COMPUTATION AND DEDUCTIVE INFORMATION
RETRIEVAL*

M.H. van Emden
Department of Computer Science
University of Waterloo

Research Report CS-77-16
May 1977

*} to appear in
E. Neuhold (ed.): Formal Description of Programming Concepts
North Holland Publishing Co., Amsterdam
Proceedings of the IFIP Working Conference
St. Andrews, New Brunswick, Canada, August 1977.

COMPUTAT ION AND DEDUC.{VE INFORMATION RETRIEVAL

M.H. van Emden
Department of Computer Science
University of Waterloo
‘1. Introduction
{ . .
' Some form of logic is an obvious candidate to serve as formalism for express-
'ing the contents of a computer data base as well as the queries that select
information from it. Recently, logic has found a computer application which at
first sight seems to have 1it*le to do with data-base problems, namely "logic
programming”: the activities based on R.A. Kowalski's thesis that first-order
predicate Togic in clausal form can be used (according to the so-called “procedu-
ral interpretation") to specify algorithms in a human-oriented way and that such
specifications can be interpreted with acceptable-efficiency by a suitabie uniform
.resolution theorem-prover.

‘ Although algorithm specification is not central to data-base problems, the
insights provided by logic programming turn out to be useful. More specifically,
we describe and elaborate in the present paper a companion to the procedural
interpretation of logic, which we call the "data-base interpretation of logic".
This interpretation can result in a system with the following practical advan-
;tages:

‘ fa) As a special case, logic reduces to the conventional relational data base,
i with its attendant advantages.

b) Llogic in the data-base interpretation supports a powerful system of deductive
information retrieval, which solves several problems in connection with
conventional data bases (see section 11). The relational view is preserved,
where the user sees the data base as a set of sets of tuples. In actual

fact only some of the tuples are actually stored and the others are deduced
on demand; we therefore call this system a virtual relational data base.

¢} For the casual user it is important that queries have the same form as those
in "query by example", which has a simple form developed especially. for the
casual user. :

d) From the not-so-casual user's point of view, data and procedures in the system
are uniform and interchangeable, as are also queries and procedure calls; in
fact the data base system is a powerful program language in its own right.

" The interchangeability of the procedural and data-base interpretation is
interesting from a theoretical point of view: it shows that deductive information
‘retrieval and computation, as usually modelled in program semantics, are special
cases of a common formalism.

Once ‘again, we have attempted to make the paper self-contained: the formal-
ism is described in full and all relevant results are stated.

2. Related Work

I A more powerful system for deductive information retrieval has been designed
by R. Reiter [23]. Internally it uses the clausal form of first-order predicate
‘logic, but the query language is a non-clausal logic geared to translation from
natural Tanguage input. Indefinite facts can be stored in the data base and can
‘be provided as answer. ' :

Kowalski himself applies logic programming to information retrieval [15]. -

i
|
i
L
!
i
1

M.H. VAN EMDEN

His research involves the design of a data base concerning all aspects of the
operation of a university department, The emphasis in Kowalski's project is on
flexibility in data base structure. For instance, it is easy to add or delete a
.domain of a relation.

; J. Minker [21] was early to make use of the basic fact that in first-order
:predicate i0gic one cannot help adopting a relational view of data and that .
resolution theorem-proving can provide a powerful query language for a relational
‘data base. ‘

: Our work is distinct from the above approaches in being based on the premiss
that the design of the refutation procedure used as language interpreter in PRO-
LOG can be adapted to efficient information retrieval by incorp .rating the index-
ing schemes and search algorithms used in implementing existing relational data
bases. The objective is to obtain a useful query language which is a powerful
program language in its own right.)

The most important previous work is Green's on the application of resolution
theorem-proving to question-answering [10], Kowalski's [13] on logic programming,
and Clark and Tdrnlund's [5] on verification of logic programs.

“3. Syntax and Informal Semantics

We will use the clausal form of first-ordek predicate logic as the abstract
representation of a virtual relational data base. Terms of Togic will represent
~objects; the clauses will represent the answers that constitute the data base.

A syntax for the clausal form of first-order predicate logijc can be,sbeci-
fied as follows. A constant is an identifier or an integer and should be read
as denoting an unstructured object. For example :

Math
129
Glotz

are constants.

A term is a simple term or a composite term. A simple term is a constant or
a variable., A variable is an identifier preceded by an asterisk. A composite
term is f(tl,...,tn), nz1, where f is a function symbol ‘and t sevastn are
‘terms, the arguments of the composite term. A functor is an identifier or one of
the operator symbols S

ooy e

A substitution is the replacement of all occurrences of a variable in an
.expression {a term, or other experession described later) by a term. If ep = eq0
i is a result of applying a substitution 8 to an expression - e1 then ey s
icalled an instance of €13 e s said to be more general than ep. When 8, e,
€y are such that e18 = ep8, e] and ey are said to be unifiable and 8 is said
p?%g%e the unifier. }f a unifier exists then there is also a most general unifier

: A composite term is to be read as denoting a structured object; the functor
;indicates how the components of the structured object are assembled. A term

«containing variables is to be read as an incompletely specified object: it is
not specified which of its variable-free instances it denotes,
I

For example ’

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL
o (€, (Y,K)) Cheng)

"has as components the composite term .{C,.(Y,K)) and the simple term Cheng.
For a two-place functor which is an operator, infix notation is permitted,

150 that we may write

l

C.Y.K:Cheng

instead of

! :(.(C,.(Y,K}),Cheng)
provided it has been made clear somehow that "." and ":" are two~place functors,
that "." has higher priority than ":" and that "." associates from right to left,
i.e. that, for example, C.Y.K stands for C.(Y.K) rather than (C.Y).K.
A sentence is & nonempty set of clauses.

