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Abstract.

If a linear ordinary differential equation with polynomial -coefficients is
converted into integrated form then the formal substitution of a Chebyshev series
leads to recurrence equations defining the Chebyshev coefficients of the solution
function. An explicit formula is presented for the polynomial coefficients of
the integrated form in terms of the polynomial coefficients of the differential
form. Then the symmetries arising from multiplication and integration of
Chebyshev polynomials are exploited in deriving a general recurrence equation
from which can be derived all of the linear equations defining the Chebyshev
coefficients. A method of backward recurrence is described for solving the
recurrence equations. A set of ALTRAN procedures is presented which implements
both the derivation of the general recurrence equation and the solution of the
resulting linear equations. The ALTRAN program is applied to several sample
problems. Since the method is algebraic it can also be applied to problems

containing indeterminates.
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1. Introduction

The most widely used methods for computing the numerical solution
of an ordinary differential equafion (ODE), in the form of either an
initial~-value problem (IVP) or a boundary-value problem (BVP) are discrete-
variable methods. That is to say, the solution is obtained in the form of
discrete values at selected points. Methods for computing an approximate
solution in the form of a continuous function (usually a polynomial or
rational function) have received some attention in the literature. Probably
the best known continuous—variable method is the Lanczos tau-method [7] which
is closely related to the Chebyshev series methods of Clenshaw [1] and
Fox [3] for linear ODEs. The Chebyshev series method has also been used for
a first-order non-linear ODE ([9], [8]) but the method then requires
iteration whereas it is a direct method in the case of linear ODEs. More
recently, the Chebyshev series method has been extended to the solution of
parabolic partial differential equations ([6], [2]).

The most extensive treatment of (Ghébyshevsseries:;méthbds .is. contained
in the book by Fox and Parker [4]. The basic approach is series sub-
stitution followed by the solution of resulting recurrence equations. All
of the authors treat the series substitution and generation of the
recurrence equations as a hand computation prior to the application of a
numerical procedure for solving the recurrence equations. However, except
for particularly simple special cases, the generation of the recurrence
equations is a tedious and error-prone hand manipulation which could well be
programmed in a language for symbolic computation. In this paper, procedures
are described for generating the recurrence equations for arbitrary-order
linear ODEs with polynomial coefficients. There is no need to restrict the

method to first and second order equations as previous authors have done.



Furthermore, the method can also be applied to problems containing
indeterminates (for example, indeterminate initial conditions) and to eigen-
value problems. An attractive feature of the method is that the associated
conditions may be of initial-value type, boundary-value type, or any linear
combination of function and derivative values at one or more points.

The procedures described here have been implemented in the ALTRAN
language. Once the recurrence equations have been generated their solution
could, in the standard case, be accomplished by a numerical procedure rather
than a symbolic procedure. However, in the potentially powerful application
of the method to problems containing indeterminates a symbolic solution of
the recurrence equations will sometimes be desired. Therefore this second
phase has also been coded in the ALTRAN language. The standard problem
without indeterminates is obviously a prime candidate for a hybrid symbolic/
numeric computational procedure. In keeping with the potential desire for a
symbolic solution, we restrict our attention to a class of problems for
which the truncated Chebyshev series can be obtained by a direct method.
Thus we consider only linear ODEs with polynomial coefficients. Of course,
a linear ODE whose coefficients are rational functions could be converted to
one with polynomial coefficients and therefore, in principal, the method can
be applied to any linear ODE whose coefficients are functions which can be
approximated well by rational functions.

The method assumes that the solution is desired in the interval
[—l, l] (which means that a simple transformation of variables will be
required, in general, before applying the method). The truncated Chebyshev
series produced by the method is a near-minimax polynomial approximation of
the true solution to the problem. This is based on the fact that, for any

function continuous in [-l, 1], the minimax error in the truncated Chebyshev



series of degree n is never appreciably larger than the error in the best
minimax polynomial of degree n (e.g. see [10]). The goodness of the approxi-
mate solution obtained therefore depends on the ability of polynomials to
approximate the true solution. A more powerful chass of approximating
functions is the rational functions. However, the computation of near-
minimax rational functions would be best accomplished in the form of
Chebyshev~-Pade approximations [5] which require, as an initial step, the
generation of Chebyshev series coefficients. Thus the method discussed in
this paper is a basic building block as well as a powerful method in its

own right.



2. Conversion to Integrated Form

Consider an ordinary differential equation of order v with poly-

nomial coefficients:
@ M@+ e @ Y@ e ) Y = . @

We will temporarily ignore the V associated conditions which would

serve to specify a unique solution of (1). We seek a solution of the form

yx) = L' ¢ T (x) 2
oo Kk

where the prime (') indicates the standard convention that the first
coefficienf is to be halved and where Tk(x) denotes the Chebyshev polynomial
of the first kind:

Tk(x) = cos (k arcces x).

Tf the series (2) is substituted into the differential equation (1)
then the left side of (1) can be expressed in the form of a Chebyshev series.
By expressing the right=hand side polynomial r(x) in the Chebyshev form, we
can equate coefficients on the left and right to obtain an infinite set of

linear equations in the unknowns c_, c (see [4]). (There will be

12 Spr v
Vv additional equations derived from the associated conditions.) This

infinite linear system has the property that the lower triangular parﬁ is
zero except for a few sub-diagonals and it therefore becomes finite under

the assumption ¢, = 0 (k > kmax)s. for some chosen kmax. This assumption

k
must be valid, to within some absolute error tolerance, if the solution

y(x) is to have a convergent Chebyshev series expansion. Thus one may solve
the linear system, for increasing values of kmax,, until some convergence

criterion has been satisfied.

However, as is noted in [4], the linear system is much simpler if



(1) is first conwerted to integrated form. This is because the series
resulting from indefinite integration of (2) is much simpler than the series
resulting from formal differentiation. Specifically, formal differentiation

of (2) yields

1 = 1 * ] . .
v' ) L E 2Q21#41) ¢, gt T, G0
=0 L 'i=k |
+ 3 ’z 2(2142) <, ., T2k+1(x) (3)
k=0 | i=k : i

while indefinite integration of (2) yields
o .
fyG) = X (@W/2K) (6,5 - €L L&)+ K ()
k=1 :
(where K denotes an arbitrafy constant). The end result is that in the
infinite Idnear system derived from the integrated form of the differential
equation (1), each individual equation contains only a finite number of
terms. In the original (differential) form, each individual equation in the
infinite linear system is itself infinite. Thus a very substantial
reduction in complexity is achieved by considering the integrated form.
The coefficients are then specified as the solution of a finite recurrence
relation (with non-constant coefficients) rather than an infinite
recurrence relation.

The derivation of the recurrence equation is described in detail
in the next section. The following theorem gives a formula for the poly-
nomial cpefficients of the integrated form of the order v differential
equation (1), in terms of the polynomials in the original form. This
formula for the new polynomials is readily incorporated into a program
written in any of the computer languages for symbolic computation, since

each new polynomial is specified explicitly as a linear combination of



derivatives of the original polynomials (and the new right-hand side is
obtained by integrating the original right-hand side polynomial).
THEOREM 1%

The ordinary differential equation (1) of order v with polynomial
coefficients pv(x) seeas po(x) and right—hand side polynomial r(x) is
equivalent to the integrated form

4, x) y&x) + Jo &) yG) + ..+ S e Ja,) y&)

= s(x) + Kv(X) )
where the polynomial coefficients qOCx) sesas qv(x) are given by

re

R
1) = T (—1)““1‘(;:‘;) p® ), 0 sms ®)
k=

and where the right-hand side polynomial s(x) is given by

s(x) =[S . Jrix) . : (7)
In (5) - (7) the notation KV(X) denotes an arbitrary polynomial of degree
V-1 arising from the constants of integration and the notations

b ree) and £ )
denote the results of applying, respectively, indefinite integration i times
and formal differentiation i times to the function f(x).
Proof: The right=hand side (7) is obvious so we consider only the left-—
hand side of (5). The arbitrary constants of integration will be ignored
in this proof.

The proof is by induction on the order v. For v=1, the left side of
the differential equation (1) is

p () ¥ &) +p () yx). (8)
Applying integration once yields, from the first term in (8),

P (&x) y&) - Jp ') y(x)

and hence (8) becomes



p; () yG) + Slp " x) +p ()] vy ()
which agrees with (5) - (6).

Now for the induction step, assume that the theorem has been proved
for order v-1. For order v, the left side of equation (1) is
v

Z p, (x)y
k=1 V=k

(v-k)

p, G0 v + ). ()

The result of applying integration v times to the first term in (9) can be

expressed in the form

A
pv(x) y(x) - JS .Y. S kZl(E\ pv(k)(x) Y(v—k)(x). (10)
= /

This is easily verified since v differentiations of (10) simply strip off
the integral signs from the second term of (10) and the first term of (10)
becomes

v)

pv(x) y 7 (x) + {the integrand in (10)}.

