A MINIMAL STORAGE IMPLEMENTATION
OF THE MINIMUM DEGREE ALGORITHMt
by ‘
Alan George*
and '
Joseph W.H. Liu**
Research Report CS-77-09

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

* Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

** Computer Services Division
City of Mississauga
Mississauga, Ontario, Canada

+ Research supported in part by Canadian
National Research Council grant A8111%.

ABSTRACT

We describe an efficient implementation of the minimum degree

algorithm, which experience has shown to be effective in finding Tow fi11
orderings for sparse positive definite systems. The algorithm is heuristic;
at each step in the elimination the variable chosen to eliminate next is
that which minimizes the fi11 suffered at that step. Thus, some represen-
tation of the partially factored matrix is required at each step of the
ordering. Previous implementations have stored this representation in an
explicit form, which requires a data structure which allows the matrix
structure to change as the ordering proceeds. The implementation we des-
cribe in this paper works only with the graph of the original matrix, and
all data structures used are fixed throughout the execution of the algorithm.
In contrast to most previous implementations, the total storage needs of the
algorithm are known before execution. Several effective techniques for
speeding up the algorithm are described, and numerical experiments on some
problems arising in finite element applications suggest that for these

problems the execution time is O(N), where N is the number of equations.

Introduction

Consider the symmetric positive definite system of linear equations
(1.1 Ax = b,
where the N by N matrix A is sparse. If we solve (1.1) using Cholesky's
method, A is first factored into LLT, where L is Tower triangular, and then
we solve the triangular systems Ly = b and L™x = y. Sparse matrices nor-
mally suffer some fill when they are factored, so L + LT is usually fuller
than A. Since for any N by N permutation P, the matrix PAPT is still
symmetric and positive definite, we can still use Cholesky's method to solve
the equivalent problem
(1.2) (PAPT)(Px) = Pb.
A judicious choice of P can drastically reduce fill, hence the interest in
algorithms for finding such permutations.

A heuristic algorithm which experience has shown to be extremely

effective in finding low-fill orderings is the so-called minimum degree al-

gorithm [7]. It is a "local" algorithm which at each elimination step
permutes the part of the matrix remaining to be factored so that a column

(row) with the fewest nonzeros is in the pivot position. This implies that

at each step of the algorithm we need a representation of the structure of

the partially factored matrix. Previous implementations known to the

authors [1, 3, 8] store some explicit representation of the partially
factored matrix, which has two disadvantages. Since the structure changes

as the elimination (or simulation thereof) proceeds, the data structure must be
flexible enough to allow for such changes. Second, it is usually impossible

to predict the maximum storage requirements for such implementations;

usually the storage requirement grows for a time and then tapers off near
the conclusion of the ordering.

The implementation we describe in this paper operates only on the
original matrix graph. The data structures remain fixed during the execu-
tion of the algorithm, and storage requirements consist of a small number
of vectors of length N together with the storage needed for the graph.

An outline of the paper is as follows. In section 2 we intro-
duce some graph theory notions which are required in describing the
algorithm and its implementation. Section 3 contains a description of the
basic algorithm, and section 4 contains some crucial refinements to the
algorithm which appears to reduce its time complexity to O(N) for finite
element problems. Section 5 contains some programming details along with

some numerical experiments, and section 6 contains our conclusions.

§2 Preliminaries -
In this section we review some basic graph theory notions
that are related to symmetric Gaussian elimination. We also consider graph

theoretic ways of viewing the elimination process.

2.1 Some Graph Theory Terminology

A graph G = (X,E) consists of a finite nonempty set X of nodes
together with a prescribed edge set E of unordered pairs of distinct nodes.
A graph G' = (X',E") is a subgraph of G = (X,E) if X' < X and E' < E. For
Y < X, G(Y) refers to the subgraph (Y,E(Y)) of G, where E(Y) = f{u,v}ee E|u,veY}.
Nodes x and y are said to be adjacent if {x,y} is an edge in E.

For a subset Y of nodes, the adjacent set of Y is defined as

Adj(Y) = {x € X\Y|{x,y} € E for some y € Y}.

If Y = {y}, we shall write Adj(y) instead of the formally correct Adj{{y}).
The degree of a node x is the number of nodes adjacent to x, denoted by
|Adj(x)]. Sometimes, we shall refer to y e Adj(x) as a neighbor of the node x.

A path of length £ is an ordered set of distinct nodes (vo,v],...,vg)

where v, e Adj(vi_1), 1 <1 <48. Agraph G is connected if there is a path
connecting each pair of distinct nodes. If G is disconnected, it consists
of two or more maximal connected subgraphs called components.

Let Y be a subset of the node set X. The component partitioning

C(Y) of Y is defined as:
C(Y) = {Y'cY|G(Y') is a connected component in the subgraph G(Y)}.

When Y = X, ¢(X) is simply the set of component sets in the graph G.

A useful notion in the study of Gaussian elimination is the

reachable set which we now define. Let S be a subset of X and y & X\S.

