The Extrapolation of First Order Methods for
Parabolic Partial Differential Equations I

by
J.D. Lawson
and
J.LT. Morris
Research Report CS-77-20

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

July 1977



The Extrapolation of First Order Methods for Parabolic
Partial Differential Equations I
by
J.D. Lawson and J.L1. Morris
Department of Computer Science

University of Waterloo
Waterloo, Ontario

Abstract: Splitting methods for parabolic partial differential equations
based on (1,1) Padé approximations (Crank-Nicolson replacements)
are well known to produce poor numerical results when a time
discretization is imposed with time steps which are "too large"
relative to the spatial discretization. In particular such
numerical solutions exhibit an oscillatory behaviour which
increases in amplitude with a reduction in the spatial
discretization, keeping the time step constant. In contrast,
(1,0) Padé approximations {backward-difference, or fully
implicit replacements) do not suffer from these drawbacks but
are of lower order accuracy. In the present paper, a combina-
tion of fully implicit methods is used to attain second order
accuracy and to retain the favorable property of the fully
implicit scheme. The method is tested on a heat equation in
two space dimensions which possesses a discontinuity between

the initial and boundary conditions.



1. Introduction

In several recent papers, Lawson and Swayne [2], Smith, Siemieniuch and
Gladwell [5], Wood and Lewis [7], attention has been drawn to restrictions on
the time discretization in the Crank-Nicolson method when applied to certain
problems. To be precise, consider a constant coefficient heat equation in

one space variable

ou 82u

5 —% [0< x< 2] x [t >01 »

C (1.1)

subject to: wu(0,t) = u{1,t) = 0; u(x,0) = g(x) ,

where g(x) is a given continuous function of x. In particular,we are
interested in the situation where g(0) = 0 and g¢(2) = 0 so that a
discontinuity exists between the initial function g(x) and the boundary
conditions wu(0,t) =0 and u(l,t) =0 .

Superimposing a uniform grid of step size h on the space variable
in the usual way allows the replacement of the second order derivative in
eq. (1.1) by, say, the central-difference operator, namely

2
du

§
& - ;’é—-u(x,t) ¥ o(n?) (1.2)

where ze u(x,t)

u(x+h,t) + u(x-h,t) - 2u(x,t).
Eq. (1.2) is then applied to all interior mesh points to produce a system

of ordinary differenbial equations
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= av(t) (1.3)

where y = (v],vz,...,vN)T is an N-vector of the (unknown) approximation

tq U and it is assumed that (N+1)h = 2 . If we solve eq. (1.3) formally

we obtain



v(t) = exp(tA)v(0) (1.4)

where y(0) = g 1is the vector of initial values. Eq. (1.4) may be

=

written in a step wise fashion as
v(ttt) = exp(tA)v(t) , t = 1, 21,... , (1.5)

where T 1is a convenient time step.

The matrix A is the usual tridiagonal matrix of order N given by
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To obtain solutions v{(t+t), Padé approximations to the function exp(tA)

can be used. In particular,if the diagonal (1,1) approximation
(1-FM7(I+TA) = exp(ch)

. . 3 .. . oy
is used we incur an error of O(t ). This is, of course, just the familiar

Crank-Nicolson method

v(tr) = (1- A (1 +FA) y(b) (1.6)

or (1 - FA) y(tr) = (1 +FA) y(t)



If we assume that the initial function g is written as a Tinear

~

combination of the normalized eigenvectors Wi i=1,2,...,N of A, say

g:
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then the theoretical solution of eq. (1.6) may be written

N (1+%52)] "
v(nt) = I g, 2 i W. s (1.7)

i=1 (1 - —g—xi) ~1

Wwhere {Aﬁ < 0} are the eigenvalues of A gdven by
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Equation (1.7) shows explicitly that there is no stability restriction on

t for the Crank-Nicolson scheme since the growth factor associated with

eigenvector w. s (1 - %~A1)'1(1 + %—Ai). This function is Tess than 1

in modulus for all T, since all Aj < 0.
However, it is easy to see that this function has values close to
-1 if Tki is large and negative. This will be the case if h 1is small

for those X, corresponding to i = N> N-1, ... since, for example,

. 2 N . L o4
sm.[—z—(—my] = 1 and /\N = h2

Accordingly, one may expéct to see componengs oy » “N-in-1"“

of the initial condition preserved at subsequent solution steps, but with
alternating sign. For problems with smooth initial data, such an effect
may not be noticed. But, for initial conditions with discontinuities such
discontinuities are preserved and distorted rather than damped out; large

values of Cys Oy poeee characterize discontinuous problems.



