A HOMOGENEOUS NETWORK FOR
DATA SHARING - COMMUNICATIONS

by
Eric Manning and Richard Peebles

Research Report CS-77-07

Department of Computer Science
and
Computer Communications Networks Group
University of Waterloo
Waterloo, Ontario, Canada

March 1977

Manning/Peebles 2

ABSTRACT

The communications aspects of a distributed architecture for
transaction pfocessfng are described. The architecture is aimed at
transaction processing on physically distributed data bases, where
most of the hits on a given component of the data base come from a
single geographic region. The architecture is physically based on a
homogeneous set of host minicomputers, a message-switched communications
subnetwork (loop or packet-switched); and a set of network interface
prbcessors which connect the hosts to the communications subnetwork. It
is logically based on two primitives; all data objects (including
messages) are segments and all control objects (including files) are
tasks. Each task runs in a private virtual space and all inter-task
comnunication is done by passing message segments. Segment passing is
done by a single message-switching task in each host, assisted by the
interface processors and communications subnetwork where necessary. The
message-switching task also enforces protection rules without the need for
special hardware.

A two-host implementation of the logical architecture is
operational. It is based on PDP-11 minicomputers and a non-switched wire
pair subnetwork. 'The companion paper describes modelling studies of the

architecture, using simulation and queueing-theoretic techniques.

Manning/Peebles

KEY WORDS
distributed processing
distributed data bases
message-switched operating systems
inter-process communication
network-wide addresses
homogeneous computer networks

transaction processing

Manning/Peebles 4

Footnotes

The small numbers and static character of Software Machines are more
typical of hardware modules than software. Hence our choice of name.
In fact, implementation of some SMs in hardware is an obvious possi-

bility and the logical architecture is structured so as to facilitate
this. ~

In the prototype implementation (see Section V) we have used the UNIX
[21] operating system as a "software factory" to build and test SMs.
UNIX has excellent software development and testing facilities and

this approach allows us to separate the problems of building code from
the problems of executing it.

Access to stored files of course provides a second form of inter-task
communication, but it is an indirect one.

In the case where the machines use the UNIBUS addressing structure;
otherwise, only primary stores are spanned.

Manning/Peebles 5

I. INTRODUCTION

A prime motivation for computer networking is resource sharing,
resources being central processors; peripheral I/0 and storage devices,
programs and data. The leading example of an operational resource sharing
network is ARPANET [1,2]; it has inspired a number of closely related
networks which are in various stages of design or in operation [3,4,5].

ARPANET consists of a communications subnetwork, analogous to the switched

voice network, and a set of host computérs, analogous to voice network

subscribers. The communications subnet was designed independently of the
hosts and is prepared to support any host able to meet minimal hardware

and software interfacing requirements. Hence a very wide variety of hosts
can be (and have been) attached to ARPANET, most of which were designed
without networking requirements as a criterion. This approach is reflected
in the management of ARPANET; the communications subnetwork is managed by
the network organization whereas the hosts remain under the control of

individual subscribers. We refer to such networks as heterogeneous networks.

Heterogeneous networking is required if a variety of qualitatively
different resources are to be made available for sharing. One thinks
of jobs being prepared on an interactive system such as a PDP-10, which then
invokes other hosts to do appropriate parts of a computation, such as a CDC
7600 for numeric calculations. However, other types of resource sharing -
peripheral device sharing, load balancing and, particularly, data sharing -

do not require such diversity. Moreover, the diversity of heterogeneous

Manning/Peebles 6

networking as exemplified by ARPANET has created technical problems
ranging from incompatibilities in word length and codes; to substantial
problems caused by the interconnection of hosts (hardware and operating
systems) which were not designed to be interconnected. There are also
network management problems ranging from lack of control over a user's
physical site to the need for extensive user support for N different
‘hosts at each of N sites. Finally, it appears that jobs which freely
draw on multiple host types to optimize efficiency are fairly rare in
ARPANET, owing to the absence of appropriate support mechanisms.

A glance at potential network applications, moreover, reveals
many which primarily require data sharing, with a lesser demand for
peripheral device sharing (central file storage and remote access to
expensive or highly-specialized I/0 devices), but 1ittle or no need for
access to multiple host types.

Commercial applications such as banking and retail credit-card
sales involve the processing of transactions to update a data base. These

data bases often exhibit geographic locality of reference: they can be

split into regional components such that most of the "hits" on a particular
component come from "its" city or region. Each regional component of such a
data base can and should be kept in a host computer located in the appropriate
region; this approach offers lower communications costs, more organizational
flexibility, and potentially greater reliability than the current practise

of holding the entire data base in a single, large computer. It also opens

the way to distributed processing, allowing us to exploit the power of mini-

Manning/Peebles 7
computers (which are often more cost-effective than their larger brethren),
as the processing load is distributed among many processors. In addition,
parallelism is achieved easily and naturally, as transactions which hit
different sites are processed simultaneously. However, geographic locality
of reference is a statistical property of data bases, and is therefore
subject to exceptions. (For example, a motorist who lives in City X will
usually buy his gasoline in City X, but he may occasionally buy gasoline

in City Y during trips. The oil company's data base of customer sales
records exhibits geographic locality of reference nonetheless.) For this
reason, and because managerial queries for information invelving the entire
data base will have to be processed, the regional hosts must be inter-
connected to form a network.

A second type of locality of reference is functional locality of

reference. Here, the data base can be split into components based on
function rather than geography. Terminals can be grouped into classes by
function, and most of the transactions from terminals in functional class X
produce hits on functional component X of the data base. The classical
example of functional locality of reference is health care, where the
information about each patient can be subdivided into clinical data,
pharmaceutical data, hospital data and so forth. Most of the transactions
generated by a pharmacy terminal would hit the pharmaceutical component of
the data base, and similarly for the other functional types. Here geography
is no longer a factor and all of the hosts of the network might well reside
in a single room; the other comments about geographic locality of reference

remain true. We use the generic term locality of reference to refer to

Manning/Peebles 8

either or both of geographic 16ca1ity of reference and functional Tocality
of reference. The notion of locality of reference leads directly to the
idea of homogeneous networks for data sharing;

A homogeneous network for data sharing is a communications sub-
network plus a set of attached hosts. It is intended for transaction
processing on distributed data bases which exhibit locality of reference.
Because data is the resource to be shared, rather than different types of
CPU power, the hosts are assumed to have a common hardware and operating
system architecture. Differences in amounts and types of storage and I/0
equipment, and of course in data stored, are permitted among the hosts. A
homogeneous network can and should be designed, installed and managed as a
single "package system", obviating many of the management problems mentioned
above and permitting research into the problems of structuring host hardware,
host software and the communications subnetwork as a single, integrated
entity. Among the potential advantages of this design freedom we may hope
for improved efficiency due to:

the absence of low-level interfacing problems (codes and word
Tengths),

the ability to specify a specialized communcations subnet
tailored to very specific host needs,

simpler protocol, as the host operating systems work in a
co-operative rather than unknown environment (they are copies
of one another).