A clause is & pair of sets of atoms written as

A]""’An « B4 ... &B

- m,n=0

for, when botﬂ sets are empty, as
0

|The set {Ay,...,Ap} is the conclusion of the clause and {B7,...,By} is the
‘premiss of the clause. ‘ _

1 An atom (short for atomic formula) is P(ty,...,tx) where P is a predicate
symbol and where ty,...,tk are terms, the arguments 0f the atom. A predicate
i symbol is an identifier.

Table 3.1 shows a sentence with several kinds of clauses, all of which are
special cases of

m
In the case where n =1 and m = 0, the clause is to be read as -

A1,c-n,An+B-|&&B o..(3-1) j

for all XqoeeesXps A1 or...or An
if there exist Yyseeen¥; such that B1 and...and Bm

where ¥i,...,y; are the variables of By,...,By and X]s..0sX) are the re-
maining variableés. .

In this paper a sentence is often viewed as a data base, and the clauses in
it as answers to potential queries, or as rules (or procedures) for answering such
queries. A clause such as the above plays the role of an indefinite, conditional
‘rule for answering. Indefinite because it does not say which, if any, of
{A1s...,Ry s false. conditional because A; or...or A, can only be returned as
ran answer if the query : . T

o do there exist YpaeesaY; such that B],...,Bm?
‘has success as response. It is a rule for answering rather than an answer in case
ithe clause contains variables. !

A definite clause will mean a clause with one atom in the conclusion. A

M.H. VAN EMDEN

definite sentence is one where all clauses are definite. For reasons to be
explained later, we only consider data bases which are definite sentences.

Example Clause (1) in Table 3.1 is to be read as
| for all x, x takes Math 129
1 if x 1is first-year and in the engineering program
Ec1ause (8) in Table 3.1 is to be read as
E for all x, x is a graduate course ;
if there exists a 'y such that y 1is the
course number of X and Ay is greater than 499

That is, we have for answering certain queries the rule: Graduate courses have
‘numbers greater than 499. .

If in the clause (3.1) we have n=1 and m = 0, then we have an uncondi-
tional answer. If such a clause has no variable in it, then it unconditionaily
asserts a relation to hold between fully specified objects. The subset in a
sentence of all variable-free clauses with one atom in the conclusion and an
empty premiss and having the same, say k-place, predicate symbol, is called an
array. The reason for this is that the set of k-tuples of variable-free arguments
spggifies a relation in the same way as it is done by an "array" in the sense of
Codd [61.

The usual relational data base consists of arrays only. The presence of rules
:provides the possibility of answers which are not explicitly present, hence makes
the data base virtual. We owe the idea of having rules coexist with arrays to
Reiter [23], where the collection of arrays is called the extensional data base
and the rules are called the intensional data base.

Table 3.2 shows an example of an array in set notation.

Table 3.3 shows the same array in a less redundant notation which is aliso
used in the arrays of Table 3.4. :

! The definite clauses with an empty premiss are more general than the tuples
'0of a conventional relational data base because they may contain variables. For
iexample, the term *x:*y 1in (6) and (7) of Table 3.1 is an incompletely specified
-object, namely, the genera] form of the name of a person; (6) states that what
comes before the colon is the sequence of initials of the name, 1ike J.F in
J.F:Glotz; {7) states that what comes after the colon is the last name of the
name, 1ike Glotz in J.F:Glotz.

‘COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL

RULES = .
(1) {Takes(*x,Math!129) « Year(*x,1) & Program(*x,Engineering)
2) ,Year(*x,*z) « Student(*x,*y,*z1) & Minus(1977,*z1,*z)
3) ,Program{*x,*y) < Student{*x,*y,*z} :
4) ,Courseprefix(*x!*y,*x) «
5) ,Coursenumber(*x.*y,*y) <«
6) LInitials(*x:*y,*x) «
7; JLastname(*x:*y,*y) «
f 8) ,Graduatecourse(*x) + Course number(*x,*y)
i & Greaterthan{*y,499)
- (9) ,Conflictl(*xy,*xp) + Scheduled(*xy,*y,*z)
! , & Scheduled(*x2,*y,*z)
: & Different(*x7,*xp)
1 *)
Table 3.1
{Takes(M :Adiri,Math!129) « * {Takes
i,Takes(C-Y.K:Cheng ,Math;225) + M Adiri Math'129
7,Takes(T.L :Cook ,Math!129) « C.Y.K:Cheng Mathi225 |
iTakes(T.L :Cook ,Math.225) < T.L :Cook Math1'|29
T.L :Cook Math:225
Table 3.2 , Table 3.3
[Teaches
J.F:Glotz | Math!129
J.F:Glotz Math!225
: ¢ :Twill: Math!170
L student ‘ -
M :Adiri BioTogy 11974
N.A. :Buczek Recreation - 1976
C.Y.K:Cheng Physics 1976
T.L :Cook Engineering 1975
6.0 :Giusti Engineering 1976
A :Hammer Child Care 1973
K.L :Mensink | Kinesiology 1973
LScheduled A
Math:129 Phy@3009 2.30
Math!301 Phy@3009 2.30
Table 3.4