Thus, the result of applying integration V times to the whole of (9) is
v (k)
p. (x) y(x) +JS Mooy =YY py x) + pv—k(x):l
’ k=1L \F

(v-k)
y )1, an

In the integrand in (11), if the index of summation is changed by k <« k+1 it
takes the form

CH ARG @ | vy (12)

k+1) Pu )T Py Y x

k=0
which is the left side of a differential equation of order v-1 of the form
(1) with polynomial coefficients~Pv_l(x) sevey Po(x) defined by

v (k+1)
Po-1-k &) ( k+l) Py

Therefore, by the induction assumption, the result of applying integration

(x) +p (x), 0 < k sw-1 , (13)

v-1-k

v-1 times to (12) is the left side of the integrated form (5) for order v-1,



with p replaced by P in (6). Applying the definition of P given by (13),
we have transformed (11) into the form
p\)(x) y&x) +J {1} : 14)

where the expression { } is the integrated form of (12), namely

v-1 m m-k fv-1-k v (m+1)
o s cn o ek fl- L) o P 6
m=0 k=0 v
\E“‘lkf((x)] FyGo . o as)

Finally, changing the indices of summation in (15) by m + m-1 and k <« k-1,
breaking the k-summation into its two parts, and bringing the extra integral

in (14) inside the m-summation, (14) becomes

v m m{v (m)
pv(x) vyvx) + = Sr o005 (1) o) Py (%)

m=1

n _
+ 5 (—1)“‘1‘( k) @ ) 1y (16)
k=1

which agrees with (5) - (6).

In the final step above, we have used the fact that the expression

o m-kfv-k\ /v
- kz,l -1 (m_k) ( k) | @an

reduces to (—1)m (1\1)1) To see this, simply use the factorial definitions to

verify that ("Iﬁ) (;g) - (fi) (X)

and hence (17) becomes

cwr () E 0T ).

But the summation here has the value 1.



3. General Form of the Recurrence Equation

For an ordinary differential equation of order v in the integrated
form (5) we seek a solution in the form of the Chebyshev series (2).
Substituting (2) into the left side of (5) and removing the sﬁmmation sign

and the Cp outside the integral signs yields

co

' A

i:o Ch {qo(x)Tk(x) -+ fql(x)Tk(x) + ... + ff...fqv(x)Tk(x)} . (18)

In order to express (18) in the form of a Chebyshev series (where the
coeffieient of Tk(x) will be a linear combination of ci's), the polynomials

qo(x),...,qv(x) are converted into Chebyshev form. Then the following

identities (cf.[4]) are applied:
TOOTG) = (L/2) Ty G + (W/2) Ty () a9
ST, = (/204)) Ty G0 - (L/2(1-1) G | (20)

where, for the moment, we may assume that k is '"large enough" in (19) and
that i is "large enough" in (20) to avoid non-positive subscripts. This
transforms (18) into the following form, for k large enough (i.e. neglecting

the first few terms):

12( e (VT &) +v T )+ s v, T, L ()] (21)
where the coefficients vi(O < i < 2h) are ratdondl expressions in k arising

from repeated applications of (19) and (20) ahd h is some positive integer.

Then changing the indices of summation in (21), separately in each term,



10.

converts (21) into a Chebyshev series of the following form (neglecting
the first few terms):

{u
k

OCk-h T Y1%kona1 Tt UopCant T ®) | (22)
where the coefficients ui(O £ i £ 2h) are rational expressions in k. The
first few terms could be derived independently. Finally, by converting

the right-hand-side polynomial in (5) into Chebyshev form, we are ready to
equate coefficients and solve for the ci's. The coefficients of

To(x), ceas Tv_l(x) would not be equated because of the arbitrary term Kb(x)

appearing in (5). 1Instead the first V equations would come from the

associated conditions.

The following examﬁle will serve to illustrate. Consider the problem:
L) Y - ¥ )+ x ) = (2x0) (23)
y(0) = 0; y'(0) = 1. | (24)

The integrated form of (23) is, from (5) - (7),

(14x2) y(x) + f (<l-4x) y(x) + [1(24x) y(x)

= x* - (1/12) %* R - (25)

Substituting (2) into (25) and converting the polynomials into Chebyshev:
form yields

©co
Zl

—ock{ B’(3/2)T0(x) + (1/2) Tz(x)] Tk(x)

+ f[“TO(x) - 4T1(X)] Tk(x)
+ ffEZTO(x) + Tl(x)] Tk(x)}

= (11/24) TZ(X) - (1/96) TA(X) + KQ(X) (26)



11.

where some constant terms on the right have been abserbed into the
arbitrary linear term Kz(x). Applying the identities (19) and then (20)
yields, after much manipulation, the following form for the factor{ }

in (26), for k large enough:

{ 08 (k+2) (k+3) T (x) + (/4 - (k42) L + [2(kH1) (k+2) T D) T

Tet3 etz )

£ (120) 17 - (8GR (b2 T Ty, G0 + (3/2 = [(ke1) (1) TTH T, ()
-1 -1
+ (20117 - [8(k-1) (k-2)1 ) T, 4 (x)
U4+ (2) 7+ [20e1) 2T T G + [g(k_z)(k_3>3"%k_3<x>} . @n

To obtain the general coefficient of Tk(x) on the left side of (26), the
index of summation must be changed separately in each term of the factor
(27). For example, for the first term

Ze, [8(k+2) (k43)]7 T

(%)
. k+3

the desired change of index is k < k-3, which yields
Lo 81K e o T (x)
K s k-3 "k

where again we are neglecting the first few terms in the series. After

changing the indices of summation appropriately, the left side of equation

(26) becomes
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b {[8k(k—1>]'1 c

; -1
z g+ (/6 = 1/l + [2k(-DT7) e,

k-

+ (-[2k770 - ek TH + (3/2 - [ (k-1) (kt1) T De

Cr-1 k

(217t - [8k(k-1)]‘1) + (/6 + 1/k + [2kkt) T D e

“k+L k2

+ [81<(1<+1>]'l ck+3} T (x) . (28)

Working out the first few terms using special cases (see section 4) of
identities (19) and (20), and obtaining the first two equations from the two
associated conditions (24), we obtain the following infinite set of linear
equations which define the Chebyshev coefficients of the solution funetion

y(x):

1/2 c,. -¢c. +c, — ¢

0 2 4 + ... =0

6

cl - 3c3 + 505 - 7c7 + ... = 1

1]

-5/24 e + 7/6 c, + 3/16 ¢, + 5/6 c, + 1/48 ¢ 11/24 (29)

3 5

1/48 cO + 0 ¢y - 17/96 cy + 11/8 cqy + 7/48 ¢, + 15/24 Cg + 1/96 Cg = 0

1/96 ¢, + 1/24 cy = 21/160 cy + 43/30 ¢, + 11/96 cg + 21/40 ¢, + 1/160 c

4 6
. e = -1/9629)

. . .

The remaining equations are obtained by equating to zero the coefficient
of Tk(x) in (28), for k = 5,6,7, ... . Note that (29) is a 7-diagonal system

starting from the fourth equation.

.
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In general, the desired Chebyshev coefficients satisfy a (2h+l) - term

linear recurrence equation of the form

+ ... +u 0 (30)

UoCk-h T Y1%k-ht1 2h Ck+h ,

where the coefficients u, are rational expressions in k. Equation (30)
will be valid for k > h except that the first few right-hand-sides may

be nonzero depending on the degree of the right-hand-side polynomial in
(5). The value of h depends on the order v of the differential equation
and on the degree of the left-hand-side polynomials in the integrated

form (5). Each application of the product formula (19) and each application
of the integration formula (20) increases the value of h by one. Thus

in the example of equatiom (25), the second-degree polynomial in the first
term indicates that h will be at least 2, the first—degree polynomial in
the second term indicates that h will be’at least 1 +1 =2 (1 fbr the
product and 1 for the integration), and the first-degree polynomial in

the third term indicates that h will be at least 1 + 2 = 3 (1 for the
product and 2 for the double integration). The final value of h will be
ﬁax {2,2,3} = 3 as is verified by expression (28). 1In general, lower

and upper bounds on h can be réadily determined from the original order-v
differential equation (1); namely, if maxdeg is the maximum of the degrees

of the left-hand-side polynomials in (1) then

V £ h <V + maxdeg - (31)
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The first vV equations in the infinite linear system come from the
agsociated conditions and will be equations containing an infinite number
of terms. If h >V then there will follow v-h "special' cases of the
general recurrence equation (30), with nonzero right-hand-sides in general,
resulting from equating the qoefficients of the terms Tv(x),'..., Th_l(x)
on the left and right of the transformed form of equation (16). The
remaining linear equations result from equating the coefficients of
Tk(x), k = h, h+l,... on the left and right and will all be in the form
of recurrence equation (30) except that there willlbe a few more nonzero

right-hand~sides if

degls(x)] = h,

where s(x) is the right-hand-side polynomial in the integrated form (5).
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4. Special Cases of the Récurrence Equation

The derivation of the general recurrence equation (30) as described
in section 3 is not difficult to implement in a symbolic language. We
now consider the derivation of the 'special” equations which require the
application of modified veréions of the product formula (19) and the
integration formula (20). In other words, we now want to consider what
happens when we drop the assumption that k is '"large enough' which was
assumed in the derivation of equation (30).