The node y is said to be‘reachableAfrém a node x through S if there
exists a path (X, Vys.. 5V y) such that v; ¢ S, for 1 =1 < k. Note
that k can be zero, so that any adjacent node of y not in S is reachable
from y through S.

The reachable set of y through S, denoted by Reach (y,S), is

then defined to be
Reach (y,S) = {x e« X\S| x 1is reachable from y through S}.

We can extend this definition to subsets of X. Let Y & X with Y n S = ¢.
The reachable set of Y through S is then .
Reach(Y,S) = {x ¢ X\(S U Y)| x is reachable from some node y e Y through S}.
Note that Adj(Y)\S c Reach (Y,S). When S = ¢, it can be seen that

Adj(Y) = Reach (Y,4),
so that the reachable set concept may be regarded as a generalization of

the adjacent set.

§2.2 The Elimination Process in terms of Elimination Graphs

In this section, we review the graph theory approach used
by Parter [%] and Rose [7] to study the Gaussian elimination process.
We first establish a correspondence hetween graphs and matrices.

Let A be an N by N symmetric metrix. The labelled undirected
graph of A, denoted byGA = (XA,EA), is one for which XA is labelled
from 1 to N:

A _
X - {X],.-.,Xn},

and {Xi’xj} ¢ EM if and only if Aii # 0. For any N by N permutation
matrix P, the unlabelled graphs of A and PAPT are the same, but the
associated labellings differ.

Consider the symmetric factorization of the matrix A into LL'.
The elimination process applied to A can be interpreted as a sequence of

graph transformations on GA. Following Rose [7], we define an

elimination graph as follows. Let G = (X,E) be a graph and y be a node

in G. The elimination graph of G by y, denoted by Gy’ is the graph
(XN yd, EQONLy}) u {{u,v}]| u,v € Adj(y)}).

With this definition, the process of Gaussian elimination on

a matrix A can be viewed as a sequence of elimination graphs

GO, G]’..”GN‘1

where G@ = GA,

and G.

7 Gy = (KR

i

Here the set of nodes X1 = {X1+1""’XN}' The graph G1 precisely refleets

the structure of the matrix remaining to be factored after the i-th step
of the Gaussian elimination. This interpretation provides insight
into the elimination process, and it is useful in the study of the fill-
in phenomenon.

We now relate properties of the triangular factor L of A with

the elimination graph sequence. 1In the factor L, let

v, = [{L

1 Liy #0, 3> 4 for i =1,... .\,

i’

Lemma 2.1 [7] The quantity @i is the degree of the node X in the

elimination graph Gi-]' 0
Since the number of off-diagonal nonzeros in the factor L is

given by

g U

es1=

i
and the number of multiplicative operations required for the factorization
is

L vi(vit),

ne~1=

i=1

the degree of the node X in Gi—1 plays an important role in the storage
and operation requirements of the elimination process. The minimum degree
algorithm to be studied in section 3 is designed to reduce these require-

ments by a Tocal minimization of the degrees.

§2.3 An Alternative Yiew using Reachable Sets

In section 2.2, the quantities 2 in the factor L are related
to node degrees in the sequence of elimination graphs. In this section,

we provide a direct relation between these numbers vy and the original

A

graph G~ associated with the matrix A. This relationship has been]

established elsewhere but we include it here for completeness. The

approach uses the notion of reachable sets introduced in section 2.71.

F . (F

= (x",EF) where F = L + L™. Here 6

is called the filled graph of GA, and EF consists of the edges eh

Let 6" = (x*,E%) and 6

in GA together with all the edges added during the factorization.

F A, and the edge sets EA and EF are related by the

Obviously X' = X

following Temma due to Parter [5].

Lemma 2.3 The unordered pair {xi,xj} ¢ EF if and only if {Xi’xj}‘e A,

or {Xi’xk} € EF and {xj,xk} eEF for some k < min {i,j}.]
In order to relate the numbers v, to the graph GA, we

A

characterize the edge set EF using only G°. The following resu1té are

quoted from [2], Lemma 2.2 {s equivalent to Lemma 4 in [8].
Lemma 2.2 Llet j > i. The unordered pair'{xi,xj} e EF if and only if

XJ- € ReaCh (X.i ,{X-[,...,X,i_-l}).

Corollary 2.3 For i = 1,...,N,

= [Reach (x5 5{xqs. CaXy -

Not only dQes the reachahle set concept characterize the
qualities Vi it also reflects the adjacency structure of the elimination
graph Gi' Let 60,61,...,GNH1 be the sequence of elimination graphs as
defined by the nodes Xqs XpseeosXye The next lemma follows from
the definitions of elimination graphs and reachable sets, and it can be
proved by induction.

Lemma 2.4 Let y be any node in the elimination graph G, = (Xi’Ei)' The

set of adjacent nodes of y in Gi is given by
Reach (y,{x1,...,xi}),

where the Reach operator is taken in the original graph. O

The above lemma is useful in the next section when the minimum

degree algorithm is studied.

