An Automatic One-Way Dissection Algorithm
for Irregular Finite Element Problems*

by
Alan Georget
Research Report CS-77-06

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

April 1977

*To appear in the Proceedings of the 1977 Dundee Biennial Conference on
Numerical Analysis. Research supported in part by Canadian National
Research Council grant A8111.

Abstract

An algorithm for automatically finding a one-way dissection
ordering for irregular finite element problems is described. Numerical

experiments suggest that the amount of fill suffered by correspondingly

5/4), and that the amount of

7/4

ordered matrices, when factored, is O(N
arithmetic required to perform the factorization is O (N). The
corresponding estimates for nested dissection orderings are O(N logN) and
0(N3/2) respectively, so the one-way scheme is asymptotically inferior.
However, experiments suggest that unless N is very large indeed, the one-

way dissection orderings require considerably less storage than the nested

dissection orderings, although the arithmetic requirements are larger.

.81 Introduction

In this paper we consider the problem of directly solving the
N by N system of linear equations
(1.1) Ax = b,
where A is a sparse N by N positive definite matrix arising in the
application of finite element methods [15, 17]. The method we use is
standard; the matrix A is factored in the product LLT, where L is lower
triangular,and then the triangular systems Ly=b and LTx=y are solved to
obtain x.

When the matrix A is factored it usually suffers fill; that is,
making the usual assumption that exact cancellation does not occur, 1+L"
is usually fuller than A. Since PAPT is positive definite for any N by N
permutdtion matrix P, Cholesky's method can be used to solve the equivalent
system
(1.2) (PAP") (Px) = Pb.

It is well known that a judicious choice of P can often drastically reduce
fill and/or arithmetic requirements.

Recently, the author has described two efficient orderings for the
system of N=n2 equations arising in connection with the use of finite
difference or finite element methods on an n by n grid [6]. These schemes,
called nested dissection and one-way dissection, are efficient in the sense

that they reduce the arithmetic required to factor A to 0(N3/2) and 0(N7/4

)
respectively, compared to O(Nz) if the usual row by row numbering of the
grid is used. In addition, the amount of storage required if one uses these

dissection strategies is O(N log N) and 0(N5/4) 3/2). In

, compared to O(N
[6], it was demonstrated that by careful selection of data structures, these

orderings could be utilized in linear equation solvers so that their

execution times and storage requirements were as the operation and fill
counts suggest.

‘However, although simple model n by n grid problems are easy to
analyze and interesting from a theoretical point of view, a much more
desirable practical requirement is to find similarly efficient orderings for
less regular problems. In [8], George and Liu have provided an automatic
algorithm for producing nested dissection orderings for irregular finite
element probiems. The objective of this paper is to provide an automatic
scheme for finding orderings analogous to the one-way dissection orderings.
As we shall see later, the storage requirements for these orderings appear
to grow as N5/4, as we expect in view of the results for the n by n grid
problem. On the surface, it appears that such orderings are inferior to
nested dissection orderings, whose storage requirements only grow as
O(N logN). However, the estimates are asymptotic, and unless N is very
large indeed, the one-way dissection orderings appear to require consider-
ably less storage than the nested dissection orderings. (This is also the
‘'situation for the n by n grid problem.) Imn exchange,for lower storage
requirements, we normally perform more arithmmtic than for the nested
dissection orderings. Thus, the autematic determination of such one-way
érderings for irregular problems is important when storage is limited.

In this paper a heuristic algorithm is described for finding one-way

dissection orderings for sparse matrix problems, and some numerical experi-

ments describing its application to some finite element problems are provided.

The class of problems for which this one-way dissection algorithm
is primarily intended are those arising in connection with the application
of finite difference and finite element methods. For two dimensional

problems, they can be characterized as follows. Let M be a planar mesh

3.

consisting of triangles and/or quadrilaterals called elements, as shown in
Figure 1.1, where adjacent elements have a common side or vertex. The mesh
has nodes at each vertex, and there may also be nodes lying on element edges
and faces; associated with each node is one or more variables X and for

some labelling of these N variables we define a finite element gystem

Ax = b associated with M as one for which A is symmetric and positive
definite, and for which Aij*O = % and Xj are associated with the same node,

or nodes belonging to the same element.