The product formula (19) is in fact correct for all values of k and

j if the subscript k-j is replaced by |k~j|. The integral formula (20)

has a special form for the cases 1 = 0 and i = 1, namely
fTO(x) = Tl(x) and le(x) = 1/4T2(x) (32)

where an arbitrary constant of integration is implied. These special
cases could be incorporated into a program for generating the recurrence

equations but the cost of dériving each individual "

special' equation

would be approximately equal to the cost of deriving the one general
equation (30). foftunately, the form of the special equations can be
deduced immediately from the general equation without extra work. Réferring
to the example in section 3, the third equation of (29) arises from o
equating coefficients of Tz(x) in the transformed form of (26). If we

"blindly" obtain the left-side coefficient of Tz(x) by setting k=2 in the

general formula (the bracketed expression in (28)) we obtain the equation
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1/16 C_l + 0 c, - 13/48 ¢l + 7/6 Cy + 3/16 ¢, + 5/6 ¢, + 1/48 cg = 11/24 ,

0 3

4
(33)

If the negative subscript is interpreted in absolute value - i.e. if we
equate c_1 with ¢y - then the third equation of (29) results., Our task
is now to prove thét this "rule" holds in general.

The main point is that negative subscripts may be carried throughout
the derivation and their interpretation in absolute value may be postponed
until the final step. We prove firstly, in Theorem 2, that negative
subscripts are valid when applying identities (19) and (20) to transform
expression (18) into the form (21). Secondly, we prove via Theorems 3
and 4 that in the substitutions used to transform (21) into (22) the
occurrence of terms c; with i negative are valid if the subscripts are

interpreted in absolute value.

THEQOREM 2:

Identities (19) and (20) are valid when non-positive subscripts occur
on the left and/or right in the sense that Ti(x) represents Tlil(x).
Proof: For the product formula (19) this is a well-known result which is
a simple consequence of the cosine definition of Tk(x).

The integration formula (20) is certainly valid for expressing the
integral of Ti(x) for i 2 2. Consider the case i = =j for j =2 2. (The
negative subscripts will arise from previous appliecations of either (19)
or (20). T_j(x) is interpreted as Tj(x) and we are proving the validity

of explicitly carrying the negative subscripts). Formula (20) would give
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(34)

fT_j () = (1/2(=3H) T4y () = (1/2(=3-1)) 15, ()
The right side of (34) is interpreted as

-(1/2(-1)) Tj_l<x)‘+ (1/2(341)) Tyyy ()

which agrees with formula (20) applied to ij(X).
Next consider the application of formula (20) when i = 0. Direct

application gives

JTyG = (1/2) T () - (1/2(-1) T @) (35)
The right side of (35) is interpreted as

(1/2) T, + 1/2) T/(x) = T (%)

which agrees with the special formula in (32).
Finally, consider the application of formula (20) when i = 1 and i = -1,

Direct application for i = 1 appears to present a problem since we get

le(x) = (1/4) T2(x) - (1/0) To(x) (36)

However, recalling that there is an implied arbitrary constant in the
integration formula (20), the "twoublesome" term here is simply absorbed

into the arbitrary constant. (In practice, this means that we will never
have cause to evaluate the coefficient of To(x).) Formula (36) therefore
agrees with the special formula in (32). The case i = -1 follows immediately.
Furthermore, if a subsequent integration is applied to the right side of (36)

a "troublesome'" coefficient of Tl(x) will arise, but then there will be
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an arbitrary linear term (due to the double integration) which absorbs
all linear terms. Q.E.D.
The following simple example will clarify the application of Theorem 2.

Consider the differential equation

y'(x) +y(x) =0
or, in integrated form,

y&x) + fy(x) =0 (37)
Substituting the series (2) into (37) yields

[ee]

i;o ck‘[Tk(x) * ka(x)} =0 (38)

Applying formula (20) gives

[e.0]
t - — =
B (TG 4 (U26) Ty () - (A/20e1) T 1 G0 = 0. (39)
The third term in brackets would cause trouble if we evaluated if for
k = 1 but we will never do so because we do not equate coefficients of

To(x). Continﬁing with the example, the next step is to change indices

of summation in (39) yielding

' ¢, T (x) +I' (1/2k) ¢, T (x) - I' (1/2k) c T (x) = 0 (40)
o k'k =1 k-1"k =1 K+l k

Equating coefficients of Tk(x) on the left and right of (40) gives the

general recurrence equation:



19,

(1/2k) Cro1 + Cp = (1/2k) Crrl = o . (41)A

For this first-order differential équation we must equate coefficients of
Tk(x) for k = 1. Theorem 2 gives a valid interpretation to (39) for each
value of the index k but we have yet to prove that (41) is wvalid when,

for example, k = 1. In this example, examination of the lower limits of
summation in (40) reveals that (41) is clearly valid for k = 2. The

case k = 0 will not be required. For k = 1 (i.e. equating coefficients

of Tl(x)), the‘middle summation in (40) has a factor 1/2 associated with
the first term in its sum and the third summation will contribute two

térms to the coefficient of Tl(x) - namely, the terms with k = -1 and k = 1.

Thus the coefficient of Tl(x) comes from the terms
0T @) + Q/2)A/2) e T ()~ (/D A/2ED) gy () = (1/2) ey @)
= (cl + 1/4 <, + 1/4 ¢y = 1/2 cz) Tl(x).

The special form of the recurrence equation corresponding to k = 1 should

therefore be

1/2 ¢ +cy =1/2c,=0 . (42)

But (42) is precisely the result of setfing k = 1 in the general recurrence
equation (41).

The following two theorems prove that the left side of the general
recurrence equation is valid for all k =2 1, in the sense that negative
subscripté are to be interpreted in absolute value. Recall that the left
side 6f the general recurrence equation is obtained by transforming (21)

into (22). By Theorem 2, the range of the index of summation in (21) may
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00

be indicated by ', Changing the indices of summation in the terms of
k=0
(21) transforms (21} into the form

o0 o
vk «k-h) ¢ . T (x)+ &' v, (k+ k-htl) c T, (x)
weh © k-h "k kehe1 L k-h+l "k
t ©
+ ... *F k=§h ?Zh (k <« kt+h) Cth Tk(x) | (43)

where the notation vi(k “ f(k))'denotes, in an obvious way, an operation of
substitution in the rational expression Vi. Collecting terms, (43) takes
the general form (22) where the new rational expressions u, are given by

u; = v, (k<k-bt), 0 <1< 2h. : (44)

Theorem 3 gives a symmetry property of the rational expressions Vi and then
Theorem 4 uses this symmetry property to prove the validity of the general
recurrence for k = 1. In the substitution operations appearing in the
following theorems and proofs, thevsymbol "=" 145 used in place of the
symbbl " <+ " in order to emphasize the fact that they are arithmetic
evaluations in contrast to the change of indices occurring in (43) and (44).
THEOREM 3:

The rational expressions Vi (0 £ i £ 2h) appearing in (21) satisfy
the following symmetry property:

r = =V
vi(k ) v

; = - <4i <
oy & =-2,0<1i<h

for any value of f.

Proof: Expression (21) is derived by applying identities (19) and (20) to

- (18). Performing all applications of the product formula (19) first, it is

clear that for every term in T

k+j(x) there is a corresponding term in

Tk_j(x) and, moreover, the coefficients of corresponding terms are
identical. Wow when the integral formula (20) is applied to a term in

Tk+j(x):
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[Ty G = Q/2GHIH)) Ty gy G = (/205-1)) T, ) () (45)
there will be a corresponding application to a term in Tk_j(x):
ST 56 = @203H)) T4 () = A/203-1)) T, (%) (46)

The symmetry expressed in the statement of the theorem is seen by

comparing in (45) - (46) the coefficient of T (x) when k={ with the

k+j+L

coefficient of Tk_j_le) when k = ~&:
1/2(+4+1) = -1/2(~2~3-1)

and by comparing in (45) - (46) the coefficient of when k=4 with the

Tetg-1
coefficient of Tk_j+le) when k = -%:

-1/2(4+j-1) = 1/2(-2-3+1).