*) We gratefully acknowledge Kowalski's departmental data base as the source of
t inspiration for the present example.

e

M.H. VAN EMDEN

i
|

4. Semantics for Logic in Clausal Form

The set of variable-free terms that contain only constants ~r other functors
occurring in a sentence S, is called the universe of discourse of S. The set of
all atoms that contain only predicate symbols of S and terms of the universe
of discourse of S, is called the universe of atoms of S. An interpretation for
S 1is a subset of the universe of atoms. An interpretation [is said to be a
model of S iff S s true in I. : , :

A sentence is true in r iff all of its clauses are true in I.

A clause is true in r iff all of its variable-free instances
are true in L.

A variable-free clause is true in I iff at least one of the
atoms in its conclusion is true in I or at least one of
the atoms in its premiss is not true in I.

A variable-free atom A in a conclusion is true in 1 iff
Ael. :

A variable-free atom B in a premiss is true in 1 iff
B¢l ,

: The informal semantics given before conform to this definition of truth. It
.may be useful to note that a clause

e B]’.--,Bm

is true in I iff at least one B. is not true I for each variable-free instance '
of the clause. The‘clause may therefore be read as the negation of

there exist Yyseeoo¥y such that B1 and...and Bm'

A sentence is consistent iff it is true in at least one interpretation. We
will only use logical implication as an informal notion explained in terms of
~consistency: ' '

| Svu {*-Al,...,An} is inconsistent
y :
iis to be read as

Sk= there exist Xqs--esX, such that A, and...and A

‘where |- stands for "logically implies" and x},...,xk' are the variables in
AyyaA T
: 1 L] 2 n .

With a definite sentence S there is associated a transformation T from
interpretations to interpretations defined as follows:

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL
T(I) contains a variable-free atom A 1iff there
exists a variable-free instance A « By,...,B of

a clause of S such that B],...,B

_ I, m= 0.

; A use.ul characterization of truth in I for a definite sentence S s
‘that 12 T(I) iff S is true I, where T 1is the tranformation associated
with S. It may be shown that a definiie sentence has a least model, that is,
one contained in all of its models [91.

5. Inference

As soon as it is possible for an information retrieval system to produce
ancwers not explicitly present in the data base, it becomes important to know in
what sense such answers are justified by the contents of the data base. In the
data base interpretation of logic we require, as a first approximation, answers
to be Togical implications of the data base when the latter is regarded as a
sentence of first-order predicaté logic. We will see that an answer to a guery
is elicited by a refutation procedure showing the query to be inconsistent with

the data base and that the answer so produced is a logical implication.

Numerous refutation procedures for sentences in clausal logic have been
"based on J.A. Robinson's resolution principle [25]. For our purpose SL-resolution
L1773 is most important and especially a variant (18,141 intended for use with

sentences containing, apart from one negative clause, only definite clauses.
Because of this restriction we will refer to this resolution refutation procedure
“as SLD resolution: SL-resclution for Definite clauses.

, SLD-resolution conceptually constructs a sequence (a refutation) S$gsS1,...
.of sentences such that each successor has the same set of medels as its prede- .-
'cessor in the sequence. Each successor is said to be obtained by resolution from
its predecessor. If some S, in the sequence contains the empty clause, it
follows that it is inconsistent and that thereby Sp has been refuted. SLD-re-
solution incorporates a selection rule, which designates a unique atom (the
‘| selected atom) in any negative clause. S; s obtained by replacing in Sj_]
a negative clause (one parent in the reso?ution) o , A
hat AI,o.-,Aig.--gAn
with selected atom Ai’ by
« (AI,...,Ai_],31,...;Bm,Ai+],...,An) & with 1<di=sn
if Sj.1 contains a clause {the other parent in the resolution)
A< BB

such that A and,Ai are unifiable with most general unifier 6.

: If Sn contains, apart from one negative clause, only definite clauses,
‘then the same holds for all S;, j =z 0. The correctness of SLD-resolution says

- that the presence of the empty clause in some. S, implies inconsistency of Sg.
‘The completeness of SLD-resolution, which is independent of the selection rule,
“says that inconsistency of Sp (having one negative clause and definite clauses)’
«implies the existence of a refutation. _ .) :

!

‘>”:ﬁ;‘ The Procedural Interpretation of Logic

M.H. VAN EMDEN

According to Kowalski's procedural interpretation [13], several key concepts

of programming in a high-level language can be interpreted in terms of logic. A

summary follows.

Procedure definition:

A definite clause of which the conclusion:is interpreted as the procedure

Eheading and the premiss as the procedure body. The arguments of the conclusion
‘are the formal parameters. The variables of the premiss which do not occur in
i the conclusion are the local variables.

Statement:

The only kind of statement which is a procedural interpretation, is the
sequence of procedure calls. A premiss is interpreted as a sequence of procedure

calls. A negative clause is an initia® sequence of procedure calls. The replace-
-ment of the call by the body of a procedure definition is resolution. The replace-

ment of formal by actual parameters is unification.

‘Output:

The product of the successive unifications in a refutation determines a
substitution of terms for the variables in the initial procedure call. These
terms are the output of the computation.