Because of this oscillatory behaviour for sufficiently large 1 ,
it is commonly suggested that the time step = shou}d be restrictéd SO
as to prevent oscillatory solutions. This would imply preventfng the
numerator of the growth factor in eq. (1.7) becoming negative which

imposes the condition

Tg%~ i=1,2,....N
i

which in turn imposes the condition (approximately)

2
Ts%- (1.8)

(see [7]). However, we feel that this restriction is not strictly
necessary—osci11atory components are permissible provided they‘decay

to zero faster than the decay of the primary components. In particular,
the dominant component is damped each time step by the factor

(1 - %-A])'](I + %—x]) . In contrast the last component is damped each

time step by the factor (1 - %'XN)_](] +-% AN) . Thus, to ensure that
the higher frequency component, be it oscillatory or not, is damped to

zero faster than the lowest frequency component we require

T T
1+7AN<1+§,\1i
T T
T-gh -5
That 1is,
T T T
-1 - 52 1+ 5\ T+ %A
2
A R .
1-‘2>\1 'l-é')\N 1-—ka1



The right-hand-side inequality in (1.9) is trivially satisfied, whereas

the left-hand inequality imposes the restriction ' ‘f

T < %? (approximately).

Namely, to produce solutions which damp high frequency components at a
faster rate than the low frequency components we have a linear relation
between T and h (not second order as is commonly used). This restriction
is less severe than that implied by (1.8) but still restricts t as being
small.

If, in contrast to proposing (1,1) Padé approximations to
exp(tA) in eq. (1.5), (1,0) Padé approximations are used, then wé

obtain the familiar implicit, backward-difference scheme
(1 - TA)Y(t + 1) = y(t) . - (1.10)

An analysis of this method indicates that the method is stable for all
positive T. Furthermore, the growth factor is always positive so that no
oscillatory behaviour can arise. However, eq. (1.10) is only first order
accurate in téme, and is therefore likely to require a smaller T to attain
the same accuracy as that attainable by the Crank-Nicolson method, for
smooth initial data. To circumvent this problem, Lawson and Swayne [ 2 ]
introduce a (2,1) rational approximation which has second order accuracy
and which is unconditionally stable. The actual format of their method is

given by

(I - brA) v*

u(t) (1.11)

V¥

~

(I - brA) y*



vt + 1) = (YZ+ 1) y** - /2 y*,
where b=1-%7 and y* and y** are intermediate vectors.

This method works well in practiee.on the type of discontinuous problems of
interest here and requires roughly double the amount of work per step as the
Crank-Nicolson method. The method (1.11), however, does not lend itself to
generalizations to higher space dimensions. For this reason, we propose an
alternative algorithm which generalizes in a natural way to several space
variables.

In section 2 we introduce the novel algorithm for a constant co-
efficient equation in one space variable and test the method on a problem
of the type described by eq. (1.1). 1In section 3 we generalize the method
to two space variables and consider a two dimensional analogue of eq. (1.1).
The generalizations to higher space dimensions are described briefly in the

concluding section 4.



2. Extrapolation of the Fully Implicit Scheme
Consider eq. (1.8) written over a time interval 2t so that

1

X‘(t +21) = (I - 2tA)" " M(‘t) (2.1)

Alternately if eqw (1.8) is applied twice we have
w(t+20) = (1 -7 (1 - W), (2.2)

Consequently eqs. (2.1) and (2.2) are two alternative backward-difference

schemes for computing the solution at time t + 2t. The expansion of the

matrix inverse in eq. (2.1) produces
- 2.2y .3
v(t+ 2t) = (L + 2TA + 4°A )_ v(t) + 0 (£7). (2.3)
In contrast an expansion of eq. (2.2) produces
- 2,2 3
vt + 2t) = (I + 2tA + 3t°A%) y(t) + 0 (17). (2.4)

The Maclaurin expansion of exp(2tA) produces

y(t + 21) = (I + 20A + 20%A%) y(t) + 0 (3),  (2.5)

so that we see that neither eq. (2.3) nor eq. (2.4) is O(TZ) accurate.
However, if we combine the expansions in eqs. (2.3) and (2.4) by taking

2* eq. (2.4) and subtracting eq. (2.3) we find

y(t + 27) = (I + 27A + 2¢2A%)  y(t) + 0 (%)
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Figure 1. Amplification factors for the schemes: Backward-Difference (1);
Crank-Nicolson (2), and Extrapolation (3).