Repeated applications of the integral formula (20) will preserve this
symmetry. Q.E.D.
THEOREM 4:

The expression (22), which defines the general form of the
recurrence equation, is valid for values of the index k =2 1 in the sense
that negative subscripts are to be interpreted in absolute wvalue.

Proof: Expression (22) is derived from (21) via (43) - (44). Ekamining the
lower limits of the indices of summation in (43) reveals that (22) is
clearly valid for k = htl. For k=2 with 1 < § < h, direct application of
(22) would give the following expression as the coefficient of TQCX)t

(47)

uo(k=2) c + ul(k=£) c

Chegyar t e g k=) e

~-(h—-2) “h+s
The actual coefficient of TR(X), from (43), will consist of the following
terms. The first h-% summations in (43) contain no term in TQ(X). The
next 24 summafions each contribute one term in TQ(X). The remaining h-2+1
summations each contribute two terms (the terms k = -% and k=f)to the

coefficient of Tz(x). The k=% terms are:

S L 0 A
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1/2 Vh;g(kFO) c, + Vhé2+1(k=l) cy + ...+ vzh(k=h+2) Cpag, (48)

which, by (44), corresponds directly with the terms in

o seres Cpig of (47) except for the factor 1/2 in the first term of (48).
The k = —-f terms are :
1/2Vh+2(k=0) <, + VH+R+1(k=1) cl + ... * VZh(k=h-£) Chog - (49)

By the symmetry property of Theorem 3, (49) is equivalent to

1/2 ¥, ,Q=0) e+ V,_, ; (k= -1) ) + ... +V (k= -hbl)e, ,.(50)

The first term in (50) is identical with the first term in (48) so their
combination corresponds to the co-term given by (47). .Using (44), the
remaining terms in (50) take the form

uh,g_l(k;g) ¢4 + uhr£—2(k;£) c, + ...+ uo(kmﬁ) c (51)

h-%

(51) corresponds to the terms in C_y> Cpsees of (47) if the negative

*C-(h-2)
subscripts in (47) are interpreted in absolute value. Q.E.D.

Finally in this section, we mention the interpretation of the term
k=0 in (22) which would be required in equatiufg coefficients of To(x). of
course for any differentiai equation (1) of order v =2 1 the coefficient of
To(x) is undetergined‘because of the constants of integration._

However, the method discussed in this paper can be applied directly
to a differential equation of order 0:

P, () y(x) = r(x) | (52)
in order to compute the Chebyshev series coefficients for an explicit
rational function r(x)/po(x). In this case the coefficients of Tk(x) on the
left and right must be equated for all k = Q. The coefficient of To(x) on

the left of the transformed form of (52) is not that obtained by direct

application of the general expression in (22):
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uo(k=0) c .+ ul(k=0) C + ... + u2hﬁk=0) e (53)

h +1

Rather, the correct coefficient of TOCx) comes from the last h+l summations
in (43) and it is

1/2 Vh(k;Q) <, + Vh+1(kal) ¢y R Véh(k=h) ce (54)
Using (44), (54) becomes

1/2 uthFO) <, + uh+1(k=0) ¢y + oo+ u2h‘k=0) Che (55)
Comparing (55) with (53) we see that, for the special case k=0 in (22),

the terms with negative subscripts must be ignored and the term in <, must

have a factor 1/2 associated with it.
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5. Solution of the Recurrence Equations

We have seen that the Chebyshev series coefficients for the
solution function are specified as the solution of an infinite system of
1inear equations. As noted in section 2, the linear system becomes finite
under the assumption ck=0 (k > kmax), . for some choice of kmax. The
method of sélution recommended by Fox and Pafker [4] in a numerical context
is a variant of Gaussian el#mination applied to successively larger
linear systems. A second method discussed in [4] uses a backward recurrence
process. The latter method has béen coded in ALTRAN for the purposes of
this paper. A study of the relative efficiencies of the two possible
solution methods in the symbolic context would be useful.

The method of backward recurrence can be applied to a general
recurrence equation:

uc')zk +ugz ot tuz =0, k>0, (56)
where the coefficients ui(O < 1 £ n) are rational expressions in k.
Associated with (56) there will be anumber m of initial conditions. Under
the assumption zk=0 for k’> kmax we wish to compute an m-parameter family
of solutions for (566). The m initial conditions will then be used to
specify values for the m parameters.

The solution we seek is a vector of the form
0,0,...). (57)

Z oy ZsenesZ
( 0’71’ *“kmax’

Set kaax=l and use (56) to define the values of z,_ for k = kmax=l,...,0;

k

=1 and use (56) to define the values of z for

next set z =0, X

kmax zkmax-l

k = kmax-2,...,0; and so on until m solutions have been generated. If these

m vectors are denoted by v seeesV then the general m-parameter solution of

1

the homogeneous equation (56) is given by
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m
V= L AV, (58)

where ki (1 £ i £ m) are indeterminates.

In general, the equation (56) will be non-homogeneous with non-
zero right-hand sides T oseersTps for some & < kmax, corresponding to the
cases k=0,...,% of equation (56). In this case, a particular solution v
must be added to the general solution (58). The particular solution may

be chosen of the form

VP = (zo,zl,...,zQ,O,O,...). (59)
It can be obtained by setting

zg = Ty / uo(k=2)
(where the ‘denominator denotes the vresult of substituting the value k={
in the leading coefficient of (56)) and then using (56) to define the values
Zy for k=2-1,...,0.

Having obtained the m-parameter solution V + vp, it can be
substituted into the m initial cohaditions. There results a linear system
to be solved for the m parameters kl,...,km. The desired solution of the
form (57) is then fully specified.

In the c¢omtext of solwing the differential equation (1), equation
(56) comes from the general recurrence equation (30) for the standard. cases
k = h. Thus n=2h in (56). The coefficients uy in (56) correspond to the
coefficients u, in (30) after the change of index k < k+h and zy in (56)

corresponds to c, in (30). The first h equations of our infinite linear

k
system come from the v associated conditions of the differential equation
and from h-v special cases of the recurrence egquation (30), namely the

“equations resulting from equating coefficients of TV(X) yoo s Th_l(x).

These h equations become the initial conditions of equation (56) and
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therefore we have
m = h. (60)
It is possible for the leading coefficient in (30) to vanish for
one or more values of k 2 h. In such a case, we choose to seek a solution
of (56) of the form

(z seees Z 0,0,...)

kmin kmax, °’ (61)
tather than of the form (57). We then assign kmin additional parameters
Km+l""’xmﬁkmin directly to the solution eleﬁents zk(O £k < kmin -1).

The value of kmin may be determined by simply evaluating the coefficient

u in (30) for values of k in an appropriate range and setting kmin such that
division by u will always be valid in solving (56) in the form (61). The
equations corresponding to values of k in the range h < k < h + kmin -1 in
(30) are then treated as additional special equations. The number of
"initial equations" is therefore h + kmin which, by (60), corresponds to

the number of parameters.

Note that the linear system to be solved for Xi (1 €1 <m 4+ kmin)
in the above method is relatively small and is independent of the size of
kmax. From (60) and (31) we see that

m < v + maxdeg .
and kmin will usuall}ly be zero. For example, for second-order differential
equations with second-degree polynomial coefficients the linear system
would usually be 4 by 4. The main computational work is in the batkward
recurrence process to compute the solution (61) of the recurrence equation
(56). It should also be noted that the linear system may hhppen to be

singular for a particular choice of kmax in which case the solution of (56)

should be re-started with a larger value of kmax.
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Finally, the conditions associated with the differential equation
(1) can be quite arbitrary. In general, any linear combination of function
and derivative values (up to derivatives of order v-1) at one or more points
is allowed. The series solution represented by the coefficients

(po,cl,...,ckmagﬂ,o,...) |
given by (57) can be evaluated at any point and can also be fofmally
differentiated.

As an example, consider the problem:

Q) ¥ - ¥ +x yG) = 2xD) 62)

y(0) = 1; y'(0) +2 y@) - 1/2 y(-1)

0. (63)
Fquation (62) is the same as equation (23) of the example in section 3 but
the initial conditions have been changed. The "complicated" form of the
second condition in (63) poses no difficulties for the method. Of course
the most common "complicated" form of associated conditions in practice
would be two-point boundary conditions.

The infinite linear system for (62) - (63) will be identical with
(29) except for the first two equations. The first step in solving the
system is to solve the general recurrence equation under the assumption
cka for k > kmax. For example, when kmax = 3 the relevant equations are

the 4th, 5th, and 6th in (29):

1/48 <, +0c, - 17/96 c, + 11/8 ¢, =0

1 3
1/96 ¢, + 1/24 ¢y = 217168 Cy = - 1/96 (64)
1/160 c, + 3/40 cy = 0 .

