Linked Forest Manipulation Systems
a Tool for Computational SemanticsT

K. Culik II
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

M. Farah
Department of Physics and Mathematics
University of Moncton
Moncton, N. B., Canada

December 1977
Research Report CS-77-18

+ This research was supported by the National Research Council of Canada
Grant No. A7403.

Abstract

Linked forest manipulation systems were introduced in [2]
together with a definitional model for syntax and semantics of program-
ming languages. Here we'describe'1inked forest manipulating systems
informa11y, and also give a new algebraically oriented formal definition.
We then discuss their application to computational semantics.

Linked trees (forests) are capable to explicitly show all the
syntactical properties of a programming language including such
non-context-free properties as the correspondence between declarations
and usages in a program. For this reason they seem to be the best data
structure for computational semantics. We try to demonstrate that using
forest manipulation systems we can get a ré]ative]y concise and at the

same time readable formal definitions of real programming languages.

1. Introduction

Linked trees, as>data structures for describing the computational
semantics of programming languages, were introduced in [2], and seem tb
be best suited for that task. The definitional model introduced in [2]
has been used to describe concisely and in readable form several complete
programming languages (ALGOL 60 t13], ALTRAN [3],'and LUCID [4]. In [4]
it is also used to prove the correctness of an interpreter for LUCID.)

- Here, we give a readable informal.descriptioh of the rewriting systems

on Tinked frees, and a new sdmewﬁét%simplified algebraically oriented
formaf definition of linked fqresi hahipu]ation systems and a description
‘of their application to édmb;tatiohéi seﬁantics. An ALGOL-1ike language
ALG and A-calculus are'usédvdsfexémp1gs.' .

Computationai éémanffcsdiéhfﬁg main motivation for studying
these rewriting systems. There are varioUé aspects which are desirable
in a definitional model for the semantics of programming languages (e.g.
rigorousness, readabi]ity, and conciseness). Linked tree (forést)
manipulation systems (&.f.m.s.) give a tool which satisfies reasonably
well all the above-mentioned requirements. Compared, for example, to the
well-known Vienna definition méthdd [7, 11], the model based on 2.f.m.s.
allows an 1mp?ovement in all 'these aspects. “We will try to explain why
this is so. éut first, Tet us recall what is meant by compytational
semantics of brogramming iahgﬁaée;ﬁ' o A

| In the computaf%dﬁaTN(&1sé"éé1iéd Sbeﬁﬁfional or interpretative)
approach to formal semantics of programming tanguages, the meaning of
programs is given by showing how their computations proceed for any

accepféble input data. This is done by defining (not necessarily

| exp1icit1y) an abstract computer and its next-state mapping. Programs

are usually incorporated within the staies of that abstract computer.
Thus, we need two sets of transition rules, one describing the translation
.of programs and data into initial states of the computer, and the other
describing the next-state mapping.

iIn order to appreciate the advantages of linked trees, we will
briefly look at the historical development of data structures used in
models for computationa] semantics. The early models for computational
semantics [1, 5] used strings to represent both programs and intermediate
states of the abstract computer. In these models the transition rules,
i.e. the ru]es}for manipdiatfon of strings, were described by generalized
Markov é]gorithms. The gehera]ization'of Markov‘a1gorithms actually
a11owéd‘some implicit use of tree Stfuctures. In [12] push down store
was uséd. | -

Derivation trees of context-free grammars (more precisely,
iabe11ed, ordered, rooted trees) was the basic data structure used by
Knuth in [6].. When interpreting Knuth's model in terms of an abstract
computer, the initial translation consists of the parsing of a given
program, wheréas the next-state transitions are given by rules for mani-
pulating the values of the attributes associated with nonterminals, i.e.
with the nodes of a derivation tree. In this model, however, the
structure of the tree remains unchanged throughout a computation.

| A véry useful for computational semantics is the notion of
abstract syntgx‘tree introduced by McCarthy in [8]. Abstract syntax
trees are more expl%citIy related to semantics than derivation trees.

Typically, a branching node of an abstract syntax tree is labelled by an

operator. Each of its sons is then a root of a subtree describing one
operand. The leaves are labelled by simple operands. In comparison to
the derivation trees, the abstract syntax trees allow us to neglect the
unessential syntactic properties (so-called syntactive sugar), and to
concentrate on the essential structural properties.

An examplé of an Algol-1ike derivation tree is in Figure 1.1,
while the corresponding abstract syntax tree is given in Figure 1.3. The

same abstract syntax tree may also torkeépond to the derivation tree of

Figure 1.2.

Figure 1.1 Derivation tree for the Figure 1.2 Derivation tree for
expression the expression
if a=b then 5 else at3 - cond(a=b, 5, a+3)

Figure 1.3 Abstract syntax tree for both expressions
if a=b then 5 else a+3 and cond({a=b, 5, a+3)

A‘mode1 for computational semantics based on McCarthy's

~ abstract syntax trees is the Vienna definition method [7, 11] which is a
parent of the model given in [2] and studied in this paper. The use of
trees as the basic data structure in the Vienna definition method a]]oWs‘
an easy treatment of the‘context-free aspects of programming languages.
However, the non-context-free properties, such as scope of variables,
declarations, etc., cause more difficulties.

Trees with pointers, called Tinked trees [2], form a new data
structure type which allows the explicit showing of all structural
properties of a programming language. For example, the association of
variable use with variable dec]afation is performed by a pointer from the
point of use to the point of declaration. As tools for the formal
description of transfdrmétions on linked trees, and more generally on
linked forests, we define linked-forest manipulation systems (2.f.m.s.)
which destribe these transformations by means of production schemas.

The notion of 2.f.m.s. is a generalization of the notion of‘subtree
replacement systems introduced by Rosen in [9].

| In Section 2 we informa]Ty describe Rosen's subtree replacement
systems and their generalization to linked-forest ménipu]ation systems.
Next, we dichss the model for computational semantics which is based on
2.f.m.s., and an Algol-like programming 1énguage ALG on which this model
is demonstrated. The formal definition of %.f.m.s. and that of the
model for formal description of programming languages are gi?en in
Sections 4 and 5.respectively. We cohc]ude with examples from the

language ALG and a formal description of the A-calculus.

2. Tree and Linked Forest Manipulation Systems

2.1 Subtree Rep]acemeht Systems

In [9] a formalism is given for defining systems which manipula-
te trees, i.e. which describe transformatiqns on rooted, ordered, labelled

trees. Such systems consist mainly of rules for subtree replacement. For

example a rule such as

% ' ‘ o
/\ — o mult(x, y) (R)
X Y, v
indicates that if in the manipulated tree there is a subtree similar to
the left hand side of the rule, i.e. having the same structure, but with
integer numbers in place of x and y , then this subtree can be

replaced by the subtree consisting of a single node labelled with the

number resulting from the multiplication of these two numbers. In this

rule R] two label parameters, x and y , are used. Such parameters
have a domain which is, in this case, the set of integers. A function

name, mult, is also used in a functional denotation together with the

label parameters x and y . This function name designates a function

which is defined in the system; in this case, it denotes the multiplica-
tion of integeps. The functional denotation mult(x, y) designates the
result of mu]tjplying‘an fnteger number x by an integer number y ; To

illustrate tree manipulation systems with an example we give a few other

/\ > o minus(x, .Y) (Rz)
X y

rules.

| /\ o~ o equal(x, y) (Ry)
X y o : ,

Rule R2 is similar to R] except that the operation is
subtraction of integers instead of multiplication. Rule R3 is also
similar to R1 » but here equal is the name of the logical function which
takes two integers as arguments and yields true if both arguments are
equal, false otherwise. The three rules R1, R2 and R3 can be
considered as definitions of binary operators *, - and = . The
definition of a ternary operator, namely the conditional operator, is

given by the two rules that follow.

if
‘ -—---—-—'7- a (R4)
true v
if
— v (Rg)
false v

In rules R4 and R5 two parameters u and v are used and

they are ca11gd tree parameters as their domains are trees.A Rule R4

indicates that if a subtree of the tree we are manipulating is similar
to the right ﬁand side of R4 (with u and v being replaced by some
subtrees), then we can replace that subtree by subtree u . Since u fis

supposed to be the abstract tree representation of then-expression and

and v that of the else-expression of a certain conditional expression,
R4 indicates that if the condition is true then the expression u is
evaluated. On the other hand, Re indicates that if the pqhdition is
false then v s evaluated.