§3 The Minimum Degree Algorithm

§3.1 Description of the Algorithm Using Elimination Graphs

Following Rose [7], we describe the minimum degree algorithm

using elimination graphs. Let Gy = (X,E) be an unlabelled graph.

Step 1
Step 2

where

Step 3

Step 4

(Initialization) i < 1
(Minimum degree selection} In the elimination graph Gi 1o
choose X; to be a node such that
|Adj(x)| = min |Adj(y)],
yExi_-I
8i1 = (g Byl

(Graph transformation) Form the new elimination graph

G, = (G;_4), .
i i=1 X4

(Loop or stop) i « i + 1. If i > |X|, stop. Otherwise, go

to step 2.

The above formulation of the algorithm involves the formation

of the sequence of elimination graphs. An implementation of this des-

cription can be found in the Yale Sparse Matrix Package (Sherman [91).

- 10 -

§3.2 Description of the Algorithm using Reachable Sets

In the description of the minimum degree algorithm in section
3.1, the sole purpose of step 3,the graph transformation,is to facilitate
the selection of the next node from the new elimination graph. This step
can be omitted if we can provide an alternate way to compute the degrees
of the nodes in the elimination graph. Lemma 2.4 shows that the reachable
set is the relevant concept to use.

The lemma relates the adjacency structure of the elimination
graphs ~ to that of the original graph. With this simple connection, we

can restate the minimum degree algorithm in terms of reachable sets.

Step 1 (iRitialization) S « ¢.
DEG(x) « |Adj(x)|, for x e X.
Step 2 (Minimum degree selection} Pick a node y ¢ X\S
where DEG(y) = min DEG(x).
x&X\S

Number the node y next and set S <« S U {y}.

Step 3 (Degree update) |
DEG(x) <« |Reach {x,S)| for x e X\S.

Step 4 (Loop or stepd. If S = X, stop. Otherwise, go to step 2.

-11 -

§3.3 Some Related Results on Reachable Sets

The observation in section 3.2 shows that the reachable sets
deserve more detailed analysis. _ .In this subSections we establish
some preliminary results in this direction.

Consider a §raph G = (X,E). Let S be a (pessibly empty) subset
of X and C(S) be the component partitioning of S. (See sectdon 2 for the

definition).
Consider a node y in X\S. Let

{Cl""’ck} c C(S)

be all the connected components in G(S) with y « Adj(Ci), T <1 <k.
Note that the number k depends on the subset S and the node y. Define

the neighborhood of y in S to be the subset

Nbrhd(y,S) =

nox
—
o

.i

The following lemmas relate neighborhoods to reachable sets.

Lemma 3.1 Nbrhd(y,S) = TUS Reach (y,T) n S. O
TS

In other words, it can be expressed as:

Nbrhd(y,S) = {s ¢ S|s is reachable from y through a subset of S}.

-12 -

Lemma 3.2 Reach (y,S) = Adj(Nbrhd(y,S) v {yl}).

Proof Consider u e Reach (y,S). There exists a path (u,s],.,.,st,y)
where s; €S, 1<i{s<t. Ift=0,uceAdjy) so that

u e Adj(Nbrhd(y,S) v {y}). If t # 0, we have sy ¢ Nbrhd(y,S) and thus
u ¢ Adj(Nbrhd(y,S)}).

On the other hand, let v ¢ Adj(Nbrhd(y,S) u {y}). Either
v e Adj(y) \ S or v « Adj(s) for some s ¢ Nbrhd(y,S). In both cases, v

is reachabie from y through S.

For convenience in later discussions, we introduce one more

definition. The closure of y by S is defined by

Closure (y,S) = Nbrhd (y,S) w {y} u Reach (y,S).
It is clear that the closure is a disjoint union of
Nbrhd (y,S) < S

and Reach (y,S) u {y} < X\S.

It is interesting to point out that "Reach", "Nbrhd", and

"Closure" may be regarded as operators:

Reach: X\S = P(X\S)
Nbrhd: X\S + P(S)
Closure: X\S =+ P(X),

where P(*) is the power set of the specified set.

- 13 -

O—EO—G—O

©
©

©
Figure 1. A 9-node graph.

The definitions and results can be best illustrated by an
example. Consider the graph in Figure 1. Let S = {51,52,53,54} and

y € S. It can be seen that the corresponding yalue of k ds two, with

C-I = {S]]’s

and
C2 = {52,54}.

S0, the neighborhood set s
Nbrhd(y,S)} = {sq55555,}-

By lemma 3.2, we have

Reach(y,S) = Adj({s.5,,5,45¥})
“{a,b,c}.

The closure set is then

Closure (y,S) = {57:5055,,y,8,b,c}.

- 14 -

The following resylts contain observations that are crucial
to our implementation of the minimum degree algorithm to he discussed

later in the paper.

