|
HENT

BEPARY
DEPARTMENT
DEPARTMENT

LLALILLILL

R S
i

|
ut
uT
T

ol
COMP

3

E WATERE
F WATERL

/8
my

I

IVERSITY OF WATERLOO

[VER
IVER

The Thoth Linking Loader

Gary R. Sager

October 1977
CS-77-15




The Thoth Linking Loader

Gary R. Sager

Department of Computer Science
University of Waterloo

October 1977

This research was supported by the National Research Council of Canada.



The Thoth Linking Loader

Gary R. Sager

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

1. introduction

The Thoth loader and Ale are part of the Thoth language processors., The Thoth
loader is a machine-independent, machine-invariant relocating and linking loader.
Ale (A Library Editor) is a machine-independent, machine-invariant "editor” which
prepares libraries for use by the Thoth loader. The inputs to both the Thoth loader
and Ale are relocatable load code modules (hereafter referred to as “modules”) out-
put by either the Eh compiler (Braga, 1976) or the Thoth assembler (Malcolm and
Stafford, 1977). For the loader, this input is a set of directives which are executed to
build an output file. The output file contains a program which will run on the target
machine. A detailed description of the internals of the Thoth loader is given in
Appendix [.

The Eh compiler outputs a module for each Eh external or function. The Thoth
assembler outputs a module for each input module. A module has three components
of interest for linking: the module name, entry points and external references. For an
Eh external or function, the external or function name, module name and single
entry point are identical; external references are global symbols referred to in the
module. For a module output by the Thoth assembler, the entry points are obtained
from the .ent directive, external references from the .ext directive and the module
name is the first entry point defined.

In terms of the Thoth loader directives, a module is delimited by the start
module M and end module E directives; the module name is defined in the M direc-
tive, entry points are defined by the G directives, and external references are made
with the g directives. Precise definitions of these and other Thoth loader directives
are given in Appendices II and III.



2. loading rules

As the Thoth loader reads modules, it builds a directed graph connecting the
modules, entry points and external references encountered. Each node of the graph
is named by the module it represents; if there are multiple entry points to the
module, the entry points are alias names for that module’s node in the graph. An arc
directed from node A to node B indicates that module A makes an external
reference to module or entry point B. If the node does not yet exist, the arc is allow-
ed to "dangle”; missing nodes are called unresolved external references. Because the
loader cannot determine whether an unresolved reference is for a module or an entry
point, it assumes that all unresolved external references are modules, then corrects
the graph when the references are resolved. For example, if module A references B
and C which are unresolved, there will be dangling arcs from A to B and from A to
C; if the module B is later found to contain an entry point C, the two previously
mentioned arcs from A are made to point to the newly created node for B (alias C).
B and C are then said to be resolved.

As the loader takes directives from a file of modules, it will load any module
which has not already been resolved. In order for the Thoth loader to load only the
modules required to satisfy unresolved external references, the modules must be
presented in the form of a library prepared by Ale.

A library is a subtree of the file system; modules are stored one per file directly
under the library root node (see Cheriton, et. al., 1977, for a description of the file
system). The pathnames of libraries in Thoth are chosen to indicate functionality
and machine-dependence; thus, the node */lib/user/ti.10 is the library root node for
the TI 990/10 user library and the module for the function .Printf is found in
* /lib/user/ti.10/.Printf. The library root node file itself contains a symbol table
prepared by Ale. The directives used in the symbol table are described in Appendix
111. The symbol table is a resume of the M, E, G and g directives which appear in the
modules comprising the library.

As modules are processed, the Thoth loader builds a directed graph of the
program being loaded, as described above; upon encountering a library, the library
symbol table is incorporated into the graph being built. Nodes which appear in the
loader’s graph may match modules in the library symbol table and vice-versa. The
nodes in the loader’s graph take precedence: only those modules in the library which
are unresolved in the graph being built will be incorporated. When a library module
is incorporated as a node, all of its outgoing arcs are also incorporated: if these arcs
point to nodes already resolved in the loader’s graph, no further action is necessary,
but arcs pointing to nodes not yet resolved must either incorporate yet more
modules from the library or cause a dangling arc in the graph being built. The above
discussion is paraphrased by the following algorithm:

. If a module has already been loaded, the same module occurring in the library
will not be considered.