As a unary operatoﬁ% the factorial function can be defined

récursively using the operato%s *, -, = and if by means of the

foTlowing rule.

fact

For instance, we can use the above rules R]--R6 to compute
factofia1 2. This is shown in Figure 2.1. Each step of the computation
is performed by means of one of these rules which is indicated above the

‘double arrow. Note that this computation is not unique, but all terminat-
ing computations (using the above rules) lead to the same answer.

Note that the application of the rules is done in any order and
that a rule can be applied any number of times. Also, each rule specifies
the rép]acemeht of some subtree by another subtree. Furthermore, any

parameter can.occur at most once on the left hand side of a rule. A

generalization of subtree manipulation systems is defined next. In this

‘generalization the restrictions mentioned above are removed, and new

features are introduced.

fact R6 :

L7

Figure 2.1 Computation of 2! using rules R]-~R6

10

2.2 Linked Forest Manipulation Systems

A linked forest manipulation system (2.f.m.s.) essentially

consists of a set of rules or,Qfoduction schemas which define transforma-

tions on linked forest, i.e. on sets of trees with pointers (1inks)
between them. Here, the trees are rooted, ordered and multilabelled, i.e.
a node of the tree may have several labels attached to it. However, not
all the labels must be shown in the production schemas. For example,
suppose we are describing the semantics of a block in Algol. A block
consists of a Tist of declarations followed by a list of statements. The
execution of a block shou]d‘start at the beginning of the 1ist of state-
ments. Suppose that the tree’representation‘of a block has a root node
labelled block, this root node having two éons, the left one labelled

2. decl and the right one Tlabelled &. stat. A control label, EXEC, is
assumed to control the execution of the linked tree representation of
an ATgo] program. The rule which indicates‘that the execution of a block

starts with the list of statements is the following:

block, EXEC block . |
(Py)

The left hand side of the production schema. (P]) need not
match a subtree so as to use the production. It is sufficient that it
matches a substructure (subgraph) of the tree representing the program.
To describe the same property using a subtree replacement system, and

assuming we can have multilabelling, one would have to give the following

rule

11

block ,EXEC b]ock

u%.decl yL.stat % dec] vX.stat,EXEC

Here we have to use parameters u, v‘ and additional labels to describe
a complete subtree most of which remains unchanged. | |

A simple and illustrative use of links can be given for
describing the semantics of the goto-statement. Assuming that a link is
constructed from the node labelled goto to the node representing the
statement to which the jump should be made, the fo]lowing‘production

defines the semantics of the goto-statement.

oto,EXEC T Rgoto EXEC (P
_/

When we need to be prec1se about the descendants of a node in

2)

a produ&tion, we use a distinguished sort of node called pivotal node

(graphically distinguished by a doubTe circle). For instance, if the
productiOn changes the structure of the subtree rooted at a certain node,
that ndde should be represented by a pivotal node. This pivotal node
indicates that in the matching process the subtree under the pivotal

node should be matched with the root of a complete subtree and not any
‘substructure.A'Consider the following production schema which partially

describes the copy rule for a function call in Algol.

EXEC , hame —— EXEC 'Zname (P3)

Production P3 indicates that whenever a formal parameter called by

name in encountered in a procedure body, with the corresponding actual

12

parameter being an expression represented by linked tree z , then =z is
copied at the execution point. A1l pointers from the nodes of z to

some other nodes are also copied. Figure 2.2 gives the relevant part of

a derivation based on production P

3

Figure 2.2 An illustration of production P3

In any production schema of a &.f.m.s. it is possible to have
ény parametek occur more than once on its right hand side. The following
rule is an illustration of this possibility and describes the matching
of declarations of variables with their use. A 1ink is also constructed

from the point of use to the declaration.

3 £
—_— @ _®
v |g (P4)
uused decl u—d—ggl

One additional feature of the £.f.m.s. is the mechanism
é110wing the forcing of a certain order of application of the production
schemas. Every production in a 2.f.m.s. is labelled and has success and
failure fields similar to the ones in Rosenkrantz's Programmed Grammars

[10] or in the SNOBOL programming language. The labels of the success

13

field indicate which productions may be used next if the considered
proddction is applied successfully. Those of the failure fields are the
labels of the productions which may be used next in case the considered
production cannot be applied. Also, in any %.f.m.s. there should be some
production labelled START, and at least one production should have the
label STOP in its success or failure field. Any derivation inaf.f.m.s.
starts with the application of a production labelled START, and ends with
either the success in applying a production whose success field consists
of the label STOP, or the failure to apply a production whose failure
field consists of STOP. Sometimes a label ERROR is used in either a
success or a failure field to indicate a special type of termination.
Figure 2.3 gives a &.f.m.s. which can be used to match the
used variables of a block with their declaration connecting them with a
pointer (production labelled START). Then it removes the names of those

variables which have become superf]udus (production labelled L1).

Production Success Failure

Label Production Schema Field Field
£ 1€ e £
- START l —_— NSI START L1
: 3, use decl dec]
. u u u
L1 e decl — @ L1 STOP

Figure 2.3 Example of an #2.f.m.s.

14

| 3. Describing a Programming Language Formally

Linked forest manipulation systems can be used to define
comb?ete1y and formally the computational semantics of programming
languages. As has been discuSsed”in the introduction, the computational
definition of semantics includes the transiation of programs into an
initial state of an abstract computef. This will be done by the so-called
syntax part of the model that we are giving. The syntax will be described
by the usual context-free grammar of ihe language, plus a formal description
of the non-contex-free syntactical restrictions (the checking of these
restrictions being usually, and incorrettly, called semantical analysis).
The syntax part also describes fhe translation of a program into an
abstract linked tree which represénts‘the initial state of the abstract
computer. The result of the syntax processing is then‘manipu1ated by
the semantics part which is one R.f.ms. It eésentia11y'produces a
Tinked forest representing the results computed by the given program.

The abstract computer, which is not explicitly defined, has the linked
forésts as states and the &.f.m,s. as the.next state mapping. Tﬁe Tinked
fbrest obtained when a computatidnha1£scan be mapped into a desired form
of "output data".

Before formally describing how this is done we will explain in
this section the approach on a spécific programming language ALG. This
language is éssentia11y ALGOL. 60, i.e. 1t.has all the features of ALGOL
60 which are difficult to describe, particularly paramefer passing to
procedures and functions. However, ALG does not have arrays, reals and

other features which would not cause any difficulties while making the

15

language too large. (For the description of full ALGOL 60 by this
method see [12].)