Lemma 3.3 Let x ¢ X\S. If
Adj(x) < Closure (y,S)
then Nbrhd(x,S) < Nbrhd(y,S).
Proof Consider any s e Nbrhd(x,S). There exists a path XsSqsee.sS1sS,
where s; e S for 1 < i <t. Ift=0,s¢eAdj(x) nS < Closure (¥,S)nS
"~ = Nbrhd(y,S). If t#0, S will belong to Nbrhd(y,S) so that
s € Nbrhd(y,S). : 0

Theorem 3.4 Let x € X\S. If
Adj(x) < Closure(y,S)

then Reach(x,S) < Reach(y,S) u {y}.
Proof Consider a node w € Reach(x,S) and w # y. There exists a path
X3S7s v 035y sWs where s; €S for 1 <1<t

Ift=20,we Adj(x) n (X\S) = Closure(y,S) n (X\S), so that
w e Reacnh(y,S). Otherwise, if t # 0, Sq € Adj{x) n S < Closure(y,S) n S
Nbrhd(y,S). So a path in S can be traced from w to y; 1in other words
w ¢ Reach(y,S). O

Corollary 3.5 Let x be as in theorem 3.4. Then |Reach(x,$)| < |Reach(y,S)]|.

Proof If y ¢ Reach(x,S), by theorem 3.4
Reach(x,S) = Reach(y,S}
so that the result follows. On the other hand, assume y ¢ Reach(x,S).

Then x e Reach(y,S) and we have Reach(x,S) u {x} < Reach(y,S) u {y}.

- 15 -

Thus, |Reach(x,S)| = [Reach(x,S} v {x}| -1

A

|Reach(y,S} u {y}] -1
|Reach(y,S}| .

n

It is instructive to illustrate theorem 3.4 with

an example. In the example of figure 1, we have noted that

Nbrhd(y,S) = {s4:5,,.5,1}
and 1272274

Reach{y,S) = {a,b,c}.

The nodes a, b, d satisfy the condition in theorem 3.4 since

Adj(a) = {54}
Adj(b) = {y,ct}
Adj(d) = {c}.

However, the node ¢ fails.

The definitions introduced in this subsection can be extended
to nonempty subsets. For any nonempty subset Y = X\S, the readers are

left to formalize the notions Nbrhd(Y,S) and €Closure (Y,S).

§4 Refinements of the Algorithm using Reachable Sets

In this section, we consider novel features in our implementation
of the minimum degree algorithm as described in section 3.2. It should
be emphagédéd that we only operate on the adjacency structure of the
original graph. This has the obvious advantage of keeping the original
graph structure intact. In additiony no complicated data structure is

necessary to allow for graph transformations.

§4.1 Minimum Degree Selection

For each execution of step 2 of the algorithm described in section3.2,
a node of minimum degree is selected and numbered. In what follows, we
show that it may be possible to number a set of nodes at one time and that
the amount of extra work involved is small. Thiés basic observation has
already been made and utilized elsewhere [3,9]. However, its previous
application used information which is not available to us directly, since we
do not have an explicit representation of the partially dliminated matrix.
Qur objective here is to establish conditions whereby we can carry out a

"mass elimination", in terms of information provided by the REACH operator.

Let y e X\S satisfying |[Reach(y,S)| = min |Reach{z,S)].
2 ¢S

Theorem 4.1 Let x ¢ X\S and
(4.1} Adj(x) < Closure(y,S).
Then [Reach(x,S)| = |Reach(y,S)|.

Proof From the choice of the node y, we have

|Reach(y,S)| < [Reach(x,S)]|.

The result then follows from corollary 3.5. a

-17 -

Among those nodes satisfying the adjacency condition in theorem
4.1, we restrict ourselves only to those in Reach(y,S) y {y}. To this

end, we define the set _] _
(4:2) Y= {x e{Reach{y,S) U -{y}| Adj(x) c Closure(y,S)}.
We now establish some properties of the set Y.

Lemma 4.2 Let x ¢ Y. Then

Reach(x,S) u {x} = Reach(y,S) u {y}.

Proof Assume x # y. Then x ¢ Y\{y} @ Reach(y,S). Together with

theorem 3.4, we have
Reach(x,S) u {x} < Reach(y,S) u {y}.
By theorem 4.1, the two sets must be the same. O

We can generalize the result of Temma 4.2 to an arbitrary subset

of Y. Let Y' be a non-empty subset of Y.
Lemma 4.3 Reach (Y',S) u Y' = Reach(y,S) u {y}.

