The subroutine GRIDA uses the sparse matrix module INAIJ1 (since
we use ORDER1 in all our examples) to insert the numbers for A into the
package. The subroutine GRIDB! uses INRHS to insert the agppropriate right
hand side b so that the solution to the continuous problem is u(x,y) = e(x+y),
and GRIDE1 computes the error in the computed (discrete) solution. The sub-
routines GRIDB2 and GRIDE2 are analogous, except the solution to the problem
they treat is u(x,y) = sin(x-y).

The programs were run under the WATFIV debugging compiler,
developed at the University of Waterloo, on an IBM 360/75 computer. Since

the code generated by the compiler has extensive error checking overhead,

the execution times are quite large. All times reported are in seconds.

i
o
[32]

!

44 k¢
nanLIY
o]
ANNILROD 0o¢
QARILNOD 00t

(s *0°t- *(L~p “I)ENS LT) LLIVNT TT¥D (L *3IN° £) 4T

(s

0°t- ‘(0 *1-I)90S ‘LTI)LILIVRI 7T7¥D (1 *3aN°* I)4ax

(s “0°h ‘LTI ’rYI JLLIVAI TIVD
(c’1)dns = r1
. N ‘L = 00l OQ
N ‘L =1 002 oa

= = " L)

L+ 8x{t - I) = (0 ‘1)AnS
- e e 8 et e B e e 40 e o e e e 3
. *QI8d IAL 40 ONIUIU¥YO MOY Xd o}
KO¥ JYVORVIS JHL OL ONOJASIHEOD €NS A QI LVHINID 2
SIATEDSEANS HHI "ZxxN'°*"°’2'L SUIDIINI IHIL 2
0INO AT¥9 IHI 40 (r’I) SITVYNIQ¥UOD dHI SAYW €0S 2
2
o}

e o ok b o oGt o o e o oK R RN R R R R 0 K R T e oK K K ok AR S 3 R K O KO IR A Rk e R R ok R ok
N ‘PI *r ‘Y ‘dos 4IOIINT
(L) s Tvay
Ao 00 K SR 3 7 R R 0 KK K R R AR R R R ek kR ok K ok ko D
o

(s ‘N) vaigo INILNCHENS
. o)
o e 2 e 3 3K o 3ot o 6 o o 3 90 ko R K 2K o K 0K R AR RO 3 3 2K oK K R 3K K R R o o o o ok ok kR ko O

HOLOIA IADYHOLS ONINHOM - S
{ Z=x%xN SI S$NOILVNDI J0 g3qauay
IHL IYHI SIITRI) AIY9 EHI JO 42IS - N
-53313uY8¥d INJNI

voubouw

e ok ok 3 o A ok 0RO K K ok 6 A K o i e e MM K o o o ok o K KK o m ok R ok ok kokok kR Rk ok okok ok kD)
B m ok Ak A oA K R K Ok K ok R K ok i e ook R OR K ok R R K KRR Rk kR D
x4 “QIED K X9 N NY HO HOLYYIdJdO FOHNIYIIIIA LRIOd = G skkkx*xD
xxx JHL 404 YIULVW hxmauwwmu;u ¥ SELVMANZD *° YATIYD sxxksxd
!i!hl*!!i*!l!*i*iila*i*i&*!!iil****#*l***i&i****l&**i**i***u
WA R R R A K K kK K K K M R K A A A A O N i oK R ok o e o o o ok O ok ok ok D)