Since the number of initial equations is 3 we want a 3-parameter solution.

The three independent solutions of the homogeneous form of (64) are

<
1l

(-168, 303/5, -12, 1)

1
VQ = (17/2, -4, 1, 0)
v, = (0, 1, 0, 0).
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For the particular solution of (64) we get
VP = (03 -1, 0, 0).
Thus the desired 3-parameter solution is

3
L A, twy
i=1 +*+ P

which is

(-168 Al + 17/2 AZ’ 303/5 kl -4 AZ + X3 -1, -12 Al + AZ’ A (65)

1)'
Note that the solution (65) does‘not satisfy all three equations in (64) but
only the first one, since Va was obtained without reference to the other

two equations. The solution we will obtain is identical to that obtained by
solving the first four equations in (29) for the four coefficients

17 S5 C3 under the assumption ék=0 for k > 3. TIn the general case,

the m—parameter solution obtained fewr (56) will satisfy (56) for

c C
O,

0 < k < kmax —m and the values of the m parameters will be chosen so that
the m initial equations are also satisfied. The solution obtained will
therefore satisfy the first kmax + 1 equations in the infinite linear system.
In practice, kmax should be chosen to be greater than or equal to the
degree of the right-hand side polynomial so that the non-homogeneous part of
the right side of the linear system will be satisfied.

Continuing with the example, we now have the parametric solution

3' .

y(x) = kEO e Tk(X) (66)
where the four coefficients are given by the vector (65). The parameters
must be chosen by satisfying three initial equations; The first equation
comes from the first condition in (63) by evaluating (66) at x=0:

1/2 c, T €y = i, 67)

To obtain the second equation from the second condition in (63), we must
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differentiate (66) to get:
t -
y'(x) =1/2 (2 ¢y + 6 c3) TOCX) + 4 <, Tl(x) + 6 c, T2Cx). (68)
(See [4] for the differentiation of finite Chebyshev series.)
Evaluating (68) at x=0 and evaluating (66) at x=1 and x= -1, we get for the
second equation:

3/4 <, + 7/2 c; + 3/2 ¢y = 1/2 cq = 0o (69)

The third of the "initfal equations" is precisely the third equation in (29)
which is a special case of the general recurrence:

-5/24 cq + 7/6 <y + 3/16 c., = 11/24. (70)

3

Substituting the parametric solution (65) into the three linear equations
(67), (69), (70) and solving the resulting 3 by 3 system yields the
solutisn

A, Ays A3) = (-196/60353, 14228/60353, 445188/301765). (71)

2> "3

Substituting these values for the parameters into the solution (65) then

l’

gives the desired solution for the coefficients (co, cl, c2, c3):

(153866/60353, -40105/60353, 16580/60353, -196/60353) (72)
or to three decimal places:

(2.549, -.665, .275, -.003). (73)
Computing the solution with larger values of kmax shows that the correct
values for the first four Chebyshev coefficients are, to three decimal
places:

(2.586, -.666, .282, -.001). (74)
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6. Sample Problems

In this section, the output from the ALTRAN program which
implements the method of the preceeding sections is presented for several
sample problems. In this output, the following indeterminates appear:

X ~ the indeterminate in the polynomial coefficients of the

differential equation;

Y - the unknown solution function (implicitly a function of X);

DY(i) - the i-th derivative of Y;

YX({j) - used in the associated conditions to mean the value of Y

at a point Xj which is specified later as XSUB(j);

DYX(i,3) — used in the associated conditions to mean the value of

the i-th derivative of Y at a point xj which is
specified later as XSUB(j);

MU(j) - an unspecified indeterminate (uj) appearing in the problem;

K - the indeterminate appearing as the independent wariable in the

recurrence equation;

CK(j) - represents the term c in the recurrence equation where

k+j
k is an indeterminate.
The output is given for the following sample problems.
Problem 1: (Simple initial-value problem for exp(x))
vyt =y y(0) =1
Solution: vy(x) = exp(x) .
Problem 2: (Simple initialevalue problem for arctan(x))
a+x%) y' =15 () = 0.
Solution: vy(x) = arctan(x) ,
Problem 3: (Order 0 differential equation)
2
A+x)y=1

Solution: y(x) =1/ + Xz),
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Problem 4: (Simple boundary—-value problem)
y'"+ 16y = 0; y(-1) = 1; y(1) = 0.
Solution: y(x) = cos(4x)/2cos(4) - sin(4x)/2sin(4).
Problem 5: (Second-order initial-value problem)
A+x) y" -yt +xy=2- x5 y(©@) = 0; y'(0) =1 .
Solution: unknown.
Remark: example in section 3.
Problem 6: (Complicated boundary-value problem)
Q+x)y" -y +xy=2-x; y0) = 1;
y'(0) +2y(@) -%y(-1) =0.
Solution: unknown,
Remark: example in section 5.
Problem 7: (Indeterminate initial conditions)
@+ y" =y Hxy=2-x; y0) = w3 v O =1,
Solution: unknown ,

Remark: Each Chebyshev coefficient N is a bilinear polynomial of

the form ck = ak ul + bk uz + dk for some constants

ak, bk’ dk.
Problem 8: (Fourthworder initial=value problem)
vy Z 3 = 05 yO) = 3/25 (0 = -1/2;7y"(0) = -3/2;
y"'(0) = 1/2.
Solution: y(x) = 3/2 cos(x) - 1/2 sin(x).
Problem 9: (Fourth-order boundar%—value problem)
Y(A) -y =20; y(0) = 0; y{1) = 1;
y'(0) = 0; y"' (-1) - y'{1) = 0.

Solution: y(x) = sinh(x) / sinh(1).
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Problem 10: (Problem with polynomial solution)
x - x™) y"+ @/2 - x) y' +4y = 0; y(0) = 1; y@) = 1.
Solution: y(&x) = T2(1 - 2%).
Remark: Special case of the hypergeometric equation.
Problem 11: (Indeterminates in differential equation)

2 " - o Dy =0

1
y(@ = 1; yQ) = -1.
Solution: This is the hypergeometric equation.

Remark: Only the recurrence equation was computed. Solving the
recurrence equation in terms of ul,uz,u3, would require a
large amount of time and space and the solution would be
intractable.

Problem 12: (Eigenvalue problem)
y'+u xy =05 y(-1) = 0; y@) = 0.

Solution: unknown.

Remark: Only the recurrence equation was computed. The problem is

thus reduced to a matrix eigenvalue problem (see [41).

Remarks on the Output

The first part of the output is an echo of the input. DIFFEQ is
the differential equation represented as a polynomial in the indeterminates
described above; more correctly, the differential equation is: DIFFEQ = 0.

CONDN(i), 1 < i < ¥, are the associated conditions represented as-polynomials

(again CONDN(i) 0 is implied) and XSUB(j), j = 1,2,... are the values (as
rational numbers) of the points Xj appearing in the associated conditions
(see above). Note that ALTRAN re-orders the indeterminates in the poly=

nomials according to its own rules; the actual input would use a more

natural arrangement of the terms forming DIFFEQ and CONDN(i). Sample input
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data for Problem 6 and Problem 9 is given at the end of the program listing
in section 7.

The output specifies the recurrence equation (EQN) and its
"half-length" (HALFN) and gives timing information for the "setup' phase
and for generating EQN. The "setup" phase here includes reading in the
problem, extracting the polynomial coefficients in DIFFEQ, and computing
an array containing the Chebyshev form of the powers x**k for an appropriate
range of expornents k. Then the values of kmax and kmin used in computing
the parametric solution (see section 5) are given and the time required to
compute the parametric solution is specified. Finally, the values of the
Chebyshev coefficients are printed out, as reaiks umless indeterminates are
present, and the time required to compute the values of the parameters (and
substitute these values into the parametric solution and print out the
coefficients) is specified.

Some of the problems deserve a few comments. Problem 7 has two
indeterminate initial conditions; the Chebyshev coefficients are therefore
polynbmials in these indeterminates and they are specified here as poly-
nomials with rational coefficients. In order to see the "size" of these
coefficients the rational numbers should be converted into reals; for
example, the last coeffic#ent for Problem 7 is

6

c. = .45 (107°) 1+ .20 (107> uy + .26 (1070,

10
Problem 10 has the polynomial: solution

Tz(l - 2x) = 10 To(x)/Z -8 Tl(x) + 4 TZ(X)
and this solution is obtained exactly.

Problem 11 contains three indeterminates in the hypergeometric

differential equation; the general recurrence equation is computed without

difficulty but one .iWwould want to assign values to these indeterminates
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prior to the solution phase since the indeterminates enter into the
coefficients in a very complicated manner (in contrast to Broblem 7).
Problem 12 is an eigenvalue problem; the recurrence equation computed could
be used to set up a matrix eigenvalue problem whose selution would approxi-
mately solve the given eigenvalue problem (cf. [41).