Consequently this suggests the algorithm:

(1 - 2eA)7" y(v)
g(z)(t +2t) = (1 - TA)—](I - TA)-] v(t) (2.6)
v(t + 21) = zx(z) = g(]).

M(])(t + 271)

y(t + 21) is now a second order appraximation to the solution y(t + 2t).

An analysis of the stability of the algorithm defined by eq. (2.6)
indicates that the method is stable for all positive t. In figure 1 we
have plotted the amplification factors p(z) against =z for the backward-
difference scheme, (graph 1), the Crank-Nicolson method (graph 2) and the
novel extrapolated scheme (graph 3). As can be seen;the asymptotic be-
haviour of the backward-difference scheme produces a growth factor which
tends to zero, monotonically. In contrast the extrapolated scheme has a
growth factor which leads to zero asymptotically but has a small negative
value for z > 2(1 + v2). This implies that small oscillatious could
-theoretically appear but these should be damped with increasing t. The
Crank-Nicolson method has a growth factor which tends asymptotically to -1.
Consequently errors which occur during the computation will tend to be
damped at a considerably lower rate than the rate at which the thedretical
solution tends to zero.

To show the behaviour of these schemes, we solved the problem

2

au _ du [0<x<2] x(t>0),
3t T g;? «
u(x,t) = 1,
u(0,t) = u(2,t) = 0.



Figure 2. Model problem solutions with h = 0.05 and =t = 0.1:

Fourier sum (1), Backward-Difference (2), Crank-
Nicolson (3), and Extrapolation (4).
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which has a theoretical solution

. S R . 32
u(x,t) = n§][1.—(4)”1,—1§ sin("T%) exp(IE)

The solutions obf;ined for h = 0.05 are depicted in figure 2, In the
figure , curve 1 is the theoretical solution, curve 2 is the backward-
difference solution eq. (1.8), curve 3 is the Crank-Nicolson solution

eq. (1.6) and curve 4 is the eXtrapo]ated scheme solution, eq. (2.6). In
all cases a value of the time step t = 0.1 was used.

As can be seen from the figures, the Crank-Nicolson scheme is
accurate in the interior-of the region but has a large residual error
near the boundary. If h were to be reduced, keeping T constant, the
amplitude of this residual error would increase. The backward-
difference scheme powtrays a smooth behaviour for all n but is inaccurate
uniformly across the interval. In contrast the novel scheme has a smooth
representation of the theoretical solution over the whole region, is con-
siderably more accurate than the backward-difference scheme and is com-
parable with the Crank-Nicolson scheme in the interior of the region. We
have tabulated in Table 1 the maximum errors (the difference between the
theoretical solution and computed solution) for three values of h. for
each of the three methods. Note that the actual solution at x = 1 and

t =1 1is about Q. 1.
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= 0.1 T = 0.01
Method h=0.1  h=0.05 h=0.025 | h=0.1  h=0.05  h=0.025
Backward- | 33£-01 .32£-01 .32E-01 | .36E-02  .34E-02  .33E-02
S .56E-01  .28E+00 .55E+00 | .40E-03  .10E-03  .10E-03
Extrapola- | .63E-02 .61E-02 .60E-02 | .50E-03  .20E-03  .20E-03

Table 1.  Errors in solving the madel problem at t = 1.

For T = 0.1 the backward-difference method dncurs an error of approximately
30%. In contrast the extrapolated scheme is more accurate incurring only
about 6% error. The Crank-Nicolson method incurs the maximum error at
points adjacent to the boundary. Relative to the maximum value of the so-
lution (at x = 1.0) this error is approximately %, 2% and 5 times (')
the solution for h = 0.1, 0.05 and h = 0.025 respectively.

Also in Table 1 we have tabulated the errors for a smaller value
of T =0.01. It may be seen that the errors are uniformly smaller. The
results for h = 0.05 and h = 0.025 demonstrate that the enror co-
efficient of the Crank-Nicolson scheme is just one half that of the novel
scheme (as could be shown by expanding equations 2.3 - 2.5). Also, it2

h

sholilild be noted that these Crank-Nicolson solutions all violate T < —

but satisfy 1 < 3%., confirming our previous analysis.
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3. The Extrapolated Method in Two Space Variables

Consider the simple heat equation in two space variables

Qo2

_.9.=§__g_+ag’. 0< Xoy< 25 (3.1)

Q2

subject to a given u(x,y,0) = g(x,y), and given homogeneous Dirichlet bbundary

conditions (u=0) on the boundary &2 of the square. Assume further that
g(x,y) 2 0 for (x,y) ¢ 8Q.