3.1 The Synfax Part

| The syntax of ALG is given in Table I. It consists of a set

of rules each formed from a context-free production, an abstract syntax
tree denotation, and possibly a 2.f.m.s. which describes non-context-free
properties. A rule in the syntax part defines, partially or totally, a
non-terminal; and associates a set of abstract syntax trees (and more"
generally a linked tree) with this non-terminal. Thus, rule 1 defines

. the ﬁén-terminal <ident> as any element of a set ID of identifiers;

it also associates with <ident> the set of all single node trees
labelled by an identifier. Similarly fof <const> 1in rule 2, where INT
is the set of integers plus a gil_é]ement. Rule 3 defines <var> and
associates with it the set of two node trees such that‘the root node is
labelled with an identifier and the other node labelled with {int, used}.
The non-terminal <prim> dis defined by rules 4-7. In rule 4 it is
partially defined as being a variable and is associated with any tree which
is associated with <var> . Similarly for rules 5 and 6. Rule 7
indicates that a primary can be a function call, that is <prim> can

be an identifier followed by a list of actual parameters, <R.a.p.> ,
between brackets. The set of trees associated with this partial
definition of <prim> consists of all treeé obtained from the trees

associated with <%.a.p.> by adding the labels call, funct and any

identifier to their root nodes. Rules 8-10 define <factor>

recursively. Rule 8 partially defines it as a primary and associates

16

with it all trees associated with <prim> . Rule 9, however, associates
with <factor> any tree consisting of a root node labelled * which

has two sons, the left one being the root of a subtree which can be any
tree associated with <factor> , and the right one being the root of a -
subtree which can be any tree associated with <prim> . Similarly for
rule 10. The reader can easily interpret rules 11-22 by analogy with

the first 10 rules. Rule 23, while partially defining <stat> associates
(in a recursive manner) with non-terminal <stat> a set of trees such
that each is formed of two trees by joining their root nodes. The left

trge is of‘the form I%abe],dec], for some & ¢ ID ,and the right tree

js any tree associated with <stat> .

‘whiie rules 1-27 have their g¢.f.m.s.'s empty, rule 28 which
defines <block> has a‘non-empty 2.f.m.s. This implies that the set
of trges associated with <block> 1is not simply the set of trees
indicéted by the abstréct syntax tree denotation of that rule, but the
set of trees resulting from that set by manipulating every tree by the
given &.f.m.s. The first production (labelled START) in the &.f.m.s.
checks for multiple declarations of a variable in the block. The second
production (labelled L1) matches the declaration of every variable with
its use in the block. Production L2 checks for the use of a variable
with the wrong type, in particular it checks for the declaration of a
label as a variable. Finally production L3 simplifies the declaration

_subtrees of the var{ables of the block by removing'the names which have

become superflous and reducing them to single nodes.

17

Rules 29-36 can be easily understood by the reader. Rule 37
has a non-empty 2.f.m.s. and partially defines a list of actual parameters
<t.a.p.> . The 2.f.m.s. of this rule integrates the rightmost actual
parameter <a.p.> into the list of actual parameters. An operator &
is used which concatenates two trees by joining their roots. Similarly,
in rule 41 the &.f.m.s. integrates the rightmost formal parameter
<f.p.> into the list of formal parameters <2.f.p.> . Rules 42 and 43
define <decl> , the first one for variables and the second one for
procedures and functions. The Tabel nil represents the initial undefined
value that a variable or a‘function has. The %.f.m.s. of rule 43 deals
with procedure and function declarations. Its first three productions
and the fifth one are similar to those of the &.f.m.s. for <block> in
rule 28, while the fourth and the sixth (labelled L3 and L5) are used
for technical reasons. The non-terminal <%.decl> is defined in rules
44 and 45, while <program> ié defined in 46 and its &.f.m.s. checks
for variables used in the program but declared nowhere. The set of trees
assocfated with <program> consists of all the trees associated with
€b1ock> which have no variable which is used but undeclared, the

control word EXEC 1labelling their root nodes.

3.2 The Semantics Part

The semantics of ALG is given in Table II. It consists of
one &.f.m.s. which gets a Tinked tree associated with <program> from
the syntax part (as initial value), and produces a linked tree repre-
senting the resu1fs of executing the program. The first two productions

indicate that the execution starts with the list of statements of the

18

block forming the program, and ends with the end of execution of this
1istAof statements. The execution of é 1ist of statements from left to
right is described by productions 3-5. The semantics of the goto-state-
ment is given by production 6, while productions 7 and 8 give the
semantics of the assignment statement. The evaluation of arithmetic
expressions is described in productions 9-13, and that of the conditional
expreésions and conditional statements is described in productions 18-23.

Productions 24-27 procedure and functions calls. In production
24 the lists of formal and actual parameters are superposed using the
operétor ® which operates on trees with similar structure. The
addition'of‘Tabe1 % stat is only for technical reasons, for eVa]uating
the actual parameters from left td right. Also, a copy of the body of
the procedure is made at the calling point. The execution starts however
~ with the evaluation of the actual parameters. Production 29 indicates
that‘éffer this evaluation the copy of the procedure body is executed.
Productions 30 and 31 describe the return from procedure and function
“calls; a value is returned in the case of a function call.

The passing of parameters to the procedure call by value is
defined by production 25, while the passing by name is defined by
productions 26-28.

In this section we have tried to give an informal description
of the way a programming language can be formally defined to help the
reader in understanding the formal definitions of ©.f.m.s. and that of
ianguage description systems given in the next two sections. The

reader could however skip these two sections and go to Section 6 in

19

which a detailed example of a program in ALG is treated. The two
operators & and © used in the description of ALG are defined
algebraically in the next section, but they can as well be definéd by

an elementary &.f.m.s. as shown in [2].

20

4. Formalism for Linked Forest Manipulation Systems

- 4.1 Trees and Forests

Given any set V , called vocabulary, we define the set of tree

expressions, or simply trees, over V as follows.

Definition 4.7.1

(i) Every finite subset A of V 1is a tree expression;

(i11) If A dis a finite subset of V and Gps +-n5 0 aTe tree
expressions then A[a], cees an] is a tree expression.
1
Example 4.1.1 let V= {a, b, c, d, e, f} . The following are

tree expressions, or simply trees, over V .

- {aab}
{a}[{b,a}, {b,c}[{d}, {e,f}], {a,c}]

Q
1

w
it

The notion of equivalence of tree expressions, or equality of
represented trees, is an important part of the definition of trees and

is given below.

Definition 4.1.2 Two trees o and B are equal if either

(i) o and 8 are finite subsets of V and are equal (as sets) or
(i1) o = A[a], cees un] , B = B[B1, ey Bn] , A=B and o equals

Bi for a11 i, 1 <1

IA

n .

O

As a result of this definition the trees A[a1, uz] and

A[uz, GT] are not equal. More generally, the order of the tree

21

expressions Qs vees O in A[u1, cens an] is crucial and

[a], RN un] can be regarded as an n-tuple of tree expressions.

Definitioh 4,1.3 A tree expression o is said to be a subtree
expression, or simply subtree, of tree expression B , if either

(i) o 1is equal to B |
or . (ii) B8 = B[81, cees Bn] and o is a subtree of B, for

some i, 1 <i<n.

0
Examﬁ]e 4.1.2 Referring to trees o and B8 of Example 2.1, we
have that
{a,b} is a subtree of o
and {b,c}[{d}, {e,f}] 1is a subtree of B
Moreover; o is a subtree of B

Definition 4.1.4 Any finite subset of trees over vocabulary V is

called a forest over V .
0

Trees are represented graphically using nodes and edges.
The nodes are drawn as small circles and are Tabelled by a finite subset
of V, whi]ewedges are lines joining two nodes. The g}aphical
representation (g.r.) of a tree o 1is constructed as follows. If a
is a finite subset of V , say A , then

. on

is thé graphical representation of o and the node labelled with A

is called the root node of o . However, if o 1is the tree

22

A[a1, cees un] then the g.r. of o 1is obtained from the g.r.'s of
Oys wvvs O by constructing a new node labelled A , called the root

node of o , and constructing edges from that root node to each of the

root nodes of the g.r.'s of Gps ees G 3 the order of the trees
Qys s O should be respected.
Example 4.1.3 Trees o and B given in Example 2.1 are respective-

1y represented graphically by

°{a,b}
and | | {a} |
“ib,a} ;t;;\\\\\\\°{a,c}
{d} {e,f}

In general the set brackets are removed so that the represen-

taions would be respectively

and ~a

~ The class of trees that we have defined here corresponds to
what is commonly known as the class of rooted ordered multilabelled
trees. We denote by TO(V) the set of all such trees over vocabulary

Y , and by FO(V) the set of all forests over vocabulary V .