Accuracy of the Chebyshev Coefficients

For each problem where the true solution is known, Table 1 gives
the relative error in each of the Chebyshev coefficients computed by our
program. Of course, for greater accuracy the value of kmax (see section 5)

should be increased. All of these problems were solved using the assumption

¢y = 0 for k > 10 (i.e., kmax = 10). In this table, numbers in brackets
refer to powers of 10.
Problem
k #1 #2 #3 A #8 #9 #10
0 4 (=8) 0 .1(-8) L2(-4) .5(~10) 0 0
1 5(¢-9) .3(=7) 0 9(-4) L4 (-8) .2(-6) 0
2 5(-8) 0 2C¢7) 2 (-4) 2(-9) 0 0
3 .2(-8) .8(-6) 0 9(=4) 3C=7) A4 (=5) 0
4 .2(-8) 0 .8(-6) 2(~4) L7(-11) 0 0
5 .2(-8) .3(-4) 0 9(-4) 4 (=9) .5(=6) 0
6 .2(-8) 0 3(=4) 2(=4) .1(-9) 0 0
7 .9(-10) .9(=3) 0 L8(=4) (=T 4 (=5) 0
8 26¢7) 0 .9(=3) 2(~4) .7(-10) 0 o
9 .6(~5) .3(=1) 0 2(-2) T7(C¢7) .6(-6) 0
10 2(=2) 0 3(¢1) L1(-2) NAGED) 0 0

Table 1: Relative Errors in Chebyshev Coefficients S
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Summary of Timing Statistics

The timing statistics in Table 2 were obtained on a Honeywell 66/60.
All of the problems were run with an execution time core specification of
55K and no attempt was made to determine the minimum core requirement. The
times measured were:
Tl - time to generate the general recurrence equation
(via procedure RECURR);
T2 ~ time to compute the parametric solution
(via procedure SOLVER);
T3 - time to assign values to the parameters
(via pracedure VALUES);
TOTAL - total time elapsed ,

All times are in seconds.

Problem # T T, Ty _TOTAL
1 4 6 4 15
2 7 15 9 33
3 3 10 6 19
4 17 26 10 55
5 160 46 31 240
6 166 45 35 249
7 156 43 30 231
8 255 86 28 373
9 266 95 30 393

10 44 39 31 117

e
-

l_.l
w B~
S W
1o
1o
o

Table 2: Timing Statistics (in seconds) .



Output for Problem #1:

#

i

#

#

#

DIFFEQ
- (Y - DY(1) )
CONDN (1)
¥X(1) - 1
XSUB(1)
0
SETUP TIME IN SECONDS WAS

TNEW
1.241688
HALFN
1
EQN
( 2%K*CK(0) - CK(-1) + CK(1l) ) / ( 2*K )
TIME IN SECONDS TO GENERATE EQN WAS

TNEW
3.865141
KMAX
10
KMIN
0
TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
TNEW

5.739844

0

CIREAL

2.5321317442553344

36.




#

#

#

#

#

#

#

#

#

I
1
CIREAL
1.1303182073880147
I
2
CIREAL
2.7149533830866716D~1
I
3
CIREAL
4.4336849934398059D-2
I
4
CIREAL
5.4742404285122567D~3
I
5
CIREAL
5.4292631056695242D~4
. :
6
CIREAL
4.,4977322842732531D~5
I
7
CIREAL

3.1984364621045916D-6

37.



#

#

#

#

#

#

I
8
CIREAL
1.9921248446385429D~7
I
9
CIREAL
1.1036702740379739D-8
I
10
CIREAL

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

TNEW

TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

5.5183513701898694D-10

4.241438

1.516305E1

38.
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Output for Problem #2:

# DIFFEQ
X*%24DY(1) + DY(1l) - 1
# CONDN(1)
YX(1)
# XSUB(1)
0
# SETUP TIME IN SECONDS WAS
# TNEW
1.374453
# HALFN
2
# EQN
( K*CK(-2) + 6*K*CK(0) + K*CK(2) - 2*CK(-2) + 2%CK(2) ) / ( 4*%K )
# TIME IN SECONDS TO GENERATE EON WAS
# TNEW
7.225719
# KMAX
10
# KMIN
1
# TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
# TNEW

1.475083E1



#

#

#

I
0
CIREAL
0.
I
1
CIREAL
8.2842710329210939D-1
1
2
CIREAL
0.
T
3
CIREAL
-4,7378505486848981D=~2
I
4
CIREAL
0.
1
5
CIREAL
4.8771990942344539D-3
I
6
CIREAL

0.

40.



#

#

#

CIRE

CIRE

CIRE

CIRE

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

TNEW

TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

7
AL

-5.9720805235523926D-4

8
AL

0.

9

AL

7.7415858638642126D~5

10

AL

0.

9.438375

3.286706E1

41.



Output for Problem #3:

#

#

#

DIFFEQ
Xk%2%Y + ¥ - 1
SETUP TIME IN SECONDS WAS

TNEW
9.559844E~1
HALFN
2
EON
( CK(-2) + 6*CK(0) + CKR(2) ) / &4
TIME IN SECONDS TO GENERATE EQN WAS

TNEW
2,602844
KMAX
10
KMIN
0
TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
TNEW

9.685938

0
CIREAL

1.4142135605326259

1
CIREAL

0.



#

#

#

#

#

43.

1
2
CIREAL
-2.4264068159787766D-1
1
3
CIREAL
0.
I
4
CIREAL
4,1630529054640069D-2
1
5
CIREAL
0.
I
6
CIREAL
-7.142492729962757D~3
I
7
CIREAL
0.
I
8
CIREAL

1,2244273251364726D-3



#

#

#

#

#
#

9
CIREAL

0.

10
CIREAL
-2.0407122085607877Db-4
TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS
TNEW
6.086547
TOTAL ELAPSED TIME IN SECONDS WAS
TMEW

1.940552E1

bt




45,

Output for Problem #4:

#

#

#

#

#

#

#

DIFFEQ
16*%Y + DY(2)
CONDN(1)
YX(1) - 1
CONDN (2)
YX(2)
XSUB (1)
-1
XSUB(2)
1
SETUP TIME IN SECONDS WAS
TNEW
1.686328
HALFN
2
EQN
( K**3%CK(0) + 4*K¥CK(-2) - 9*K*CK(0) + 4*K*CK(2) + 4*CK(-2) =~
4%CK(2) ) / ( (K ) * (K ~1) % (K+ 1))
TIME IN SECONDS TO GENERATE EQN WAS
TNEW
1.732269E1
KMAX
10

KMIN



#
#

#

#

#

#

#

#

#

#

#t

TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
TNEW

2.55397E1

0
CIREAL

6.0758284851235024D-1

1
CIREAL

-8.727407774201535D-2

2
CIREAL

5.5706438919328949D~1

3
CIREAL

-5.6845753899480069D-1

4
CIREAL

-4,3008757255382698D-1

5
CIREAL

1.745481554840307D~1

46.




#

CIRE

CIRE

CIRE

CIRE

CIRE

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

TNEW

TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

6

AL

7.5097020636780473D-2

7
AL

-2.0054468927952463D-2

8
AL

-6.1632655825640539D-3
9

AL
1.2379301807378064D-3
10

AL

2.9800405014595426D-4

1.037458E1

5.500364E1

47.



48.

Output for Problem #5:

#

#

#
#

#

DIFFEQ
X*%2%DY (2) + X**2 + X*Y - DY(1l) + DY(2) - 2
CONDN (1)
YX(1)
CONDN(2)
DYX(1,1) - 1
XSUB(1)
0
SETUP TIME IN SECONDS WAS
TNEW
2.624063
HALFN
3
EQN
( 2*R*%3%CK(-2) + 12%K#*%3%CK(0) + 2%K**3%CK(2) - 8*K¥**2*%CK(-2) -
LRRE*2KRCR (=1) + 4¥K**2%CK(1) + 8*K*%*2%CK(2) + K*CK(-3) + 2%K*CK(-2) -
K*CK(-1) - 20*%K*CK(0) - K*CK(1) + 2%K*CK(2) + K*CK(3) + CK(-3) +
12#CK(-2) + 5%CK(-1) = 5%CK(1l) - 12%CKR(2) - CK(3) ) /
( (8 ) * (K-1)* (K+1))
TIME IN SECONDS TO GENERATE EQN WAS
TNEW
1.603859E2
KMAX
10

KMIN



it

#

U

#

#

#

#

TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS

TNEW

4,590784E1

0
CIREAL

1.3103210883040351

I
1
CIREAL
1.2518273563200095
I
2
CIREAL
6.2578023488704703D~1
I
3
CIREAL
6.7580968605735406D-2
I
4
CIREAL
-2.8128516370876885D-2
I
5
CIREAL

-8.50766923580579D-3

49.



