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RELATIONAL EQUATIONS, GRAMMARS, AND PROGRAMS

Abstract The theory and some applications of equations in terms of binary
relations are studied in this paper. Such an equation can be regarded as a

set of axioms of first-order predicate logic such as used in logic programming,
but simplified so as to suit the situation where the logic program is a monadic
recursive program schema.

A proof theory, a model theory, and a "fixed-point theory" is established
for certain relational equations. As a result such an equation determines a
vector of relations equivalently syntactically, as minimal solution, and as
minimal fixed point. The union characterization of the minimal solution allows
the application of Scott's induction rule to establish a property of the minimal
solution. |

The properties of relational equations can be applied both to formal
language theory, and to the semantics of monadic recursive program schemas, by
a suitable choice of constants. In the case of formal grammars the constants
are determined by the "quotient representation" of a language as a binary rela-
tion. For relational equations of type 3 we obtain a matrix-vector calculus
similar to the one used for type-3 grammars.

Flowgraphs, certain programs according to the "grammar model, are
described together with an operational semantics, which includes the possibility
of indeterminacy, the notions of success and failure, and backtracking execution.
Successful computations are related to the least solution and failed computa—
tions are related to the greatest solution of the relational equation defining
the nonoperational semantics of a flowgraph. We apply computation rules for
predicate transformers to proofs of correctness of flowgraphs. The semantics
and proof method are applied to obtain an alternative foundation of Dijkstra's

sequencing primitives.



1. Introduction

1.1 Overview and Motivation

The research reported in this paper is a continuation of [17], where
three equivalent kinds of semantics are defineéd for predicate-logic programs:
an operational semantics based on proof theory and two varieties of nonopera-
tional semantics, one based on model theory and one on the fixed-point
characterization. In [17] no attention is paid to proving properties of pro-
grams. In logic programming, a result of a procedure call is a logical im-
plication of the procedure definitions, hence true in all models. A pro-
perty of a program is typically true in the minimal model, but not in all
models, and is hence not a logical implication.

It is, then, not obvious what is to be the logical basis for proving
properties of logic programs. One approach is to add axioms to a logic pro-
gram so that unwanted models are eliminated and the property to be proved be-
comes a logical implication. The axioms to be added often take the form of
instances of induction schemas. Another approach is to leave the logic pro-
grams as they are and to discover rules of proof that derive statements true
in the minimal model, rather than in all models.

If one takes the second approach it seems hard to avoid algebraic mani-
pulation with explicit expressions for the minimal model. It is encouraging
that the procedure definitions of logic programs have a natural interpretation
as equations in a relational algebra. However, this algebra is rather com-
plicated, which is not surprising in view of the advanced features of logic
programs as compared to the toy languages usually modelled in semantics.

We therefore study a restriction of logic programs to the level of
complexity of one such toy language, namely the monadic recursive program

schemas of de Bakker and de Roever [3 ]. This restriction suggested the
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“grammar-modelled programs" introduced in [ 16]. The grammar model turned out
to be interesting in its own right because (in the case of a type-3 grammar)
the program is itself a sét of verification conditions proving partial correct~
ness [16], because of the suitability for systematic program development from
specification to code [1#], and because of the interesting relationships be-

tween grammars and program schemas in general [ 1, 8,187,

Because of the intrinsic interest of grammar-modelled programs and because
of the extremely modest demands they maké on the rich structure of first-order
predicate logic, we think that they deserve a logic of their own, with matching
simplicity. This "logic" is presented here as a method of defining binary
relations over an unstructured domain by means of equations involving relational
product as explicit operation. We use the terminology of equations rather than
the one associated with deductive theories. In this way the basic concepts are
those already assimilated at the pre-university level of education. No formal
system is used in deriving properties of relatdons defined: reasoning is
informal, precise, and rigorous, which is the way mathematics has always been
done. Yet those familiar with first-order predicate logic will recognize the
distinction between proof theory and model theory, the distinction between truth
in all models ("implication") and truth in the minimal model ("weak implication'),
and the soundness and completeness (for a restricted type of equation) of the
derivation mechanism.

The applications of relational equations studied here are to formal grammars
and to programs. Many workers have used in one way or another the analogies
between formal grammars and program schemas [1,818]. 1In our approach both are
obtained by suitable definition of the constants in the equation.

The key concept used in the case of grammars is that of what we call the
"quotient representation" of strings and languages, which we owe to Colmerauer

and Kowalski [21], who used such a representation in logic programs for parsing.
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For relational equations of type 3 we obtain a matrix—vector calculus similar to
the well-known calculus for regular languages. Because the problem of determining
an automaton recognizing the language denoted by a given regular expression is
also of interest in relational equations, we apply Brzozowski's [9] notion of
the derivative of a regular expression in the context of binary relations.

There are several points of interest in the application of relational equations
to programs. The programs share with those of Scott [24] the suitability of
being used instead of automata in the study of formal languages. They differ
from Scott's in being possibly indeterminate, a property recently discovered [13,14]
as useful in the systematic development of programs for practical use. The
denotational semantics of a program with a type-3 schema (a "flowgraph') is
characterized by either a "forward" or a "backward" relational equation. The
forward equation expresses the usual verification conditions in the sense of
Floyd's method of proof. The backward equation does the same but with respect
to an inverse form of the usual partial correctness; both forms are expressed in
terms of "(predicate) transformers'. Total correctness is expressed by means of
the backward transformer.

An interesting point of flowgraphs is the notion of a failed computation
and the fact that the interpreter backtracks upon failure, as if searching for
a successful computation. Both the least and the greatest fixpoint play a role
in the nonoperational semantics of the input-output behaviour resulting from
such backtracking execution.

When formalism 7F1 is stated to be a special case of formalism FZ’ it is

often understood that Fl is claimed to be therefore superior to F That

2°
this is a misunderstanding must be clear before observing that Dijkstra's

sequencing primitives [12,13] are special cases of flowgraphs. The observation

is useful because it shows that the widely applicable properties of relational
equations can be used to define the nonoperational semantics of these primitives; this

instead of the somewhat ad-hoc semantics they were endowed with originally. The

observation also suggests backtracking upon “abort' into the execution of Pijkstra's



programs, thus enhancing their wutility for goal-directed programming.

1.2 Related work

The present paper is justified partly by the diversity of applications
derived from a single elementary concept and partly by the fact that flowgraphs
are useful in the systematic construction of programs of practical significance
[14,15]. Probably none of the results in this paper is new when considered in
isolation. As a consequence I have not attempted to list exhaustively publications
where similar results have been derived.

The work of Mazurkiewicz [22,8 ] and Blikle [5,6,7] is most closely related.
We have been influenced by Scott's suggestions in [24] and by their elaboration
by Clark and Oewell[1ll]. Several publications with related work have already

been mentioned in the previous section.

2. Relational Equations

2.1 Equation schemas

An equation schema ig an ordered triple (V,C,F) where V is a set of symbols

called variables, C is a set constant symbols, and F is a set of inclusions.