2. For each module in the library not already marked for loading, if an entry
point of the module matches an unresolved external reference, the module is
marked for loading and its external references are scanned to determine il any
additional unresolved external references will result from the loading of the
module.

3. Rule 2 is re-applied until no additional modules are marked for loading.

4. Those modules which were marked for loading are subsequently loaded.



order dependencies: Since only one library at a time is processed, it is possible that
an external reference in a later library can be resolved from a previous library. In
this case, the loader will not be able to resolve the reference unless a later file or
library contains a module having the appropriate entry point. If the user specifies all
non-library files before libraries, the problem will manifest itself only if there are two
libraries and there is a module in the first library which is not required until the
second library is scanned.

naming conflicts: Since loading is done on the basis of module names, but external
references are resolved by entry points, some possible confusions may result. For
modules created by the Eh compiler, the module name and single entry point are the
same, but for modules created by the Thoth assembler, the module name cor-
responds to only one of the entry points. A module whose name conflicts with a
module or entry point already resolved will not be loaded. However, if two modules
of the same name are encountered in the same file a warning message is issued, as
the loader will try to load the second module on the basis of the size of the first.
Another problem occurs when a module to be loaded contains an entry point which
is not the same as the module name but which conflicts with an entry point or
module name already resolved. In this case, if both modules are to be loaded, the
first entry point definition will take precedence and a warning message is issued.

Only the assembly language programmer need worry about naming conflicts
other than redefining modules within a file, since they cannot be caused by Eh func-
tions or externals.

3. command line

The user can invoke the Thoth loader directly with the command line:
*/cmds/eh/uld pathname
where "pathname” denotes a command file whose contents are:
Line 1 (options): 0 or more characters chosen from the following:
e  continue the load even if there are errors.

d  "debug” output: print out file names as they are processed. If the character
d appears twice, the module names will also be printed as they are
processed.

Line 2 (home directory): specifies the current directory of the user who invoked the
loader. This is needed because the loader sets the current node to load libraries, and
requires this information to restore it to its original position.

Line 3 (output file): used to specify the file into which the core image will be placed.
If this line is blank, no core image will be output.

Line 4 (map file): used to specify the file into which the load map will be written. If
this line is blank, no load map will be output.

Lines 5 and following (input files): the remaining lines specify files containing loader
directives. The first file specifed must be a prologue defining the characteristics of
the target machine. The epilogue, if required, must appear last. All inputs will be
processed in the order they appear in the command file. The Thoth loader will load
modules as described by the rules in the preceding section.



4. load map

The load map contains information concerning the placement of modules and
entry points in the logical address space of the target machine. Information is listed
in ascending numeric order of placement in memory. For module names, the load
map will have a line of the form: '

name  octal_loc hex_loc pathname

where octal_loc and hex_loc indicate the target machine address of the named
module, and pathname indicates the name of the file or library from which the
module was loaded. The latter information is sometimes useful if the user suspects
that a module has not been loaded from the proper file or library. For entry points
which are not module names, the load map will have a line of the form:

name  octal_loc hex_loc from: module_name

where module_name is the name of the module in which the entry point is defined.
In the case of unresolved external references, a line of the form:

name UNRESOLVED, last ref: module_name

is output, where module_name is the last module encountered which made a
reference to the unresolved external.

The final few lines output in the map are of the form:
Rbr# = octal_num hex_num

these are the final values of the relocation base registers used during loading; they
are useful in determining the amount of space taken in each relocation area.