23

4.2 Trees and Forests with a Pivotal Node

Let p be a symbol not occurring in V . We define the class
of trees with a pivotal node over V , and denote it by Tp(V) , as the
subset of TO(V v {p}) in which p 1labels exactly one node. Also, the
class of forests with a pivotal node over V , denoted by FP(V) , 18
defined as being the class of all finite subsets of TO(V u {p}) such
that exactly one tree in the subset is a tree in Tp(V) .

The use of these classes of tfees and forests will become
clear when defining the notion of linked forest manipulation system.

The set of all trees, with and without a pivotal node is
' deno;ed T(V) , i.e. T(V)‘= TO(V) u Tp(V) . Similarly, the set of all
forests,with and without a pivotal node is denoted F(V) , i.e.

F(V) = Fo(V) u F (V)

Example 4.2.1 Let V = {a, b, ¢} and let o be the tree

- represented graphically by

o is a tree over V with a pivotal node.
Graphically however, thé label p is replaced by a double
circle around its corresponding node; e.g. the tree given above would

be represented by

24

4.3 Operations on Trees and Forests

4.3.1 Concatenation and Superposition of Trees

Two binary operations on trees without a pivotal node are
defined in what follows. The first one corresponds to the concatenation
of two trees and it is denoted & , while the second one corresponds to

the superposition or merging of two trees and is denoted ®

& 0 T (V) x T (V) ~ T (V)

such that for any o and B in TO(V) , say o = A[a], vees am] and

B = B[B], cees Bn] for some m,n > 0 (we assume that A = A[])

o & B=Au B[u], cees O B], cees Bn]

Note that & 1is associative but is not commutative. Thus, we will

write o & B & v to mean either o & (B & v) or (o & R) &y
@ TO(V) X TO(V) - TO(V)

such that for A and B finite subsets of V ,

(i) A®B

AuB

(ii) if o= A[u1, ces um] then

25

o
®

=
n

o ®B=Au B[a1, cees am]

(i1i) if o

A[u], cevs am] and B = B[B], cevs Bn] with
1 then

=
v
=3
i

BOa=a®B=Avu B[u] @31, am@Bm, Bryo e sn].

Note that ® is an associative and commutative operation.
This operation corresponds to the superposition of two trees with left
alignment. Note that both & and @ can be extended to functions from

TO(V) x Tp(V) U Tp(V) x TO(V) into T(V) .

4.3.2 Ske]étal Operator on Trees

The skeletal operator m 1is defined for any tree over V as
follows.

T T(V) = T(V)

such that for any finite subset A of V u {p}
(i) w(A) = A - {p}
(i1) if o = A[a1, cees um] then

@ - { ()
o) =
A[n(u1), ey w(am)] otherwise .

Thus, the effect of © 1is to remove the subtree whose root is a pivotal
node, except for the root, and remove p from the set of labels of that

root.

26

Definition 4.3.2.1 We define the skeleton of a tree o e T(V}) as

being the tree 8 ¢ TO(V) obtained from w({a) by the replacement of
every set of labels by the empty set.

d
Example 4.3.1 Let V = {a, b, ¢} and let a be the tree represented
by
c

m{a) would be

K

b b,c
and the skeleton of o would be
Definition 4.3.2.2 Two forests ¢ and ¥ in F(V) have the same

skeleton if there exists a bijection b : & > V¥ such that for every

tree o e ® , b{a) has the same skeleton as «

4,3.3 Subtree Replacement

Given T, O, B € TO(V) such that o 1is a subtree of tree

27

T , the replacement of o by 8 in T , denoted Tg , is well
defined; and the result of the replacement is a tree, i.e. rg € TO(V) .

We can easily generalize this subtree replacement to forests.
Thus, if @ « FO(V) » 0,8 ¢ TO(V) and o s a subtree of & , i.e.
a subtree of a tree T e & , then the replacement of a by 8 in o,
denoted % , is defined as the forest resulting from @& if T is

B

replaced by Tg .

4.3.4 Substructure Replacement

4.3.4.1 Substructures in Trees and Forests

The notion of substructure in a tree or forest is a generali-
zation of the notion of subtree in a tree or forest. First, we have to

define the notion of trim of a forest.

Definition 4.3.4.7a Let 3,9 ¢ FO(V) ; we say that ¢ is a trim of

v if ¢ is obtained from ¥ by replacing some subtrees of ¥ by the

empty tree.

Definition 4.3.4.1b Let ¢« FO(V) s O € TO(V) and B e T(V) .

We say that o is a substructure of & corresponding to B if « is

a subtree in some trim of & , has the same skeleton as B8 , and, in

case B ¢ TP(V) , o 1S5 a subtree of ¢

28

We denote by suba(é) the set of all substructures of ¢
corresponding to o . For trees the notions of trim and substructure
is the same as for singleton forests, i.e. forests with a single tree.

We will further generalize the notion of substructure to that

of substructures corresponding to a forest.

Definition 4.3.4.1c Let 9 « FO(V) , and V¥ ¢ F(V) with
¥ o= {B], e Bn} and o, « T(V) forall i, 1 <i=<n. For any

T e FO(V) , I= {uq’ e an} , we say that T 1is a substructure of

¢ corresponding to Y if

(i) vi ,1<1i<n, a; e subB (o)
i

(ii) vi , ¥j such that 1 # j , oy and s have no common
nodes’
and (iii) if for some k , B, has a pivotal node then o is a

subtree of @

4.3.5 Replacement of Substructures in Forests

let ¢ « FO(V) , Q€ TO(V) and B e T(V) such that o is

a substructure of @ corresponding to B . We define the replacement
(¢4

B
(i) If B8 has a pivotal node, o would be a subtree of ¢

of o by B in & , denoted &, as follows.

and o> is defined as the replacement, in & , of
8

subtree o by tree B . Notice that in this case %

B

would be in Fp(V) although @ s in FO(V) .

29

(ii) If B has no pivotal node then o and B have the same
a

B
is defined as the replacement, in ¢ , of the Tabels at

skeleton, i.e. the same underlying structure, and ¢

a node of o by the labels at the corresponding node

(in the skeletal correspondence) of 8 .

'

Now, we can define the replacement, in & , of a substructure T ¢ FO(V)
of & corresponding to forest ¥ ¢ F(V) by V¥ as follows,
If T = {a], cies un} and V¥ = {B}, cees Bn} then, assuming

that B, « TO(V) for all 1 <1 <n-1 and B, < T(V) , we define that

o (((a1>a2> >ocn
o, = (...\L¢o
v \"6,/8, B,

These successive substructure replacements are well defined

replacement by

because: (i) a; and o for i # j , have no common nodes; and (ii)

as 61 € TO(V) for all 1 <1 < n-1 then
a QL (6}
((@31 82 B"“‘ e F (V) .
1 2 n-1

Example 4.3." Let ¢ be the forest

4

30

and let ¥ be the forest

is a substructure of ¢ corresponding to ¥ . The replacement of T by

¥ in @ would be

¢ t 3
X
r .
(IJ‘P = 5] i
\ °R ;:\xn ’

4.4 Linked Forests; Label, Pointer and Tree Parameters

4,4.1 Linked Forests

>
let A={ilieNt, A={F1ieN}, and A=Rul.

Assume that V 1is a vocabulary such that V n A =4¢ . Any element of

> <
A is called a pointer label and any pair <i, i> for some 1 e N is

called a pointer {or link). F(V v A} would denote the set of all

forests over V u A . The notion of Tinked forest is defined below.

31

Definition 4.4.] Any forest & e F{V u A) 1is said to be a linked

forest over V 1if no pointer label appears at more than one node of & .

c

We denote by FL(V) the set of all linked forests over V . Also we
distinguish between the set of linked forests without pivotal node and
the set of linked forests with a pivotal node. The former is denoted
Fo(V) and the Tatter Fi(V) . Thus, Fo(V) = F(V) u Fs(V) . Mote
that a trim of a linked forest is a linked forest. However, the forest
obtained by replacing, in a 1inkéd forest, a substructure by its corres-

ponding forest is not necessarily a linked forest.