Figure 1.1 A 20 node finite element mesh with 10 elements.

An outline of the paper is as follows. In section 2 a simple
model grid problem is agalyzed to provide the motivation for the ordering
algorithm. Section 3 contains a description of the actual ordering algor-
ithm, and section 4 contains some numerical experiments with the algorithm,
applied to problems typical of those arising in finite element applications.

Finally, section 5 contains some concluding remarks.

§2 Motivationt

Consider an m by % grid or mesh as shown in Figure 2.1, having
N=mf nodes. The corresponding matrix problem we consider has the property‘
that for any numbering of the nodes from 1 to N, the coefficient matrix A
satisfies Aij#O => node i and node j belong to the same small square.
This corresponds to the familiar 9 point difference applied to a regular

discretization of a rectangular domain.

- 1
' .
EEESSEEEEn

Figure 2.1 An m by 2 grid with m=6 and &=11.

Let o be én integer satisfying 1 < o < %, and choose o vertical
grid lines (separators) which dissect the grid into o+l independent blocks,
as depicted in Figure 2.2, where 0~=3. The o+l independent blocks are
numbered row by row, followed by the o separators, as indicated in
Figure 2.2, The matrix struéture that this ordering induces is shown in

Figure 2.3.

+This development closely parallels that in George [6,54] except that here
we treat the case for m¥l. This is important as it provides a mechanism

for choosing o when the mesh is irregular.

11 21254 23 24 ¢=60 .35- 36 166 47 48
R o 53 Lﬂh__léz 59 33 134 |lles '45' 46

o $ Alls2 b9 o [LI58 31 132 |ll64 143~ J44

s st gz lis | lls7 Lo 3o ,
3 o Allso D15 e [}ls6 27 28 JlJ62 39 Jao
E‘ 5 " iilag .13"; Iig e 55 125 26 éél 3738

separators

Figure 2.2 One-way dissection ordering of the grid of Figure 2.1, with
the number of separators o equal to 3.

The keys to the efficient use of this ordering can be illustrated
by considering the block 2 by 2 symmetric positive definite matrix

(2.1)
&1 A

g
I

.
Ao Ay

whose (block) Cholesky factorization is

(2.2) L, o

L= >

LAV

where
(2.3)

A = L11L11T ’
(2.4)

Wip = L11_1 Ay s
and
(2.5)

$X
¥
Y ¥
i
YW
F 'S %
e
W
WY
Ex\
A% %
*
%%
BuR
% x%
WYX\
€%
Rxy SYMMETRIC
véxx
=
%y X
A0
%YLK
*
RS 3
RSN
€%
2 ¢
w X%
e X
« %X
W
AR
W E
FRS
N
X
% %%
xgix
b
)S.xx
A 4
X ¥
%% X
XX
£ %%
X £
LS X X
X x % X X %
X %X A ¥ % A
S TR ET
%
XX x X
A% X X
%X % X X X Y
X% % X X X
X % X X % X
X X X% X %X X
X X ¥ XX X X *
¥ X Y N X % X%
N, ¥ X N X LR'$
¥ X % X&y& tstuﬂ‘lx%‘
EELEERY
X : § b4 § I Y ¢4
Figure 2.3 Matrix structure induced by the ordering of Figure 2.2.

The dots indicate the fill suffered by the diagonal block
corresponding to the separators.

As usual, it should be understood that inverses- are not actually computed;
instead, the appropriate triangular systems are solved.

The first observation is that K22 can be computed either as

T

-7 -1 T
Apm gy Lgy) gy T A =4y, W, Wy, or as
-1

T -7
A22 - A12 (L11 (Lll Alz))’ In general, for sparse matrices these

factorizations require different amounts of computation. A particularly
important point is that the second form of the computation does not require
storage for le, since the computation can be garried out one column at a
time. Hence only one auxiliary vector is required. On the other hand, the
first computation appears to require‘the storage of the entire matrix

W See [5] for details.