We also expect improved reliability, due to the ability to freely move data

Manning/Peeb]es

from host to host and to overcome troubles at one host with the aid of its
neighbours (down loading of software and remote diagnosis of hardware
faqus). The price paid for this is; of course, the inability to call on
a multiplicity of different host architectures.

The notion of homogeneous networks is not new; the Integrated
Computer Network System [6] provides an early example. However, the ICNS
was based on large, general-purpose computers and existing operating systems,
and it provided conventional, general-purpose computing facilities such as
program preparation, compilation and execution. The idea of networks of
mini-computers is also well-known; the Distributed Computing System of
Farber et al. [7,8], the KOCOS network [9] and the SPIDER-based network of
Fraser [10] all provide examples. However, these networks all attempt to
provide general-purpose facilities for interactive and batch computing in
academic or research environments, and all are heterogeneous in nature.

Our work, on the other hand, is oriented exclusively towards transaction
processing on physically distributed data bases in a commercial environment,
and uses homogeneous networks.

The new ideas presented in this paper include the ideas of Real
and Virtual Network-wide address spaces for inter-processor communication,
the use of multiple small virtual spaces within a single application program
to provide protection (as an alternative to procedures and capability
hardware [11]), the use of only two primitives - segments and tasks - to
express all data and control constructs, and the definition of efficient

inter-process communication algorithms based on the ideas just mentioned.

Manning/Peebles ‘ 10

Finally, we describe an implementation of the inter-process communication
facility (called the Communications Nuclteus} which is now operational. A
companion paper [12] describes analytic and simulation models of the

structures presented in this paper.

II. THE PROBLEM

The problem is to design a Togical architecture oriented to
transaction processing on distributed data bases exhibiting locality of
reference. The architecture -- which we call the MININET logical
architecture -- must be able to provide efficient data sharing among hosts,
with minimum host and communications overheads. (The need for minimum
overheads hardly needs comment, especially in view of the postulated mini-
scale CPUs.) Finally, one would 1ike to have an architecture which provides
a reasonably close fit to available hardware, to permit a trial implementation
without major hardware design and construction efforts.

Two design issues of importance are layering and protocol
uniformity. Layering has been explained by Scantlebury and Wilkinson [13]
as a technique to ensure logical independence of the modules of a network;
it has been observed in the design of the ARPANET and CYCLADES protocols
(op.cit.) and the System Network Architecture of IBM. We regard it
as essential, so that different communications subnets, inter-process
communication designs and data management modules can be "tried out" with
minimum disruption. However, strict observance of layering results in an
explosion of control fields belonging to the various layers and a drastic

increase in communications overhead. We have therefore violated the layering

Manning/Peebles 11

principie in one instance for the sake of efficiency (between the Switch
and Communications Device Tayers, defined later}.

Protocol uniformity is not the same as layering, and represents
homogeneity in another sense. By it we mean that the communications

facility should handle inter-host and intra-liost communications in a

uniform manner. That is, a pair of communicating tasks resident in two
different hosts should be able to use the same protocol to communicate
as do a pair of tasks resident in a single host. We have incorporated
protocol uniformity in the MININET logical architecture. The main features

of the architecture are described next, in Section IIIL.

III. The MININET Logical Architecture - Concepts and Key Design Features

3.1 Introduction

This section presents the concepts and key design features of the
MININET logical architecture. The presentation does not refer to any
particular computer or computers, reflecting the fact that the logical
architecture is essentially machine-independent. (A particular implementation
is described in Section V.)

The logical architecture is organized by layers of abstraction and
this Section describes the major layers. We begin at the top, with a graph
model of transaction processing, in Section 3.2. We describe a second-level
model for the graph's nodes in Section 3.3 and for the graph's edges in

Section 3.4.

Manning/Peebles 12

3.2 A Model of Transaction Processing

A'tréﬁsééfibh 1s a short request which generates a rapid response,
plus side effects such as the updating of a data base. (Transactions are
the analog of jobs in conventional systems.) We represent the processing
of a transaction T by a rooted, directed graph G(T). As shown in Figure
IIT.1, all of the tasks which participate in the processing of T are
represented by nodes of the transaction graph G(T), and message flows between
pairs of tasks are represented by directed edges of G. The user at his
terminal 1is represented by the root node of G, which spawns the initial
request-message.

It is necessary to provide unique names or labels for transaction
graphs and the nodes of graphs and this is done as follows. As each new
transaction enters the network it is given a unique label. The number of
labels available for labelling transactions is bounded by a system parameter;
this has the effect of Timiting the number of transactions which can be
"in flight" at any given time, and thereby provides one form of congestion
control. The transaction's label serves to uniquely identify the transaction
graph which is spawned to process it.

In addition to unique Tabelling of transactions and their graphs,
we need to uniquely label the nodes of a given graph to provide task identifiers.
This is done as follows. Transaction graphs correspond one-to-one with
transactions "in flight", so the label of transaction T forms the prefix of

each node Tabel of the graph G(T). The remainder of the node label is

Manning/Peebles | 13

computed as follows:

1) Tlabel the root node .00

2) the children of a node whose label is .L are labelled

.L.00, .L.01, .L.02,...

If directed edges from more than one ancestor node are incident on a
child node, the ancestor which created the child is considered to be
its father, and the father's Tabel is used to compute the child's label.
Thus the name of a parent task determines the names of its children.

Finally, we mention two additional properties of transaction
graphs. First, a transaction graph can span two or more hosts; this
happens whenever a transaction violates locality of reference. (The node
labels of G(T) are prefixed with host identifiers to allow this situation
to be managed simply.) Secondly, transaction graphs are dynamically created
and destroyed. At no point in time does the entire graph exist;
nodes spawn successors as needed and predecessor nodes destroy themselves
when their work is done. This approach tends to minimize primary store
requirements, at the expense of CPU cycles to perform the creation and
destruction of nodes. It can be exploited to reduce required primary store,
up to the point where real-time response becomes unacceptable owing to CPU
load.