An inclusion is an ordered pair (tl’tz)’ where tl is a term, the greater term
of the inclusion and where t2 is a term, the lesser term of the inclusion. A
term is a constant symbol of a variable or a product. A product is an ordered
pair of terms, We will write

an inclusion (tl’tZ) as t. 2 t, and

a product (tl’tz) as t; e t, .

2.2 Equations

An equation schema is an entirely syntactic entity. Before we can speak
of solutions we must associate with the constant symbols certain relations
called constants. The means for doing this are attached to an equation schema

and give an equation.
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An equation E is an ordered triple (E',D,B), where E' 1is an equation
schema (V,C,F), D "#& a set (the domain of E), and B (the base of E) is a
subset of C x (D x D). B associates by means of the valuation function with
each constant symbol of E' a binary relation over D.

A valuation is a function, denoted by 'val', that associates with each
term constructible from constant symbols and variables of E', a binary relation
over D. The result of the valuation function depends in general on its base,

a subset X of Vx (DxD).

val (X,t) =-{(dl,d2): (c,(dl,dz)) €¢B&d eD&d,« b}

2
if the term t is the constant symbol c¢, Note that in

this case the valuation does not depend on X.

E(dl,dz): (v,(d;,d,)) e X &d; e D& d, e D}

if the term t is the wvariable v.

the relational product of val(X,tl) and val(X,tz) if the
term t is tl ° t2.
In view of the associative property of product we will regard a product as a
sequence rather than a pair, i.e. we leave out any parentheses.

An inclusion t; = t, is satisfied by a valuation with base X iff

val(X,tl) 2 val(X,t as subsets of DxD. An equation E is satisfied by a

5)
valuation with base X iff each of its dnclusions is satisfied by that valuation;
X 1is then called a solution of E. Let S(E) be the set of solutions of E.
Because each solution is a set, it makes (the usual) sense to speak of nS(E),

the intersection of solutions.

Suppose equations E1 and E2 have the same set of variables and the same

. [t

domain. Then El implies E2 (El F=‘E2) iff S(El) = S(Ez), and E1 weakly

implies E2 (E1‘= EZ) iff nS(Ez) & nS(El). Note that implication implies
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weak implication. E, and E, are said to be equivalent (E; H EZ) iff

E1 F= E2 and E2 F= El' E1 and E2 are said to be weakly equivalent

(E1<<=> E2) iff E, =>E, and E, =>E

1 2 2 1°
Let us now suppose that E1 and E2 differ only in their sets of inclusions
. A 4 E . N
Fl and FZ' Notice that E1 [ .§2 if F2 F1 It is more interesting to

have El F= E2 and Fy = F2. Then we would also have El F=% E2. If we regard

the difference between F2 and Fl as a function of Fl’ then we say that E2

has been derived from E;. We define By - E, if E, is derived from E; by

an application of the following rule of inference:

= [ c 1 C .
F2 FltJ ftl = t2} whenever t1 t2 and t3 < t4 are in F1 such

that t, 1is the result of replacing tq in tﬁé

by t4

Also, El |— E2 if El = E2 or if there exists an E such that B, F— E and

E |- E,. A variable v generates with respect to E a term t written (v-g> t)

iff E |- E' where v 2 t is an inclusion of E'.

It should be clear that El =t E2 if E1 }- EZ’ which we could express
by saying that the derivation mechanism is "'sound".

We will use the following notational conventions. A possibly subscripted
Y will stand for a product of constants. If the product is empty it stands for
the identity relation. The constant symbols ¢ and I stand for the empty
relation and for the identity relation, respectively. That is, whenever they
occur in an equation schema, the base of the equation is supposed to contain:
{@,(d,d)): deD} and not to contain any pair with ¢ as first element.

An equation is of type 2 if its schema is of type 2, and this is so whenever
the greater term in each inclusion is a single variable. An equation of type 2
is also of type 3 if its schema is (also called linear, following Blikle [5]),
and this is so whenever either all lesser terms only have a variable (if at all)
as the first term of a product‘(left—linear), or all lesser terms have a variable

(if at all) as the last term of a product (right-linear).



2.3 Existence and characterization of the least solution

For a given type~2 equation ((V,C,F),D,B), let T be a function from

subsets of Vx(DxD) to subsets of Vx(DxD) defined as follows:
(v, (x,y)) € T(X) iff = (v 2 t)e F such that (x,y) € val(X,t)

It follows immediately that T is momotome: X, E X, dmplies T(Xl) = T(Xz).

X 2 T(X) can be regarded as an equation which is equivalent with E in
the following sense.
Theorem 2.1 X e S(E) 4iff X 2 T(X)

Proof Suppose X € S(E).

(v, (x,9)) € T(x) GeEeef T

X is a solutloz (x,y) € val(Xyv)

(x,vy) € val(X,t) where t in some v 2 t

def. of wval

(v, ) € X

Suppose X = T(X). We must now prove that for any (v 2 t)e F,

val(X,v) 2 val(X,t).

def. of T

(x,y) € val(X,t) N

def. of wval
—_—

v, (®,y)) € T(X) —> (v, (x,y)) ¢ X
(x,y) € val(X,v) [

According to the Knaster-Tarski theorem, X = T(X) has a unique minimal
solution which is also the unique minimal solution of X = T(X). We have just
seen that this solution must be nS(E).

We define TO(X) to be X, Tn+l(X) to be T(Tn(X)), and T*(X) to be

o
TR wfe.op
We define L(E) ={ (v,(x,y)):dYy such that (x,y) ¢ Y and v £, v}
It may be helpful to see that
val (L(E),v) =uly:v N v}

that is, with L(E) as basis, a valuation assigns to v the relation which is
the union of the products of constants that would be generated with v as start
symbol by the grammar corresponding (in the sense explained in the next chapter)

to E.



It is of course easy to prove that the minimal solution nS(E) of
%
X = T(X) 4is T (¢) by showing the so—called "continuity" of T. But we
prefer to work in a more concrete manner and to show this directly. Besides,

we also have to prove that L(E) = nS(E).

Theorem 2,2 a) L(E) = nS(E)
b) nS(E) € T (6)
&) T () € L

hold for a type-2 equation E.

Proof Let <Y be a product of constants.

a) If v £, Y then v 2 Yy is true in every solution of E and hence
val(nS(E),v) = Y.
Suppose (¥, (x,y)) € L(E). By the definition of L, there exists a Y
such that (x,y) € Y and v-—E>'Y. Hence (x,y) € val{(nS(E),v) which is
(#,(x,y)) € nS(E). The conclusion L(E) S nS(E) can be understood as the
"goundness' of the derivation mechanism determining L.

b) To show that nS(E) = T*(¢) we show that T*(¢) is closed under T,
because then (Theorem 2.1) T*(¢) e S(E).
Suppose that (v,(x,y)) ¢ T(T*(¢)). By tge definition of T, there exists
a (v=21t) e F such that (x,y) € val(T*(¢),t). As t is a finite product
of constants or variables, there must exist an N such that (x,y) € val(TN(¢),t).
But then (v,(x,y)) € T TE(6) € T (4).