12°
The second important observation is that we may not wish to retain

le. As observed by Bunch and Rose [3], it may require fewer arithmetic

operations to operate only implicitly with W by using (2.4). For

12°

5 = lexz we can calculate g = Alzx2

the triapgular system L

example, to compute X , and then solve

11§2 = 2%y If there are fewer nonzeros in total in
L11 and Al2 than in le, this mode of calculating will save arithmetic

operations, and will also save primary storage, since Al2 rather than Wiz is

stored. Here primary storage is that actually used to store numerical

values, rather than storage for pointers etc, which we will call overhead

storage.

Returning now to our one-way dissection ordering, it turns out to
be crucial to use both observations, where the leading o+l blocks corres-—

ponding to the "independent blocks" are viewed as A 1’ and the diagonal

1

block corresponding to the o separators is A Thus, the only part of L

22°

that we store will be the lower triangles of the 20+1 diagonal blocks, along

with the o-1 # by m "£i11" blocks directly below the last o diagonal blocks.

The computation of EZZ is performed in the asymmetric.way, thus avoiding

storing at any time.

Wiz
We now do a rough analysis of storage requirements in order to
determine what value o should have for general m and 2. In the actual
implhementation the diagonal blocks All and A22 are treated as one matrix
whose variation in bandwidth is exploited by a storage scheme similar to
that proposed by Jennings [11]. The matrix A12 is very sparse, so only its

nonzeros are stored. The important point here is that the total number of

nonzeros in L and A ., is given approximately by

11° Lo 12

2.6) - '
p) = BEAL o BED o otyn + om0

Differentiating with respect to @, we find p is approximately minimized for

(2.7) &= 2/3@1)YE -1,

yielding

2.8) p@) = /372 mt {2%n%} + 0(mR).

Of course in practice & must be chosen to be an integer, and the dissection
in general will_not be exactly uniform unless (&~0) / (o+l) is also an
integer. However, these minor observations turn out to be irrelevant from
a practical viewpoint since |p'(®)] is small near Q.

Note that if we used an ordinary column-by-column numbering scheme
we would obtain a band matrix having bandwidth B = m+2. (We define the
bandwidth B of a matrix M to be max {Ii-jllMif#O},) Using a standard band
storage scheme [16], our storage requirements would be %mzﬁ + 0(mR).
Comparing with (2.8), we can conclude that our one-way dissection scheme
will be preferable to the standard band scheme provided that m > v6%. When

m is proportional to £,(2.8) implies that the one-way dissection scheme

9.

/ /

requires O(N5 4) storage, compared to O(N3 2) for the standard band scheme.

It is a straightforward exercise to show that the operation count ‘for the

/

factorization is OCN7 4) compared to O(Nz) for the standard band scheme.
This simple analysis provides us with some insight into the general

nature of a one-way dissection ordering for irregular mesh problems such as

the one depicted in Figure 1.1. We would like to find a set && separators,

hopefully having relatively few nodes, which disconnect the mesh into

pieces which can be numbered so that the correspoﬁding matrices have a

small bandwidth or envelope. 1In the next section we rephrase the ordering

problem in graph theory terms and provide a heuristic algorithm for

finding such separators and orderings.

10.

§3 The Ordering Algorithm

3.1 Graph Theory Terminology

It is convenient to describe the ordering algorithm in terms of
labelling an undirected graph, so we begin by introducing soﬁe standard
graph theory notions. An undirected graph G = (X,E) is a finite non-empty
set X of nodes or vertices together with a set E of edges, which are
ordered pairs of distinct nodes of X. A graph G' = (X',E') is a subgraph

of G if X' ¢ X and E' < E. For Y < X, the section graph G(Y) is the subgraph

(Y,E(Y)), where

E(Y) ='{{X,Y} ceE|xe¥Y, ye Y}

Two nodes x and v are adjacent if {x,y} € E. For Y < X, the
adjacent set of Y, denoted by Adj(Y), is

Adj(Y) = {x e X\Y | {x,y} € E for some y ¢ Y}.
For distinct nodes x and y in G, a path from x to y of length k is an
ordered set of distinct nodes (vl,vz,...,vk+l), where x=vl and Y=Vk+l’ such
that Vi€ Adj(vi), i=1,2,...,k. A graph G is connected if for every-pair of

distinct nodes x and y, there is at least one path from x to y. If G is

disconnected, it consists of two or more connected components.
The set Y < X is a separator of the connected graph G if the

section graph G (X\Y) is disconnected; Y is a minimal separator if no

proper subset of Y is a separator of G.
A partitioning P of the graph G is a subset of the power set of X:

LY 3,

P= {Yl,Yz,. >

P

where Y, = X and Y; 0¥, = ¢ for i ¥ j. An ordering (labelling,
i=1

numbering) of G is a bijective mapping a: {1,2,3,...,N} > X, where N=IX

11.