S. relocations

Every symbol resolved by the loader has a value (address) defined as an offset
from one of eight relocation base registers (Rbr's). The definition is done with the G
and T directives (see Appendix II). This method of defining symbol values serves
two purposes. First, different Rbr's are used to correspond to areas of the target
machine memory having different addressability; for example, on the Data General
NOVA computer, addresses in the range 0-255 can be directly accessed by instruc-
tions anywhere in memory, while addresses above this range can only be accessed by
indirection or indexing (including use of the program counter as an index register).
In this case, one Rbr is assigned to each area, and symbol values are defined as
offsets from the Rbr assigned to the area in which the symbol is to be loaded.

A second, and perhaps more important, application of the Rbr's is to separate
the program into segments which reflect functionality; thus, one Rbr might be used
to define symbol values in code segments and another to define symbol values in data
segments. With this arrangement, it would be possible to use some target machines’
mapping hardware to protect code from data access and prevent data from being ex-
ecuted. Another possibility is to dedicate an Rbr to to define symbols in a segment
used only during initialization; after the initialization is complete, the segment can
be used as a data segment.



arranging the segments in virtual space

When all symbol values have been defined, it is necessary to arrange the
segments in memory. This is done with the B directive. The purpose of the B direc-
tive is to define the order of the segments corresponding to each Rbr in memory, and
to insure that the base address of each segment will be greater than some minimum
value.

The m directive is used to compact the output core-image; if there are gaps
between the areas defined by the Rbr’s, the gaps will appear as null bytes in the core-
image file, since there is normally a one-to-one correspondence between the location
of bytes in the core-image file and their location in the logical address space of the
target machine. The m directive undoes this one-to-one correspondence by causing
the output bytes to be mapped into a smaller physical space in the core-image file by
eliminating the gaps between the areas defined by the Rbr's.

6. bibliography

Cheriton, D. R., M. A. Malcoim, L. S. Melen and G. R. Sager (1977), Thoth, a
Portable Real-Time Operating System, University of Waterloo, Computer
Science Department, Research Report CS-77-11, October. (presented at
6th SOSP, Purdue University, November, 1977; to appear in the
C.A.CM)

Braga, R. S. C. (1976), Eh reference manual. University of Waterloo, Computer
Science Department, Research Report CS-76-45, November.

Malcolm, M. A. and G. J. Stafford (1977), The Thoth assembler writing Kit,
University of Waterloo, Computer Science Department, Research Report
CS-77-14, October.



Appendix I: the Thoth loader abstract machine

The Thoth loader can be visualized as an abstract machine whose basic unit of
information is the byte. The Thoth loader abstract machine executes directives
which are presented in the form of byte strings, and outputs a string of bytes which is
an executable program for the target machine. When the Thoth loader begins ex-
ecution, the first set of directives processed must be a prologue which describes the
target machine. Thereafter, it is prepared to process files of modules output by the
Eh compiler or Thoth assembler, or libraries of modules prepared by Ale.

The Thoth loader makes two passes over the directives; on the first pass, it deter-
mines the sizes of all modules and the locations of all external symbols. On the
second pass, it performs linking and relocation and outputs the executable program.
Note that since all symbols are defined during the first pass, relocation is actually
identical to linking; in both cases, the value of a symbol is added into a field in the
core image being produced.

components of the abstract machine

The Thoth loader has a number of registers and operational units which are
described below. For the reader interested in obtaining a more detailed view of how
these are used by the loader, references to the descriptions of directives in Appendix
II are given. The components of the abstract machine are:

1. The relocation descriptors (Rd[0] through Rd[7]): these describe how values
(addresses) will appear in multi-byte fields for the relocation operation. They
must be defined in the prologue and cannot be redefined. Rd[0] serves a special
purpose; it describes the values as they appear in the relocation base registers
(see below) and in the symbol table. (see D and O directives)