Interpreter:

The SLD-resolution procedure with a selection rule that regards negative
clauses as ordered sets of atoms and selects the first atom.

The procedural interpretation reduces logic to a very special case. Often

‘a Tess drastic reduction yields a useful generalization of the usual high-level
.procedure-oriented program languages. Some of these generalizations have already
‘been advocated independently of the procedural interpretation as piecemeal "ad-
‘vanced features". Examples of such features, or of aspects of the same feature,
rare: recursive data structures [11], pattern matching, indeterminate procedure
‘call by pattern matching, success versus failure as computation result, automatic
:backtracking upon failure [41.- A particularly important feature, also found in
{MICROPLANNER (41, is the possibility of empty procedure bodies so that the argu-

‘ments of the heading can act as a tuple in the relation named by the procedure

identifier. It is this aspect of the procedural interpretation of logic which
gives rise to the data-base interpretation of logic. It is the basis of our
unified model of computation and deductive information retrieval.

7. The Data- base Interpretation of Logic

According to the data-base- interpretation of Tog1c the key concepts connected
‘with data bases may be described in terms of logic as fol]ows.

. Virtual relational data base:

A set DB of definite clauses. In case DB contains arrays only, it is a
conventional relational data base. :

'Query:

i

A clause < A] L&A {n = 0) with an empty conclusion. Note that such

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL
" a clause may also be read as a negation (Section 4). -
Response :

‘ The reaction of the retrieval procedure to a query Q with a given data-
‘base DB is called the response, which can be success or failure. success occurs’
when the sentence DBu { Q} 1is inconsistent. Failure occurs when the retrieval
procedure determines that DBu {Q} is not inconsistent. If DB contains arrays
‘only, a response is guaranteed to occur. Consistency is not decidable for arbi-
trary definite sentences as DB, so that a response does not necessarily occur.

i .
Answer to a query:

If the response is success, then the query has an answer. The refutation
procedure has determined not only that DBu {Q} is inconsistent, but also a
substitution 0 such that DBu {(Q8} is inconsistent. Suppose now that
Q=+«A) &...&4 Ay; the answer to Q is the sequence A0 «,...,Ay0 « of clauses.
.Their relat1onsh1p to DB 1s -

DBl for all XpseeesXps A16 and...and Ane

‘where x7,...,xg (k = 0) are the variables of the answer A;6<,...,A 8« .
A clause of the answer may or may not occur in DB. In the latter case such
a clause has been deductively retrieved; its presence in DB would be redundant.

Relation retrieved:

In case the response to a query is success, there may be more than one sub-
stitution 6 as described above. Each such 8 determines a k-tuple of (not
necessarily variable-free} terms substituted for xj,....x 0, the variables
of the query. The set of the variable-free instances of these k-tuples is the

‘relation retrieved by the query.

‘Retrieval procedure:

Resolution refutation procedure for first-order predicate logic in cTausal
form. In the following examples we assumg that. the retrieval procedure is
SLD- reso]utzon

Note that an Sp = BBu {Q} contains one c1ause namely Q, with an empty
conclusion and the conclusions of all its other c?auses (those of DB) contain
exactly one atom. With such an S all sentences S; of a refutation have the
same property, in fact, Sj =DBu {Qj} with Q1 a query‘ Apparently the
irefutation procedure acts as an information retrieval procedure by successive]y
;transforming the original query Q to queries Q71,...,Qj,... until the empty -
query is obtained. If DB only contains arrays then the retrieval procedure
;only returns unmodified clauses as answer.

Example 7.1

Let 0B - TAKgs: TEACHES u SCHEDULED v STUDENT u RULES as given in Tables
Let Q, = « Takes(*x,Math!129).

The rule of inference will use as parents. Qo and

E Takes(M:Adiri ,Math!129) « in TAKES

10

M.H. VAN EMDEN

L 'Eﬁﬁwpfbduce"Qj =0, the empty query. The unifier substitutes M:Adiri for *x.
Thus, the response is success, and the answer is .

Takes (M:Adiri,Math!129) «

.exactly a clause of the data base. In order to obtain the relation retrieved,
"the refutation procedure constructs all passible refutations. ‘Ina similar way
‘the answer

I -
f Takes(T.L:Cook,Mathl]ZQ) «
|

iis produced, another clause from the data base. In an attempt to find yet another
‘refutation, the rule of inference is now applied to Q, and the conditional rule

Takes(*x,Math!129) < Year(*x,1)
& Program(*x Eng1neer1ng)

‘which is a clause in RULES (see Table 3.1) saying that all f1rst -year engineering
students take Math 129. The original query -Q, is now replaced by

Q} = « Year(*x,1)&Program(*x, EngIneer1ng)

Start1ng from here the refutation procedure produces all first-year engineering
students. Let us suppose for convenience that the selection rule always selects
the leftmost 1iteral in a query., This part of the query is tackled by using as
parent

Year(*x,*z) < Student(*x,*y,*z') & Minus(1977 *z *z')

-a conditional rule, which refers gueries about “"Year" to the STUDENT array and to
an imaginary array MINUS, supposed to contain all triples nj, n2.n3 of integers
such that ny-ny = n3. The last column of the student array gives the year of
first registration. The second argument of "Year" tells that the current year

- (1977 according to the rule) is for a student with name x the z-th year of

'study. The array MINUS is imaginary in the sense that none of the tuples, are
stored; all are simulated by computation.