An important type of graph partitioning, which plays an integral
role in our one-way dissection algorithm, is the class of level structures

[1]. A level structure of a connected graph G = (X,E) is a partitioning

.‘L= {Lo,Ll, v ,LR}

of the node set X such that Adj(Lo) c Ll’ Adj(Lz) S LQ—l’ and
. < i .
Adg(Li) < Li_llJ Li+1 for 0 < i < &. A rooted level structure, rooted

at x € X, is the level structure

i-(x) = {LO(X)a L1(X) IRRRES LQ,(X)(X)},
‘ i-1
where Lo(x) = {x} and Li(x) = Adjl U .L,). The number 2(x) is sometimes
. j=0
called the eccentricity of x. The diameter of G is then defined by

8(6) = max {2(x) | x € XJ.

A peripheral node x is one such that L(x) =8G).

The effectiveness of the ordering algorithm described later in
this section hinges on finding a relatively "long, narrow" level structure.
That is, one having relatively many levels, and relatively few nodes in
each level. It is intuitifely clear that a level structure rooted at a
peripheral node would be a good candidate.

Unfortunately, no efficient algorithm is known to determine such
nodes for a general graph. Recently Gibbs et. al. [10] have devised an
algorithm for finding nodes of high eccentricity. A modification of‘this
algorithm, described in [7], is used in the algorithm described in this
paper. The root used for the level structure will be called a pseudo-
peripheral node.

We now establish a comnection between graphs and matrices. Let A
be an N by N symmetric matrix. The labelled undirected graph of A,
denoted by GA = (XA,EA), is one for which XA is labelled from 1 to N and

{xi,xj} € EA if and omly if Aij # 0, i > j. The unlabelled graph of A is

12.

simply GA with its labels removed. For any N by N permutation matrix P, the
unlabelled graphs of A and PAPT are the same, but the associated labellings

differ. Finding a good ordering for A can thus be viewed as finding a good

labelling for its graph.

3.2 Description of the Algorithm

We begin with a step-by-step description of the algorithm, followed
by some explanatory remarks for the more important steps.
1. Find a pseudo-peripheral node x, using the algorithm described in [7],
and then generate the level structurei(x) = {Ll’LZ""’LR’,} rooted at
X. |
2. (Estimate &) Calculate m = N/ (2+1), and if m < (62)%, go to step 5.
Otherwise set 4 = 52,(2/3(111--1-1))1/2 - 1 and go to step 3.
3. Set § = &/(@+1). If § = 2, go to step 6. Otherwise go to step 4.
4. (Correct estimate for () Decrement & by 1, and if & > 1, go to step 3.
Otherwise go to step 5.

5. Set k=1, Y. = X, o=0, and then go to step 8.

1
6. (Find separators) Set o = laJ.
For 1 = 1,2,...,0 do the following:
6.1 Set j = L[i 6 - 11.
6.2 Choose Ti E_Lj to be a minimal separator of G.
7. Let Yi’ui=l’2""’k be the connected components of the section graph

GEX \ U Tj), and

= Tj’ i=1,2,...,0.
j=1

Yie+s

8. Number each Yi’ i=1,2,...,k consecutively using the reverse Cuthill-

McKee (RCM) algorithm [12], and if o > 0, number the Y

K+ 3J=1,2,...,0

consecutively in any order.
Step 1 of the algorithm produces the (hopefully) long, narrow level

structure referrédrto incsectdon 2, : This is desitable~because.the saparators

13.

are selected as subsets of some of the levels Li'

The calculation of the numbers m and O computed in step 2 is
motivated directly by the crude analysis of the mby & grid in sectiom 2.
Since m is the average number of nodes per level, it serves as a measure
of the width of the level structure.