ang

NE0TIY
o
(s} gmicr 1I¥2
bo
*IYRE03 TYNEIINI OL UONLOOFLS AINIOVCIV LEIANDID MOR o
]
IANIINID 00T
IORILNDD oot
(s *(1=-r ‘I}E0Ss °CI JCINT T7¥> (1 *38°) dI
(s *(pr “L-IVans “pI Jexnr T1¥v0 (L "EN" I) AL
{r*1)Ens = I
N ‘L =0 00L 01
N ‘L = I 00Z OQ
bo]
{ s} LIRI TI¥D
2
- - - o T— - -)
re + Nell - 1I) = {p0 ’II)34S
- - - D O - U
*qIgo FHIL 40 9RI¥IgI0 mod K4]
RO¥ QEVANYIS ARBL Ol CQNOASIEE0D aNS Xd JILVEINID]
SIAIHISANS ZHL *ZexN’°°°’Z"L SUIOTLRI I3d o]
OLNO aI¥S i#l 40 (r’I) SALYNIQEOOD FHL SJIUW d0S 3
o

iiii»***********gnai**u*ffuo*utiia*a*w**u*u«**enw*****i»’**u
N ‘CI ‘0 ‘I ‘305 9IJFINI
(1!s 1vag
#l&***i**********i***b********i!i**Qﬁi****#Qt*ﬂ******iiiiﬁiu
o]
(s “8N JgIgs INILOO¥ANS
o]

PURpanmpgepppeeerr e S T T TP TR FTR ST L SIS LIS L B

40ID3IA FOVHOLS OHNIHHOK - §
(ZexN SI SNOILIY¥NDZ A0 BILRAON
393 IYHI SZITARI) QIED FHL 4D IZIS - K
-SHFLINEIVE LOANT

VWRLULLUO

*a*ii*n:fua*i**+w**n***i********'*u*a***r*fan**oa***f**nqaﬁu
et T T T TTTE TS S P VL L DAL L EL S S L L S0

*PINI O STIVD gIIVIJIY X9 T3]
sanxkxkse TE0ID08LS GIND N Xd N NY SITVIINID *°° JTIHD Ewkok kD
T L T LI T T TR TR NS SR S L L L o)
B e T T Y S T ST T T TR AT TR L LS L2 AL L J0)

- 33 -

ana
NENIITY
‘ o]
AORILNOD 002
ANNIINOD 00t
{ ({rT)s - (r?I)3)sEY “80Y8T)} XYWV = gouud
(0 ‘1)dns = (T
N ‘L = £ 00L O
N ‘L =TI 00Z 0OQ
o]
0*0 = Joxyx
HxH = ZH
(L + N)I¥0Td/0°L = B
o]

.n*n**i*uu*n*&*an**ﬁa*#**!****n****;******a!******&*i*******U

{ ux(0)2¥DT3 + Hx{T)IvOTd)axz =0 *I}a
£+ Nxfl - 1) = (p ‘T)Ens

- . - = A A e e e e b N e Sw an

& QRY 490§ NO 1€GX¥D NI SINIWWOD IS

!li*iilll#&**!*&iu*ﬁi***i****&i***&****&****u**********
NPT ’D ‘I "anSs HIOALNY
yodeT ‘zy ‘8w *()s TYaY
a**nn*uaanma&uu»n*»***§*********»****************4***0
3

2
2
o)
2

(Mosd2 ‘S “N)L IAI¥E9 IHILOCYEDNS
2

&l***i#i!l**ill*****iili**I***************i**!*!i**i*l*****u

"ROILNIOS
CILNdA0D THZI KT S0UHE WOWIXVW IHI - H0843
- @I IuYdvd Indino
40102 A 39VH03LS DNINION - S
TdwI) ¢1¢o dHL 40 FZIS -