02 = « Student(*x,*y,*z') & Minus(1977,1,%z') & Program(*x,Engineering)

iThe first entry of the STUDENT array is now used as parent, resulting in
| ‘

{ 03 = + Minus(1977,1,1974) & Program(M:Adiri,Engineering)

;At this point no apptication of the rule of inference is possible. The refutation
iprocedure backtracks to Qp, the last point where there was a choice of parent.

‘It finds another triple from the STUDENT array, and invokes MINUS to check
‘whether-this is a first-year student. Apparently, this refutation procedure
-generates sUccessive answers to the first part of the query, and then checks

-each answer with the second part, but here 1t would be better to work the other
;way around. A

In this example it would be better to execute

« Minus(1977,1,%2")

‘first, because there is a unique answer, which is then used to search STUDENT

for all whose first year of registration is 1976. We assumed that the selection
rule always selects the leftmost literal in a query. Although this has the ‘
jadvantage of simplicity, it is apparently not a1ways optimal.

11

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL
" To summarize and complete the example, the query '
Q = «Takes(*x,Math!129) |
gives success as response when
i DB = TAKES u TEACHES v SCHEDULED u STUDENT u RULES
3The query has several answers; namely
T Takes (M:Adiri,Math!129) «
Takes(T.L:Cook,Math!129) <«
Takes(G.C:Giusti,Math:129) +
one for each possible refutation of DBu {Q}; The first two answers are in the
data base. The third answer has been deductively retrieved; its presence in the

data base would be redundant. '

The relation retrieved is the set of all substitution-tuples for the tuple
(here a singleton) of variables in the query, namely

{M:Adiri,T.L:Cook,G.C:Giusti}

Example 7.2

It may happen that all available information is already in the query. In
such a case the distinction between response and answer is particularly useful.
With DB as above and query

+Takes(M:Adiri,Math!129)

‘the response is success and the relation retrieved contains the O-tuple as only
. element.

8. Computation and Inductive Information Retrieval

~ The relational model is not only useful for representing data bases and
‘queries to them, but also for computation. Consider the following example of a
'data base intended to answer queries about the results of appending 1lists:

{ append(nil,nil,nil) «
| o : ,append({a.nil ,nil,a.nil} «, ...
yappend(b.nil,nil,b.nil) « , ...

}

8 Table 8.1

12

M.H. VAN EMDEN

"~ The Tists of this‘examp1e are "nii" if empty, and «'8 otherwise, where the alpha

is a Tist element, the beta a Tist, and the period is a functor which is also an
infix operator.’

Except for the constructed data as entries in the tuples, this sentence cor-
responds to an array of a conventional relational data base. With the data-base
interpretation of logic the following less redundant data-base can be used to ob-
‘tain the sume effect: , .

i { append(nil, *y *y) +
, ,append(*ﬁ-*x,*y,*ﬁo*z) « element(*u)
& append{*x,*y,*z)
,1ist(nil)
JJist(*x-*y) < element(*x) & list(*y)
,element(a) « , element(b) « , element(c) <«
,element{d) «
. ,
Table 8.2
A query
-« append(a.b.nf?,c.d.ni],*z) ... (8.1)

“has the same result with Table 8.1 as with Table 8.2. The same holds for the
queries

i «append(*x,c.d.nil,a.b.c.d.nil)

(response:success; answer:*x = a.b)
<append (*x,b.d.nil,a.b.c.d.nil) %
(response:failure) %
+append(*x,c.*y,a.b,c.d.nil; é
{response:success; answer:*x = a,b.nil |
! | | *y = d.nil |
| ~«append(a.b.nil,c.d.nil,a.b.c.d.nil) o '
% (response:success; answer:)

| In answering the query {8.1), SLD-resolution as retrieval procedure behaves
-in a way similar to a typical LISP processor interpreting the usual recursive
‘definition of append for LISP-lists. The other queries illustrate the power of
the relational formalism, where an ardument is not restricted to input or output.
The example shows that in logic programming the difference between computation and
information retrieval is one of degree rather than in kind. In example 7.1 table
Jook-up is the dominant operation, hence we have information retrieval. Here
deduction is dominant, and computation seems to be a more appropriate description.
Logic programming may be viewed as information retrieval on a virtual relational

13

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL

data base without any built-in bias towards either look-up or deduction. Michie's
idea of a memo-funtion [20] should be mentioned in connection with this. Memo-
.functions are function definitions that contain an algorithmic part (our rules)
and a data base part (our arrays) containing ("remembered") (argument,value) tuples
that were computed previously. When calling a memo-function the user would not
know whether he obtained a newly computed value or a retrieved value computed
earlier. M memo-function autonomously deletes from and inserts into the data base
-in an attempt to optimize response time.

: The relational model is not new to the theory of programmlng Superficially,
‘the object of computation is usually thought of as being a function. But non-
termination in computation, and more generally in the application of formal func-
tion definition, forces one to admit functions which are not everywhere defined.
Also, indeterminacy in programs is incompatible with the single-valuedness of
functions. Rather than to start speaking of partial multivalued functions, it is
preferable to realize that functions are total, single-valued binary relations,
so that binary relations in their full generality are the appropriate model of
what is computed, as in the de Bakker/Scott "relational theory" of programs [2].
Because arguments in the procedural or data-base interpretation of logic are not
restricted to input or output, binary relations do not have the same special
status. In fact,- 1nterpretat1ons I, satisfying I 2 T(I) {see Seciion 4), play
the role in logic programm1ng of the binary relations in the relational theory
of programs.