2. The relocation base registers (Rbr0] through Rbr[7]): these give base values
for defining the values of symbols in the module being processed. All Rbr's
have value zero at the beginning of pass 1. The Rbr values are stored as a single
word; hence, there is an assumption that the host computer word can contain a
target machine address. This restriction is easily removed, with increased cost
in symbol table space and execution time. (se¢c A, B, I, G, M, R and T direc-
tives)

3.  The working symbol dictionary (Wsd[0] through Wsd[255]): provides a
shorthand method for accessing entries in the symbol table. (see g, O and t
directives)

4. The working register (Wr): a 32 byte register used to hold data to be relocated.
(see L and O directives)

5. The symbol tables: the Thoth loader maintains two types of symbol tables. The
first contains all external symbols and module names, along with their values.
A symbol is defined when a G directive setting its value and defining Rbr is en-
countered. Before it is defined, an entry will contain a pointer to the entry for
the last module in which it was referenced; this is used to help trace down the
source of unresolved external references. Each entry contains a pointer to the
entry for the module in which it is defined. Symbols which are module names
have the pathname of the file from which they were loaded in their entry.



The second type of symbol table holds entries for symbols local to a
module. There is a table of local symbols associated with each module. Local
symbol values are defined by the T directive.

Values in the symbol table are stored in a single word. The values are
defined by adding the two-byte offset in the G or T directive to the current value
of the specified Rbr. In ail cases, symbol table entries record the Rbr which was
used to define their value. This information may be used by subsequent B direc-
tives to adjust symbol table values. (see B, G, M and T directives; also refer to
the description of the load map)

6. The adder: the Thoth loader has a special addition unit which is used to add
values from the symbol table into byte fields in the working register. A detailed
description of the operation of the adder is given in the description of the O
directive.

summary of directives by pass

For reference purposes, we present here listings of the directives which the loader
executes on pass 1 and on pass 2. The reader interested in studying the loader on the
basis of what actions occur on which pass can use this as a guide to reading the
descriptions of directives in Appendix II.

pass I: A,B,b,D,E, G, g I, M,m Rand T
pass 2: E, L, g, M, O and t



Appendix II: Thoth loader directives

The general form of a Thoth loader directive is:

csd.dk

where:
c

s
dd..d
k

is the command byte.

is the number of data bytes.

are the data bytes.

is a checksum (the exclusive-or of ¢, s, and dd...d).

Individual directives are listed below in alphabetic order of the command byte.
Refer to the section describing the structure of the Thoth loader abstract machine
for a more complete description of the registers, tables, etc. Since directives may
have different actions during passes 1 and 2, the descriptions are divided into ex-
planations of their actions for the two passes. See Appendix III for descriptions of
the library symbol table directives.

A align Rbr
A 2rbm

where:
rb
m

pass 1:

pass 2:

k

i1s an Rbr.
is a multiplier to apply to the Rbr.

If Rbr{rb] is not already an even multiple of m, it is increased to the
next multiple of m.

nothing.

B blowup symbols
B 3 rbl rb2 rb3 k

where:
rbl-3

pass 1:

pass 2:

note:

are Rbr's.

The blowup value is selected as the larger of Rbr{rb2] and
Rbr[rb3]. All symbols whose values are defined from Rbr[rb1] will
have the blowup value added to their value. Rbr[rbl] is in-
cremented by the blowup value.

nothing.

The blowup directive will typically appear only in the epilogue.
This directive allows the code generator to place code and/or data
into areas defined by several Rbr's, then "blow them up” so that
they will fit neatly as a single package of contiguous code and/or
data. Without this facility, the size of each area would have to be
known before pass 1 of the Thoth loader, so the Rbr's could be
given the correct initial values.



b byte definition

b 3 bpc bpb bpw k

where:
bpc
bpb
bpw

pass 1:
pass 2:

note:

indicates the bytes per target machine-addressable cell.
indicates the number of bits in a target byte.
indicates the number of bytes in a target machine Eh word.

the Thoth loader sets the appropriate internal constants.
nothing.