(Z==N = SuCax Szl N
-SHILIWVEY] LA4NI

voooLvoLvLvoLu

ﬁ*!*iill!lﬁ%ﬂl*lllW%***&*{*****#i**lli{l{*i***il!*{i***i**&u
l#lﬂ}&lﬂnli**Iill§wk}*ilﬁliﬂ%******i**!*l*****&i***i&l&%*!*u
FHAANBRE T EER LU0 Igs CNY VEIdD AY QIIVEENED HITHOLd LT 2T]
mxaw 0240 K A€ K ZHI B0 B094T THL §TINEHOD "L ICTUD wxmsokrxd
uauunnnu&wuuuvuinsuw&*«*i%{&***;**ikx*ﬂ**&ii&§*§§Idi*»§**u
«x:uuuumn¢un&««&ix;uauuﬁxn*xx%n&*zwii*:aa&reaég*nxn*iuuiiiuu

ang

REOLAE
o]
ZNNILNOD ooz
: o]
- IANIINOD oot
{ § 2(D*I)dxZHx0"2~ * {L’1)U0S }SHENI TTYD
N ‘t = £ 00l OCQ
2
’ (s *(x*1+K)d “(I’K)ENS) SHERT TTVD
(s “(10)a *(1’1)ans }SHINI TTIVD
(S “(L+n"D) 3 *{N"I)ENS) SHENI TIYD
s *{o*1)4 *{(17°1)490S JISHERI 1TTV¥D
o}
N ‘L = I 002 CQ
2
Hx8 = ZH
(L + N)I¥OT14/0°L = H
-

i*%***************i******i***********li***&&!*****%********U
{ ux(P)IvOTd + Ex(I)Iv0Td)dX2 = (¢ 114

)]

*0 0l S3U9 H SY ‘KITEo¥d IUI 0L NOILNTOS INEL o

IHI 0STY ST I IVHI OS Q3IsnfcY SI QIS ANVH 1HOI¥ 2

GHI "H4[C=% AKY HxI=X H53HE4 “{X + X)axd = (711 o]

- ey e . — U . T T T e e e e U
o+ Nx{l - X} = {0 “1}ans

- ——— - o}

. *gI¥9 FPL I0 HSKIYICQEOQ #0¥ id 2

MOY (8VANVIS ZHI OL ANOJSIMY0D 48NS A9 (I I¥Y33NED o]

SIAINOSENS IHL T’ "*"’ZfL SYIDIINI IHL 2

oLNO QI¥® 3Es Jo (r’I) SIIVRIGECOD THI SJI¥X dE0S o)

, o]

l*****&**********I********i******************I***iiiiu

R ’CTI 'r "1 ’60S SIDAINI

Z4 'n *{V)s 1v3y
*lii****l**i**ii#***i*l***l**********&*******%****#**iiiiiiu
o’
{ & ‘8)1941¥9 INILNOHNENS)

o]
&i**#**l****!&********I********#*#*******i*i***%***!***u

8]

JOLOEA AOYEOLS ONINIOHR - 5 o]
(Zx%N = SNDAN SIATTIAWTI} dI¥YD FHI J0 FZIS - N 3
-S¥3IINVYEYd LOINX 2

(9

*ﬁi**i*#*ﬂ*****ﬁl*x*ﬁ**i****#******i***********#;.***l**i**b
*****#***iﬁ**%***I********r***%********&******il***********u
ot ok ok Aok E Kok Rk ok Cea ok kK Rk kokdoxackok CHkD = X CGRY HxI = X sokwxkxD
soxsokx HIHM Y (XX} TY¥ 4 NOILONAS HHI SIIVATIVT HITHH sxxxxxD
sxxknk (P'I)d KROTILS;Nd INEIWILYIS BHI X9 QIAIACHI JUV =xxxxxd
wxkex NOILOTOS Z08T 2HI QNY SNOIZIQNOD AUYANDOT JHI wxsxxxD
wxxx (L4N)/L ST H BIQI# HSIW FHL 05 *(L*0) X (1°0) ZE xxxkaxD
sxkakx OL GANASSY SI WHTHOHd IHI 20 NIVWOQ ZHL °"OTIHD smsxx*D
saaxnany N A8 N Y NO E¥OIVHEEO FONIJZ2410 INIOD ZATI swanmxx%d
sxxxxxxx Y 404 FAIS GRYH IHOIYE ¥ SIIVEINID "LOAIYD skkxxxD
unu***a;»4**5&#!!1**u*ﬂ*#ﬂ*#*{#*l*!i*«***n***&ﬂ*#****l*#***u
2o ok Tk At K AR o R o 3 oK o v e kK ok R ol o o ol ok ok K R K K o oK ek ok ok ek ok ok ke D)