Following section 1 a system of ordinary differential equations

equations

(3.2)

arises when the spatial derivations in eq. (3.1) are replaced by
differences. Assuming a uniform discrgtization of size h in both x
and y directions, and that h = 2/(N+1);we have a vector y of unknowns of
dimension N2. The matrix A is N2 X Nz.

As before, the solution to eq. (3.2) is given by
v(t+t) = exp(tA)y(t) (3.3)
v(0) = g, the vector of initial values.

The backward-difference approximation in two space variables is obtained

by using (1,0) Padé approximations to the exp(tA) in eq. (3.3).

However,this naw involves solving systems of equations whose coefficient
matrix has band width 2N, only a few of whose elements per row are nonzero.
Consequently, the matrix A is split into constituent matrices A, and

A2 such that A = A] + AZ'
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Hence ,,equation (3.3) becomes
!(t+T)‘= EXp[T(A] + AZ)] v(t) (3.4)

which may be approximated by

vit+r) = eXP(TAZ)exp(TA]) v(t), (3.5)

incurring an error O(TZ). For each of these exponentials, (1,0) Padé
approximations are proposed and there then results a split form of the

totally implicit scheme, given by
(I - #A v+ = v(t)
(1 - rAz)v(t + 1) = y* (3.6)

where v* is an intermediate vector. As is well known;this two step
procedure has the advantage of being easily solved, when the components
of the second step of eq. (3.6) are reordered. 1In particu1ar;df the
second order derivatives in eq. (3.1) are neplaced by central differences
then A s an N2 X N2

A

matrix which has 5 nonzero bands. The matrices
2 and A] may be written as tensor products of N x N tridiagonal
matrices so that eq. (3.6) may be solved by implementing sequences of
tridiagonal matrix solvers.

The algorithm is first order accurate in time, unconditionally stable
and has a growth factor which tends asymptotically to zero. Hence no
residual boundary errors will be exhibited.

In contrast to eq. (3.5), eq. (3.4) may be approximated to O(Tz)

accuracy by
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y(t+r) = exp(%eA]) exp(th,) exp(%—A])v(t),

Hence, on proposing in turn (1,0), (1,1) and (0,1) Padé approximations, the

Peaceman -Rachford scheme [3]
(I - 5 A% = (I +5A)(t)

(1 - %-A])y(t+r) = (I + 5 A,y (3.7)

L
2
is obtained. An efficient implementation of this algorithm is reported

in [11.

This algorithm is second order accurate in time, unconditionally stable
but has essentially the same restriction on the‘time step t as was the
case for the Crank Nicolson method.

To obtain the two dimensional analog of the extrapolated scheme
described in the previous section;we clearly do not want to take as a basis
the backward difference scheme defined in terms of A. Rather, we propose
using eq. (3.6).

Consider this equation written over two time steps as

(1

TA] )X* = Y,(t)

~

(I - TAz)y(t+T) = y*

—_~
-
i

TA,)V** = y(t+r)

(1 - wA )y O (rar) = yox, (3.8)
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Equation (3.8) is a symmetrized application of the method (3.6) in that the
order in which the matrﬁgeslﬁ and A2 appear in the tridiagonal solutions
alternates. Eliminating the intermediate vectors in eq. (3.8) and expahding

the resulting inverses to 0(T2) we find

v(0) (te2r) = CT+2T (A +A,)+17 (30, 430, 2420 A, 420,41 ) Ty (£)+0(T

3
1 2 172 21

(3.9)

The Maclaurin expansion of eq. (3.4) is

y(t+2r) = [I+2T(A-I+A2)+2T2(A]2+A22+A A +A A )]g(t)+0(~r3)

172 7271

(3.10)
so that eq. (3.8) is 0(t) accurate,

Now consider, in addition to eq. (3.8), defining

v (te2r)

]

(1 - 2TA])'1(1 - ZTAZ)_]y(t) (3.11)
and

v(2) (t427)

(1 - 2h,) (1 - 208) 7 Iv(8)  (3.12)

Expanding the inverses in egs. (3.11) and (3.12) to O(Tz) we find

[T+2t (A +A, ) +c 2 (A 2o A, 4AL2) Ty ()40 ()

M(])(t+2T)
(3.13)

2
A TA,

v (tr2e) = (1e2e (Ao, 4P (A, 2) v (t)+0(*)

(3.14)
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Now consider the 1inear combination of the three first order schemes (3.8),

(3.11) and (3.12), defined by

v(t+2r) = ZV(O) - (!(]) + v(z)) (3.15)

Applying this weighting to the expansions in eqs. (3.9), (3.13) and (3.14)
and comparing with eq. (3.10) we find that v(t+2t) defined by eq. (3.15)
is second order accurate, Thatis;we have extrapolated the first order
methods t¢ achieve second order accuracy.