If specified, this directive should appear immediately following the
D directive for Rd[0] in the prologue. These constants default to 1
byte per addressable cell, 8 bits per byte and 2 bytes per Eh word. It
is unwise for the uninitiated to specify any bits per byte other than
8, since the Thoth loader enforces 8 bit bytes in many places (this is
for easy compatibility with Ale). This is a kludge to make the
Thoth loader work for the Honeywell 6000 machines.

The bytes per addressable cell must be set to 2 for word
address machines such as the NOVA or the Honeywell Level 6,
and should be 4 for the Honeywell 6000. This constant is used when
secking in the output core image file.

D relocation descriptor definition

Dsdbt

where:

E end of module
E s bb...b

where:
bb...b

note:

mm...m k

is the descriptor number.

is a shift indicator (see explanation of O directive below).

is an indicator of the type of arithmetic to be performed. (0 for
forward, 1 for backward)

is a mask which defines the field to be relocated

b, t and mm...m are copied into Rd[d].
nothing.

Rd[0] has special meaning for the Thoth loader: it determines the
form of symbol table entry and Rbr values. The first directive in the
prologue must define Rd[0]. It is not possible to redefine the
relocation descriptors. :

is a byte string used by the compiler,

This directive indicates the end of a module. The string of bytes
bb...b is not used by the Thoth loader, but is kept by Ale for use in
stack bounding, error checking, etc.



10

G global symbol definition

G s rb aa nn..n k

where:
rb

aa
nn..n

pass l:

pass 2:

is an Rbr.
is a two-byte offset value relative to Rbr[rb].
is the symbol name (<= 32 characters).

If the symbol is already in the symbol table and its value defined, a
warning message is printed and the original value is left intact.
Otherwise, the value of the symbol is defined to be the result of
aa+Rbr[rb], its defining Rbr is set to rb, and the symbol and its
value are added to the symbol table.

nothing.

g global symbol reference

gs pnn.nk
where:
P is a number which is used to refer to this symbol in subsequent O

nn...n

pass 1:

pass 2:

directives.
is the symbol name.

If the symbol name is not already in the symbol table, an entry is
made for it and its value is set to undefined.

The referenced symbol is accessed by placing a pointer to its sym-
bol table entry in Wsd[p].

I increment Rbr

[ 3rbaak

where:

rb is the Rbr to be incremented.

aa is a two-byte increment value.

pass 1: Rbr(rb] = Rbrfrb] + aa

pass 2: nothing.

note: The use of a two-byte increment here and in the G and T directives
gives a practical limit of 2**16 addressable units per Rbr for any
single relocatable object module. However, the output absolute
module can be arbitrarily large.

L load Wr

L sdd.dk

where:

dd...d is a string of bytes to be copied into the Wr.



pass 1:

pass 2:

11

nothing.

The string is copied into the Wr, starting at the leftmost byte. The
contents of Wr will later be output (by the O directive) as an ab-
solute module record. Thus, the contents of Wr must resemble an
absolute module record; the most convenient form of these records
will vary according to the machine and the device used. As an ex-
ample, we may decide that each absolute record should consist of a
two-byte address followed by a byte count and the number of data
bytes indicated by the byte count. In this case, the first two bytes of
Wr must be converted to an absolute address by the next O direc-
tive,

M beginning of module

M s rb m nn.n k

where:
rb

m
nn...n

pass 1;

pass 2:

note:

is an Rbr.
is a multiplier to apply to the Rbr.
is a module name (<= 32 characters).

If Rbr{rb] is not already an even multiple of m, it is increased to the
next multiple of m; the module name is entered into the symbol
table and its value is set to undefined.

The Wsd is initialized to zeros to prepare for loading of the new
module, and Wsd[0] is initialized to point to the symbol table entry
for the named module.

The module name will usually be identical to an that of an entry
point defined using the G directive. Unless the symbol is defined by
a G directive, its value will be zero and it will have no defining Rbr.

m define mapping

m s rbl ...

where:
rbl-n

pass 1:

pass 2:

note:

rbn k

are Rbr's.