Proof By definition, Y' < Y < Reach(y,S) v {y}. Note also that

Reach(Y',S) = (U Reach(x,S))\Y', so that by theorem 3.4 we have
XeY'

Reach(Y',S) « U Reach(x,S) < Reach(y,S) v {y}.
X eV

On the other hand, clearly y e Reach(Y',S) u Y'. Let v e Reach(y,S)
and v ¢ Y'. Pick any x € ¥'; by lemma 4.2, v ¢ Reach(x,S) so that v is
reachable from some node in Y' through S. 0

The next Temma follows directly from definition and from

lemma 4.3

Lemma 4.4 Nbrhd(Y,S) Nbrhd{y,S).,
Reach(y,S) u {y},

Closure(y,S). O

Reach(Y,S) u Y

1}

and Closure(Y,S)

- 18 -

Lemma 4.5 For any subset Y' < Y, 1f zES v Reach(Y,S) u Y then

Reach(z,S u Y') = Reach(z,S).
Proof Singe .z ¢ Reach(Y,S), we have Y n Reach(z,S) = ¢.

It then follows that Reach(z,S) = Reach(z,S U Y'}). O

Lemma 4.6 For any subset Y' < Y, {f x € Y\Y', then Reach(x,S u Y') u Y' =
Reach(x,S}.
Proof By Temma 4.2,
Y' ¢ Y < Reach(y,S) u {y} = Reach(x,S) u {x}.
But x ¢ Y', so that Y' < Reach(x,S). Furthermore if v e Reach(x,S u Y'),
by the definition of Y, the node v must be reachable from x through S. Thus
Reach(x,S u Y') u Y' < Reach({x,S).
The other inclusion is immediate. U

Corollary 4.7 If x e Y\Y', then [Reach(x,S u Y')| = |Reach(x,S}| - [Y']|. O

Theorem 4.8 For any subset Y' < ¥, if x € Y\Y',
|Reach(x,S u Y')| < |Reach(z,S u Y')| for all z & S u Y'.

Proof Let x e Y\Y' and z ¢ S u ¥'. By theorem 4.1,
|Reach(x,S)| =< |Reach(z,S)]|.

Then, by lemma 4.4 and corollary 4.6, |Reach(x,S u Y')| < |Reach(z,S u Y'}|.
a

Theorem 4.8 has the following important implication: if y is the
node selected in the minimum degree algorithm, the whole set Y can be

numbered together.

- 19 -

§4.2 Degree Update

Having selected and numbered the subset Y as defined in the
previous section, we need to update the sizes of the new reachable sets
in preparation for the next node selection step. For our discussion, we
let S and Y be as before and define S =S u Y. The problem is to deter-

mine |Reach(u,3)| for all u & X\S.

Theorem 4.9 Let u ¢ X\S. Then
(Reach(u,S) u Reach(Y,S})\(Y v {u}), if u Reach(Y,S)
Reach(u,S) =

Reach{u,S) otherwise.

Proof If u & Reach(Y,S), it follows from lemma 4.4 that Reach(u,S) =
Reach(u,S). On the other hand, when u « Reach(Y,S), the result follows
from the definition of Reach(u,S) and Reach(Y,S). 0
Theorem 4.9 says that only the nodes in Reach(Y,S) need to have
their degrees updated. In addition, for u e Reach(Y,S), its new degree
is given by
|Reach(u,S)| = |RReach(u,S) u Reach(Y,$))\(Y u {u})].

Since the expression in theorem 4.7 can be written as the disjoint set union

[Reach(u,S)\(Y u Reach(Y,$))] u [Reach(Y,$)\{u}],

we have

‘|Reach(u,S)| = [Reach(u,S)\(Y u Reach(Y,S))| + [Reach(Y,S)\{u}].

But the size of Reach(Y,S) is known, so the problem 1is reduced to the
determination of
(4.3) Reach(u,S)\(Y u Reach(Y,S})

for every u ¢ Reach(Y,S).

- 20 -

As we do not intend to keep the set Reach(u S} but rather the
number |Reach(u,s}|, the set given by (4.3) has to be generated in order to
find its size. In what follows, we investigate the possibility of updating
the degrees of a set of nodes in Reach(Y,S). Let u e Reach(Y,S). The
following lemma is obvious.

Lemma 4.10 Nbrhd(Y,S) u Y e c(Nbrhd(u,S)). 0
Lemma 4.11 If Adj(u) < Nbrfid(u,3) u Adj(Nbrhd(u,S)), then

|c(Nbrhd (u,S))| > 1.

Proof Assume for contradiction that |c(Nbrhd(u,S))| = 1. By Lemma 4.10,
Nbrhd(Y,8) v Y = Nbrhd(u,S). But Adj(u) < Nbrhd(u,g) u Adj(Nbrhd(u,g))
Nbrhd(Y,S) u Y u Adj(Nbrhd(Y,S) u Y)

Nbrhd(Y,S) u Y u Reach(Y,S)
Closure (Y,S)

n

Closure (y,S).
By the definition (4.2) of the set Y, the node u should belong to the set Y.
Lemma 4.12 If Adj(u) < Nbrhd(u,g) u Adj(Nbrhd(u,g)), then
Adj (Narhd(u,S)) = Adj(Nbrhd(u,S) v {u}) v {u}. 0
Now, let u e Reach(Y,S) satisfy the conditions
(4.4) Adj(u) < Nbrhd(u,S) y Adj(Nbrhd(u,S))
and |a(Nbrhd(u,S))| = 2.
Then the following theorem holds.
Theorem 4.13 If v ¢« Reach(Y,S) with

Adj{v) < C1osure(u,§)
and Adj(v) n (Nbrhd(u,S)\(Nbrhd(Y,S)} u Y)) # 4,
then |Reach(v,S)| = |Reach(u,§)|.