Example 4.4 The following is a linked forest over
V=1{a, b, c, d, e, f} and consists of three trees.

{{a,b,1}, {b,c,?}[{d,z}, {e,f,3}1, {a,c,§}} . It will be repre-

$

sented graphically as

0 ' ‘E\\\\\\\\v//////,’ﬂdeoa’C

->
d,4

Notice that the nodes labelled by ? and ? , for some i e N , are
linked by a bointer whose origin is at the node labelled with 7 and
whose end is at the node Tabelled with 7. However, if either i or
T , for some 1 , is not used while the other one is used, then the one

which is used is treated as any other label.

32

4.4.2 Label, Pointer and Tree Parameters

In linked forests over vocabulary V there are mainly three
sorts of objects. There are the labels, elements of V , the pointer
Jabels, elements of A , and the tree or subtrees over V u A . We
would 1ike to have some kind of variables over these three domains,
namely over V , A and T(V u A) , so as to describe linked forests
using these variables as labels. Such a linked forest would represent
many, and in general an infinity, of linked forests over V . A variable

having for domain a subset of V will be called a label parameter. A

variable having for domain a subset of A will be called a pointer
parameter. A variable having for domain a subsetof T(V u A) will be

calied a tree parameter.

A Tlabel parameter.can have for domain any subset of V , while
tree parameters will be allowed to have domains of the form To(w u A)
for some W<V .

However, pointer parameters are of two kinds. Those that have
for domain Z and those that have for domain X . Thus, if we denote

- “ >
by C the set of pointer parameters then C = C u C where C consists

. > . - by
of the pointer parameters, such as a , whose domain is A , and C

. . < c s <
consists of the pointer parameters, such as a , whose domain is A

4.4.3 Substitution of Parameters

The use of parameters in linked forests would presumably Tead
to the substitution of some element of their domain for their occurrences.
For any parameter x whose domain in DX , any n e DX and any linked
forest @ using parameter x , we denote by &(x < n) the result of

33

substituting in ¢ , n for every occurrence of x . That is, n
would replace every occurrence of x 1in every tree of & . In general,
for k parameters Xps wees Xy whose respective domains are

DX], vees ka , and for n; e Dxi we denote by ¢>(xi “n, | 1 s1i <k)

the result of substituting n; for each occurrence of Xs in ¢

4.4.4 Functional Denotations

To manipulate parameters over some domain, and sometimes
combine them, we need functions. In particular for tree parameters, we
have defined two functions namely & and & . Others can be defined
when needed. Thus, a set of basic functions should be given for each
type of parameters that need to be manipulated.

In general, given a set A and a set of function names over
A (i.e. a set such that for any fe F , f is a function from A" to
A for some n), let {x], cens xg} be the set of variables over V

and Dx s eees DX their'respective domains. Also, denote by X the
1 2

set :{(xi, D,) | 1 <4 <2} of pairs {variable, domain).
.'l

Definition 4.4.2 A functional denotation over <F, A, x> s

defined recursively as follows:
(i) every element of A is a functional denotation;

(ii) every variable x; 1s a functional denotation;

(iii) if fe F dis such that f : A" > A and &5 ..., £
1 n

are functional denotations then f(€1, cees En) is a

functional denotation. a

34

We denote by F the set of all functional denotations over

<F, V, X> 4, whenever V and X are understood.

4.5 Linked Forest Manipulation Systems

The §ystems thatwe are about to define permits the description
of transformations on linked forests such that, when starting with an
initial linked forest, we may reach a final linked forest by passing
through a finite number of intermediate linked forests. These transfor-
mations are essentially carried out in a non-deterministic fashion,
although it is possible to define comp1ete1y deterministic rules for

these transformations.

Notation: For any set A we denote by P(A) the set of all finite

subsets of A .

Definition 4.5.1 A Linked Forest Manipulation System (2.f.m.s.)

is an 8-tuple S = (z, A, B, C, F, G, J, R) where

1) © s a (generally infinite) set called set of labels;

'2) A= {(x, Dx) | x e Ay Dy < £} is a finite subset of A] x P(z) ,

where A] is a set of variables called label parameters, and for

any X e A] R Dx is its domain;

subset of: By x Ft(Z) » where B, 1is a set of variables called

= TO(Z') for some I' c £} s a finite

tree parameters, and for any Y e B1 s Dy is its domain;

4y C = E u E is a finite set of variables called point parameters

=
such that any element of E has for domain A and any element of

35

- . -+
C has for domain A

5) F 1is a finite set of function names, each being a mapping "3

for some n ; F will denote the set of functional denotations over
<F, %, A]> H

6) G is a finite set of tree function names, each being a mapping

(TI(‘)(Z))n - Tt(z) for some n ; G will denote the set of functional
denotations over <G, Tt(z), B1> :

7} J s a finite set of production labels, including two distinguished

labels START and STOP;
8) R is a finite set of rules; if we let V = ZuA uB, uCuFuG
then a rule r 1is an element of |

P(J) X (Ft(V) x FE(V) u Ft(V) X FE(V)) x P(J) x P(J) which written

as r = (L1, Gps Ops bos L3) verifies the following three conditions:

(i) 0y and o have the same ské]eton, and a bijection b,
between ay and oy is given

(ii) every label parameter or tree parameter appearing in o,
appears also in oy

(iii) any node of a, or a, has at most one element of G ,

and if it has one it should have no descendants;

and I , A, A], B], C, F and J are mutually disjoint.

4.5.1 Informal Description of the System

Aryle r,say r= (L], Gys O LZ’ L3) will be used
successfully on a linked forest ¢ if % can be "matched" by a

substructure of @ and that substructure is replaced by a substructure

36

"matching" o 3 the notion of "matching" needs of course to be made
precise. If r cannot be used successfully on & then the use of r on
¢ fails. In case it is used successfully, the next rule to be used is
any rule r' = (Li, u{, aé, Lé, Lé) such that Li contains a label from
L2 . In case it fails the next rule to be used is any rule

r' = (L;, aq, aE, L;, Lg) such that L? contains one of the labels of
Ly -

The first rule to be used in some transformations on a linked
forest is one labelled with START. The transformations are halted
whenever either a rule éucceds and has STOP in its success field, or
fai]é and has stop in its failure field. The success field of a rule
r = (L], Gys Ops Lo, L3) is L, , while its failure field is L, .

Thus;’to reflect the use made by é rute we shall write r as

Ly oy > succ(Lz) fai](L3)

At this point é few remarks are needed to explain and justify
the restrictions put on the rules.

In condition (i) the bijection br will be used as a basis
for the replacement of a substructure corresponding to 0 by a
substructure corresponding to a, - In the examples that will follow,
for any rule r , br will be implicitly indicated by the order in
which oy and a, are written.

Condition (i1) is clearly needed to make the substitutions
following the replacement of substructures meaningful.

Condition (iii) insures that the use of functional denotations

over trees is consistent with its purpose, namely the removal of each

37

functional denotation over trees and its replacement by a tree attached
" at the same node.

In general the function & is included in G , and if so it
is omitted in functional denotations, e.g. u & v & w would be written
as uvw . Also, other functions would not be given particular names
especially when they are very simple, e.g. moving a label from one node
of a specific tree to another. The following example will clarify these

ideas.