This completes our description of the top layer of abstraction.
Next, we must explain how the objects of the transaction graph model --
tasks and message flows between tasks -- are constructed from simpler objects.

This is the purpose of the second-level model which is described below. Tasks

Manning/Peebles 14

are constructed from software machines which are constructed from segments;
this is described in Section 3.3. Message flows between tasks are ‘
carried out by an object called the Communications Nucleus; it is described

in Section 3.4 and Sevtion IV.

3.3 Segments, Software Machines and Tasks - The Nodes of G(T)

The two primitive objects of the MININET logical architecture
are the segment and the task. Tasks are built from entities called Software
Machines which in turn are built from segments. Hence the segment is the

natural place to begin in describing these constructs.

3.3.T Segments

A segment is a contiguous array of Tinearly-addressed storage

cells. It is defined by a Segment Table Entry or STE which gives 1its

starting address and length. (Figure III.2)}. The STE also specifies the
access control attributes of a segment, namely the read-permission, write-
permission, execute-permission and message attributes. If the message
attribute is TRUE then the segment is of type message (is a message-segment)
and can be sent from one task to another; the other attributes have their
usual meanings. All of the STEs resident in a host are stored in a single

table called the Master Segment Table.

3.3.2 Software Machines

A Software Machine or SM is a re-entrant program module whose

inputs and outputs are message-segments. Each SM has a single, simple

Manning/Peebles 15

function to perform and is a small, self-contained unit of code.] The
intent is to decompose the processing of a transaction into a set of
small steps, each represented by one SM. Each transaction type is
processed by a subset of the set of SMs installed at a host. (We have
analyzed several examples and have always found it possible to make such
a decomposition.} For a typical transaction, the set of SMs includes a
Terminal Machine to mother terminals, a Login Machine to validate users,
a Command Machine to decode user requests, a set of File Machines to
retriave customer records, and a Disc Machine to mother secondary storage
devices.

Each SM is realized as a set of execute-only segments. This set
of segments is called a code module and is the internal representation of
the Software Machine. The STEs of a code module are chained together
within the Master Segment Table and are called a code panel. SMs are

installed at the factory; they are not written by MININET users.2

3.3.3 Tasks

A task is created from a given Software Machine to process a

particular message-segment or set of message-segments. Thus an abstract

Manning/Peebles 16

definition of a task is a pair (SM, message). When a command is entered
from a terminal it is stored in a message-segment. This message-segment
is passed from one task to another; each processing it in some way that
leads ultimately to the generation of a response message. (This is the
basis of the task graph model described in Section 3.2,) Because SMs
are re-entrant, a single SM can be used to spawn many tasks, by binding
many data modules to it. (Each data module contains one or more
message-segments to be processed by the task, plus additional segments
for working storage; the STEs of these segments are chained together and
called a data panel.) A task is defined within the MININET logical

architecture by a task queue entry, which specifies the message-segment(s)

to be processed by the task and the SM used to process it (them).

The format of a task queue entry or tge is shown in Figure I11.3;
it contains the task identifier which is the name of the node in the task
graph which the task occupies, a pointer to a code panel in the MST, a
pointer to a data panel in the MST, a status field and a virtual program
counter value. As shown in Figure III.4, the code panel contains pointers
to the segments of the Software Machine (code module), and the data panel
contains pointers to the message-segments and scratch segments (data module).
The status field specifies the status of the task - ready to run or blocked -
and the program counter value records the location in virtual memory of
the last instruction executed.

Much of the above material can be viewed as a natural extension

of Brinch Hansen's [14] development of message-switched operating systems;

Manning/Peebles 17

the major novelty lies in the graph model of transaction processing, and
in the use of segments to represent messages. The use of tasks in the
MININET architecture to enforce modularity and protection is also new,
and is described next:

The key to our treatment of modularity and protection is the
decision to provide each task with its own, private virtual space, disjoint
from every other task's virtual space. The sole means of direct inter-task
communication3 is via the passing of message-segments, and this has several
implications.

The traditional approach to modularity and protection assumes
fhat an entire program occupies a single real or virtual space. Separately
compiled subroutines, procedures with restricted scope of variables, and,
most recently, capabilities enforced by special hardware, have been
introduced to provide "compartments" within the single space. The MININET
approach is different. Each MININET task corresponds in size and function
to a procedure or subroutine of the traditional approach and each MININET
task lives in a private virtual space. There is, therefore, complete
separation of information between tasks, as standard memory-mapping hardware
serves to prevent access by a task to any items except those which are in
its own virtual space. By the same token, the need to introduce special

hardware such as capability registers to enforce protection rules has been

avoided.

Manning/Peebles 18

The passing of control from one procedure to another in
conventional syﬁtems has been replaced in MININET by context switching
from one task's virtual space to another's, and the passing of data by
procedure parameters and shared variables has been replaced by the
sending of message-segments between tasks; These . functions are carried
out by a task in each host called the message-switching task or Switch;
it is described in the next subsectjon. The Switch is able to alter the
access control attributes of a segment as it passes from task to task;
this is the mechanism used for capability administration. Finally, the
placing of tasks in separate, disjoint virtual spaces opens the way to
placing them in separate, disjoint real spaces, i.e., microprocessors.
Hence the MININET architecture facilitates the further distribution of
processing functions at a host site, by allowing us to easily split off

groups of tasks and install them in separate microprocessors.

3.4 The Communications Nucleus - The Edges of G(T)

We have modelled transaction processing by the directed graph
G(T), whose nodes are tasks and whose edges are message flows. We have
described the structure of tasks, which are the nodes of G(T), and have
stressed that tasks run in private virtual spaces. Hence the edges of G(T)
are significant, because they represent the only means of direct communications

between tasks. The edges of G(T) are implemented by the communications

nucleus of the MININET architecture, which is described here.