- 21 -

Proof By lemma 3.3,
Nbrhd(v,S) < Nbrhd(u,S).
Together with | £(Nbrhd(u,5))| = 2 and Adj(v) o (Nbrhd(u,5) (Nbrhd(Y,S),Y)) # ¢,
we have Nbrhd(v,S) = Nbrhd(u,S). Therefore, by lemma 4.12,
Adj(Nbrhd(v,S) u {v}) y {V}
Adj(Nbrhd(v,S)) u {v}

n

Reach(v,S) u {v}

[}

Adj(Nbrhd(u,S)) v {v}
Reach(u,5) u {u}.

By corollary 3.5, the two sets must be the same. O
Thus, when we update the degrees of the nodes in Reagh(Y,S), it
may be possible to update the degrees of a set of nodes {j'c Reach(Y,S),

with only one application of the REACH operator.

§4.3 Determi_nat_;ion o_f Rgachang‘Sgts |

The reach set operator

Reach: X\§ + P(X\S)
i§ used repeatedly in our implementation of the minimum degree algorithm.
In the minimum degree selection step, it is used to determine the set Y
of nodes to be eliminated as given by (4.2). 1In the degree update
step, the new degrees are obtained by finding the size of the set (4.3)
through reachable sets. Thus, an efficient method for determining reachabte
sets is extremely important in the overall performance of the algorithm.

Let y € X\S. To find Reach(y,S) as Adj(Nbrhd(y,S) v {y}), it is
apparent that all the neighbors of the nodes in Nbrhd(y,S) v {y} have to be
inspected for membership. It is natural to ask whether it is
possible to generate Reach(y,S) with less effort.

In this connection, we Took for a subset V of S so that for

x ¢ X\S, the reachable set Reach(x,S) is the same as Reach(x,S\V),‘phere

- 2l =

the latter operator is taken in the subgraph G(X\V) = (X\V,E(X\V)). It is
clear that this subset would satisfy the following conditions:

Nbrhd(x,S\V) < Nbrhd(x,S)
and Reach(x,S\V)\V = Reach(x,S).

By marking the subset V as inactive, we need only to consider the subgraph
G(X\V), and this can imply a drastic reduction in effort to generate
Reach(x,S).

Consider the example in figure 4.1. The subset S contains 23
nodes.marked with s. By making 7 of them inactive (those nodes marked in
dark), the reachable sets are preserved in the subgraph. Furthermore, to
find Reach(x,S), 16 nodes have to be inspected; whereas, in the subgraph,

only 10 is necessary.

Consider an elimination step in the algorithm. Let S be the
set of nodes already eliminated, and Y be the set (4.2) of nodes with
minimum degree to be eliminated. If we use S to denote the new set of

eliminated nodes S U Y, then

Nbrhd(Y,S} U Y e ¢(§),
and Reach(Y,S) = Adj(Nbrhd(Y,S) U Y).

A11 nodes in Nbrhd(Y,S) U Y except a subset R can be marked
inactive so long as the subset R defines a connected subgraph G(R) and
satisfies
(4.4) Reach{Y,S) < Adj(R).

The best choice of R would be one with the smallést size satisfying the
above conditions. For practical reasons, we look for one that can be

determined easily.

- 23 -

Figure 4.1 An example to illustrate the effect

of de-activating eliminated nodes.

- 24 -

Obviously, the subset
(4.5) Adj(Reach(Y,S)) n (Nbrhd(Y,S) U S)
satisfies (4.4), but it may not be connected. We simply take R to
be a conneeted subgraph of Nbrhd(Y,S) U Y containing the set (4.5).
Thus, the way to "de-activate" eliminated nodes is completely
specified if we can provide an algorithm for the following problem. We
shall describe it in a general setting. Let G= (X,E) be a connected graph
and Z be a (possibly disconnected) subset of X. The problem is to
déetermine a small subset Z such that
ZcZcX
and such that the subgraph G(Z) is connected. The following algorithm

serves the purpose though it may not produce a smallést 1.

Step 1 (Initialization) Initialize.Z «Z and find a component
C e c(Z).

Step 2 (Test for termination) If C = Z, stop.

Step 3 (Reach for another component} Determine a node z ¢ Z\C, which
is cdosest to some node ¢ in C. Let CaXysonnsXys 2 be a
shortest path with X; e X\\Z, 1 <1 < t.