¢) Let us prove that Tn(ﬁ) SL(E) for n = 0. By the definition of L we
have to prove that (x,y) ¢ val(Tn(¢),v) implies that (x,y) € Y for some
Y such that v-—§> Y. We proceed by induction on u.

n+1(¢),v). We must now find a Yy such that v —§>'Y

Suppose (x,y) € val(T
and (x,y) € Y. By the definition of T there exists a v 2 t such

(%,y) € val(Tn(¢),t). It t contains no variables, it is the <Y we need.
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: Otherwise 7Y can be found by eliminating the variables in t. Let +v'
be one such; (x,y) ¢ val(Tn(¢),t) implies some (x',y') € val(Tn(¢),v‘).
By the induction hypothesis there must be a 7Y' such that (x',y") € ¥'
and v'~—E> Y' in at most n steps. We conclude that (x,y) € val(Tn+l(¢),t'),
with v-—E> t' din at most nt+l steps, where t' is the result of replacing
v' by y' din t. All variables in t <can be replaced simultaneously in
this way. To verify the basis of the induction, observe that by the
definition of T, (x,y) € val(T(¢),v) iff (x,y) € val(p,t) for some
v 2 t; this can only be the dase if t 1is a product of constants only.
The conclusion T8(¢) S L(E) can be understood as the completeness of
the derivation mechanism: whenever (v,(x,y)) is the minimal sélution of &K,
this can be derived by a suitable v SN y 4
According to theorem 2.1 solutions X of relational equations are
characterized by X = T(X), of which only the least and not the greatest
solution is of interest., We will, however, make use of the greatest solution of
X € T(X), which can be proved to be equal to n Tn(Vx(DxD)) in a similar way
n=o

to the proof of theorem 2.2, Note that we do not consider any form of relatiomal

equation of which the solutions X are characterized by X = T(X).

3. Application to Languages.

3.1 The quotient representation

Relational equations look very much like formal grammars: comnstants are
like terminals, variables like nonterminals, terms like strings, inclusions like
productions. This simildarity suggests the following definition. A grammar G

is an associated grammar of an equation schema E = (V,C,F) if G has C as

set of terminals, V as set of nonterminals, any start symbol of V, and a set

of productions containing s, + s

1 for every inclusion tl = t2 in F, where

2
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si(i=l,2) is the string of symbols of ty in the order as they appear in ti'
Thus, for every choice of start symbol there is an associated grammar.

We shall use type-2 relational equations to characterize context-free
languages as least solutions. A relational equation is widely applicable
because, independently of its schema, the domain may be chosen to give any
binary relations over the domain as values to the constant symbols. However,

for a given schema (V,C,F) there is omne eguation of special interest, namely

the grammar equation of the schema:

((V,C,F),C*, {(c,{cs,8)): ceC & s8¢ C*})

where the domain is the set of strings of constants and where the base is
chosen to be such that wval(¢,c) ={ (cs,s): s € C*}. This construction, where
meaning is determined by syntactic objects only, is familiar in logic as the
"Herbrand interpretation'.

The reason for this choice of domain and base is the utility of the
"quotient representation' of strings and languages as binary relations over
strings. Suppose string t dis the catenation tlt2' Then tl is the
left-quotient of t with respect to t2 and may be represented by the set of
pairs { (tltz,tz): t2 € C*}; this set, a binary relation over C*, is the

quotient representation of tl.
*
It should be clear that the relational product of {(ssl,sl): 8; € c}

*
and'{(ttl,tl): t. € C }, the quotient representations of s and t, is

1
{ (sttl,tl): ty € C*} which is the quotient representation of the catenation

st. Because val(B,tIOtz) is the relational product of val(B,tl) and val(B,t2)5
we see that val(B,clo...ocn) = {(cl...cns,s): s € C*}: for a grammar equation
the value of a product of constants is the quotient representation of the string

*

of constant symbols. The quotient representation of a language L = C is

*
{(styt): selL & teC }.
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Now theorem 2.2 can be used to give a nonoperational (''mathematical",
"denotational'™) characterization of a context-free language, and to show it
equivalent to the usual operational characterization. The operational
characterization of a language generated by a grammar G is as the set of
strings of terminal symbols such that a derivation exists from the start
symbol x, to s.

Let R S C*XC% be the quotient representation of the language. Every
dérivation of the grammar can be simulated by an inference from E, hence
R = val(L(E),xo). It follows that the nonoperational characterization
val(nS(E),xo) also equals R. The situation can be shown in the following

diagram, of which the commutativity expresses a theorem of Gingburg and

Rice [201.
derivations
grammar G > language
from x
o
assg” ciated
L quotient
sthema representation
R=val(nS(E),xo) v % %
\ . grammar > R EC xC

equation E R:val(ELoTn(¢),xo)

Anything that is true of the minimal solution of a relational equation
with type-2 schema 8§, for any domain and for any base, also applies to a grammar
associated with the equation schema, because the grammar equation of § 1is
obtained by a speeial chpice of domain and base. More interestingly, we can
proceed from the particular to the general (at least so in appearance) by means

of what we shall call the correspondence principle: if something is proved of

a formal language by reasoning about sets of strings and derivations, then the

same can be proved of val(L(E);xo) by parallel reasoning about unions of

products of constants and inferences, and the result is true independently of the

choice of domain and base.
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Of course, the solutions about which such things are proved are unions

of products of constants, and hence limited by the vocabulary of the constant
symbéls. This need not be restrictive: we can make the constants as "small"
as we like. Suppose we are interested in expressing as minimal solution binary
relations over a given domain D. Then we can take as set of constant symbols
a set DD containing a name for each single pair of DxD., In an equation
((v,bD,F),D,B) the base B can contain (dd’(dl’dz)) whenever dd € DD is

the name for (dl,dz) € DxD.

3.2 Solving and unscolving right-linear equations

To sclve an equation usually means to find its solutions. In the case of
a relational equation of type 2, solving will mean finding the minimal solution,
which is a binary relation, and which we must sémehow denote by an expression
possibly involving several relational operations, rather than just the product,
which is the only one used up till now. It should not be taken for granted that
such an expression (an explicit form) is more useful than the equation itself
which may be regarded as an implicit way of denoting a relation. In some
situations an equation is more useful than an explicit expression, so that
"unsolving'', a process inverse to solving, is called for.

A type-3 relational equationin the form X 2 T(X) can usefully be
interpreted in terms of vectors and a matrix, with formally the same result as
for regular languages.

An X = Vvx(DxD) can be regarded as a vector of binary relations indexed
by the variables VisVoseee of V: the i-th component of X is Xi = val(X,vi).
Apparently, the transformation T associated with an equation E can be
regarded as a vector transformation. And if E is right-linear, T can be
regarded as a matrix of binary relations, as will now be explained. Let

rre

2 =) . . e .
vy Yijvj""’vi Yij vj be all inclusions beginning with v and ending

: = L Tt 2 ' 2 e
with Vj, and let Yij YijLJ...LJYij . Let vy Bi,...,vi Bi be all
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inclusions beginning with vi and not ending with a variable, and let

Bi = Biu cea U Bi" .