Manning/Peebles 19

message-segments between tasks. It consists of
1) a task in each host called its Switch Task or Switch,
ii) a processor attached to each host called its
Communications Device, and
iii) a packet-transport subnetwork,
as shown in Figure III.5,

The Switch Task or Switch is a unique task in each host which

is created at system startup time and is never destroyed. A1l message
transmissions are carried out by invoking the Switch, which is therefore
of central importance. A task asks the Switch to send one of its message -~

segments to another task by executing the call
SEND(FROM_NAME, TO_ NAME, SM_NAME, MSG_NAME, Sp, R@)

where the values of FROM_NAME and TO_NAME are task identifiers (labels of
nodes in G(T)), SM_NAME is the name of the Software Machine associated with
the receiving task, and MSG_NAME specifies which data segment of the sender
is to be sent. S@ and RP are the Sending and Receiving Options, and they
provide for the creation and destruction of nodes in G(T) as the processing

of a transaction progresses. Namely,

SP ¢ {preserve, destroy}

and specifies that the sending task is to be preserved or destroyed after

the message has been transmitted.

R# e {create, append}

Manning/Peebles 20

and specifies that the receiving task is to be created (using the software
machine specified and labelled with the node-labe] provided); or that the
message is to be abpended to an existing task having the given name.

These four option values, together with the possible responses transmission

successful and transmission bBlocked, are provided to control the creation

and destruction of transaction graph nodes and thereby to allow the tasks
of a transaction graph to synchronize themselves. Thus the communications
nucleus does not synchronize tasks; it takes the view that the writers of
transaction processing code are better able to implement the synchronization
of their code and it provides facilities to allow them to do so.

As Figure III.5 suggests, message transmission between a pair of
tasks 1living in a single host (intra-host transmission) is done by that
host's Switch alone. However, if the tasks 1live in different hosts the
other components of the Communications Nucleus are called into play. The

other components are a packet transport network, which is any facility able

to transport addressed packets from one host site to another, and the
Communications Devices, which are small interface processors interposed
between each host and the packet transport network. The CDs assist the
Switches in the sending and receiving hosts to move message-segments; the
algorithms used to do so are described in Section IV. Suitable packet
transport networks would include the DATAPAC [15], ARPANET [1] or TELENET [16]
networks for long-haul applications, or the Newhall Loop [17] network for net-
works contained in a single building. (The use of the Newhall Loop was

assumed in the modelling study described in the companion paper [12]).

Manning/Peebles ' 21

3.5 “Sunrary

We have presented the MININET logical architecture in terms of
two layers of abstraction; The top layer is a model of transaction
processing based on the transaction graph G(T}. G(T); 1ike any
graph, consists of nodes and edges, and the second layer of abstraction
provided the construction of these from simpler objects. For the nodes
of G(T) - tasks - the simpler objects were segments used to construct
Software Machines and then tasks. For the edges of G(T) - message flows -
the simpler object was the Communications Nucleus.

Although we described the components of the nucleus, we have
not explained the algorithms which they execute and the protocols

governing their interactions. This is the subject of Section IV.

IV. Protocols and Algorithms for the Communications Nucleus

4.1 Introduction

This section explains how the Communications Nuc]éus carries out
the transmission of message-segments between tasks. It is, therefore, a
description of a third layer of abstraction, underlying the edges of G(T).
The logical structure of the nucleus is shown in Figures IV.1 and IV.Z2; the
CDs and packet transport network disappear in Figure IV.2 because they are
not invoked in intra-host transfers. Figures IV.1 and IV.2 are protocol
diagrams as used, for example, by Walden [18] to describe ARPANET protocols;
the circles are functional modules and the Tines represent communications

paths, for which protocols are required. The dashed lines represent

Manning/Peebles 22

"logical paths", which are implemented by passing messages along the
solid Tines or "physical paths;" (For eiample; the Switches of Figure
IV.1 cannot communicate directly; they lie in different hosts and there
is no physical path between them. Instead; they must communicate via
the CDs and the packet transport network.)
This section first discusses an abstraction -- network wide
addressing -- which figures prominently in the nucleus protocols. It then
explains the protocols associated with the lines of Figure IV.1, several of

which are formulated in terms of network-wide addressing.

The notion of a single address space spanning several hosts of
a network was suggested by D. Mills [19] in 1972. By extension of standard
addressing ideas one is led to consider both virtual and real network
addresses; these are examined below.

A naive notion of a network-wide virtual address space would
suggest a single (large!) virtual space containing all active tasks of all
hosts. This would be difficult to implement and its value is hard to see,
so it was quickly discarded. Instead, the following approach was tried and
adopted.

A virtual address issued by one machine and referring to another
raises two questions. First, where is it to be translated - at the sending
or the receiving machine? Secondly, to which virtual space at the receiving
machine does it refer? (Virtual addresses do not belong to machines; they

belong to the virtual space of some task resident in a machine.) These

Manning/Peebles 23

questions suggest the format for network-wide addresses of Figure IV.3.
The machine id designates the machine to which the address refers and the
address field contains the address-within-machine. The two mode bits
represent the four possible addressing modes, which can occur when addresses
generated by machine i are transmitted to machine j. These are as follows:
a) Real Mode:
An address issued by Mi is translated neither at Mi nor Mj.
This provides real network addresses as described below.
b) Virtual Local Mode:
An address issued by Mi is interpreted as a virtual address
in the space of some task of Mi. Hence it is mapped at Mi
but not at Mj.
c) Virtual Remote Mode:
An address issued by Mi is interpreted as belonging to the
virtual space of some task of Mj. This provides a mechanism
for remote access to data objects, and the address is mapped
at Mj but not Mi. This mode is in fact used in the message
transfer protocol described in Section V.
d) Double Virtual Mode:
An address issued by Mi is interpreted as belonging to the
virtual space of some task of Mi. The result of mapping is
regarded as virtual address in some space of Mj. Hence the
address is mapped both at Mi and at Mj. No obvious
application of this mode is known to us; it is included for

completeness.

Manning/Peebies 24

The only virtual addressing mode presently used by the MININET

nucleus is virtual remote. Specifically, a Switch Task is able to issue

virtual remote addresses, which are interpreted as belonging to the

virtual space of the Switch Task at another host. (Put another way, a

Switch Task is able to address objects in the virtual spaces of other

Switch Tasks by issuing network virtual addresses.) This use of virtual

network addresses is in connection with the allgcation request message of

the segment transfer algorithms, and is explained below.

The real mode provides a form of real address space spanning the
hetwork. It can be thought of as an extension of Bell's UNIBUS construct
[20], where the conventional linear address space is extended to span the
data and control registers of all peripheral devices (the UNIBUS I/0 page)
as well as the cells of primary store. Real mode network addressing:takes
this notion one step further and spans the primary stores and I/0 pages of
all machines of the network, in a single space.4 Needless to say, access
to Real Network Address Space (RNAS) by application tasks is forbidden;
real network addresses are used only in the Communications Nucleus and are
used by the CDs to move segments from primary store of a sender to primary
store of a receiver. The details are explained fully in connection with the

transmission protocols, which are described below.