The values in the specified Rbr's arc used to set up the virtual to
real mapping described below.

nothing.

This directive, if used, must appear twice in the epilogue. The first
occurrence must precede the B directive(s) and the second must
follow them. Note that the m directive cannot be used without B
directives. The purpose of this directive is to allow a core image to
be created which occupies a large virtual space with unused "holes”
which do not appear in the real space in which it is stored. This
results in a great saving in file space. The first occurrence of the m
directive causes the loader to save the information contained in the
specified Rbr's as a definition of the real space required by the core



12

image. The Rbr's must appear in the order in which the regions
they represent will appear in virtual space; in particular, this order
determines the order the Rbr's must be used in the succeeding B
directives. For example, if the directive

m40312
were used, then the blowup directives would be

B3300
B3133
B3211

Here, we have assumed that the selection of a maximum value for
bBlowup is not necessary and have specified the same Rbr for the
blowup value (refer to the B directive). We assume that the value of
Rbr[0] in this example is the smallest address at which code or data
is to be loaded. If this value is 0, the first B directive could be
omitted, With these blowups, symbols whose defining Rbr is 2 will
have the highest numbered addresses, those whose defining Rbr is 1
will have the next highest and those whose defining Rbr is 3 will
have the lowest numbered addresses. The second occurrence of the
m directive must be identical to the first.

O relocate and output Wr

R

O s cw ...

where:
CW
c

w

pass 1:

pass 2:

note:

rb definition

R s rb aa..

where:
rb

cw k

is a two-byte pair, as follows:

has two fields: the first 5 bits (bn) give a byte number in the Wr; the
remaining 3 bits (rn} is a relocation descriptor number.

is an index into the (Wsd).

nothing.

For each cw pair, the following relocation algorithm is executed.
The symbol table value pointed to by Wsd[w] is copied into the AC
register, then the AC is right-shifted (as in a division by a power of
2) the number of bits specified in the b field of relocation descriptor
Rd[rn]. Next, a field F in the Wr is isolated by aligning byte bn of
Wr with the leftmost byte of the mask bytes from Rd{rn]; the 1 bits
in the mask bytes define the field F. The value in F is added to the
(shifted) value in AC and the result is stored in F.

The loader does not check for overflow conditions, but overflows
will not affect data outside the field defined by the Rd. Subtractions
can be performed by using two’s complement representations.

ak

is the Rbr to be set.



aa...a

pass 1:

pass 2:

13

is the value to be stored into Rbr[rb]. The number of bytes must be
the same as the number of mask bytes in Rd[0] (refer to the D
directive).

Rbr[rb] = aa...a
nothing.

T local symbol definition

T s rbaa nn..n k

where:
rb

aa
nn...n

pass I:

pass 2;

is an Rbr.
is a two-byte offset value relative to Rbr[rb].
is the symbol name (<= 7 characters).

The value of the symbol is defined to be the result of aa+Rbr[rb],
its defining Rbr is set to rb, then the symbol and its value are added
to a symbol table which is associated with the module in which the
definition occurs.

nothing,.

t local symbol reference

ts ponn.nk

where:
p

nn...n

pass 1:

pass 2:

is a number which is used to refer to this symbol in subsequent O
directives.
is the symbol name.

nothing.

The referenced symbol is accessed by placing a pointer to its sym-
bol table entry in Wsd[p].



Appendix 1II: library directives

The following directives appear only in library symbol tables. They are used to
provide a summary of information concerning the modules in the library.

F library symbol table header

F 4 ss mm k

where:
SS

mm
pass 1: '

pass 2:

is a two-byte number indicating the number of symbols in the
library.
is a two-byte number indicating the number of modules in the
library.

The symbol table is read in and used to determine which modules
from the library will be loaded.