Of the i-th component of T(X) we know that, by the definition of T,

(RY)

val(T(X),vi) 2 val(X,Yigvj) for each inclusion v, Y;& Vi and

val(T(X),vi) 2 val(X,Bi') for each inclusion v, = Bi' , hence

i

2 try ' Tt
val(T(X),vi) = val(X,y! ovj) U...lJval(X,Yij ovj)u Biu el U Bi

[[V]

o U .
val(T(X),vi) Yij val(X,vj) Bl

U

A right-linear equation X = T(X) can apparently be written in terms of

IV}

vectors and a matrix as X = AX U B 1if in the usual matrix or vector operations
addition is replaced by union and multiplication by relational product, if

the (iyj)=element of the matrix A is Vi and if the i-element of B ‘is

Bi'

It should be clear that the matrix form of Tn(X) is AnXtJ(An—lU ...UAUTI)B
and that T*(¢), the least solution of X 2 T(X), is A*B (see [ 9] for the
corresponding result for regular languages). The result of solving a right-linear
equation is an explicit expression for Yal(T*(¢).vi), the i-th component of the
least solution T*(¢). The expression is the i-th Eopponent of A*B.iin
general an infinite expression in the ¥ij'8 and tﬁ; Bi's. An
application, via the above-mentioned correspondence principle, of Kleeme's
theorem on the "representability of regular events", says that this expression
can always be written in finite form, using product, union and star. This
completes our remarks on solving relational equations of type-3,

For regular languages the method of derivatives [ 9] is anproéess inverse
to solving an equation: given an expression for a regular language, the
method finds a finite automaton that recognizes the language; such an automaton

is just another form for a grammar generating the language, and such a grammar

is nothing but a relational equation in disguise. Because'regularAexpressions
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have meaning (the same, except that catenation for languages is product for
relations) in terms of binar& relations, the method of derivatives also applies
in the context of relational equationsz given a regular relational expression,
the method finds an equatiomn that has as minimal solution the relation denoted
by the expression.

The key notion of Brzozowski's method is that of a derivative of a regular
expression. The method can be applied without interpreting derivatives in terms
of relations: product of constants are treated as strings of (constant) symbols,
and the usual definition of derivative can be applied to such strings. When
the constants are the quotient-representation of single~-symbbl stfings, we can
also give a relational interpretation of the derivative. Let L be a relation
representing a language L' and 7Y a relation representing a string Y',
both over an élphabet o. Let P be the binary relation '{(tl,tz):(ﬁt. tl=tt2)
and t, ty € &*}, that is, P is the quotient representation of a*. Then the
derivative of L' with respect to Y' is a set of strings of constant symbols
of which the productshave as union (Y_lOL)nP, where (x,y)eY_l iff (y,x)ey. It
is easy to see that Y—lOL would already be the derivative, were it not for the
fact that L' may contain prefixes of <Yy' shorter than <Y'. 1In that case
Y_IOL contains products of inverses of constants (strings of negative length,
or even "anti-strings'" in some analogy to anti-matter) and these are not the
denotation of any string in the quotient-representation. Hence the need for

intersection with P to eliminate such anomalies.

4. Application to Programs

4.1 Grammar-modelled programs

Predicate~logic programs, especially when modelling sequential state-transition
processes, look very much like formal grammars. This observation inspdred the

definition in [16] of grammar-modelled programs.
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A grammar-modelled program consists of two parts: a program schema,
which is a grammar, and a machine, which has a set of states and a set of
commands and these are binary relations over the states. The relations
specify the #nput-output behaviour of the commands. The program also associates
with each terminal symbol of its schema a command of its machine. The st¥ings
generated by the grammar play the role of computations and are then associated
with products of commands which are binary relations between (input) states
and (output) states.

More precisely, a program schema is a formal grammar (N,T,P,S) with N

a set of nonterminals, T a set of terminals, P a:setiof productions, and
S a start symbol. A program is a pair (PS,(D,B)) with PS a program schema
and (D,B) a machine; D is the memory set (with elements called states)

of the machine and B is the command definition of the machine. B is a

subset of Tx(DxD), where T is the set of terminals of PS. The command

associated by the program with the terminal symbol t is the binary relation
val (B,t) ={Kdl,d2): (t,(dl,dz)) e B}

For a given state X, @ computation of a program is a sequence of paits
(tl,xl),...,(tn,xn) where Byeeety is a string generated by the program schema
of the program and where X1se.5X  are states such that (xi_l,xi) € val(B,ti),
for i=l,...,n. The start state of the computation is x5 its halt state is
X - An interpreter for a program is a procedure for conmstructing:a computation

for any start state where one exists.

Examplé 4.1 Program schema =
(nonterminals: {S, P}
,terminals: {a,b,c,d,e,f}
sproductions: {§ + aP, P > bP, P +qadP, ¥ + ef}
sstart symbol! S |

)
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The set of states of the machine is { (u,v,w)}u { (u,v)}tuv { W}

where u,v,w range over the rationals, and may be thought of as registers.

In different states different sets of registers may be in use.

definition B dis such that

val (B,a8) ={ ((u,v).,i(u,v,1))}
(real w:=1 in Algol notation)
val(B,b) ={ ((u,v,w), (u,v-1,uxw))}

(vi=v-1;wi=uxw)

val(B,c) =1{ ((u,v,w),(u,v,w)) : v 1is an even integer}

(if even(v) then else l:goto 1)

val(B,d) ={ ((u,v,w), (uxu,v/2,w))?
(ur=uxu; vi=v/2)
val(B,e) ={ ((U,O,W),(U,O,W))}

(if v=0 then else 1: goto 1)

val(B,f) ={ ((u,v,w),(w))}

{(deallocate u,v)

The command

1 ty Xy ty Xy *1
0 (2,10) , (2,10) (2,10)
1 a (2,10,1) a (2,10,1) (2,10,1)
2 d (4,5,1) d (4,5,1) 4,5,1)
3 b (4,4,4) b (4,4 ,4) (4,4,4)
4 d (16,2,4) d (16,2,4) (16,2,4)
5 d (256,1,4) b (16,1,64) (16,1,64)
6 b (256,0,1024) b (16,0,1024) (16,0,1024)
7 e (256,0,1024) e (16,0,1024) (16,-1,10"14y
8 £ (1024) £ (1024) (16,-2,10718)
Sequence I Sequence IIT Sequence III



18!
Sequences I and IT are finite computations; sequence III can not be completed

to one []

Examplé 4.2: An Alphabet Machine
Let the program gchema be the same as in the previous example. Let the
set of states of the machine be the set T* of strings over the alphabet
T={a,b,c,d,e,f}. Let the command definition B ={ (t,(tx,x)): t ¢ T & x¢ T*}.
With this machine the program is the grammar-equation of the last chapter.
Intuitively, the information environment of the mathine consists only of
an input tape represented by the string which is the state: there are no
internal registers and no output tapes. The command associated with a t € T
is defined only if the input tape starts with t and the action caused by the
command is that the tape is advanced. It may be verified that a pailr (x,y)
of states is in the input-output relation computed by the program iff x = oy
where ¢ 1s a strdng produced by the program schema. This fact is no more than
a curiosity for programs with a schema of type#3, because the accepting algorithm
does nothing but comparing the input string with successively generated strings
~of the language, as performed in an unspecified manner by the interpreter. It
seems reasonable to require that the interpreter needs only a finite amount of

of memory, so that we consider programs with a schema of type 3, as in the following

example.