Steps 4 and 5 are normally not executed; they are designed to
handle anomalous situations where m << ;. ot when N is simply too small to
make the application of the dissection algorithm sensible. 1In these cases,
the entire graph is processed as one block (0=0). That is, an ordinary
band type ordering is produced for the graph.

Step 6 performs the actual selection of the separators, and is done
essentially as though the graph corresponded to an m by & -grid as studied

of £ is a separator of G, although

in section 2. As noted earlier, each Li

not necessarily minimal. In step 6, O .approximately equally spaced levels
are chosen fromJ:,and subsets of these levels (the Ti) which are minimal
separators are then found. These nodes together correspond to the A22 of
section 2.

Finally, in step 8 the k > o+l independent blocks ereated by
removing the separators from the graph are numbered, using the well known
reverse Cuthill-McKee algorithm [12].

Although the choice of o and the method of selection of the separa-
tors seems remarkably crude, we have found that attempts at more
sophiétication do not really yield significant benefits (except for some
unrealistic, contrived examples). Just as in the regular rectangudar grid
case, the storage requirement, as a function of ‘g, is very flat near its
minimum. Even relatively large perturbations in the wvalue of §,and in the

selection of the separators, produced rather small changes in storage

requirements.

14.

84 Some Implementation Details and Numerical Experiments

The linear equations solver used essentially regards the matrix as
2 by 2 partitioned, with the independent blocks formed by the removal of the
separators forming the first partition, and the equations corresponding to
the separators themselves comprising the second partition. Using the

notation of (2.1) - (2.5), the linear equations solver stores L.. and L2

11 2
using a scheme similar to that proposed by Jennings [11], which exploits the
variation in bandwidth. The matrix Wiz is of course not stored; instead,

the nonzeros of A12 are stored column by column in consecutive locations in
a single one dimensional array, with a parallel array containing their row
subscripts, and é pointer array indicating the position of the beginning of
each column.

In order to gain some insight into the asymptotic behaviour of the
ordering algorithm and the quality of the ordering produced, the ordering
algorithm/solver combination was applied to problems derived from the graded
L mesh shown in Figure 4.1, subdivided by increasing subdivision factors s,
vielding SZ as many triangles as in the original mesh. The numerical results
are éontained in Tables 4.1 and 4.2.

In Fable 4.1, the column 'storage' includes all array storage used
by the program, including storage for pointers, auxiliary storage, space for
the right hand side b, etc.. Note that the execution time of the ordering
algorithm appears to grow linearly with N. The execution time associated
with finding where the £ill occurs, so that space for Lll and L22 can be
allocated also appears to require time proportional to N. A description of
this algorithm would take us too far afield; details can be found in [o].

5/4

Finally, note that the storage requirements grow as N , as the results of

section 2 suggest.

15.

Plgure 4.1 Graded L mesh.

16.

In Tables 4.1 and 4.2 we distinguish between (1) execution times
due to the determination of the ordering and the allocation of storage,
(2) the time required to compute the factorization, and (3) the time required
to compute x, given the factorization. In some situatiéns many different
problems having the same zero—nonzero structure must be solved, so it makes
sense to ignore the cost of finding the ordering and setting up the data
structures when evaluating the method. In other cases, many systems having
the same coefficient matrix but different right hand sides must be solved.
In this situation it may be sensible to evaluate the method on the basis of
its solution time alone, and ignore oxdering, allocation, and factoprization
times. All execution times reported are in seconds on an IBM 360/75. The
progeams are written in Fortran, and Were compiled using the optimizing
‘version of the compiler (OPT = 2).

The'execution time of the factorization appears to be proportional

5/4

7/4, and the solution time appears to grow as N . These empirical

to N
results are not surprising in view of the results of section 2.

In order to demonstrate that such one-~way di&ssection orderings do
have a place in the "sophistication spectrum" of sparse matrix ordering
schemes, we include in Tables4.3 and 4.4 some further results on the graded
L problem. The heading RCM refers to the results obtained using the
reverse Cuthill-McKee ordering algorithm coupled with a standard band-
oriented solver which exploits variation in the bandwidth. We regard this
as the standard scheme. The heading NESTED represents the other end of the
spectrum, and refers to results obtained by using a slightly revised version
of the automatic nested dissection algorithm and solver described in [8].