Manning/Peebles 25

4.3 Protocols and Algorithms

This subsection describes the protocols which govern the
communication paths (lines) of Figures IV.1 and IV.2, and the algorithms
which the modules (circlies) execute. The purpose of the whole structure

is to move a message-segment from one task to another.

4.3.1 Task Protocols

As Figure IV.1 suggests, there are two types of protocol
associated with tasks; the task-to-task protocols and the task-to-switch
protocol. Task-to-task protocols are not the business of the nucleus; it
simply provides facilities for inter-task communication (segment transmission,
and a SIGNAL facility as in UNIX [21] to alert the receiver that a message
has arrived), but makes no assumptions as to how these are used by client
tasks. The task-to-switch protocol is built around the SEND call described
in Section III; the Switch provides return codes to the calling task to
indicate "transmission successful" or "transmission blocked because of XXX."
Note that the format of the SEND call is identical for intra-host and inter-
host transmissions; hence the location of tasks is hidden and hence the
basis for making the distribution of data transparent to higher level

software moduies.

4.3.2 Intra-host Switch Algorithms

Although the sending task uses the same call for intra and inter-
host transmission, the Switch's actions are widely different for these two

cases. The intra-host case is simpler and is described first.

Manning/Peebles 26

For efficiency, intra-processor message transmission is always

done by switching a pointer to the message-segment; the physical moving

of segments is

therefore avoided. Also, if the switch owns a dedicated

set of CPU state registers, the overhead of context switching can be

reduced. The four possible modes of intra-host message transmission are

carried 6ut by the following algorithms.

i)

i1)

S0 = destroy, R = create

The Switch scans the task queue (the task queue and

Master Segment Table exist within the Switch's virtual
space)'to locate the TQE of the sending task S. It

changes the code panel pointer of the TQE to point to the
code panel of the receiving SM, sets the virtual program
pointer to the initial entry value for that SM; and frees
the data segments pointed to by the data panel (except

for the message-segment and the initial working storage for
the new task). The task id field is changed to the name of
the new task R.

S# = destroy, R& = append

The Switch scans the task queue to locate R's TQE {error
return if it does not exist) and hence the STE of one of
R's available message-segments (transmission blocked if
there is none). The segment pointer of this STE is changed
to point to the message-segment coming from S. The TQE of

S is then put on a list of free TQEs and the data segments

Manning/Peebles 27

it points to are marked free. ‘Flow c¢ontrol is exercised

by receiving tasks in this manner; a task can dynamically
control the maximum number of messages it wishes to
receive by varying its number of empty message-segments.

iii) S@ = preserve, RZ = create

The Switch moves an unused TQE from the free list to the
task queue and sets its pointers to point te the code panel
of the receiving SM and a new data panel. One STE of
this data panel is pointed to the message-segment; the
corresponding pointer of the sending task's data panel is
erased.

iv) SP = preserve, RF = append
The Switch locates R's TQE and hence its data panel. It
searches the panel for the STE of an empty messagewsegment.
If there are none the Switch returns the "transmission
blocked" code to S; otherwise the STE found is made to
point to the message=segment. The STE of the message =
segment in S is modified by erasing the segment pointer
and setting its Tength field to zero.

In summary, this scheme seeks to minimize the excessive overhead
in message passing which has plagued other message-switched operating
systems, through the exclusive use of pointers to pass messages and
efficient context-switching to the switch task. (The use of pointers to

avoid this overhead has also been suggested by Wecker [22].) It also avoids

Manning/Peebles : 28

congestion problems due to long input queues on tasks, by allowing each

task to exercise control over the number of message-segments passed to it.
Synchronization is performed by the transaction tasks themselves, using

the four possible calls to the switch and appropriate responses to the

returns Transmission Successful or Transmission Blocked.

4.3.3 Inter-host Switch and CD Algorithms

We have just discussed the transmission of message-segments
between two tasks running in the same host of the network. We now discuss
the more complicated case in which the tasks run in different hosts. The
task~to-switch protocol remains the same, in order to make the distribution
of tasks among hosts transparent, but the other algorithms and protocols are
different. Finally, the layering principle is not strictly observed between
the Switch and CD layers of Figure IV.1; this violation was made for the
sake of efficiency and it means that the Switch and CD algorithms have to
be described together.

Briefly, the problem to be solved is the following. Using
information passed to them by the two Switch tasks, the two CDs have to move
a message-segment from the primary store of the sending host to the primary
store of the receiving host, using the packet transport network for
communications between CDs and imposing as l1ittle overhead on the host CPUs
as possible. To do so, the sending CD has to determine the base address and
length of the message-segment in the sending host's primary store, and the
receiving CD has to be told where to put the segment in the receiving host's

primary store, i.e., the location of an empty segment frame of suitable

Manning/Peebles 29

length. Also, the unit of informatijon or packet accepted by the packet
transport network 1is generally’of different maximum length than message~-
segments, so the segment has to be fragmented into packets at the sending
end and re-assembled at the receiving end; A virtual circuit has to be
built by the sending and receiving CDs to ensure end-to-end preservation
of order, and they have to support multiple concurrent segment transfers
to ensure adequate response time.

Rather than give a formal, precise description of the Switch and
CD protocols, we illustrate the major ideas with an example. The example
describes a message-segment transfer or call from task M1.S of sending
host M1, to a task M3.R of receiving host M3. The Switch Tasks and CD
of M1 are referred to as Ml.SWitch and M1.CD, and similarly for M3. The
steps of the call are as follows.

i) MI1.S creates a message segment and invokes M1.Switch with the

command and parameter 1ist
SEND(FROM_NAME, TP NAME, SM NAME, MSG _NAME, SP, Rp).

This is exactly the same command and parameters as are used
in the intra-host case described above; hence the calling
task M1.S need not be explicitly aware of the distribution
of tasks among the hosts of the network.

ii) M1.Switch examines the task graph name TO_NAME and so
determines that the receiving task is in another host;

hence inter-host transmission is required. M1.Switch appends

Manning/Peebles

iii)

30

a pair of Network Address Space Addresses (called the

TO_NASA and the FROM NASA) and the STE of the message
segment to the parameter list, then passes all of these
as parameters to the local CD, M]#CD. Two commands
accompany these parameters. One is for the local CD; it
is the command START;pALL. The other is for the remote
switch; it is passed via the CDs and the packet network
and is the command ALLOCATE.