N E D -

- 34 -

Example 1

This is an example of the simplest use of the package, with each
of the modules of method 1 used in sequence. The structure of A is input
using GRID, which uses INIT, INIJ and IJEND. After ORDER1 is executed, GRIDA
and GRIDE1l are used to input the numerical values of A and b respectively,
using the interface modules INATIJ1 and INRHS. The module SOLVE1l is called
to do the numerical solution, and then PSTATS is called to print out the
statistics gathered by the interface during execution. Finally GRIDE1 is
called to compute the error in the computed ‘approximate solution.

$JOB WATFIV skorkok % okok ok ook e
COMMON /USER/ MSGLVL, IERR, MAXS

FEAL S(250)
MAXS = 250
N o= 5

CALL GRID(N, S)
CALL ORDER1{ S)
CALL GRIDA({ N, S)
CALL GRIDB1(N, S)
CALL SOLVE1 (S)
CALL PSTATS
IF (IERR .GT. O) STOP
CALL GRIDE1{ N, S, ERROR)
WRITE (6, 11) EKROR
11 FORMAT (/ 6X, 31HMAXIMUM ERROR IN THF SOLUTION , E1&.5)
STOP :
END

$ENTRY

IJEND- END OF ADJACENCY PAIRS

ORDERT- RCM ORDERING

NUMBER OF EQUATIONS 25
NUMBLER OF EDGES IN GRAPH 40
SIZE OF THF ENVELOPE 30
BANDWIDTH 5

SOLVE1- ENVELOPE SOLVE

PSTATS: STATISTICS

TIME FOR ORDERING , 0.120
STORAGE FOR ORDERING 207.
TIME FOR ALLOCATION 0.030
STORAGE FOF ALLOCATIOYN 101.
STORAGE FOR SOLUTION 216,
OVERHEAD STORAGE 76.
TIME FOR FACTORIZATION ' 0.130
TIME FCR SOLVING 06.080
OPERATIONS IN TACTORIZATION 320.
OPERATIONS IN SOLVING 230.

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

- 35 -

Example 2

This is similar to example 1, except SOLVElis called immediately
after GRIDA is called. The interface detects that no right side b has been
supplied, so after computing the factorization it by-passes the triangular
solution and sets the solution to zero. After GRIDB1 is called, SOLVEl is
again called, The interface detects that the factorization has already been
performed, and only the triangular solution is performed.

$J0B BATFTIV kR ok ok ok

1 CONMON /USER/ MSGLVL, IERR, MAXS
2 REAL S {250)

3 MAXS = 250

4 N =5

5 CALL GRID(N, S)

6 CALL ORDERI1(S)

7 CALL GRIDA{ N, S)

8 CALL SOLVE1 (S)

9 CALL GRIDB1(N, S)

10 CALL SOLVE1 (S)

11 CALL PSTATS

12 IF (IERR .GT. 0O) STOP

13 CALL GRIDE1(N, S, ERROR)

14 WRITE (6, 11.) ERROR

15 11 FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTICN , E14.86)
16 STOP

17 END

$ENTRY
IJEND- END OF ADJACENCY PAIRS

ORDER1- RCH ORDERING

NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 490
5IZE OF THE ENVELOPE 90
BANDVIDTH 5

SOLVE1- ENVELOPE SQLVE
NO RIGHT HAND SIDE PROVIDED,
SOLUTICON WILL BE ALL ZEROS.

SOLVE1- ENVELOPE SOLVE
FACTORIZATION ALREADY DONE.