The results of Table 4.3 are essentially self explanatory.

Although asymptotically the nested dissection scheme requires less storage,

Table 4. 1

Performance statistics of the ordering algorithm, storage
allocator, and storage requirements, for the graded - L

problem and s = 4(1)12

17.

Order | Order Time || Allocation | Alloc. Time || Storage | Storage
5 N Time) N Time N N5/4
4 265 .18 6.79(-4) .07 2.64(=4) 3486 3.26
5 406 .27 6.65(-4) .11 2.71(-4) 5675 3.11
6 577 .38 6.58(-4) .16 2.77(-4) 8581 3.03
7 778 .52 6.68(-4) .21 2.69(~4) 12346 3.00
8 | 1009 .67 6.64(=4) .27 2.67(-4) 16667 2.93
9 | 1270 .84 6.61(-4) .35 2.76(-4) 21847 2.88
10 | 1561 1.03 6.60(=4) .43 2.75(=4) 27860 2.83
11 § 1882 1.24 6.58(~4) .52 2.76 (-4) 34915 2.81
12 } 2233 1.47 6.58(-4) .62 2,77 (=4) 42636 2.77
Table 4.2 Performance statistics for the linear equatioﬁs solver for the
graded L problem, with s = 4(1)12.
'8 N Fachotization | Fact. Time Solution | Soln. Time
Time N7/4 Time -N574
4 265 .85 4.88(-5) .09 8.42(-5)
5 406 1.64 4.47(=5) 14 7.68¢-5)
6 577 2.89 4.25(=5) .21 7.43(=5)
7 778 4.66 4.07(=5) .29 7.06(=5)
8 | 1009 7.11 3.94(-5) .40 7.03(-5)
9 | 1270 10.07 3.73(-5) .51 6.73(=5)
10 | 1561 14.50 3.74(-5) .65 6.62(-5)
11 | 1882 20.10 3.72(=5) .80 6.45(-5)
12 § 2233 26.69 3.68(-5) .98 6.38(-5)

18.

- Table 4.3 Ordering times for the RCM, one-way dissection and nested
dissection algoritbms, and the storage requirements for their
respective solvers, for the graded-L problem.

ORDERING TIME TOTAL STORAGE

s N
RCM ONE-WAY | NESTED RCM ONE-WAY . { NESTED
4 265 .12 .18 .36 4279 3486 5433
5 406 .19 .27 .61 7764 5675 91350
6 577 .27 .38 .09 12748 8581 .-38845
7 778 .36 .52 1.27 19497 12346 19863
8 | 1009 .49 .67 1.72 28277 16667 26691
9 | 1270 .60 . 84 2.25 39354 21847 35252
10 | 1561 .73 1.03 2.89 52994 27860 44957
11 | 1882 .88 1.24 3.54 69463 34915 55924
12 | 2233 1.04 1.47 4.35 89027 42638 68244

19.

‘woTqoid T-papeald
2yl uo s3uraspio JULISIIIP 991yl oyl 1o ‘saaaTos uorienba
ABOUTT 3yl J10J SOWIT] UOTINOSXD pue s3junod uorleiady #°'y 9Tqel