Example 4.5 Suppose that the following rule is in a 2.f.m.s.
A a a
L d//a\\wg — N Suce(L,) Fail(L,)
b C,udv “b d,f{u)dv

where a , b and ¢ are in I , while u and v are tree parameters

with Du =D, = TO(Z) , and f s a function on trees defined by

f . {d;:;:;\\oy | x,y e TO(Z)} + TO(Z)

with

END and EXEC being in I

We will write it in a simpler manner as

C
s END EXEC

38

r

with x and y being tree parameters whose domains are DX and Dy
such that D = Dy = TO(Z) . The position of the tree parameters with
respect to the nodes is used to differentiate them from the Tabel

parameters in a simple visual fashion. Notice also that the operator &

is omitted,

4.5,3 Production Schemas

Definition 4.5.3.1 For B], B, € F(V) , we say that (B], 82)

is a production schema induced by rule r = (L], s Ogs L2, L3) s

denoted By X 62 , if there is a linked forest ¢ ¢ Ft(z) such that:

(i) Gy and therefore %y has a corresponding substructure
in & , say ©
and (1) if o = {Til, cees Tin} , for 1 =1,2 , with

br(T]j) = Tp; for j=1,...,n ,and o = {c], cees cn}

then Bi , for i =1,2 , is obtained from
0'1@.[1-[,-;-50“’]@1-1'1

by removing the pivotal node label p , if any.

Note that all label and tree parameters appearing in Bi are
the same as those appearing in A - Also, because those appearing in
o, Must appear in o (by the definition of a 2.f.m.s.)}, it follows

that every label or tree parameter of 62 appears in 81

39

Now, suppose that '{xi}1=] q are the label parameters of

B. , that {y.l}._ are the tree parameters of £, , and that
1 j i=1,....m 1

- R = . .
{Zk}k=],...,n u {Zk}k=1,...,n include all the pointer parameters of 81
and 62 .
Let R* denote the set
81,82
x_i<—a_l 'IS'lS.R,,aieDX‘i
(Y1= Y2) :52 =B yj < bj 1<j<m, bj € Dyj
s=1, - > < <«
, zk + ck s Zk <« ck 1 <k <£n, ck e N

Clearly, if (Y1, Yz) € R§1,82 then 6\ and Y, may have functional

denotations formed of symbols from I and F , or TO(Z) and G .
These functional denotations do have values in I or TO(Z) which can
be obtained from the definition of the functions in F and G . Let
RB 3 denote the result of replacing all functional denotations appear-
1°72
ing in elements of RE 8 by their respective values. This replace-
1°72
ment is trivial in the case of F , and, as any node at which appears
an element of G has no descendants, the replacement of u e G by its

value v at such a node consists in the replacement in some tree

expression of the set of labels at that node, say L , by L - {ullv] .

Definition 4.5.3.2 For Yy2Yp € Ft(z) we say that Yo derives

. r .
from " by rule r , written Yy = Yp if (y], yz) ¢ RB1,82 for
: r
some B}, 62 such that B] - 82 .

40

4.5.4 Transformation on Linked Forests

First, we define the transformation on a linked forest

corresponding to the application of a rule of a 2.f.m.s.

Definition 4.5.4.1 The binary relation | 1is defined on J x Ft(z)

as follows:
(1) (21’ Y]) F’(ﬁza Y2) if there is a rule r e« R, say
rely oo, SUCC(LZ) Faﬂ(L3) , such that v, X Yy

| Q} € L1 and %2 € L2

(11) (25 vq) F—(lz, v,) if there is a rule r e R, say

1t

r L1 Pog >, Succ(LZ) Fail(L.,) , such that for no

3)
L -
Yy € FO(E) do we have Yy = Yy s 21 € L1 and 22 € L3.

Notice that (i) corresponds to the successful application of
r while (i1) corresponds to its failure. Let | denote the reflexive
and transitive closure of | . The transformation of a linked forest
into another linked forest by a linked forest manipulation system is

defined next.

Definition 4.5.4.2 Given a £.f.m.s. S = (¢, A, B, C, F, G, J, R)

and Y12Yp € FE(Z) , we say that Yo is a transformation of Y1 by
system S if
(START, v;) | (STOP, v,) .

41

The following example illustrates this notion of transformation
by giving a specific &.f.m.s. and showing a transformation on a linked

forest using the given system.

Note: The Tabel ERROR is used in success and failure fields but not
to label any production. It is equivalent to an empty set of

labels, i.e. no production follows.

42

5. Model for Formal Description of Programming Languages

The model has two parts which describe formally and completely
the syntax and the semantics of a programming language. The formal
syntax part of the model gives the concrete and abstract syntax of
program. The concrete syntax is described by context-free productions,
while the abstract syntax is given by abstract syntax tree denotations.
The non-context free restrictions of the language are described by means
of linked forest manipulation systems.

In this section we will denote by £, the set of linked trees
over»é1phabet L (i.e. I, = TO(Z)) , and by I, the set of linked

trees with at least two nodes over alphabet =

Definition 5.1 Let V be a set of labels, which is partitioned

into two sets I and N, respectively,called set of terminal labels

and set of non-terminal labels. An abstract syntax tree denotation oVer

V 1is defined recursively as follows.

(i) Any tree t over V 1in which every node has at most
one non-terminal label, and if it does have one then the
node has no descendant, is an abstract syntax tree
denotation;

(ii) If s and v are abstract syntax tree denotations then

s&v is an abstract syntax tree denotation.

Example 5.1 Let proc, nil, int and decl be in I and

<ident>, <&fp>, <stat> be in N . Each of the trees

43

°<afp> 1 ° proc,nil,<ident>

is an abstract syntax tree denotation, as well as

In practice we will write this last one as

& °<2fp> & 1 & °proc,nil,<ident>
int,decl <stat>

proc,gil,<ident>
20.fp>

int,decl <stat>

which is only an abbreviation of that abstract syntax tree denotation.
For any abstract syntax tree denotation t with non-terminal

labels Al’ AZ’ s An , the Tinked tree resulting from t by

substituting trees Ups Ups wnes Up for A1, Az, cees An and perform-

ing the & operation is denoted .
[tAT,...,An]
Upse ool

Definition 5.2 A syntax description over (%, F, G) for some

set ¥ , function names F from " to 3 , and function names G
from 22 + %, , is a triplet (N, R, o) where

N is a finite set of non-terminals

o is a distinguished element of N called starting symbol

44

R 1is a finite set of syntax rules, each rule being a triplet

(p, t, W) with
p being a context-free production, say A -+ x and
xe (Zu N)+ but no two non-terminals in x are
the same,
t being an abstract syntax tree denotation over
ZuN

W being an &.f.m.s. (I, A, B, C, F, G, J, Q) .

Example 5.2 Table I gives the syntax description of programming
language ALG , in which we denote by
ID a set of identifiers

INT the set of integers plus nil

SYMB = {+s -y ¥, /: ea Ey =}
KEYW = {proc, int, decl, ...}
CNTR = {EXEC, END, VAL}

It is a syntax description (N, R, o) over (%, F, G) where

z = ID u INT u SYMB u KEYW u CNTR
F = {sum, div, mult, ...}

G={® & ...}

N = {<stat>, <block>, <var>, ...}

R is given in Table I

o = <prog>

Any 2.f.m.s. W 1in a syntax rule can be written as

45

W= (2, A, B,C, F, G, J, Q)

where A = {(a, ID u KEYW), (B, ID u KEYW), (&, ID), (x» INT)}
B = {(u,), (v, Z,), (w, 5.), (z, T,)}
J = {START, STOP, ERROR, L1, ...}

@ is the set of production schemas for the &.f.m.s.

Note that although in a syntax rule the context-free production,
say A~ x , should be such that x has no two non-terminals which are
the same, some syntax rules for ALG violate this condition. This is done
for practical reasons,however,it should not lead to any ambiguity. For

example rule 17 is

if

3
<exp> = if <rel> then <exp> else <exp> d/////,:;;7ﬁ<<;\\%
<

rel> “<exp> <exp>

It should be interpreted, from the formal point of view, as a shorthand

for the following three rules

- i
<exp> + if <rel> then <exp,> else <exp,> d//////7k<:\‘\\\\w
<rel> °<exp1> <exp2>
<exp]> -+ <exp> °<exp>
<exp2> - <exp> _ °<exp>

That is the association of non-terminals, which are the same,

between the right hand side of production and the corresponding abstract

46

syntax tree denotation, is done from left to right.