PSTATS: STATISTICS

TIME FOR ORDERING 0.120
STORAGE FOR ORDERING 207.
TIME FOR ALLOCATION 0.030
STORAGE FOR ALLOCATION 101.
STORAGE FOR SOLUTION 216,
OVERHEAD STORAGE 76.
TIMNE FOR FACTORIZATION 0.130
TIME FOR SOLVING 0.080
OPERATIONS IN FACTORIZATION 320.
OPERATIONS IN SOLVING 230.

MAXIMUM ERROR IN THE SOLUTION 0.945091E~03

-~ 36 -

Example 3

This is the same as example 1, except after solving the problem
corresponding to GRIDB1, a new right hand side is input using GRIDB2,
corresponding to a different problem, The module SOLVEl is called a
second time, and just as in example 2, the interface detects that the
factorization has already been done, and only the triangular solution is
performed.

$J0OB WATYFIY o ke e e ok e ok o o kO K K

1 COMMON /USER/ MSGLVL, IERR, MAXS
2 REAL ${250)

3 MAXS = 250

4 N = 5

5 CALL GRID(N, S)

6 CALL OEDER1(S)

7 CALL GRIDA{ N, S)

8 CALL GRIDBI1(N, S)

9 CALL SOLVEl (S)

10 CALL PSTATS

1 IF (IERR .GT. 0) STOP
12 CALL GRIDE1(N, S, ERROR)

13 WRITE (6, 11) ERROR

14 11 FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.86)
15 .~ CALL GRIDB2(N, S)

16 CALL SOLVE1 (S)

17 CALL GRIDE2(N, S, ERROR)

18 WRITE(6, 11) ERROR

19 STOD
20 END

FENTRY
IJEND- END OF ADJACENCY PAIRS

‘ORDER1- RCM ORDERING

NUMBER OF EQUATIONS 25
NUMBFER OF EDGES IN GRAPH 40
SIZE OF THE ENVELOPE 90
BANDWIDTH 5

SOLVE1- ENVELOPE SOLVE

PSTATS: STATISTICS

TIME FOR CRDERING 0.120
STORAGE FOR ORDERING 207,
TIME FOR ALLOCATION 0.030
STORAGF FOR ALLOCATION 101.
STORAGE FOR SOLUTION 216.
OVERHEAD STORAGE 76.
TIME FOR FACTORIZATION 0.130
TIKE FOR SOLVING 0.080
CPERATIONS IN FACTORIZATION 320.
OPERATIONS IN SOLVING 230.
MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

SOLVE1- ENVELOPE SOLVE
FACTORIZATION ALREADY DOXNE.

MAXIMUM ERROR IN THE SOLUTIOKN 0.454187E~04

-39 -

Example 4

This example is almost identical to example 3, except it illustrates
how problems having the same structure, but differing in both A and b can be
solved. After solving the first problem both GRIDB2 and GRIDA are called,

thus simulating a completely new numerical problem to be processed.

$JOB WATFIV e e o ke ok ek ok ok ke ok

1 COMMON /USER/ MSGLVL, IERR,
2 REAL S{250)
3 MAXS = 250
4 N = 5
5 CALL GRID(N, S)
6 CALL ORDER1({ S)
7 CALL GRIDA(N, S)
8 CALL GRIDB1(N, S)
9 CALL SOLVE1 (S)
10 CALL PSTATS
11 IF (IERR .GT. 0) STOP
12 CALL GRIDE1(N, S, ERROR
13 WRITE (6, 11) ERROR
14 11 FORMAT{(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION
15 CALL GRIDA(N, S)
16 CALL GRIDB2(N, S)
17 CALL SOLVE1 (S)
18 CALL GRIDE2(N, S, ERROR
19 ¥WRITE (6, 11) ERROR
20 STOP
21 END