Awamwv A¢OHWV A¢0Hxv Amoaxv Amoaxv AmOHxv

0£'1 | 86° - TE9°0T | €%/°6 - ZE°€T | 25°92 - #80°0T | 029°61 - ¢gze | Tt

LO°T | 08° TO°T | 099°8§ L91°1 6ET €T [%°0T | Tz 0T 0%°0T | $62°8 T22°v1 06%°CT 88T | IT

[8° G9* Ll £68°9 189 €16°6 L0°8 L1°%T 8¢ L £TIT'9 969°0T €69°8 T9ST | 0T

89" 0s* 8G"* 09€°¢ 9zZL*Y 79¢° L G0°9 g€ 0T 0T°S VAR 6GT L £€8°¢ 04T | 6

rAsN 6€° I%° 020'Y T19°€ 162°S cey 8¢ L 8€°¢ €00°€ §66°% 652" € 600T | 8

g¢ " 8C" 62° €26°C 9%G°¢ 18G°¢€ 60°€ G6°Y v1°C 886°T 750" ¢ 817°¢ 811 L

8T* 0z* 6T 66" T 6%7.°T 8TE"C G0°? 66'C 1T°T T02°T 808°T 887" T LLS 9

81" €T* AN 887" 1T 6ST°T 68€° T 87T T.°T oL® 689" £€G0°T 799" 90%. 9

TT" 80° 90" 8€L" 169" 6%7." 69° 06° 2% 0¢g” VAN L62" 69z i
qQIISEN | AVM-ENO | WO¥ QHISEN | AVM-ENO | WDO¥ QHISHEN| A¥YM-ENO | WDO¥ qILSAN | AVM-ENO | WDH N s

ARIT SNOIIVIHJO0 AWIL SNOIIVIHEJO
NOIINTOS NOILVZI¥0LOVA

19.

‘weTqoad T-papeald
2yl uo s3UTISPIO JULISIITP @21yl 9yl JoJ ‘sioaTos uofienba
IB9UTT 92Uyl JI0J SoWIJ UOTINDOSX® PuUB sS3UNod uworjeasdg #H'y °TqeL

A«amwv A¢OHWV A¢OHNV AmOHxv AmOHxV Amoﬁxv

0€*'T | 86° - TE9°0T | €%.°6 o - CEET | 2692 - #80°0T | 0Z9°61 - c€ece | Tt

L0°T | 08" TO'T | 099°8 1911 6ET ET L%°0T | TZ'0C 0%°0T | S6Z°8 TZZ %1 06%°¢1 7Z88T | TT

/8" G9* L £68°9 182°9 €L6°6 L0°8 LL*HT 8€* L g§TT'9 969°0T G69°8 T9ST | OT

89" 0¢* 8G* 09€°¢G 9ZL*Y 29¢€° L 609 8€°0T 0TS vOv'§ 66T ¢ £€8° ¢ 0LZT | 6

4N 6€* IV 020" % T19°€ 162°6 GE' Y g€/ 8€°¢ £00°¢€ 66G°% 65L°€ 600T | 8

gc* 8C" 6C° €76°7 976" ¢ 18S°€ 60°€ G6° Y VAR 886°T VALY 817°C 8Lt L

8T* 0¢* 6T° v66°T 6%74°T 8T€°T c0°¢ 66'C L2°T T0Z'T 808°T 88¢°T LLS 9

81" €T" AN 8871 6ST°T 68€° T 8Z°'T LT 0L* G89° €60 T 799" 90%. g

TT* 80" 90" 8¢gL” 169° 6%L" 69° 06" vl oge” VAN L6C" 69z Y
@IISIN | AVM-ENO | WD¥ QHISHEN | AVM-ENO | WD¥ QILSEN| AYM-ENO | WD¥ qILSAN | AVM-ENO | WD¥ N s

AWIL SNOIIVIHEA0 AWLL SNOIIVIAJO
NOILOTOS NOILLVZI¥OLOVA

20.

because of differences in the coefficients of the estimates and differences
in data structure complexity, the one-way scheme requires less storage until
N is very large indeed. The one-~way dissection ordering algorithm takes
about ﬁiﬁﬁy percent more time than the RCM algorithm, but it is considerably
faster than the nested‘dissection algorithm.

Perhaps the most noteworthy aspect of Table 4.4 is that it 111- - -
ustrates how dangerous it is to conclude very much of a practical nature
from a study of operation counts alone. While they correctly predict the
trends in execution time, differences in data structure complexity can have
an enormous effect on the operations-per-second output of a linear
equations solver. Because the data structures are simplest for the
standard scheme, it remains competitive in terms of execution time for
values of N much larger than the operation counts would suggest.

There are a number of situations where the one-way dissection
scheme could be quite attractive. Since its storage requirements are
substantially lower than either of its competitiors over a fairly large
range of N, in situations where storage is expensive and/or severely
restricted, it may be the method of cheice even though its execution time
may be larger than its competitors. In addition, in some situations
involving the solution of some mildly nonlinear or time dependent problems,
many systems having the same coefficient matrix must be solved. In these

situations, the cost of solving the problem, given the factorization, may

be the primary factor governing the method's merit. The last six columns
in Table 4.3 indicate that the one-way dissection scheme is a strong
contender in these cases.