9. Answers which are not true in all models

Up till now we considered correct only those answers which are true in all
models of the data base. However, this is not the case for all answers which one
would intuitively consider correct. Take for example the sentence DB = TAKESu
TEACHES (see Tables 3.3 and 3.4), according to which Cook takes all courses
taught by Glotz, that is
| for all y, Teaches(J.F:Glotz,y)
f impTies Takes(T.L:Cook,y) ... (9.1)
i
1 DB 4s a definite sentence and hence has a least model, say I q
iJ.F:Glotz teaches only Math!129 and Math!225 and 7.L:Cook takes on!y Math 129
‘and Math:225. Let I1 = Igu {Teaches(J.F:Glotz,Math! 170)} In Iy, which is
‘also a model of DB, J.F:Glotz teaches Math! 170 but T.L:Cook does not take it.
‘Apparently, (9.1) is true in some models, but not in alt: it is not a logical
;1mp11cat10n
f Why should one want answers to be able to take into account facts like (9. 1)7
;Before discussing two possible p01nts of view on this question, it should be noted
that the query
I .
; < Teaches(J.F:Glotz,Math!170)

=gwes failure as response. If only we could interpret this failure as falsity, . ‘A
our database interpretation of Togic would a1so be able to tell us that Cook takes
all courses taught by Glotz. A

Accord1ng to one point of view the requ1red additional 1nformat1on should be
‘expressed in the data base itself, Accord1ng to the other po;nt of view the
criterion of correctness, which requires an answer to be true in all models, is
‘too stringent. Let us f1rst discuss the latter alternative, according to which
-one modet of the typically many models of a definite sentence as data base is

~ assumed: queries are correct if they reflect the situation in this particular

Bo.

14

M.H. VAN EMDEN

“'model. Definite sentences have the prbperty that the intersection of all models

is itself a model, the Teast model, as was mentioned in Section 4. The least
model reflects the assumption accordir; to which, for example, Glotz teaches only
what is listed as such in the array TEACHES(Table 3.4). The intersection of all
-models is the set of provable facts [9]. To consider the intersection as inter-
_pretation is to assume (usually called “"the closed-world assumpt1on") false what-

.ever can be established as unprovable. That the intersection is itself a model

I

‘implies that the closed-world assumption will not Tead to contradiction. We owe
to Reiter {23] the observation that the c]osed-world assumption {is safe to make

i for cefinite sentences.

SLD-resolution as retrieval procedure gives us all answers which are logical
implications, i.e. true in all models, hence true in the Teast model. If the

“least model is taken as critevion of correctness, then it is necessary to supple-
.ment SLD-resolution with an inference mechanism that yields answers true in the
i least model, but not necessarily in all.

Accordiny to the other point of view the missing information should be sup-
p11ed by the data base. In our data base interpretation the array TEACHES of
;Table 3.4 only states that A

for all x, Teaches{J.F:Glotz,x)
i 1f(x = Math!i29
: r X = Math.225

and for all x, Teaches(C:Twill,x)
if x = Math170

fwhich does not exclude that Glotz possibly teaches another course as well. An
‘obvious remedy is to change the "if" to "iff" and then from

i
{
]

not(Math!170=Math!129 or Math!170=Math!225)
we conclude '
not Teaches(J.F:Glotz,Math!170)
However, such "iff" definitions expreséed in clausal forﬁ do not yield a

definite sentence. The advantages of the procedural interpretation of clausal”
logic (as developed up ti1l now) depend on the use of SLD-resolution which requires

definite clauses for proper operation. A promising approach, being investigated
rat present by R.A. Kowalski and K.L. Clark at Imperial College, is to find such .a

formulation of "iff" definitions that, when each "iff" is replaced by an "if", a
definite sentence in clausal form results. - SLD-resolution, when used as retrieval

Eprocedure/program interpreter, only sees this definite sentence. The formulation.
:of the "iff"-definitions has the important property that whenever the retrieval

procedure gives failure as response to a query, the gquery itself, regarded as a
neqation, is a logical implication of the "iff"-definitions. The required formu-_
lation of the iff-definitions would thus justify interpreting failure as falsity.

In the practice of logic programming the query asking for students who take

:all courses taught by Glotz is expressed as follows. Suppose the refutation pro-

i

cedure is programmed in such a way that it gives success as response to a ‘query
« not{L) whenever the query <+ L would give failure as response. Let us use

‘as example a query which asks for the names of all students each of which takes

|

L
t
b

‘all courses taught by Glotz. Because it is convenient to restrict "not" to
‘queries with one-atom, we add temporarily to the data base :

A(*x) « Teaches(J.F: Glotz, *y) & not(Takes(*x,*y))

15

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL

‘The relation retrieved by tr: query <+ A(*x) is the set of names oi students who
do not take some course taught by Glotz, We also add

B(*x) + Takes(*x,*y} & not(A(*x})

The relation retrieved by the query <« B(*x} 1is the set of names of students who
:take all courses taught by Glotz.

5 This use of "not" interprets failure as falsity, but happens to conform also
ito the point of view which selects the least model as criterion of correctness,
lbecause success as response to a query <« not{L) 1implies that all variable-free

l1nstances of an atom L are false in the least model.