Example 4.3: A Pushdown-Store Machine

We consider the problem of accepting with a program (@w',t',P',8"), (D,B))
a language generated by a grammar G = (N,I,P,S), where P' is of type 3 and
P is of type 2 with the restriction that no terminal follows a nonterminal in
a right-hand side of a production. We describe the accepting program in terms

of the grammar G:



19.

N' ={s',Q,R,F,H}

T' = Tu{ push(x): x e N}Ju {'pop(x): =x e N}
u{ stack empty, tape empty, tape nonempty}
We assume that T does not already contain any of the symbols
added here,.

P' ={8" + push(S) Q, Q + stack empty R

,R°> tape nonempty ¥, R > tape empty H
}u {Q > pop(n) tl...tj push(n;) ... push(nk) Q
. 1]
n > tl...tj Op...ny € P with the t's terminals

in T and the n's nonterminals in N

% * ,
D=N xT, i.e. the memory set consists of all pairs of a string of
nonterminals (the "stack") and a string of terminals

(the "input tape').

B is such that:
(x,v) € val(B,push(i)) iff v is the state resulting from pushing n € N
on the stack in state x;
(x,v) € val(B,pop(n)) 1iff vy is the state resulting from popping the
stack in a state x where =n € N 1is the top of a nonempty stack;
(x,v) € val(B,t} 41iff y dis the result of advancing the tape one symbol
in a state x where t € T is the first symbol on the tape;
(x,y) € val(B,tape empty) 41iff the tape is empty in state x- and x=y;

similarly for "stack empty" and "tape nonempty'.

For example, the program with pushdown store machine accepting the language

generated by



G = ({s,A,B}
, {a,bl
,{S > aAs, S+ a
LA > SB, A~ ba
,A > S5, B+ bA
h
sy S

)

is, in graph notation (see Section 4.2):

s by e

| @Rrpush(s) Pu@’

(t

‘\‘@A) push(S) pu@"”//’f

20.
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Example 4.4
Let D be the set of triples (x,v,z), where x is a left-infinite and
z 1is a right-infinite string on the alphabet % ={0,1,blank}; y ¢ Z. Let B

equal

{ @, ((x,y,uz), (xy,u,z)))}u
{ (Rs ((Xu,YaZ),(X,UsYZ).’))} U

Ui——;o,l,blank{ (Pi’ ((X,Y,Z) 9(X’isz>))} U

Ui=0,l,blank {; (1, ((x,1,2), (x,i,z)))}

where x and 2z range over Z* and u and y over I.

This machine is Turing's own [25]; together with any program schema it
makes up a grammar-modelled program. Any terminal symbol of the schema not
L,R,Pi, or i is assigned by B the totally undefined command. As argued by
Scott [24], it is advantageous to separate programs from mathines, so that
instead of having different "Turing machines" to compute different sets of

sequences, there are different programs for the same machine, such as the one

described in this example [

4.2 Operational semantics of flowgraphs

The operational semantics of programs has in principle been defined already
by means of the finite computations. However, this is not satisfactory because
it has not been specified how the interpreter constructs the strings generated
by the program schema. We can be more specific about this when the schema is
of type 3: 1in a right-hand side of a production a nonterminal can only occur as
last symbol.

For the purposes of grammar-modelled programs, type-3 grammars have an

unpleasant lack of symmetry: there is a start symbol, but not a halt symbol.
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We shall assume that our type-3 program schemas are modified as follows: all
right-hand sides of productions have to end in a nonterminal. Where there was
none, we add one, say H, which is different from the previously present
nonterminals, and call it the halt symbol. Moreover, without loss of generality
we can assume that the statt symbol does not occur in a right hand side. Tt
is clear that the halt symbol cannot be a left-hand side. The language defined
by a grammar G is now the set of strings t of terminals such that § § tH
where S 1is the start symbol and H the halt symbol.

For type-3 schemas the strings can be defined by means of paths though a
labelled directed graph, as follows. The graph contains a node for every
nonterminal, and an arc from Nl to N2 labelled with a string of terminals
t for every production Nl > tN2.~ Because of this representation, we will
refer to programs with a type-3 schema as a flowgraph: something which is
ﬁuch like the traditional flowchart, but truly a graph because only one kind
of node exists., Computations now correspond to paths from S to H through
the graph, and they are represented by the labels of the arcs traversed. It
will be more convenient to consider instead the sequences of nodes. Therefore

we define a path as a sequence

...,(Ni,xi),... i=...,-2,-1,0,1,2,...
where (Ni+l’xi+l) is a successor of (Ni’xi) for all i in the sequence,
(N',x") 1is a successor of (N,x) iff there is an arc labelled t from N to
N' and if (x,x') - € val(B,th...Otn) where t;,...,t =~ are the symbols
(in that order) of t. It is understood that a pair can only be the last (first)
of a path if it has no successor (is not the successor of any pair).

Note that if S occurs in a (node,state)-pair, then the sequence must

have a first pair, and is called a forward path. If H occurs, then the sequence
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must-have a last pair, and is called a backward path. The operational semantics

of a program with type-3 schema can now be equivalently, and more specifically,

be defined as

{ (x,y) : there exists a path (S,x),...,(H,y)}

which is the input-output relation computed by the program.

A forward path which is also a backward path is a finite path. There may
exist finite forward paths which are not backward; we will call these failed:
reaching H dis thought of as fulfilling the program's goal, so that a forward
and backward computation is called successful. Note that only successful paths

correspond to computations. Suppose
(S’XO) sy (P’Xn)

is a failed path. If the program is indeterminate then it may happen that a

successful path
(S’xo),...,(H,xm)

also exists. Another way of viewing an interpreter is as a procedure for -
constructing a successful path whenever one exists for a given start state,
Consider the tree with (S,xo) as root and (N',x') a descendant of (N,x)
iff (N',x") fis a successor of (N,x). Forward paths are paths in this tree
from the root. An interpreter may be viewed as a procedure searching for a pair
with the halt symbol. One of the several algorithms the interpreter can use is

depth-first search with backtracking upon failure,'that is, encountering a
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terminal node of the tree without halt symbol. Such an algorithm is commonly
employed in interpreters for indeterminate programs. Note that backtratking
over an input command implies regurgitating input already ingested. This is

essential in the programs in examples 4.2 and 4.3.

Example 4.5

Suppose we want to find a way of paying an amount of n cents when n,
coins of denomination i cents are available, i = 10,5,1. The following

program ((N,T,P,S),(D,B)) performs the required computation.

N ={s,qQ,H}
T =1{ (PIO,P53P1:=03030) ,(n=0)} U

{(n,ni,pi:=n—i,ni-l,pi+l: i=10,5,0or 1}

P = { S (P103P53p1:=03090) Q
,@Q + (n=0) H
tu{qg~ (n,ni,pi:=n-i,ni-l,pi+l) Q: i=10,5, or 1}
D = the set of 7-tuples of honnegative integers, representing the values

of the wvariables n,nl,nz,nB,pl,pz,p3

B is such that each of the nonterminals is assigned the relation as usual
in programming. Note that only nonnegative integers exist, so any
assignment that would lead to a negative integer as component of a tuple
is undefined.