The one-way dissection appreach has the potential to be very

important in a multi-processor mini-computer environment. The computation

involving the leading O independent blocks can quite conveniently be

performed on o different computers, in parallel.

21.

22.

§5 Concluding Remarks

We have presented a heuristic algorithm for finding a so-called
one-way dissection ordering for an undirected graph. Although the experi-
ments presented are for a single problem; quite extensive testing on a
variety of other problems of the same type suggest that for these problems:

1. The ordering algorithm executes in O(N) time.

2. The ordering produced, when used with the solver which

exploits the structure of the reordered matrix as

described in section 2, yields 0(N7/4

5/4

) factorization
times and O(N) storage requirements.

For fairly obvious reasons, the cross—-over points where one scheme
became more attractive than another (according to some specified criterion)
depended upon the particular problem. For example, extremely long slender
meshes yielded problems where the ordinary band scheme was uniformly
superior for all s. However, for meshes which were undeniably two or three

dimensional, there was a substantial range of N where the one-way scheme

was, in some respects, the most efficient.

23‘

§6 References

[1] I. Arany, W.F. Smyth and L. Szoda, "An improved method for reducing
the bandwidth of sparse symmetric matrices'", in Information
Processing 71: Proceedings of IFIP Congress, North-Holland,
Amsterdam, (1972).

[23 C. Berge, The Theory of Graphs and its Applications, John Wiley &
Sons Inc., New York, (1962).

(3] James R. Bunch and D.J. Rose, "Partitioning, tearing, and
modification of sparse linear systems", J. Math. Anal. and Appl.,
48 (1974), pp. 574-593.

[4] I.S. Duff, "Sparse matrices", AERE Rept HL 76/485, Harwell,
England, February, 1976.

[Sj Alan George, "On block elimination for sparse linear systems",
SIAM J. Numer. Anal., 11 (1974), pp. 585-603.

[6] Alan George, "Numerical experiments using dissection methods to
solve n by n grid problems'", SIAM. J. Numer. Anal., to appear.

[7] Alan George and Joseph W.H. Liu, "An implementation of a pseudo-
peripheral node finder", Dept. of Computer Science Technical Report
CS-76-44, University of Waterloo, October, (1976).

[8] Alan George and Joseph W.H. Liu, "An algorithm for automatic nested
‘ dissection and ffs application to general finite element probtems",
Proc. Sixth Conference on Numerical Mathematics and Computing,
Winnipeg, Manitoba, Sept. 30 - Oct. 2, (1976).

[9] Alan George and Joseph W.H. Liu, "On finding diagonal block
envelopes of triangular factors of partitioned matrices', Dept. of
Computer Science Technical Report C$8-77-10, University of Waterloo,
April, 1977.

[10] N.E. Gibbs, ‘W«G. Poole and P.K. Stockmeyer, "An algorithm for
reducing the bandwidth and profile of a sparse matrix'", STAM J. Numer.
Anal., 13 (1976), pp. 236-250.

[11] A, Zennings, "A compact storage scheme for the solution of
simultaneous equations", Comput. J., 9 (1966), pp. 281-285.

[12] Joseph W.H. Liu and Andrew H. Sherman, "Comparative analysis of the
Cuthill-McKee ang the reverse Cuthill-McKee ordering algorithms for
sparse matrices', SIAM J. Nitfer. Anal., 13 (1976), pp. 198-213.

[13] S.V. Parter, "The use of linear graphs in Gauss elimination', STAM
Rev., 3 (1961), pp. 364-369.

[14] D.J. Rose, "A graph theoretic study of the numerical solution of
sparse poditive definite systems", in Graph Theory and Computing,
R.C. Read, editor, Academic Press, (1972).

[15]

[16]

[17]

24.
Gilbert W. Strang and George J. Fix, An Analysis of the Finite
Element Method, Prentice~Hall Inc., Englewood Cliffs, N.J. (1973).

J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation
IT; Linear Algebra, Springer Verlag, 1971.

0.C. Zienkiewicz, The Finite Element Method in Engineering Science,
McGraw-Hill, London, (1970).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