Definition 5.3 A semantics description over (&, F, G) , for

some set Z , function names F from " oto 1 , and function names
G from 22 + % , is a linked forest manipulation system

(z, A, B, C, F, G, J, R) .

Example 5.3 Table II gives the semantics description of ALG .
It is a £.f.m.s. (£, A, B, C, F, G, J, R} where T , F and G are

the same as for the syntax description;

A= {{x, INT), {y, INT), (v, {+, -, *, /5 =})} ;

B = {(t, Zu)s (Uy Ty (v, By)s (wy i), (2, T)), I
being the set of linked trees with at least two nodes;

J = {START, STOP,}

R 1is given in Table II

Definition 5.4 A language description system is a 5-tuple

(z, F, G, S], SZ) where
v is a set of labels

F 1is a finite set of label function names denoting partial

functions from Zn to T

G is a finite set of tree function names denoting partial

functions from 22 to %,
$1 is a syntax description over (%, F, G)

S, is semantics description over (I, F, G) .

47

Example 5.4 The 5-tuple (Z, F, G, S], 52) , with = , F and
G as defined in Example 5.2, S1 being the syntax description of ALG,
and 52 the semantics description of ALG, is a language description

system for the programming language ALG.

Given a syntax description (N, R, o) over (I, F, G} , a

configuration is a pair (x, u) ¢ (Z u N)* x I, , where x is called a

sentential form and u an abstract tree. With every non-terminal

A e N 1is associated a set of configurations G(A) defined recursively

as follows.

Definition 5.5 Configuration (o, u} is in the set of confi-

gurations associated with A e N , denoted G(A) , if and only if there

exists reR, r={(p, t, W) with p=A~ X BixyBy ... B x ., such

that
(i) o= XDOL}X]aZ"'uan
(i1) (ui, ui) ¢ G(Bi) for i =1,...,n
B....B
1 n . .
[tu U] if W s empty
and (i) wu = - n
B]"'Bn
a transformation of tu u otherwise
REELN

For any syntax description S] = (N, R, o) over (I, F, G),

the language generated by S] is defined as

L(S1) = {xen* | {x, u) ¢ G(o) for some u} ,

48

and the abstract language generated by S1 is defined as
A(S]) ={uecz, | (x, u) ¢ Glo) for some x}

Thus, if S] is the syntax description of a programming language the
L(S]) is the set of concrete programs and A(SI) is the set of abstract
programs. The translation from concrete to abstract programs is defined
by
Tsyn(s) = {{x, u) e o* x I, | (x, u) € G(o)}
Given a semantics description 52 = (z, A, B, C, F, G, J, R) ,
according to Definition 4.5.4.2, S, induces a transformation on

2
FE(Z) defined by

Toan(Sy) = Lus v) | (START, v) I (sTOP, u)} .

Given a language description system 'S = (&, F, G, S]’ 52) .

S induces a transformation or relation
T(S) = {(x, v) e 2% x Fo(8) | 3u e 3, ,

.(xs U) € T(S])9 (ua V) € T(Sz)}.

Intyitive]y, the domain of T(s) 1is the set of programs which
are syntactically correct and which execute with a normal termination.
This domain is a subset of L(S]) , and in general a proper subset of
L(S]) . A program in L(S]) but notion T(S) 1is syntactically correct

by semantically incorrect.

49

6. Examples
6.1 An ALG Program

To illustrate the formal description of ALG we will show
~several steps in the syntax processing of the following program.
begin
procedure fact(value n);
fact := if n = 1 then 1 else nxfact (n-1);
fact(2)

end

We are not concerned of what happens with the computed value fact(2) ,
for formal description of input-output statement, see [2].

Procedure fact has a call-by-call formal parameter N . The
tree associated with <fp> , as well as <&fp> , which corresponds to
value n is given in Figure 6.1.1. The tree associated with <ap> ,
as well as <fap> , for the actual parameter n-1 is given in Figure
6.1.2. The actual parameter 2 has for tree associated with <ap> the |

one given in Figure 6.1.3.

T’ roc N
ap fproc,used
value,n l
R int int
° int,decl T
n const

Figure 6.1.1 Tree

corresponding to o

value n . int,used 1

Figure 6.1.2 Tree corresponding to
n-1 .

50

/ proc,used

const

Figure 6.1.3 Tree corresponding to 2.

The tree shown in Figure 6.1.4 is the tree corresponding to
the declaration of procedure fact before being affected by the transfor-
mations by the 2.f.m.s. of syntax rule 43. It becomes the linked tree
shown in Figure 6.1.5 after being processed by that &.f.m.s.

The statement fact(2) which is a call to procedure fact has
for tree associated with <stat> the one shown in Figure 6.1.6.

Finally, the whole program has a corresponding tree which is

associated with <program> and which is shown in Figure 6.1.7.

call,funct,fact

ap [oroc,used
fconst in
°2

Figure 6.1.6 Tree associated with fact(2) .

‘€ BLN4 XRIUAS 4O *S°w 4y 9yl Aq pawdojisuedj bulsq a4048q
308l 2unpadoud J0 UOLJIRAR[I9P 3yl 03 Bulpuodssasod dddL A aunbL4

51

pasn*do4d

3004430Uny | [BDY

d3

1004 LU Pad0ud

52

‘Cf ILnA xejuls Jo
‘sew 4ty ayg Aq peuojsuedy bulsaq uslje 30wy
94npad0uad }JO uoLjese[I9p 9y} 03 BuLlpuodsaau0d 834]

3SU0D §
pasn<ooad de
L
30R1°30Unt1edys = 3Su0d
lo
g O 15U02p =9

=

G'1°9 84nbl4

|

=
o~

129p¢ooud |}

103 LUfpadoud

—_—
an ey

di

Joungéjred

‘wesboud

3{OYM 3y} 03 BULPUOASBUL0D 3Bu)

199p 7

J3x3°320149

LPL7G Sdivibs

1SU0DQ

30ungc | ed

7e9S ¥ o

54

6.2 Syntax and Semantics of A-expression

As another example of language description we give the compu-
tational semantics of A-calculus. By computational semantics we mean
the procedure of transforming any A-expression to a reduced form. When
this is done using the usual string representation of x-expressions there
is the problem of renaming of some bounded variables after each reduction.
We avoid this problem completely since all the names of bounded variables
are removed by the syntax description part and are replaced by pointers.

Figure 6.2.1 gives the rules of the syntax description in
which N = {<ident>, <var>, <exp>} and o = <exp> . The non-terminal
<ident> has the same definition as in ALG.

Figure 6.2.2 gives the production schemas of the semantics

descriptions for A-expressions.