Step 4 (Expansion of component) Find the component C' ¢ ¢(Z) with
zeC'. Put
Z<7U {X]""’Xt}

and C<«CuU {x],...,xt} uc'.

Step 5 {Loop) Go to step 2.

- 25 -

§4.4 An Overview of the Refined Algorithm

Refinements have been given to improve the overall performance

of the minimum degree algorithm as described in section 3.2. In this

section, we combine them and provide an overall picture of the entire

algorithm.

Step 1

Step 2

Step 3

Step 4

Step 5

and

Step 6

(Initialization) Let G = (X,E) and initialize S < ¢,
DEG(x) < | Adj(x)!, for x e X.

(Minimum degree selection) Pick a node y € X\S where

DEG(y). = rifn DEG(x). .
xeX\S

(Mass minimum degree gliminatiqn) Determine the sets Reach(¥,S)
and Closure(y,S). Then find ‘
Y = {x e Reach(y,S) U {y} |Adj(x) < Closure(y,S)}}, and number
the nodes in Y next.
(Mass degree update) For u e Reach(Y,S), determine
Reach(u,S) \ (Reach(Y,S) U Y} and put
DEG(u) <« |Reach(u,S) \ (Reach(Y,S) U Y)] + JReach(Y,S) \ {u}].
Check for mass degree update conditions and perform the update
accordingly, if possible.
(Deactivate some eliminated nodes) Find a subset V of
Nbrhd(Y,S) U Y such that
G({Nbrhd(Y,S) U Y) \ V) is connected
and Reach(Y,S) < Adj({(Nbrhd(Y,S) U Y)\V).
Then put
(X,E) « (X\V, E(X\V))

S < (S UNY)V.
(Loop or stop) If S = X, stop. Otherwise, go to step 2.

- 26 -

In the next sections, we shall consider some implementation details
and provide some experimental results on the performance of this scheme.

§5 Implementation Details and Numerical Experiments

In this section we describe the important aspects of our imple-
mentations (MD), and report some numerical experiments showing its
performance. As a basis for comparison, we have used the appropriate
routines from the Yale Sparse Matrix Package (YSMP) [91, which is fairly
widely distributed and enjoys a gocd reputation.

In order to avoid doing any searching for a node of minimum degree,
the degrees of the nodes are stored using the three arrays ORG, NEXT, and
PREV, each of length N, as depicted in Figure 5.1. Nodes having the same
degree are stored in a doubly linked degfee 1ist; the beginning of the Tist
containing nodes of degree i is stored in ORG(i), and the arrays NEXT and
PREV contain the usual forward and backward pointers of a doubly Tinked Tist.
If node q is the first in thedegree 1ist, then PREV(§J 1is -deg(q), and if
node q is the last node in the degree 1ist, then NEXT(q) = 0. Note that
when the degree of a node is changed, it can be deleted from the oid degree
1ist and inserted in the new list in a fixed number of operations,
independent of N. By maintaining a pointer to the first nonzero entry in
ORG, we can easily find a node of minimum degree [6].

In the set of subroutines which implement our algorithm, the set
S is maitntained using a three-state array SMASK, where SMASK(i) > 0 <=>
node i ¢ S, SMASK(i) = 0 <=> node i ¢ S, and SMASK(i) < 0 if node i has been
deactivated using the algorithm of section 4.3. In addition, four other
arrays of length N are used, one of which is, Tike SMASK, only required to
store these different states of a node. The graph itself is stored as a
sequence of adjacency lists in the array pair (XADJ, ADJINCY), as shown in

Figure 5.1. Since our implementation does not exploit the fact that two of

- 27 -

O O 1 O MM O O W - .
1
(7%

20O 0 m Nt RWN
OO0 OO0 O N®WoO =4O

— —
p—
[an
N

Graph G ORG NEXT PREV

ADINCY 2313891.24583534867...%

.y

XADJ 13 7 12 14 ... %

Figure 5.1 Representation of the adjacency and degree structure of
the graph using the arrays XADJ, ADJNCY, ORG, NEXT, and
PREV.

- 28 -

the vectors of length need only represent three states, our total array
storage requirements for the ordering program is 9N + 2|E} integer
locations.

In order to obtain some evidence bearing on the asymptotic
execution time of our implementation, the program was applied to the
graded L mesh (graph) shown in Figure 5.2, subdivided by increasing sub-
division factors s, yielding 32 as many triangles as in the original mesh.
The YSMP subroutine SORDER was also run on the same problems to obtain
comparative results. The results are summarized in Table 5.1. Execution
times are in seconds on an IBM 360/75 computer. The programs are written
in Fortran, compiled using the optimizing version of the H-level compiler.

‘The entries in the storage column for the YSMP program were
obtained by inserting a statement in SORDER to ménitor the maximum storage
used in some working storage arrays. The user must estimate this number,
and provide at Teast this much storage to allow the program to execute.
This is a disadvantage shared by many minimum degree algorithm implementations.
We regard the fact that our implementation uses a modest fiwed amount of
storage as a major advantage. The quality of the orderings produced by the
two programs was almost identical; i.e., the amount of fill suffered by the
corresponding ordered matrices when factored was nearly identical.