SENTRY
IJEND- END OF ADJACENCY PAIRS

ORDER1~- RCHM ORDERING
NUMBER OF EQUATIONS
NUMBER OF EDGES IN GRAPH

SIZE OF THE KENVELOPE
BANDKWIDTH

SOLVE1- ENVELOPE SOLVE

PSTATS: STATISTICS
TIME FOR ORDERING
STORAGE FOR ORDERING
TIME FOR ALLOCATION
STORAGE FOR ALLOCATION
STORAGE FOR SCLUTION
OVERHEAD STORAGE
TIME FOR FACTORIZATION
TIME FOR SOLVING
OPERATIONS IN FACTORIZATION
OPERATIONS IN SOLVING

MAXIMUM ERROR IN THE SOLUTION 0.945091E-03

SOLVE1- ENVELOPE SOLVE

MAXINUM ERROR IN THE SOLUTION 0.454187E-04

MAXS

25
40

0.120
207.
0.020
10 1.
216.
T16.
0.130
0.080
320.
230,

I

E14.6)

- 88 -

Example 5

This example is a modification of example 2 illustrating the use
of the checkpoint/restart feature of the package. After the factorization
is computed, SAVE is executed, which writes the current state of the com-
putation on Fortran logical unit 3. The modules INIT and RESTRT are then
executed to read the Information from unit 3 and the computation resumes
at the point at which SAVE was invoked.

$JOB WATFIV ok skokoksokok kK

1 COMMON /USER/ MSGLVL, IERR, MAXS
2 REAL S(250)
3 MAXS = 250
4 N =5
5 CALL GRID(N, S)
6 CALL ORDER1(S)
7 CALL GRIDA(N, S)
8 CALL SOLVE1 (S)
9 CALL SAVE (3, S))
C
C THE NEXT DAY teeesocscoce
C
10 CALL INIT (S)
1 CALL RESTRT { 3, S)
12 CALL GRIDB1(N, 5)
13 CALL SOLVE1 (S)
14 CALL PSTATS
15 IF { IERR .GT. 0) STOP
16 CALL GRIDE1{ N, S, ERROR)
17 WRITE (6, 11) ERROR
18 11 FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6)
19 STOD
20 END
$ERTRY

IJEND- END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING

NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40
SIZFE OF THE FENVELOPE 90
BANDWIDTH 5

SOLVE1- ENVELOPE SOLVE
NO RIGHT HAND SIDE PRCVIDED,
SOLUTION WILL BE ALL ZEROS.
SAVE- STORAGE VECTOR SAVED
RESTRT~ RESTART SYSTEHN

SOLYE1- ENVELOPE SOLVE
FACTORIZATION ALREADY DONE.

PSTATS: STATLISTICS
TIMNE FOR ORDERING
STORAGE FOR ORDERING
TIME FOR ALLCCATION
STORAGE FOR ALLOCATION
STORAGE FOR SOLUTION
OVERHEAD STORAGE
TINE FOR FACTORIZATION
TIME FOR SOLVING

-39 -

OPERATIONS IN FACTORIZATION

OPERATIONS IN SOLVING

MAXIMUM ERRCR IN THE SOLUTION

0.945091E-03

0.110
207.
0.020
1C 1.
216,
76.
¢.120
0.080
320.
230,

- 40 -

Example 6

This example illustrates a situation where there was sufficient

storage provided to input the adjacency structure but insufficient storage
to execute the ordering algorithm,

$JOB WATFIV ook e e ke K e ok vk ok e Xk
COMMON /USER/ MSGLVL, IFRR, MAXS
RiEAL 5(18%)
MAXS = 185
N =5 ,
CALL GRID{(N, S)
CALL ORDERI1(S)
STOP
END

[l o U N S

$ENTRY
TJEND- END OF ADJACENCY PAIRS
ORDER1- RCHM ORDERING
NUMBLER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40