55

“xer_
<yar> > <ident> _ i<ident>
<exp> - <var> osvar
_ fun
<exp> =+ A<var>s<exp>
A,<var> bd<exp>
o) © -> 3§fﬁ—‘\\\3
START U g U START L1
L1 E?A N © STOP
apl
<exp> + (<exp><exp>)
<exp> <exp>

Figure 6.2.1 Syntax description of \-expressions

o apL %
START /%A\v N fun L1 | sTop
Aov , ¢ EXEC
L1 m@. > o EXEC © 1| L2
v : v v
@‘M @
u
L2 fun > START
EXEC
v u

Figure 6.2.2 Semantics description of A-expressions

10

1

Table I - Syntax of ALG

56

<ident> + £ og
£ e ID
<const> > ¥ ox
¥ € INT
o <ident>
<var> - <ident>
int,used
. < >
<prim> » <var> o <var
<prim> -+ <const> o <const>
<prim> ~ (<exp>) ° <exp>

<prim> > <ident> (<fap>)

oca]],funct,<1‘dent>
<fLap>

. <prim>
<factor> + <prim> o <prim
*
<factor> » <factor>«=<prim>
<factor> <prim>
/
<factor> - <factor>/<prim>
<factor> <prim>

<term> - <term> + <factor>

ot
o/ziz:;:‘\\\\\\\}ffactor>

12

13

14

15

16

17

18

19

20

21

22

57

<term> + <term> - <factor>

<term> <factor>
<term> - <factor>
ter o<factor>

< >
<exp> + <term> o<term

{=)
<exp> > -<term> T

o<term>
<exp> - t+<term> o <term>
if

<exp> »+if <rel> then <exp> else <exp>

<rel> <exp> <exp>

<rel> =+ <exp> = <exp>

/"\
GQ?;:: > <exp>

<stat> » <var> := <exp>

“<var>

<exp>

<stat> » if <rel> then <stat> else <stat>

<stat> - call <ident> (<fap>)

ocall,proc,<ident>

<fap>

<stat> -+ <ident> : <stat>

<jdent>
<stat>

label ,decl

23

24

25

26

27

28

29

58

<stat> -+ goto<ident>

goto,<ident>

label,used

<stat> + begin <& stat> end o <L stat>
<stat> =+ <block> o<block>
% stat
<f stat> -+ <stat>
<stat>
<f stat>
< stat> > <@ stat> ; <stat>
<stat>

<block> + begin <% decl> ; <& stat> end

O//////pb1ock
<£dec1:\\\\\r

g stat>

var,g cvar,£

START] ERROR | L1
> decl,n O decl
i3 SR

L 1 bo| oL
& decd & used
u u
) E, . E

L2 ERROR | L3
< decl ,a used “
.5

L3 j} > L3 | sTop
; decl

<type> = int

30

31

32

33

34

35

36

37

59

<type> - label

o label

<type> -+ proc{<% types>)

o proc,<f types>

(8]
<t types> =+ <type>
<type>
<f types>
<% types> » <& types>,<type>
& <type>

<ap> » <type><ident>

“ap proc,used
<ident> s<type>
O
//O /
START < ap SToP

()
=0 Fﬂ
<I}-—--—-—(

l

g O

<ap> > <exp>

int

\
i

<exp>

<5?,ap> - <ap>

o <ap>

<fLap> =+ <fLap>,<ap>

AN

p> \,<ap>

60

@ ©)
* 4\
START \ usw vaz STOP
ap ap
u v W z

p proc

38 <fp> -+ value<ident> value,<ident> int
b int,<decl>

39 <fp> + <type><ident> I
j<ident> <type>

@i\\\\\
START fe I }j;;;; STOP
£ G used
40 <fp> » <fp> o <fp>
4i <gfp> + <Lfp>,<fp> /
<o fp <fp>
@©
_ _E_\\\ proc
START | b iz STOP
hjjl 5 proc Wj}g S proc

42

.<decl> + int<ident>

Igjl)<ident>

‘int,decl

43

44

45

46

61

<decl> ~ procedure<ident>(<&fp>;<stat>)

roced,nil,<

ident>

int,decl <stat>
M.’g !_a_r‘_aa
START I 1 > ERROR | L1
odecl ;o decl,B
£ 2 - Ne
v
L 1 > L1 12
U decl U used decl
£ 'E
L2 ” ERROR| L3
ecl hused
u v
o proced, & * proced, &
L3 l - I L4
3 EY‘OC Y Erocyg
@S €
Y v
L4] > L4 | L5
u}
proced proced, £
L5 l - T STOP
proc.t &proc,decl
2 decl
<% decl> + <decl> 1
A <decl>
c<® decl>
<% decl> -+ <& decl>;<decl>
L <decl>
<program> - <block> o <block>,EXEC
START ¢ e > ERROR | STOP

Table II - Semantics of ALG

62

block ,EXEC o block
START 1
% stat o % stat,EXEC
~block - block ,END
: STOP
& stat,END & & stat
NG stat U L stat
Y \4
<END ¢ ; EXEC
W t
()i stat ,EXEC gﬁz stat
/U u
v VEXEC
ol stat @2 stat,END
N U\
*}:END
Y v

o goto,EXEé\%

////f\ii;ii%C
C{

N\

o EXEC

x i = ,END
f\/\ *N’/\
'y VAL, x X ;

- v,EXEC
/\)

N
EXEC EXEC

\)€{+5 T ks /a =}

10

11

12

13

14

15

16

17

18

19

63

+ +,VAL ,sum{x, y)
/\)
VAL ,x VAL

Y

d/////x;\\\b - VAL ,minus(x, ¥)
VAL, X VAL,y .

* * VAL, mult(x, y)
-
VAL , X VAL,y
/ ,

/ VAL, div(x, y)

-5
S VAL o X VAL » Y
=,EXEC G
-EXEC
IE? I(EhVAL,minus(O, X)
VAL ,x

Gf;EC var,x ” C"K\FIJ\L,X var,x

-

ICOHSt,EXEC]const,VAL,x

WX

if,EXEC

v X
if
c//////iI<:;\\\\\t ’ (////////]i\\\\\\\l
. 3 o EXEC y

ki if
/‘\\ § %\
VAL .true : © @ EXEC

20

21

22

23

24

25

26
27

28

64

if if
—>
VAL, false EXEC
oif if ,END
+
END
Lif if,VAL,x
>
VAL, x

= :,VAL,equa](X, Y)

cvalue,VAL ,x - o value,x,END
©name , EXEC > ohame, END

z—— z
(3////”—-\\\¥$name > @ EXEC cname
QDEXEC e 7 7

EXEC @{a;e\i v EXEC < name ©

29

30

31

65

call call
% stat,END EXEC
call,proc 6~ca11,9roc,END

[l

call,func,VAL

66

References ,
i
[1] de Bakker, J.W. "Formal Definition of Programming Languages",
TatheTaticaT Center Tracts, Vol. 16, Mathematisch Centrum, Amsterdam
1967) .

[2] Culik II, K. "A Model for the Formal Definition of Programming
Languages"”, Intern. J. Computer Maths,, Section A, Vol. 3, pp.315-345.

[3] Farah, M. "A Formal Description of ALTRAN Using Linked Forest
Manipulation Systems", Res. Report CS-73-08, Department of Computer
Science, University of Waterloo.

[4] Farah, M. "Correctness of a LUCID Interpreter Based on Linked
Forest Manipulation Systems", Res. Report CS-77-07, Department of
Computer Science, University of Waterloo.

[5] di Forino, C. Generalized Markov Algorithms and Automata in
"Automata Theory", edited by E.R. Caianiello, 115-130, Academic
press, New York (1966).

[6] Knuth, D.E. "Semantics of Context-Free Languages", Math. System
Theory, Vol. 2, pp. 127-145.

[7] Lucas, P., Lauer, P., and Stigleitner, H. "Method and Notation for
the Formal Definition of Programming Languages", Technical Report
TR 25.087, IBM Laboratory, Vienna.

[8] McCarthy, J. "A Basis for a Mathematical Theory of Computation”,
Computer Programming and Formal Methods, pp. 33-69, North-Holland
(1963).

[9] Rosen, B.K. "Tree-Manipulating Systems and Church-Rosse Theorem",
J. ACM, Vol. 20, No. 1, January 1973, pp. 160-187.

[10] Rosenkrantz, D.J. "Programmed Grammars and Classes of Formal
Languages", J. ACM, Vol. 16, No. 1, January 1969, pp. 107-131.

[11] Wegner, P. "“The Vienna Definition Language", ACM Computing Survey,
Vol. 4, No. 1, March 1972.

[12] Wirth, N. and Weber, H. EULER, A Generalization of ALGOL, and its
Formal Definition, Comm. ACM, 9, 13-23, 89-99 (1966).

[13] Zoltan, A.C. "A Formal Defintion of ALGOL 60 Using Linked Forest
Manipulation Systems”, Research Report CSRR-1072, Department of
Computer Science, University of Waterioo.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