#

#

#

#

#

CIRE

CIRE

CIRE

CIRE

6
AL

1.1933398999046909D-3

7
AL

8.2633593688356083D-4

8
AL

~5.6255230591884712D-5

9

AL

-8.4639206476243919D-5

CIRE

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

TNEW

TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

10
AL

2.1981245889578582D-6

3.073631E1

2.397361E2

50.



51.

Output for Problem #6:

# DIFFEQ
X*%2%DY(2) + X**2 + X*Y - DY(1l) + DY(2) - 2
# CONDN(1)
YX(1) -1
# CONDN(2)
( 4*%YX(2) - YX(3) 4+ 2*%DYX(1,1) ) / 2
# XSUB(1)
0
# XSUB(2)
1
# XSUB(3)
-1
# SETUP TIME IN SECONDS WAS
# TNEW
2.876594
# HALFN
3
# EQN
( 2%R**3%CK(-2) + L12*K**3%CK(0) + 2*K**3%CK(2) - 8*K**2*CK(-2) -
LAR*X2KCK(~1) + 4*K**2XCKR(1) + 8*K**2%CK(2) + K*CK(-3) + 2%K*CK(-2) -
K*CK(~1) = 20*K*%CK(0) - K*CK(1l) + 2*%K*CK(2) + K*CK(3) + CK(-3) +
12#%#CK(-2) + 5*%CK(~1) - 5*CK(1) - 12#%CK(2) - CK(3) ) /
( (8% ) * (K =-1) * (K+ 1))
# TIME IN SECONDS TO GENERATE EQN WAS
# TNEW
1.663187E2

# KMAX

10



#

#

#

i

#

KMIN

0

TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS

TNEW

4,471497E1

0
CIREAL

2.5864002340529057

1
CIREAL

-6.6599579752459272D~1

I
2
CIREAL
2.8178328741588448D~1
I
3
CIREAL
-8.3193206117771278D-4
1
4
CIREAL
-1.,075724962261317D-2
I
5
CIREAL

-2.0446971804471966D-3

52.



#

#

#

#

CIRE

CIRE

CIRE

CIRE

CIRE

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

TNEW

TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

6
AL

6.137753799358776D-4

7
AL

2.2540267642660495D-4

8
AL

~4,2427950460695613D-5
9

AL
-2,4561056803043421D-5
10

AL

3.376659126541022D-6

3.523827E1

2.492322E2

53.



Output for Problem #7:

#

#

#

#
#

#

DIFFEQ
X*%2%DY(2) + X%%2 4+ X*Y - DY(Ll) + DY(2) - 2
CONDN(1)
- ( MU(1) - ¥YX(1) )
CONDN (2)
- ( MU(2) - DYX(1,1) )
XSUB(1)
0
SETUP TIME IN SECONDS WAS

TNEW
2.750297

HALFN
3

EQN
( 2%R¥*3%CK(-2) + 12%K*%3%CK(0) + 2%K#%*3%CK(2) - B*K**2%CK(-2) -
4*K*¥2*CK(-1) + 4*K*%2%CK(1) + 8#K**2%CK(2) + K*CK(~3) + 2*%K*CK(-2) -
K*CK(~1) - 20%K*CK(0) - K*CK(1l) + 2*K*CK(2) + K*CK(3) + CK(-3) +
12%CK(-2) + 5%CK(~1) = 5%CR(1l) - 12*CK(2) - CK(3) ) /
( (8% ) * (K=~-1)* (K+1))

TIME IN SECONDS TO GENERATE EQN WAS

TNEW
1.555058E2

KMAX
10

KMIN



#

#

#

TIME

TNEW

c(0)

c(l)

c(2)

c(3)

c(4)

c(5)

Cc(6)

c(7)

55.

IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
4,306044E1

( 21_0547435509_8623733708*MU(1) + 4_4702227539_4233242729*MU(2) +

9_4585562410_3555401191 ) / 10_630050224]1 1190143842

- ( 5571748110_3512052608*MU(1) - 5_7511040545_4997541555%*MU(2) -

9023897802_5241121150 ) / 5_3150251120_5595071921

- ( 2575602633_3634042432*%MU(1) - 4_2111341444 3754169617%MU(2) -

9 0930165149_7915697151 ) / 21_2601004482_2380287684

- 4 % (1278187474 _2516703376*MU(1) - 864765940_1664884758%MU(2) -

1829193150_6517017541 ) / 15_9450753361_6785215763

- 4 % (137624071 _9711816020%MU(1) + 770943497_4538133479*MU(2) +

1097853643_8457309569 ) / 26_5751255602_7975359605

4 % ( 6931313 1394551760%MU(1) - 12947844 1445108738*MU(2) -

24734218_6907272553 ) / 1_7716750373_5198357307

( 120619415 _3776349040*MU(1) + 194553902_6717647067%MU(2) +

228288199_6995532117 ) / 35_4335007470_3967146140

- ( 1865053_2159914032*%MU(1) - 5241070_8413904289*MU(2) -

9398916_6993553341 ) / 1_7716750373_5198357307



#

#

#

Cc(8)

c(9)

c(10

TIME

TNEW

TOTA

TNEW

- ( 4157803_8208257444*%MU(1) + 3358743_9829835467*MU(2) +

2621215_2844239333 ) / 10_6300502241_1190143842

( 1317769_1471312944%MU(1) - 4930842 _6448138751*MU(2) -
8564942 5957359215 ) / 15_9450753361_6785215763

)
( 949373_8117352880*MU(1) + 417073_6266786805*MU(2) +

50249 8690515483 ) / 21_2601004482_2380287684

IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS

2.971733E1

L ELAPSED TIME IN SECONDS WAS

2,.311168E2

56.



57.

Output for Problem #8:

# DIFFEQ
- (Y -~ DY(4) )

# CONDN(1)
( 2%YX(1) - 3 ) [/ 2

# CONDN(2)
( 2%DYX(1l,1) + 1) / 2

# CONDN(3)
( 2%D¥YX(2,1) + 3 ) / 2

# CONDN(4)
( 2*DYX(3,1) - 1) / 2

# XSUB(1)
0

# SETUP TIME IN SECONDS WAS

# TNEW
3.020562

# HALFN
4

# EQN
( 16%K**7*CK(0) - 224*K**5%CK(0) - K**3*CK(-4) + 4¥R**3%CK(-2) +
778%K*%3%CK(0) + 4*K**3%CK(2) - K*%*3%CK(4) - 6*K**2%CK(-4) +
12#K**2KCK(~2) - 12*K**2%CK(2) + 6%K**2%CK(4) =~ L1*K#ACK(-4) -
16*%K*CK (-2) - 522%K*CK(0) - 16%K*CK(2) - 11*K*CK(4) - 6*CK(-4) -~
L8*CK (-2) + 48%CK(2) + 6*CK(4) ) /
( (16%*K ) * (K -3 ) * (K~-2) * (K -1 )y * ( K+ 1) * (K + 2
(K +3))

# TIME IN SECONDS TO GENERATE EQN WAS

# TNEW

2.551718E2



#

#

#

#

#

KMAX

10

KMIN

0

TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS

TNEW

8.6468E1

0
CIRFAL

2.2955930595685642

1
CIREAL

-4.,4005058389317173D~1

2
CIREAL

-3.4471045484991001D~1

3
CIREAL

1.9563354643780871D-2

4
CIREAL

7.4299168922810961D~-3

58.



#

#

#

#

#

#

I
5
CIREAL
-2.4975773010151088D-4
I
6
CIREAL
~6.2815014016567472D-5
I
7
CIREAL
1.5023258717627605D-6
1
8
CIREAL
2.8267032515938945D-7
I
9
CIREAL
-5.249249830289044D-9
I
10
CIREAL

-7.8918450757498436D-10
TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS
TNEW

2.812091E1
TOTAL ELAPSED TIME IN SECONDS WAS

TNEW

3.728641E2

59.




60.

OQutput for Problem #9:

# DIFFEQ
- (¥ - DY(4) )
# CONDN(1)
YX(1)
# CONDN(2)
¥xX(2) -1
# CONDN(3)
DYX(2,1)
# CONDN(4)
- ( DYX(1,2) - DYX(3,3) )
# XSUB(1)
0
# XSUB(2)
1
# XSUB(3)
-1
# SETUP TIME IN SECONDS WAS
# TNEW
2.81425
# HALFN
4
# EQN
( 16*K*%7%CR(0) - 224*K**5%CK(0) - K**3*CK(-4) + 4*K**3%CK(-2) +
778%K*%3%CK(0) + 4*K**3%CK(2) - K**3*CK(4) - 6*K**2%CK(-4) +
12%R*%2%CR(=2) - 12%K**2%CK(2) + 6*K**2%CK(4) - 11%K*CK(-4) -
16*K*CK(~2) - 522%K*CK(0) -~ 16*K*CK(2) - 11%R*CK(4) - 6%CK(~4) -

48*%CK(=2) + 48%CK(2) + 6%CK(4) ) /



#

#

#

f

#

#

#

( (16*K ) * (K =3 ) * (K=-2)* (K~-1)%* (K+1)* (K+2)

(K+3))
TIME IN SECONDS TO CENERATE EQN WAS
TNEW
2.659498E2
KMAX
10
KMIN
0
TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS
TNEW

9.462813E1

0
CIREAL

0.