4.3 Floyd's proof method for flowgraphs

Suppose p and q are subsets of D. Such sets will be, improperly, called
assertions, although this term will also be used properly for the statement that
a state belongs to such a set. A flowgraph is partially correct with respect to
assertions p and q if for each terminated path with start state in p, the
final state is in ¢. Note that x ¢ p does not imply that there exists a
terminated path with x as start state; it is this deficiency that the "partial”

in "partial correctness" refers to.
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If R 1is the input~output relation computed by flowgraph p, then its
partial correctness with respect to p and g can be expressed as an inclusion

among binary relations:

where p' is the partial identity containing just those pairs (x,x) such that
x € p, and similarly for g. A traditional notation (convenient when R is not

very short) for the partial correctness of p is
{p} p{ql}

The purpose of the method of Floyd[19] is to prove partial correctness for
a program written as a flowdiagram. The method appiies to flowgraphs as well,
as will now be explained [10]. Let S be the start nodé and H the halt node
6f a flowgraph. According to the method, there is associated with each node an
assertion which is denoted here by the same symbol as the associated node; the
context should make it clear which type of object meant. The assertions are said

to verify the flowgraph if for each arc the verification condition

o £ (o
L1 cC-=-¢C L2
holds; Ll(Lz) is the assertion associated with the initial (final) node of the
arc, and C 1is the command labelling the arc.
The premiss of Floyd's rule 6f proof is that the flowgraph be verified. The
conclusion is its partial correctness with respect to any assertions p € S and
=]

q H:
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where R 1is the dnput-output relation computed by the flowgraph.

Theorem 4.1 If in a path there is a (node,state) pair (L,x) such x € L,
where L is the associated assertion, then the same holds for all
subsequent pairs in the path.

Proof Let (Li-l’xi—l)’ (Li,xi) be two successive pairs in the path. By the

definition of a path, (xi—l’xi) € Ci’ the command labelling an arc from Li—l

to Li in the flowgraph. By the supposition that the assertions verify the

flowgraph, Liwl;ci = C;sL;. Suppose now that X g i

Apparently, if in a path of a verified flowgraph x e L, then the same holds

€ Li—l’ then xi e L

for all subsequent pairs. It was assumed that X, € S, the assertion associated
with the node in the first pair of a path 0O

It is easy to see that Floyd's rule of proof is justified by the special
cése of this theorem for finite paths. It should be noted that Floyd's method
may also be usefully applied to algorithms that do not terminate (operating
systems, or programs controlling telephone exchanges may be designed never to
terminate).

P may have the property that whenever a backward path ends in a state in
q and the backward path also has a beginning, then the start state must be in
p' in relational notation: p' e R = R o q'. The above rematks on partial
correctness and theorem 4.1 apply, with obvious modifications, to this backward
analog of partial correctness, which has been used in comnection with the method

of subgoal induction of Morris and Wegbreit [23].

4.4 Nonoperational semantics

4.4.1 Forward and backward equatiomns

The nonoperational semantics is defined by means of the least solution of
either of two relational equations associated with the program. One is called

the forward equation, the other the backward equation.
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Let ((N,T,P,S),(D,B)) be a program. The forward equation associated

with the program is ((N,T,Fl),D,B) where F1 contains the inclusion

) + . +
if P contains the production D * CyereCyl,. To

n2-nl°cl°...°ck

the inclusions there is added § = I, where I is the identity.

The backward equation associated with the program is ((N,T,Fz),D,B))
where F2 contains the inclusion ny 2 cl ° wes 2 Cpoo n2 if P contains the

> C....C, 0 To the inclusions there is added H = I, where I

production n 1 KPor

1
is the identity relation.
The forward and backward equations correspond to the two different ways

de Bakker [2] gives for expressing a given flow diagram as an equivalent set of

procdedure declarations.

Example 4.6

After adding the halt symbol H, the program schema of example 4.1 becomes

(nonterminals: { §,P,H}
, terminals: {a,b,c,d,e,f}
, productions: { S - aP, P > bP, P » cdP, P + efH}
, start symbol: S
)

The associated forward equation has as set of inclusions

{s21,P2804a, P2Pcb, P2 Pocod, H=2 Poecf}
The associated backward equation has as set of inclusions

{s 2 acP, P2 boP, P2 codP, P 2 eofoH, H =2 I}

Theorem 4.2a Let P be a program with forward equation E. Then

(x,y) € val(nS(E),t) 1iff (no,x),...,(t,y),... is a path of P,

where n, is the start symbol.
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Proof Suppose (x,y) € val(nS(E),t). Then (x,y) € val(L(E),t) and there must
exist products of constants Yi such that E F- £ = YlO...OYk such that for
i=1l,. ..,k n, 2_ni_l°Yi is an inclusion of E. The existence of the path
follows. The converse of this reasoning proves the converse [

Note that the path need not be finite. Apparently the forward equation
characterized by its least solution the paths that have a beginning but not
necessarily an end. 1In case t is the halt symbol H the path is finite; the
theorem states that ~val(nS(E),H) is the input-output relation as defined

according to the operational semantics.

Theorem 4.2b Let P be a program with backward equation E. Then

(x,y) € val(nS(E),t) iff
cees (EsX) 5., (Hyy)
is a path of P.

Note that the path need not be finite. Apparently the backward equation
characterizes by its least solution the paths that have an end but not
necessarily a beginning. In case t 1s the start symbol, the path is finite;
the theorem states that wval{(nS(E),S) is the input-output relation as
defined according to the operational semantics.

Let E1 be the forward equation of a program P and E, its backward

2
eqﬁation. By "coupling" E and E, dnto a single equation E we can
characterize the computations that have both a beginning and an end. E contains
as inclusions those of E1 and those of E2, where we suppose that the variables

from El(EZ) are distinguished by an extra subscript 1 (2).

Let n be a nonterminal from P.
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(x,y) € val(nS(E),nl) implies (Theorem 4.2a) that (n,y) is in a forward path.
(y,2) € val(nS(E),nz) implies (Theorem 4.2b) that (m,y) is in a backward path.
Hence val(nS(E),nlOn2 is the contribution to the input-output relation by
the finite paths through n. It follows (de Bakker [2]) that the input-output

relation computed by P is Lﬁ val(nS(E),nlon2 . Let s be the start symbol

of P, and h its halt symbol. Then we see that val(nS(E),hlos2 ) has as

domain the domain of convergence of P.

4,4,2 The significance of greatest solutions

Let T be the transformation associated with the forward equation of a
program ((N,T,P,S),(D,B)). T maps the power-set of N x (DxD) to itself.
The forward equation tan be written as x =2 T(x). We saw that (H,(u,v)) is
in the least solution of the forward equation iff there exists a (successful)
path (S,u),...,(Hyv). The greatest solution of x 2 T(x) is of no interest.
However, the least solution of x = T(x) happens to be a solution (in fact,
the least) of x = T(x) and this equation has an interesting greatest solution,

which happens to be the greatest solution of x S T(x).