The NASAs belong to the switch-switch protocol and
are defined as follows. The FROM;NASA is a Real NASA
(mode bits 00) and gives the starting address in Ml's
primary store of the message segment. The TO_NASA is a
Virtual Remote NASA and refers to the virtual space of the
receiving'Switch M3.Switch. If task M3.R does not yet
exist then M3.Switch must create it and then pass it the
message segment; in this case (S@ = CREATE] the TO NASA
points to the code panel of the appropriate Software Machine
in M3.Switch's virtual space. If task M3.R does exist,
(Sp = APPEND) the TO NASA points to the task queue in M3.R's
virtual space.
M1.CD responds to the START CALL command as follows. It

first creates a Call Control Record or CCR in its private

primary store; there is one CCR for each call in progress

and the CCR contains all information required to process the

Manning/Peebles 31

jv)

call. Specifically, the CCR has a‘célf'{d which uniquely

identifies this call, and a call state variable, which is

initially set to START and which indicates how far the call
has progressed; Fina]]y; the parameter 1ist passed from
M1.Switch is held in the CCR.

Secondly, M1.CD creates a packet whose text contains

a copy of the CCR. This allgcation request packet is offered

to the packet network for transmission to M3; it contains

a command field for M3.CD with value BEGIN_CALL.

When the remote CD, M3.CD,receives the allocation request
packet it acknowledges receipt, strips off the packet header
and examines the command field. The command is BEGIN CALL
so M3.CD stores the rest of the text in a new Call Control
Record in its primary store. The switch command (ALLOCATE)
is passed on to M3.Switch; the barameters are the NASAs, the
task graph names, the options S@ and R@ and the STE.

The remote Switch task M3.Switch treats the options R =
CREATE and R@ = APPEND differently, If CREATE, it uses the
TO NASA (which points to the code panel of the SM to be used
to create the receiving task) to create the receiving task,
whose identifier is the value of TO_NAME. Storage is
allocated for the newly-created task's data module, and one

segment of this storage is an empty segment or segment frame

of type message, which will receive the message-segment from

Manning/Peebles 32

M1.S. If APPEND; the Switch searches the task queue for
the task whose name (MB;R in this example) matches the
value of TO_NAME; (The call is blocked if no match is
found.} The Switch then looks for a data segment of M3.R
with attribute message and length zero; if one is found
it is grown to the necessary length. (The call is blocked
if no such STE exists or if insufficient store is available.)
In either case -- CREATE or APPEND -- the Switch builds a
real NASA pointing to the empty message-segment, and passes
it back to M3.CD. M3.CD stores the real NASA in its CCR,
and passes it back to M1.CD which also stores it in its CCR.
vi) The two CDs now have the real primary store addresses of the
message=segment in Mi's primary store and of the segment
frame in M3's store. M1.CD therefore initiates a sequence
of packet transmissions to M3.CD; each contains the command
STORE_BLOCK, the call_id, a sequence number to ensure that
blocks are stored in the segment frame in the correct order,
and a block of the message~segment.

The blocks are fetched by M1.CD from M1's primary
store using DMA operations and are stored by M3.CD in M3's
primary store by the same technique. (Hence no CPU overhead
is incurred after the initial aliocation request is made.)
When the last block has been transmitted, stored and

acknowledged, the CDs interrupt the Switch tasks with the

Manning/Peebles 33

code “"transmission successful," and destroy the Call Control
Records. M1.Switch returns the code "transmission successful"
to task MI.S, M3.Switch schedules the receiving task for

execution, and the call is complete.

V. Implementation

This section describes a prototype implementation of the MININET
logical architecture. It was undertaken to try out the ideas presented
above, to obtain results on performance, and to stimulate further research.
We discuss our choice of hardware, languages and methods and the techniques
used to implement the MININET logical architecture, then we present some

preliminary numeric data on performance.

5.1 Hardware, Languages and Methods

We wished to use available, off-the-shelf hardware in order to
obtain a working prototype as quickly as possible. Almost any computer
could be used in principle to implement the MININET architecture, but there
are several desirable features. A suitable machine should possess segmented
virtual memory (as the segment plays a central role in the architecture),

a flexible bus structure, and good software development tools. It should
also belong to a family of ISP-compatible processors to allow further
distribution of processing at a host site. For all of these reasons, and,
to be honest, because it was available to us, we chose the PDP-11 family of
processors. The PDP-11 Model 45 was chosen for the hosts; and the PDP-11
Model 20 was chosen for the CDs.

Manning/Peebles 34
The Queen's University version of the PL-11 language [23] was

initially chosen as our implementation language, and the CD and Switch

programs were written in QPL-11. However, the advent of the C language

and a suitable C compiler under the UNIX operating system [21] changed

our views. The Switch was rewritten in C and the CD program is being

rewritten in C as well. ATl software - the Switch, CD program and

Software Machines - is thus written in C and is developed and tested under

UNIX, in order to exploit the powerful and pleasing environment which

UNIX provides for software development. Completed and tested load modules

are then shipped to MININET hosts where they are loaded into the MININET

environment. (A test-bed package was written to allow testing of Software

Machines under UNIX.) This approach has been very satisfactory and has

drastically reduced the need for software testing and development tools

under the MININET run-time environment. This is consistent with our principle,

that MININET users are people who generate commercial transactions, not

programmers who write and debug software. The latter class of people use

UNIX as a "software factory."

5.2 Implementation of the MININET Architecture

5.2.1 Packet Transport Networks

The prototype implementation is a two-node network. In this case
switching of packets is not required and the packet-transport network is
unswitched. It is in fact a pair of wires terminated in asynchronous Tine

drivers and running at 19 kbps. (A Newhall Loop is under test in our

Manning/Peebles 35

laboratory and will be substituted for the wire pair when it is operational.)
Finally, the SNAP II access protocol for the DATAPAC [15] public packet
network has been implemented separately, and we hope to use DATAPAC when

it is operational.

5.2.2 Hardware Interfaces

The host/CD interface is a pair of DEC DR-11A word transfer
devices modified to run back-to-back. It is supported by a protection
scheme which checks the access rights of a program to another program's
store area. Transfer rates of 19 kbps have been obtained.