!

“10. - Properties of Logic Programs

Program properties are often not]og;ca1 impTications of the Togic programs
to -hich they pertain. They have this in commcn with the answers to the queries
discussed in the previous section. With respect to program properties two
‘approaches are again possible: the least model of the program is the criterion
‘of correctness or a strengthened version of the program is used to obtain as a
.Togical implication the property to be proved. The first approach can use in
-principle [93 the methods of program verification based on least fixpoints, but
‘as far as we know the principle has not been worked out. The second approach
-has been successfully followed by Clark and T&rnlund [5] to examples considerably
'more realistic than the one below.

A query

| « append{a,nil,a)
to Table 8.2 will give success as response for any 1ist «. Hence it is desirable
to. be able to regard

for all x, Tlist (x) implies append(x,nil,x) ..(10.1)

as a property. of the logic program in Table 8.2 for computing the append relation.
Yet it is easy to see that (10.1)} is not true in all models of the sentence in
Table 8.2, and hence not a logical implication, although (10.1) is true in the
least mode]; We saw a similar situation with the query for all students each of
which takes all courses taught by Glotz: {10.1) can be proved by strengthening
the definition (8.2) or by inference for least models. Note that in the "rela-
tional theory" of de Bakker and Scott [2,1,3], among many other publications,
the input-output relation computed by a program is characterised as the least
solution x of x =TX or of x 2 Tx. The choice is immaterial because both
have the same least solution. Scott's induction rule is justified for the least
solution of X = Tx. It may be useful to investigate in the de Bakker/Scoit
‘relational theory whether program properties can also be derived as applicahble
to all solutions of x = Tx, and whether such derivations have advantages over
those using Scott's 1nduction ruie.

Let us consider an example, similar to one of Clark and Tdrniund [5], of a
strengthened version of the sentence in Table 8.2 such that property (10.1) holds
in all models. The sentence in Table 10.1 is not in the clausal form of logic.
The main difference with Table 8.2 is that "if" has been.repiaced by "iff".

16

i © M.H. VAN EMDEN

Vx,y,z.append(x,y,z) iff
[x=nil & y=z

or Mu,x',z'.
nd{x',y.z")

]>
& ¥x.list(x) iff [x=nil

or du,x'. x=u.x' & element{u) &
Tist(x")

]
| & Vx.element(x) iff [x=a or x=b or x=c or x=d]
j ' Table 10.1

‘ It may be shown that (10.1) is true in all Herbrand models of Table 10.1,
which is apparently a sufficiently strengthened version of Table 8.2.

According to the other approach we on?y try to show (10.1) in the least model
of Table 8.2. One method among several is to show that the following induction
‘schema for lists is valid in the Teast model:

[(P(nil) & [Vu,x.element{u) & P{x) » P{u.x)1]

+ [¥x.list{x} » P(x)1-
F where P(a) stands for a formula with o as free variable
With the induction schema and the nonclausal version of the sentence in

iTable 8.2, (10.1) can be shown to hold by verifying the induction schema with
Pla) replaced by append(a,nil,a).

11. Towards an integrated data-base and programming system

As should be apparent from the previous section, a system for deductive
information retrieval on virtual relational data bases modeled on the clausal form
of first-order predicate Togic will also be a system for (logic) programming. A-
‘part from any app11cab113ty to information retrieval, logic programm1ng, as for
iexample embodied in PROLOG [7,26,191, is an 1mportant development in language
‘design and programming methodology Even with a fairly crude implementation good
‘results have been obtained in computer understanding of natural language {71,

-robot ptan formation [27], symbolic mathematical computation (121, and in compi]er
iwriting [73. Recent implementations of PROLOG [28,24] show that a language for
1og1c programming is 1mp1ementable at Teast as efficiently as LISP.

7 But all versions of PROLDG have an extreme bias towards deduction and away
from retrieval. We believe this is not inherent in the Togical model, but rather
‘reflects the application that PROLOG implementers had in mind: symbolic computa-
‘tion. We belijeve that the indexing schemes and search algorithms reguired for
efficient information retrieval are compatible with the overall design of existing
PROLOG implementations and that there is a realistic prospect of a system for
deductive information retrieval on a virtual relational data base that is at the
‘same time a superior program language. Such a system is useful because it has the

¢
i

17

COMPUTATICN AND DEDUCTIVE INFORMATION RETRIEVAL

- 7following advantages over conventional data bases:

a)

b)

c)

d)

The user does not have to know which relations are primitive. For
example, in a conventional data base on family relationships the choice
must be made between storing the "Parent" relation or its inverse, the
"Child" relation. A user will have to remember the arbitrary choice,
but not when deductive information retrieval is available: when the
arbitrary choice has been made to store the "parent" relation as an
array, the rule

Child(*x,*y) « Parent{*y,*x)

can be added, and the user may express his query using either "Child" or
"Parent".

As has been pointed out by Kowalski [15], relations stored as large arrays
are often highly redundant: they are typically a consequence of an
organization's regulations or policy expressed as rules, exceptions to
the rules, exceptions to the exceptions, but usually not much further.