Theorem 4.3 If all paths starting with (S,xo) are failed then for no y is
(xo,y) in the greatest solution of x £ T(x).
Proof We recall that the forward paths can be regarded as paths from the root
in a "path tree'", where (S,xo) is the root and where (N',x') is a descendant
of (N,x) iff (N',x') 4is a successor of (N,x). Theorem 2.2 ®&uggests that
EﬁTk(Nx(DxD)) is the greatest solution of x - T(x), which may be proved in a
similar way.

We will prove by induction on k that for all vy, (S,(xo,y)) is not . in
Tk(Nx(DxD) if (S,xo) is the root of a path tree containing failed paths only

and having a length < k.
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For the basis of the induction we assume that the path tree consists of
the root only, i.e., (S,xo) has no successor, so that for any inclusion
s = Yi ° Vi with S as greater .term, X is not in the domain of Vs Hence
(S,(xo,y)) e T(Nx(DxD)) for no vy.

For the induction step, suppose that (S,gé) is the root of a failed search
tree of depth K+l. TFor any successor of the root, say (Vi,xi) there must
exist an inclusion S = Y o© Vi such that (xo,xi) €Yy (Vi,xi) is the root
of a failed search tree of depth k; by the induction hypothesis (Vi,(xi,y))
is not in Tk(Nx(DxD)) for any y. TFor (S’(Xo’y)) to be in Tk+l(NX(DXD))
for some vy, it is necessary that there exist an inclusion § 2 Yy o° Vi with
(ko,xi) €y and (V,(Xi,y)) in Tk(Nx(DxD)); this has just been found to be
impossible. Hence (S,(XO,Y)) not in Tk+l(Nx(DxD)) »for any y, which
completes the induction step []

To summarize the operational significance of least and greatest solutions,
let the domain of val(ud,H) be equal to A when u, is the least solution
of u 2 T(u) and equal to B when u is the greatest solution u & T(u).
For x € A, (8,x) begins at least ome successful path and possibly also failed
and infinite paths. For x e B and X ¢ A, (S,x) begins no successful path,

at least one infinite path, and possibly failed paths. If (S,x) begins failed

paths only, x must be in the complement of B.

4.5 Equations and verification conditions

Correctness will be expressed by means of properties of states; a subset
p’ of D will be thought of as the set of states having a particular property.
As before, a subset R> of DxD will be thought of as the input-output relation
of a program or a command.

p * R is defined as the subset of D containing y 1iff there exists an
% such that x in p and (x,y) in R. Read in p + R '"»", the forward

transformer, as a function symbol in infix notation with p and R as arguments.

Note that D » R 1is the range of R,
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Similarly, x € (R < p) iff there exists a y such that (x,y) € R

and y ¢ p. The function symbol "«" 1is the backward transformer. R <« D

is the domain of R. These transformers are due to de Bakker and de Roever [ 3]

who wrote ﬁR(P) for p~>R and R e p for R + p. Note that the backward

transformer only coincides with Dijkstra's weakest precondition [13] for

determinate programs. For an indeterminate program, R may be such that

x ¢ (R« p) and yet there may exist a y such that (x,y) ¢ R and vy ¢ p.
Partial correctness of R with respect to properties p and q, as used

in Floyd's method of proof, was expressed as p' e R S R o q' and defined

as
xep and (x,y) € R => ye q,

can be expressed as (p > R) = q. The backward analog p' e R 2 R o q',
P

that is
yeq and (x,y) e R =3 x € p

can be expressed as p = (R « q).

Let P be a flowgraph ((N,T,P,S),(D,B)). The premiss in Floyd's rule of
proof is the conjunction of verification conditions, one, namely ay = (al +Y),
for each production n; > tn, of P, where a, (az) is the assertion associated
with node n; (n2) of the flowgraph and <y is the product of constants
corresponding to the string t of terminals.

1 -+ tn2 is

n, 2 1°Ys hence we derive an inclusion among sets of states (D + nz) =~ 01°Y)

Now the inclusion in the forward equation associated with n

,which is a, 2 Xa, > y) if & =D ->n; and a, =D > n,. Apparently, the
inclusions of the forward equation are in a disguised form the premiss

in Floyd's rule of proof. Prdving
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partial correctness is solving the verification conditdons where the assertions
are the unknowns, which is much like solving the forward equation. The diagram

below illustrates two alternative equivalent ways of proving partial correctness.

2 1 1
n, n1°Y take range ~ nl‘{Y} n,

inclusion of verification cond.
forward eqs.

find| solution X provelpartial
correct|ness

v %
val(X,ni) take range , assertion n;

>

Floyd's method of proof can also be justified, in a very direct way, by
the properties of relational equations. Let R be the input-output relation
of a program with forward equation El' The partial correctness of the program
with respect to properties p and q is (p >~ R) = q; it may be expressed in
terms of binary relations as p'eR = Roq' where p' (q') are the relational
analogs of p and q: (x,x) € p' iff x ¢ p, and similarly for q. Because
R = val(nS(El),H), it is plausible that Floyd's method of proof can be justified
by showing that p'eH & Heq' is in some sense a consequence of the forward

equation. Indeed we have:

Theorem 4.4 A program P has the partial correctness property with respect

to p and q iff p'oH S Hoq' is a weak implication of the forward equation
E1 of B. P has the backward partial correctness property with respect to
p and q iff Soq' S p'eS is a weak implication of the backward equation

E2 of P.

Proof p'eR = Req'  iff

[y

p'oval(nS(E;),H) = val(nS(E),H) o q' iff

|

val(nS(El),p'OH) S val(nS(El),Hoq') iff

p'eH = Heq' satisfied by the least solution of E A similar

1°

reasoning justifies the backward part of the theorem [J
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4.6 A semantics fior Dijkstra's sequencing primitives

An interesting application of the semantics of flowgraphs is to express
the semantics of programs in Dijkstra's [12,133 programming language. We effect
the application by exhibiting an equivalent flowgraph for each construct of
Dijkstra and by then giving the input-output relation for each flowgraph as
obtained, for instance, by the value of the halt symbol in the forward equation.

Let the flowgraphs again be ((N,T,P,S),(D,B)), where only the set P of

productions is a different one for each of the Dijkstra constructs.

N ={s,Q,H}

T = { skip,abort,...}

The set D of states is left unspecified and assumed to be the one in which
the primitive statements of the Dijkstra constructs act. The subset B of

Tx(DxD) assigns binary relations to the terminal symbol of T:

val (B,skip} = I, the identity relation

val (B,abort) = ¢, the empty relation
Whenever b is a boolean expression occuring as a ''guard":

val(B,b) ={ (x,x): b dis true in x, x € D}

as

T also includes assignment statements with expressions in their right-hand sides;
these statements will not be discussed here: ye assume that B will be such

that these terminals get the correct relation as value.
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The construct Sl;S2 corresponds to a flowgraph with P ={S§ *'SlszH}.