The CD/communications line interfaces are DEC DC-11 asynchronous
drivers supported by standard software. Provision has been made to
substitute Newhall Loop and DATAPAC software as mentioned above. The

host/terminal interfaces are also DC-11s.

5.2.3 Software Constructs

MININET segments are implemented by PDP-11/45 segments. These
have a maximum length of 4K words, grow in 32-word increments and are
managed by the 11/45 Memory Management Unit. The STEs of active segments
are held in the registers of this unit (maximum of 16) and virtual to
physical address translations are done in 90 nsec. Hardware Segmentation
is not obligatory; in fact, the first version of the Switch built segments
in software. Software Machines and tasks are implemented from 11/45
segments in the manner described in Section III.

The Switch task occupies 11/45 Kernel Space, which has a private

set of CPU registers, and it is the sole occupant of this space. The SEND

Manning/Peebles 36

call is implemented by a trap instruction to Kernel mode with parameters
passed on the system stack. In addition to the SEND call which invokes
the Switch, there are a number of auxiliary calls to allow resource
management, both of memory (create, shrink, grow, destroy; and activate
segments) and of the CPU (task s]eep‘and wakeup). These are handled by
auxiliary system tasks which Tive in Supervisor Space (the 11/45 hardware
provides User, Supervisor and Kernel mode spaces) and are implemented by
trap instructions to Supervisor mode.

Network Address Space Addresses or NASAs are implemented purely
in software, as the 11/45 lacks the necessary hardware. In the prototype
implementation, therefore, NASAs are simply formats used to express Switch

and CD protocol messages.

5.2.4 Performance

We have implemented a two-node MININET consisting of a two-node
Communications Nucleus, terminal software and a file system (borrowed from
UNIX). A suite of Software Machines to do simple transaction processing
is under development. The Switch, including all auxiliary system tasks
which do resource management, comprises 12K words of 11/45 code and the
CD program comprises 15K words of 11/20 code. Timings for the SEND system

call are given in Table V.1.

VI. Conclusions and Further Work

6.1 Conclusions
The consistent use of message switching throughout the MININET

architecture -- a packet-switched communications subnetwork interconnecting

Manning/Peebles 37

message-switched host operating systems-- has led to a uniform, elegant
‘architecture for distributed processing. This particular approach has not
been previously discussed to our knowledge [6,7,9,10]. The notions of

real and virtual network address spaces have been developed to provide a
useful format for communication among switch tasks, and considerable
generality for applications not yet foreseen has been provided as well.

The use of multiple small, disjoint virtual spaces provides a powerful
mechanism to enforce the modularity required by the graph model of trans-
action processing, and provides a technique for controlled information
sharing without capability registers. It also has opened the way to
exploitation of microprocessors by enforcing a rather rigid isolation of
tasks. Finally, although the prototype implementation involves a two-node
homogeneous network using PDP-11 processors, the logical architecture

is amenable both to other processor designs and to heterogeneous networking.
The major limitation hinges on locality of reference; the design only works
well if the percentage of transactions which "go remote" is small. However,

many collections of data of practical interest do in fact obey locality of

reference,.

6.2 Further Work

The analytic and simulation modelling studies reported in the
companion paper [12] were done while the MININET prototype was being
implemented. Consequently, comparisons between the analytic and simulation
results were made and reported, but comparisons of both with the "real thing"

were not possible. As soon as the Newhall Loop is fully operational we

Manning/Peebles 38

intend to make such comparisons.
Turning to hardware issues, we have shown that the MININET
Togical architecture can be implemented with good efficiency on standard
PDP-11 Model 20 and 45 processors. However, a number of steps toward a
better hardware architecture for MININET are now clear. These include:
1) A much larger number of segmentation registers, to permit
a Targer number of simultaneously active segments.
2) Use of auxiliary small processors such as the DEC LSI-T1
to run certain tasks, notably the Switch and the terminal
manager.
3) Introduction of a separate processor to control secondary
store. This processor or Data Host would contain a copy
of the Switch, and all of the file tasks; file system queries
would be presented to it as messages and records would be
returned. Fraser's freestanding file system [10] and a proposal
by the authors [24] provide models to follow.
4) Hardware implementation of NASAs. In the present implementation,
NASAs are Tittle more than a useful abstraction or format for
Switch and CD protocol messages. The possibility of embedding
them into the hardware should be studied.

Finally, there are several areas for future software work, of

which the largest concerns distributed data management. The present
architecture provides a distributed file system which exploits locality of

reference and allows for simple report generation across the file system.

Manning/Peebles 39

In no sense does it provide data management facilities as contemplated in
the relational or DBTG proposals; however, it is a plausible vehicle on
which to build such facilities for data bases ekhibiting locality of
reference. We therefore want to answer two questions: First, what subset
of the relational or DBTG facilities is really needed by commercial users?
Secondly, what algorithms can be devised to provide the subset in the
MININET architecture? Other areas for future software research include
implementation of the MININET logical architecture in a network of
heterogeneous hosts of the ARPANET or CYCLADES class, and comparisons of
the efficiency of the MININET protocols for data sharing with those proposed
or implemented for ARPANET or CYCLADES.

6.3 Acknowledgements

We want to acknowledge the contributions of Jon Livesey, Kelvin
Delbarre, Frances DuBois and David Lamb, who implemented the MININET
prototype. Thanks are also due to Eileen Gilchrist who typed this manuscript,
and to Ken Thompson and Dennis Ritchie who provided such a superb environment
for software development. Support of the National Research Council of Canada

is gratefully acknowledged.

Manning/Peebles 40

FIGURE CAPTIONS

Figure III.1 A Transaction Graph

Figure III.2 Segment Table Entry

Figure IIIL.3 A Task Queue Entry

Figure II1I.4 Relationships Among Task Queue and Master Segment
Table

Figure IIL.5 MININET Communications Nucleus

Figure IV.1 Expansion of a Node-pair of G(T); Inter-host
Transmiss ion

Figure 1IV.2 Expansion of a Node-pair of G(T); Intra-host
Transmission

Figure 1IV.3 Format for Network-wide Addresses

TABLE _CAPTIONS

Table V.1 Timings for the SEND System Call

Manning/Peebles

10.

11.

12.

13.

R1
'REFERENCES

Roberts, L.G., Wessler, B.D., "Computer Network Development to .
Achieve Resource Sharing," AFIPS, SJCC Vol. 36, May 1970, pp. 543-549.