ORDER1- INSUFFICIENT STORAGE FOR
ORDERING, MAXS MUST BE AT LEAST 207

- 41 -

Example 7

This example is identical to example 1, except MAXS is not large
enough for SOLVELl to successfully execute, This situation is detected by
ORDER1, which sets IERR positive. The modules INAIJ and INRHS detect the
error condition, and do not increment STAGE, hence the error message from

SOLVE1.
$3JOB WATFIV koo sk ko ok dok ok
1 COMMON /USER/ MSGLVL, IERR, MAXS
2 REAL S(210)
3 MAXS = 210
4 N =5
5 CALL GRID(N, S)
6 CALL ORDER1(S)
7 CALL GRIDA{ N, S)
8 CALL GRIDB1{ N, S)
9 CALL SOLVE1 { S)
10 CALL PSTATS
1 IF {(IERR .GT. 0) STOP
12 CALL GRIDE1{ N, S, ERROR)
13 WRITE (6, 11) ERROR
14 1 FORMAT(/ 6X, 31HMAXIMOM ERROR IN THE SOLUTION , E14.6)
15 STOP
16 END
$ENTRY

IJEND~ END OF ADJACENCY PAIRS

ORDER1- RCHM ORDERING

NUMBER OF EQUATICGNS 25
NUMBER OF EDGES IN GRAPH 40
S1IZE OF THE ENVELOPE 90
BANDWIDTH 5

ORDER1- INSUFFICIENT STORAGE
FOR SCLVE1, MAXS MUST BE AT LEAST 216

SOLVE1- ENVELCPE SOLVE

SOLVE1- INCORRECT EXECUTION SEQUENCE.
ROUTINE INAIJT1 AND/OR INRHS MUST

BE CALLED BEFORE SCLVET,

PSTATS: STATISTICS

TIME FOR ORDERING 0.120
STORAGE FOR ORDERING 207.
TIME ¥FOR ALLOCATIGN 0.030
STORAGE FOR ALLOCATION 10 1.
STURAGE FOR SOLUTION 216.

OVERHEAD STORAGE 76.

- 42 -

Example 8

This example is again identical to example 1, except SOLVEZ is
errvoneously called instead of SOLVEl. The interface detects that METHOD
is 1, and sets IERR positive. {(Method 2 is the unsymmetric analog of
method 1, and handles the case where A % A'.)

£J08 WATFIV kakokok soskok ook ks ok ok

1 COMMON /USER/ MSGLVL, IERR, MAXS
2 REAL S(250)

3 MAXS = 250

4 N =5

5 CALL GRID(N, S)

6 CALL ORDERT(S)

7 CALL GRIDA{ N, S)

8 CALL GRIDBT(N, S)

9 "CALL SOLVE2 { S)
10 CALL PSTATS

1 IF { IERR .GT. 0) STOP
12 CALL GRIDEt(N, S, ERROR)
13 WRITE (6, 11) ERROR
14 11 FORMAT(/ 6X, 31HMAXIMUM ERROR IN THE SOLUTION , E14.6)
15 STOP
16 END

SENTRY
IJEND~ END OF ADJACENCY PAIRS

ORDER1- RCM ORDERING

NUMBER OF EQUATIONS 25
NUMBER OF EDGES IN GRAPH 40
SIZE OF THE ENVELOPE 90
BANDWIDTH 5

SOLVE2~- ENVELOPE SOLVE

SOLVEZ2~- INCOMPATIBLE ORDERING AND

SOLUTION ROUTINES, METHOD = ' 1

PSTATS: STATISTICS
TIME FOR ORDERING 0.120
STORAGE FOR ORDERING 207.
TIME FOR ALLOCATION 0.030
STORAGE FOR ALLOCATION 101,
STORAGE FCR SOLUTION 216.
OVERHEAD STORAGE 76.
TIME FOR FACTORIZATION : 0.000
TIME FOR SOLVING 0.000
OPERATIONS IN FACTCORIZATION 0.

OPERATICNS IN SOLVING C.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