The value of H in the least solution of the forward equation is Siosé where

Si is the input~output relation of Si’ i=1,2,

The construct

if by + SL

R R N A 1
1 n n —

corresponds to a flowgraph with
P ={5~> b SLH,...,5 > b SL H} .
The value 6f H 1in the least solution of the forward equation is
' T LI L)
b1°SLlLJ... U bn SLn W (406010

where SL; is the input-output relation of SLi’ i=1,...,n.

The construct

do by > 8L, ...

b -+ SL od
1 n n —

corresponds to a flowgraph with
p={s~+0q, Q~b8LQ,...,Q > b SLQ, Q~ bH} .
The value of H in the least solution of the forward equation is
. ‘
1, T LIPS 1 ° ' .o « 0.
(bjeSLiu ... ubteSL)) o b (4.6.2)

where b' is the complement in I of biLJ e U b;.

It is curious that Dijkstra does not consider backtracking as part of the
execution mechanism for his programs. There are several circumstances that -
suggest backtracking. Firstly, one of the advantages claimed by Dijkstra for
the do...od construct is its goal-directed nature: the complement b of the

union of the guards b.,...,b is the goal achieved by execution of
1 n

...

do b, -+ SL b -+ SL od
— 1 n n —

1
The indeterminacy of this construct makes possible the flexibility of adding
each bi > SLi independently of the others, whenever SLi is discovered as an

action useful under condition bi for bringing the state mearer the goal.
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However, the situation, where the goal happens to coincide with the complement
of the union of the guards, is a rather special case. Consider for instance
the problem of example 4.5 where an amount of n cents has to be paid with
dimes, nickels, and cents. It would be most straightforward if we could use
(n =10 A Ng > 0) ~» n,nlo,p10:=n—10,n10—l,p10+l

 m =25 Anm >0) > n,n

5

] n21 A n, > 0) ~ 0,0 ,py ¢

5,p5:=n-5,n5-1,p5+l
=n—1,n1-l,p1+l
But our goal is n=0, which not the negation of the disjunction of the guards.

This is an example of a case where

ds - goal ii_bl - SLl

| b_ > sL
n n
f£i

od

is a clear expression of the programmers intention. And the only thing needed
to make this work in Dijkstra's programming language is to assume that the
executing mechanism backtracks upon "abort". Dijkktra has already specified that,
if a statement if...fi is executed in a state with all guards false, then
the statement will be equivalent to "abort".

Take in the coins example n=7, n5=l, n1=3. After a few indeterminate

choices we may have n=4, n ﬁl,n1=0. All guards are false, but the goal is not

5
achieved. Dijkstra [13] has indeed identified "abort" with failure, but it is

hard to see the use of this without backtracking. In the above example

backtracking would return to the point where n=5,"n_=1, n,=1, and the other

5 1

choice will now lead to the goal where n=0,
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The semantics of flowgraphs supposes a backtracking interpreter. We have
shown that the usual fixpoint semantics is in no way made more complicated as
a result. In fact, our theorem 4.3 about failed paths may well be regarded as
a contribution to the understanding of greatest fixpoints.

It should be clear that we do not usually advocate running indeterminate
programs. Goal-directed programming is facilitated when indeterminacy is allowed;
a first approximation to an algorithm is thus obtained, which can then be

refined to a determinate equivalent [14,15],

4.7 Correctness proofs with transformers

Floyd's method for proving partial correctness of a program with input-output
relation R with respect to assertions p and q requires that invariants
and other intermediate assertions be invented. This is not in principle necessary:
we might be able to compute p > R and compare the result with q. However,
we should not be surprdsed if the computation is only feasible with some special
representation of the p > R, and that the invariants required by Floyd's
method are ugeful for the evaluation of p = R.

The same consideratdons apply to béckward transformers and to the backward
version of partial correctness. Backward transformers are also, or perhaps
primarily, useful for proving total correctness of determinate programs: if
p S @R+ q) then for every state in p there exists at least one path terminating
in gq. As every flowgraph can be expressed by means of U, o, and * we will

use the following properties of transformers:

(R;u Ry < g Ry +«uv R, «q)

(R ° Ry <q = B < (R, « q)

R eq = B P g @
where £°(q) = q, £°70(q) = £¢£%(q)), i=0,1,..., and
where f = Ax(R <+ x)

The analogous properties hold for the forward transformer.

The backward transformer gives the following results for some of Dijkstra's

statements:
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skip + ¢ = ¢
abort <« g = ¢
(8438,) + q = 8] « (55 <)

(£ by < SL, ... SL_£i) + q-= (by(4.6.1))

1 1

1 '0 T =
(b © SLju ...u bl e SLY) < g

(bi < (SLi < qQ)U ..U (bé < (SLA + q)) = f£(a), where
f = Kx~((bi n fl(x))u veo U (b; n fn(x))), where

fi = Ax'(SLi +x), i=1,...,n

(do by + SL

T 1 b, > SL od) < q = (by(4.6.2))

E3
T ° 1 1 o 1 1
((b] © SLju ...u Bl e SL)) °b') +gq

%
1 o A 1 ° 1 T
(b1 SLl U v..U hn SLn) < (b'" n q)

with f as above.

f*(b' n q)

As an example we shall prove the correct termination of an exponentiation
algorithm. Consider a program ({N,T,P,S),(D,B)) with
N ={5,Q,R,H}
T ={a,b,c,c',d,e,e'}
P={s~>aP, Q+e'R, Q> eH
, R = cdR, R =~ ¢'bQ
}

D is as in Example 4.1. B assigns to a,b,c,d,e the same (as in Example 4il)

' 1

binary relations as values; B assigns to c' and e' the complements in I
of ¢ and e respectively.

We have to determine a useful set of input states such that termination is
guaranteed and the condition q: w=uov° is assured to hold, where u, and v,
are the values of u and v in the input state. Let R be the input-output
relation of the program; any subset of

R« g

will do. An expression for a suitable set of input states is therefore
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(aO(e'°(c°d)*°c'°b)*?e) <« (w=uov°)
which is not useful because it is not easy to tell (for us at least) whether a
given input state is in it. In order to be able to evaluate the expression we
will need to know something about the functions Xix+d « x and Ax.b < x. It
is not clear whether an easily evaluated formula can be found which is valid
for all arguments. But we may only need the value for special cases of the
argument and then it may easily be calculated. Consider the case where
x = (wxuv = uovo); then both x & (d < x) -and x € (b « x). The condition
wxu® = uovo is an invariant of d and of b. Let us call it "inv". We only
need this special form of argument because the desired terminal condition
w o= roo is implied by dinv n (v=0).
We can now derive a useful set of input states with respect to which
there is total correctness:
(aO(e'O(ccd)*oc'Ob)*oe) « (w=uov°) 2
(ac (e'o(cod) TocTob) “ae) « (inv n (v=0)) =
(aO(e'O(COd)*oc'Ob)*) + (invu (v=0))
Note that (e'O(cad)*oc'°b§(1>+(inv n (v=0)) = dnvan (v =1) , where d(i)

the number of ones in the binary representation of i. Hence

1Y

(a°(e'°(c°d)*°c'°b)*) + (inv n (v=0))

a<+ U (inv n (v = 1)) =
i=0

v

a <« (inv n (v=0))
vz0

Thus correct termination is guaranteed for v=0.

is
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