Note that the asymptotic execution time of MD appears to be of a
lower order than the YSMP program. Indeed, the numerical results in
Table 5.1 suggest quite strongly that the execution time of our program is
0(N). Other similar experiments with finite element discretizations of
two and three dimensional regions suggest that our program runs in O(N)

time for this class of problems.

- LY -

Figure 5.2 Graded L mesh

- 30 -

EXECUTION TIME
MD YSMP STORAGE
N[TmME JIME. Me | TInE H—-K‘E MD YSMP
265 1.20 4.52 . .90 3.21 4139 6667
406 1.97 4.85 1.50 3.65 6371 10428
577 2.95 5.11 2.31 3.85 9083 | 15559
778 3.89 5.00 3.39 4.27 12275 | 23044
1009 5.14 5.10 4.60 4.45 15947 | 30211
1270 6.30 4.96 6.28 4.95 20099 40220
1561 7.98 5.11% 8.14 5.21 24731 49407
1882 9.87 5.24 | 10.65 5.66 29843 61488
2233 | 11.98 5.37 | 12.68 - 5.68 35435 76427
2614 13.63 5.21 - - 41507 -
3025 | 15.99 5.29 - - 48059 -
3466 | 18.50 5.34 - - 55091 -
(x1073) (x1073)
Table 5.1 Comparisons of execution times and storage

requirements for the MD and YSMP programs.

- 31 -

In order to demonstrate the effectiveness of {a) the de-

activation technique described in section 4.3, and (b) the "mass degree

update" technique (Theorem 4.13), we solved the problems reported on

above, with one or both of these features removed from our program.

The'results are summarized in Table 5.2, and illustrate their value for

Targe N.
. NODE NO NODE NODE NO NODE
N DEACTIVATION DEACTIVATION DEACTIVATION DEACTIVATION
AND MASS BUT MASS BUT NO MASS AND NO MASS
DEGREE UPDATE | DEGREE UPDATE | DEGREE UPDATE | DEGREE UPDATE
265 1.20 1.30 1.49 1.73
406 1.97 2.16 2.81 3.61
577 2.95 3.28 4.15 5.82
778 3.89 4.30 5.90 8.98
1009 5.14 5.82 7.87 13.57
1270 6.30 7.07 - 10.65 18.24
1561 7.98 9.04 13.92 24.98
1882 9.87 11.78 17.66 32.39
2233 11.98 14.49 21.74 41.81

Table 5.2 Results showing the effect of node deactivation and mass
‘ degree update.

- 32 -

§6 Conclusions

We have described an implementation of the minimum degree algorithm
which requires only O(N) storage in addition to that required for the
original graph. The storage required by the program is known before execution,
and is independent of the amount of fill that is suffered by the correspond-
ingly reordered matrix, when it is factored. The results of Table 5.2 show
that the success of our approach depends upon two important techniques;
"mass degree update", and "node deactivation". The latter of these
techniques has important application in other areas of sparse matrix
computation, particularly in the area of storage allocation and related
problems [4]. Finally, the results in Table 5.1, along with other
experiments, suggest that the execution time of our implementation, for
problems arising in finite element applications is 0(N). Unfortunately,
it is not difficult to construct mesh-1ike problems where the running

time of our algorithm is synerlinear.

- 33 -

§7 References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[s]

[o]

[.S. Duff, A.M. Erisman and J.K. Reid, "On George's nested dissection
algorithm", SIAM J. Numer. Anal.,5 (1976), pp. 686-695.

Alan George and Joseph W.H. Liu, "An algorithm for automatic nested
dissection and its application to general finite element problems",
Proc. Sixth Conference on Numerical Mathematics and Computing,
Winnipeg, Manitoba, Sept. 30 - Oct. 2, (1976).

Alan George and David R. McIntyre, "On the application of the minimum
degree algorithm to finite element systems", SIAM J. Numer. Anal.,
to appear.

Alan George and Joseph W.H. Liu, "On finding diagonal block envelopes
of triangular factors of partitioned matrices", Dept. of Computer
Science Technical Report, CS-77-10, 1977.

S.V. Parter, "The use of linear graphs in Gauss elimination". SIAM
Rev., 3 (1961), pp. 364-369.

J.K. Reid, Private communication.
D.J. Rose, "A graph theoretic study of the numerical solution of

sparse positive definite systems", in Graph Theory and Computing,
R.C. Read, editor, Academic Press, (1972).

D. Rose, R. Tarjan and G. Luecker, “Algorithmic aspects of yertex
elimination on directed graphs®™, SIAM. J. Computing, 5 (1975),
bp. 266-283.

Andrew H. Sherman, "Yale Sparse Matrix Package Users Guide",
Lawrence Livermore Laboratory Report, UCID-30114, August 1975.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