' nothing

N library symbeol name

N s cc nn..n k

where: -

cc

nn...n

pass 1:

pass 2:

note:

is a two-byte count of the number of times this name appears in
subsequent W, X and Y directives.
is the symbol name,

The symbol name is used to determine what references can be
resolved by loading from this library and what new unresolved
references will be created.

nothing

The number of N directives is indicated by the value ss in the F
directive. The N directives immediately follow the F directive and
precede the W, X and Y directives.

W  library module name

W s nn pp bb..b k

where:
nn

pp
bb...b

note:

is a two-byte index into the list of symbols given by the N direc-
tives. The indicated symbol is the module name.

is an unused two-byte field.

is a string of bytes saved from the E directive of the module.

Each W directive is always followed by an X directive. If the
module has entry points other than the module name, the X direc-
tive will be followed by a Y directive; if there is a Y directive, it will



15

include the module name in the list of entry points. The number of
W directives is indicated by the value mm in the F directive. These
directives immediately follow the N directives.

X external references

X srtrrro..ark

where:

T is a two-byte index into the N directives indicating a symbol to
which an external reference is made.

note: This directive summarizes the g directives which appear in the

library module.

Y entry points

Y s eeee ...eck

where:

ee is a two-byte index into the N directives indicating the names by
which the module may be referred.

note: This directive summarizes the G directives which appear in the

library module.

Z end of library symbol table
207

where:
there are no data bytes for this directive.

note: This directive signals the end of the library symbol table.



Appendix 1V: generating load code

Every module must begin with an M directive, then A directives to align ad-
ditional Rbr's. After these, G, g, T, t, L and O directives may come in any order,
with only the restrictions that O directives apply to the previous L and the g and t
directives must appear before the O directives which use them. A module wil
typically end by issuing the I directives to increment the Rbr's by the amount used in
each relocation area. Every module must be terminated by an E directive.

The prologue should define all relocation descriptors (D directive) which are
used. Rd[0] should be defined immediately following the M directive in the
prologue. RA[0] is used to define the format of values in the Rbr’s and symbol tables.
The logical choice for the mask is the value of the largest address in the target
machine, right justified in the mask bytes. Next, it should initialize any Rbr’s which
start from non-zero values (R directive). The prologue may also contain other direc-
tives to define certain standard information and make reference to externals which
must be resolved (i.e., the function Main). The prologue must be terminated by an E
directive.

The epilogue may be used to define externals whose values will be the final values
of the Rbr’s; this will allow the program to test how large it is when it begins ex-
ecution. The B directive should be used only in the epilogue and should come after
any G or T directives.

The names of the modules chosen for the prologue and epilogue should not con-
flict with any other modules. Conflicts may be avoided by using standard Thoth
names for them (i.e., starting with a '.") or by using illegal Eh identifiers for their
names.

tools: The command Culd may be used to hand-craft the prologue and/or epilogue.
Input to the program is best done by preparing a text file using Ted, then redirecting
input from the file. The input format is one directive per line, and every input unit is
specified as three characters; an input unit which is to be treated as an alphabetic
character is specified as two blanks followed by the character, while a byte is specif-
ed as three octal digits. The size of the directive and the checksum should not be
specified, as these will be computed by Culd. As an example, the input line

MO001002 . N a m e

would result in a directive to define the module ”.Name” and align Rbr[1] to an even
boundary. It may be possible to create the epilogue using the Thoth assembler if no
B or m directives are required.

Load code may be inspected using the command Pu.16. This program prints
directives with fields appearing in character, string, decimal, hexadecimal or octal
form, as appropriate. It also checks where possible that directives are in the form
described in Appendices II and III; however, the error checking tends to be rather
superficial, since many directives are of variable length and contain arbitrary data.



error checking: The Thoth loader makes little or no attempt to verify the load code it
processes. The only error detection done is directed toward discovering user errors
rather than compiler errors. However, there has been an attempt to make the code
as readable as possible; the compiler writer is encouraged to inspect the code if there
are questions not answered in this document, or if the loader appears to be mis-
behaving.

17



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