In our approach to data base design, such rules and exceptions are
directly expressed in logic and consequences to be retrieved are deduced
on demand. As a result ou. virtual relational data base is simpler to
understand and to check for compliance with regulation or policy. A
virtual relational data base is often more and never less compact. An
array of a conventional relational data base is often like a table of
logarithms, which can be advantagecusly replaced by a compact subroutine
computing on demand the required values.

The data retrieved by queries to a data base are often not required for
inspection by humans, but serve as input for programs, for example for

statistical analysis. Such usage is facilitated when there is one

language for retrieval and processing.

Codd's query Tlanguages [8] are too difficult for most casual users.
Zloof's "query-by-example" [29] has been shown to be an improvement

in this respect. For some important classes of queries ("projections"
and "joins" in Codd's terminclogy), our way of expressing queries as
clauses is virtually identical to "query-by-example".

S 2.

18

M.H. VAN EMDEN

Acknowledgements

Discussions with R.A. Kowalski were essential in the development of the

material presented here. The National Research Council provided financial support
for this research.

10.

1.

2.

References

J.W. de Bakker and W.P. de Roever: A calculus of recursive program schemes;
in M. Nivat (ed.): Automata, Languages, and Programming. North Holland,
Amsterdam, 1973,

J.W. de Bakker and D. Scott: A theory 6f programs, IBM Seminar,
Vienna, August 1969.

A. Blikle: An algebraic approach to the mathematical theory of programs;
CCPAS Report 119, Computation Cuntre, Polish Academy of Sciences,
Warsaw, 1973.

D.G. Bobrow and B. Raphael: New programming lénguages for Al Research;
Computing Surveys, 6 (1974), 153-174,

K.L. Clark and S.A. Tdrnlund: A first-order theory of data and programs;
Proc. IFIP 77.

E.F. Codd: A relational model of data for large shared data banks;
Comm. ACM 13 (1970), 377-387.

A. Colmerauer: Les grammaires de metamorphose; in L. Bolc{ed.): Natural
Language Communication with Computers, Springer Lecture Notes in
Computer Science, 1977.

C.J. Date: An Introduction to Data-Base Systems; Addison-Wesley, 1975.

M.H. Van Emden and R.A. Kowalski: The semantics of predicate logic as a
programming Tanguage; J.ACM 23 (1976), 733-742. ,

C.C. Green: Theorem-proving by resolution as a basis for question answering
7ystems; in B. Meltzer and D. Michie {eds.), Edinburgh.University Press,
969. . ~

C.A.R. Hoare: Recursive data structures;'STAN-CS-73—400, Dept. of Computer
Science, Stanford University.

H. Kanoui: App11cat1on de 1a demonstration automatique aux man1pu1at1ons
algebriques et a 1" 1ntegrat1en formelle sur ordinateurs; Group d' Inte111-
gence Artificielle, U. d'Aix-Marseille II.

R.A. Kowalski: Predicate logic as a programming language; Prbc. IFIP 74,
North Holland, 1974, 556-574, 4

R.A. Kowéiski: Logic for problem-solving; Memo 75, Dept. of Computational
Logic, University of Edinburgh, 1974.

R.A. Kowalski: Logic and data bases; Dept. of Computation and Control,
Imperial College, 1976. ,

R.A. Kowalski: Algorithm = Logic + Control; Technical Report,
Dept. of Computation and Control, Imperial College, 1977.

(19,

' 20.
21,

22,
23.
24,

25,

. 26.
27.
' 28.

29,

19

COMPUTATION AND DEDUCTIVE INFORMATION RETRIEVAL

R.A. Kowalski and D. Ku'hner: Linear resolution with selection function;
Artificial Intelligence 2 (1971), 227-260. :

D. Kuehner: Some special purpose resolution systems; in B. Meltzer and
D. Michie {eds.), Machine Intelligence 7, Edinburgh University Press, 1972.

H. Meloni: PROLOG, mise en route de 1'interpreteur et exercises; Groupe
d'Intelligence Artificielle, U. d'Aix-Marseille I1I, 1976.

D. Michie: Memo functions and machine learning; Nature 218 (1968), 19-22.

J. Minker: Performing Inferences over relational data bases; TR-363:
Dept. of Computer Science, University of Maryland, 1975.

J. Minker: Set Operations and Inferences over Relational D.ta Bases;
TR-427, Dept. of Computer Science, Unjversity of Maryland, 1975.

R. Reiter: An approach to deductive questicns-answering; Technical Report,
Bolt, Beranek, and Newman Inc., Cambridge, Mass.

G.M; Roberts: An implementation &f PROLOG; M.Sc. Thesis, Dept. of
Computer Science, University of Waterloo, 1977.

J.A. Robinson: A review of automatic theorem-proving; pp. 1-18 in:
Proc. Symp. App. Math. Vol XIX, J.T. Schwartz (ed.), Am. Math. Soc.,
Providence, R.I1., 1967. . :

P. Roussel: PROLOG, manuel d'utilisation; Groupe d'Intelligence Artificielle,
U. d'Aix-Marseille II, 1975. _

D.H.D. Warren: WARPLAN: A system for generating plans; Memo 76,
Dept. of Artificial Intelligence, University of Edinburgh, 1974.

D.H.D. Warren: Implementing PROLOG; Dept. of Artificial Intelligence,
Uriversity of Edinburgh, 1977.

M.M. Zloof: Query by Example; Proc. Nat. tomp. Conf., AFIPS Press,
44 (1975), 431-438.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