A simple stability analysis indicates that this novel method is
unconditionally stable and possesses an asymptotic growth faetar similar
to the one dimensional analogue.

The novel algorithm requires 4 tridiagonal solutions pér time step.
This compares with two required by the Peaceman-Rachford method. However,
the time step T is unrestricted in the novel scheme and consequently we
may take time steps fat least) twice as large as the Peaceman-Rachford
scheme, for a given h.

To demonstrate the numerical properties of the novel algorithm we

computed the solution to the problem

U Bzu 82u

== gt S 0< X,y< 2, (3.16)
t axz ayz

Qi

subject to u(x,y,0) = sin %—y, 0 < X,y < 23

1
o

and u(x,y,0) , vix.y) € &0 , vt > 0.
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The initial function is depicted in figure 3. The Fourier solution of

this problem is easily found to be

0 . L . 2.
u(x,y,t) = sin g-y Z{]-(~1)n]ﬁ§-sin(ngﬁ) exp(i%—(n2+1)t). (3.17)
- |

The solution was computed using the backward-difference scheme (3.8),
the Peaceman Rachford scheme (3.7) and the novel algorithm{ (3.8), (3.11),
(3.12) and (3.18)} using a fixed time step T = 0.1. The theoretical
solution at t = 1.0 is depicted in figure 4. The backward-difference
scheme (3.8) produced results depicted in figure 5 using h = 0.05. The
general appearance of the solution is good although the 1haccuracy due to
the first order accuracy of the scheme is apparent as shown by the results
in table 2.

Figure 6 shows the results obtained by the Peaceman Rachford scheme

using h = 0.05.
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Figure 6. Peaceman-Rachford solution with h = 0.05 and t = 0.1.
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It should be emphasized that the central portion of this figure is an
accurate approximation to the theoretical solution so that rescaling has
apparently decreased this portion of the solution in order to show the Targe
peaks adjacent to the boundary on a graph of the same-size. The numerical results
obtained using the novel algorithm are depicted in figure 7 using h = 0.05.

The general behaviour of the solution in this case is clearly very good.
The maximum errors which occurred are summarized in table 2 where, it should

be noted, the theoretical solution has a maximum value of approximately..01,

T =0.1 T = 0.01
Method h=0.1 h=0.05 h=0.025 | h=0.1 h=0.05 h=0.025
Backward- 64E-02  .63E-02  .63E-02 | .64E-03 .58E-03  .57E-03
Difference : : . . . .
Peaceman-
Rachford .47E-02  .23E-01  .46E-01 | .72E-04 .16E-04  .55E-05
Novel
Sohame .94E-03  .88E-03  .87E-03 | .91E-04 .35E-04  .22E-04

Table 2. Errors in solving the two-dimensional
model problem at t = 1.
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Figure 7. Extrapolation solution with h = 0.05 and < = 0,7,
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4, Conclusions

We have derived a novel algorithm which is second order accurate in
time as an extrapolation of a first order method, which is unconditionally
stable and imposes no restriction on the time step as a function of the
spatial discrgtizationc h. Our attention has been confined to the constant
coefficient heat equation in one and two space variables. The generali-
zation to hjgher space dimensions is straighﬁforward. - For example, if

3

A s an N3 x N¥ matrix arising from a discretization of the three

dimensional Llaplacian and we write

A= A1 + A, + A

2 * A3
then ; ]
VO - w1 - T
i=1 i=3
3
v o 1 - 2eA,) M v(t)
i=1 -
1
2o g 2tA;) "y (t)
i=3
and v(t + 21) = 2¥(0) . %(!(]) + !(2))

is second order accurate in time.

In a subsequent paper we will report on the generalizations to problems
with inhomogeneous time-dependent boundary conditions anddproblems with

inhomogeneous time-dependent source terms.
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