Roberts, L.G., "Network Rationale, A 5-Year Reevaluation," COMPCON 73,
San Francisco, February 1973, pp. 3-5. .

Pouzin, L., "Presentation and Major Design Aspects of the Cyclades
Computer Network," DATACOM 73, ACM/IEEE 3rd Data Communications
Symposium, St. Petersburg, Florida, November 1973, pp. 80-87.

Barber, D.L.A., "The Furopean Computer Network Project (COST),"
ICCC 72, Washington, D.C., October 1972, pp. 192-198.

Brunel, L,, "A telecommunications Network for a Multi-campus
University," ONLINE 72, Conference Proceedings, Vol. 2, September
1972, pp. 45-60.

Howell, R.M., "The Integrated Computer Network System," Proc. ICCC 72,
October 1972, pp. 214-219.

Farber, D.J., Larson, K.C., "The System Architecture of the Distributed
Computer System - The Communication System," Symposium on Computer-
Communications Networks and Teletraffic, Polytechnic Institute of
Brooklyn, New York, April 1972, pp. 21-27.

Farber, D.J., Feldman, J., Heinrich, F.R., Hopwood, M.D., Larson, K.C.,
Loomis, D.C., Rowe, L.A., "The Distributed Computing System," COMPCON
73, San Francisco, February 1973, pp. 31-34.

Aiso, H., Matsushita, Y., et al., "A Minicomputer Complex - KOCOS,"
IEEE/ACM Fourth Data Communications Symposium, Quebec City, October
1975, pp. 5-7 to 5-12.

Fraser, A.G., "A Virtual Channel Network," DATAMATION, February 1975,
pp. 51-56.

Fabry, R.S., "The Case for Capability Based Computers," Proc. Fourth

Symposium on Operating System Principles, Yorktown, New York, October
1973.

Manning, Eric, Peebles, R.W. and Labetoulle, J., "A Homogeneous
Network for Data Sharing: Modelling and Analysis," submitted to
Computer Networks.

Scantlebury, R.A., Wilkinson, P.T., "The Design of A Switching System
to Allow Remote Access to Computer Services by Other Computers and
Terminal Devices," ACM/IEEE Second Symposium on Problems in the
Optimization of Data Communications Systems, October 1971, pp. 160-167.

Manning/Peebles K R2

14. Brinch Hansen, Per, 0perat1ng System Pr1nc1p1es, Chapter 8, "A Case
Study: RC-4000," Prentice-Hall, 1973.

15. Trans-Canada Telephone. System, "DATAPAC - Standard Network Access
Protocol Specification,” document published by TCTS, Place Bell
Canada, Ottawa, March 1976.

16. Mathison, S;L:‘ "Telenet Inaugurates Service," Computer Communication
Review, ACM, Vol. 5, Nr. 4, October 1975, pp. 24-29.

17. Farmer, W. D. and Newha11 E. E "An Exper1menta1 Distributed
Switching System to Hand]e Bursty Computer Traffic," Proc. ACM Conf.,
Pine Mountain, Georgia, October 1969.

18. Walden, David C., "Host-to-Host Protocols," Network Systems and
Software, Infotech Report 24, Infotech Information Ltd., Maidenhead,
Berks., U.K., pp. 287-316.

19. Mills, D.L., "Communication Software," Proc. IEEE, Vol. 60, Nr. 11,
November 1972, pp. 1333-1341.

20. Bell, C.G. and A. Newell, “Computer Structures: Readings and Examples,"
McGraw-Hi11, 1971, 668 pages.

21. Ritchie, D.M. and Thompson, K., "The UNIX Timesharing System," CACM,
Vol. 17, Nr. 7, July 1974, pp. 365-375.

22. Wecker, S., "A Building Block Approach to Multi-Function Multiple
Processor Operating Systems," Proc. AIAA Computer Networks and
Systems Conference, Amer. Inst. Astronautes and Aeronautics,
Huntsvilie, Alabama, U.S.A., April 1973.

23. Jardine, D.A., "QPL-11 Language Manual and Programmer's Guide," research
report, Dept. Computing and Information Science, Queen's University,
Kingston, Ontario, Canada, March 1974.

24. Peebles, R.W. and Manning, E.G., "A Computer Architecture for Large
(Distributed) Data Bases," Proc. Conf. on Very Large Data Bases, ACM,
Framingham, Mass., September 1975.

Manning/Peebles F1

terminal
response

command
login task interpreter

root record
' updater

node

file
handler

disc
handler

Figure III.1 - A Transaction Graph

Manning/Peebles F2
l
Access Ptr to Segment Ptr to Next Ptr to Previous
Control Segment Length STE of Module STE of Module
/ l

Figure III.2 - Segment Table Entry

!

Manning/Peebles F3
]
Task Message | Priority | Ready/ Ptr to Ptr to PC Next | Previous
ldentifier | 1D Blocked | Code Panel | Data Panel | Value | TQE | TQE
/ N\ {

/

N

Figure 1I1.3 - A Task Queue Entry

Manning/Peebles F4

(code STEs)
° task queue code
panel ﬁ
TQE o] |

(data STE) .

data
& panel

(data STE) |

core area
for data
segment 1

Master Segment Table

core area
for data
segment 2

Figure 11I.4 - Relationships Among Task Queue and
Master Segment Table

F5

Manning/Peebles

Packet
Transport

Network

Figure II11.5- MININET Communications Nucleus

F6

Manning/Peebles

node-pair of G(T) < task | J———————-—=-—-—=—~--—-~ task

L

i — o —— . g—— — b ——

Switch Switch

communications

nucleus ﬁ

L packet transport network

Figure IV.1 - Expansion of a Node-pair of G(T);
Inter-host Transmission

Manning/Peeb]es F7

node-pair of G(T) {task | T task

(part of the)

communications Sw1tch

nucleus

Figure IV.2 - Expansion of a Node-pair of G(T);
Intra-host Transmission

Manning/Peebles
machine mode address
id bits

Figure IV.3 - Format for Network-wide Addresses

F8

Manning/Peebles

n

Options
Transmission Time in
SEND RECEIVE Milliseconds

preserve append)
des troy append 3
preserve create 6
destroy create 8

(a) Intra-host segment transmission

*
Segment length

.. . . +
Transmission Time in msec

32 words

250

(b)

Inter-host segment transmission

*
transmission time is approximately a linear function of segment length

“for a Tine speed of 19kb/sec. measured with only one call in progress

Table V.1 - Timings for the SEND System Call

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