1
CIREAL

9.6180809569416168D~-1

2
CIREAL

0.

3
CIREAL

3.7727187701446803D-2

61.



#

#

#

#

#

#

#

#

I
4
CIREAL
0.
I
5
CIREAL
4.6198559351485736D-4
I
6
CIREAL
0.
I
7
CIREAL
2.7216194040764672D-6
I
8
CIREAL
0.
I
9
CIREAL
9.3913839511844239D-9
I
10
CIREAL

0.

62.



# TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS
# TNEW
2.973214E1
# TOTAL ELAPSED TIME IN SECONDS WAS
# TNEW

3.932103E2

63.



64.

Output for Problem #10:

#t

#

#

#

#
#

#

DIFFEQ
- ( 2%X*%2%DY(2) + 2%XADY(1) - 2%X*DY(2) =~ 8*Y - DY(l) ) / 2
CONDN(1)
YX(1) - 1
CONDN(2)
¥X(2) - 1
XSUB(1)
0
XSUB(2)
1
SETUP TIME IN SECONDS WAS
TNEW
2.434891
HALFN
2
EQN
- ( R#*3%CK(-2) - 2%K¥**3%CK(-1) + 2%K*%3*CR(0) - 2%K**3*CK(1) +
K#%%3%CK(2) - 3#K*%2%CK(-2) + 3*K¥*2%CK(-1) - 3*R**2%CK(l) +
JXR#X2HCK (2) - 4*R*CK(-2) + 2%K*CK(-1) + 4*K*CK(0) + 2%K*CK(1) =
4L¥K*CR(2) = 3%CK(-1) + 3*CK(1) ) / ( ( 4*k ) * ( K =1 ) * (K + 1))
TIME IN SECONDS TO GENERATE EQN WAS
TNEW
4.37198E1
KMAX
10

KMIN



#

#

#

TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS

TNEW

3.927061E1
I

0
CIREAL

1.D01
I

1
CIREAL

-8.
I

2
CIREAL

4,
I

3
CIREAL

0.
I

4
CIREAL

0.
1

5
CIREAL

OI

65.



#

#

#

I

6
CIREAL

0.
I

7
CIREAL

0.
I

8
CIREAL

0.
I

9
CIREAL

0.
I

10
CIREAL

0.

TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS
TNEW
3.129861E1
TOTAL ELAPSED TIME IN SECONDS WAS
TNEW

1.168089E2

66.



67.

Output for Problem #11:

# DIFFEQ

#

#

COND

COND

XSUB

XSUB

SETU

TNEW

HALF

EQN

- ( X%**2%DY(2) + X*DY(1)*MU(1l) + X*DY(1)*MU(2) + X*DY(l) - X*DY(2) +
Y*MU (1) *MU(2) - DY(1)*MU(3) )

N(1l)

YX(1) -1

N(2)

¥YX(2) + 1

(1)

0

(2)

1

P TIME IN SECONDS WAS

2.60425
N

2

- ( K*%3%CK(~2) - 2%R**3%CK(-1) + 2%K*%3%CK(0) - 2%K**3%CKR(1l) +
K*¥%3%CK(2) + K**2*CK(=-2)*MU(1l) + K*¥*%2*%CR(-2)*MU(2) - 3*K**2%CK(-2) =
2RR*AR2KXCR(=1)*MU(3) + 4*K*¥*2%CK(-1) + 2%K*%*2%CR(1)*MU(3) -

4¥K*X2%XCK(1) - K**2%CK(2)*MU(1) - K*#*2%CK(2)*MU(2) + 3*K**2%CK(2) +
K*¥CK(~2) *MU (1) *MU(2) - R*CK(-2)*MU(1l) - K*CR(=-2)*MU(2) + 2%K*CK(-1) -
2*%K*CK(0) *MU (1) *MU(2) + 2*%K*CK(0)*MU(l) + 2%K*CK(0)*MU(2) - 4*K*CK(0) +
2%R*CK(1) + K*CK(2)*MU(1)*MU(2) - K*CK(2)*MU(l) - K*CK(2)*MU(2) +
CR(-2)*MU (1) *MU(2) - 2%CR(=2)*MU(1) - 2*CR(~2)*MU(2) + 4*CK(-2) +
2*CK(-1)*MU(3) - 4*CK(~1) =~ 2*%CK(1)*MU(3) + 4*CK(1) - CK(2)*MU(1l)*

MU(2) + 2%CR(2)*MU(1) + 2*%CK(2)*MU(2) -~ 4*%CK(2) ) /



( (4*Rk ) *# (K =-1) * ( K+ 1))
# TIME IN SECONDS TO GENERATE EQN WAS
# TNEW

1.425576E2

68.




69.

Output for Problem #12:

#

#

#

#
#

#

DIFF

COND

COND

XSUB

XSUB

SETU

TNEW

HALF

EQN

TIME

TNEVW

EQ

X*Y#*#MU(1) + DY(2)
N(1)

¥X(1)

N(2)

¥X(2)

(1)

-1

(2)

1

P TIME IN SECONDS WAS

1.660141
N

3

( 8*%K*%3*%CK(0) + K*CK(-3)*MU(1) - K*CK(-1)#*MU(l) - B8*K*CK(0) -
K*¥CK(1)*MU (1) + K*CK(3)*MU(1) + CR(=3)*MU(1) + CK(-1)*MU(l) -
CK(1)*MU(1) =~ CK(3)*MU(1) Y/ (8% ) * ( K-1) % (K+1))

IN SECONDS TO GENERATE EQN WAS

3.022622E1



70

7. Source Listing of ALTRAN Procedures

The ALTRAN implementation of the method described in this
report is given in this section. There are ten ALTRAN procedures and then
the last page contains sample input for Problems 6 and 9 of the preceeding

sgation,

Index of Procedures:

MAIN - p. 71

POWERS - p. 77

RECURR - p. 78
CHFORM - p. 81
PRODTK - p. 82
INTEGR - p. 83
SOLVER - p. 84

VALUES - p. 87
EVAL - p. 92
DERIV - p. 93

Sample TInput - p. %4



#
#
#
#
#

71

MAIN PROCEDURE FOR THE CHEBYSHEV SERIES SOLUTION OF A
LINEAR ODE.

THE INPUT IS, IN THE FOLLOWING SEQUENCE:
KMAX - DEGREE OF TRUNCATED CHEBYSHEV SERIES SOLUTION
.. DESIRED; :
~“ORDER - THE ORDER OF TH: DIFFERENTIAL EQUATION
* DIFFEQ — THE DIFFERENTIAL EQUATION AS A MULTINOMIAL IN
THE INDETERMINATES: X, Y, DY(1), ... , DY(ORDER)
WHERE X IS THE VARIABLE IN THE POLYNOMIAL COEFFI—
CIENTS AND DY(I) REPRESENTS THE I-TH DERIVATIVE OF
THE UNKNOWN SOLUTION FUNCTION Y;
CONDN(1), ..., CONDN(ORDER) — THE ASSOCIATED CONDITIONS
WRITTEN AS MULTINOMIALS IN THE INDETERMINATES
YX(J) AND DYX(LJ)), 1 <= J <= 5,
] <=1 <= ORDER-1
WHERE ¥X(J) REPRESENTS THE VALUE OF Y AT A POINT
X(J) ANI¥ DYX(I,J) REPRESENTS THE VALUE OF THE I-TH
DERIVATIVE OF Y AT A POINT X(J); ‘
XSUB(1), ..., XSUB(MAXSUB) — RATIONAL NUMBERS SPECIFY—
ING THE VALUES OF THE POINTS X(J) MENTIONED ABOVE,
WHERE MAXSUB IS THE MAXIMUM SUBSCRIPT J USED ABOVE
(I.E. THE NUMBER OF DIFFERENT POINTS APPEARING IN
THE ASSOCIATED CONDITIONS).

THE OUTPUT IS AN ECHO OF THE INPUT FOLLOWED BY THE VALUES
OF HALFN AND EQN WHERE EQN IS THE (LEFT-HAND SIDE OF
THE) GENERAL RECURRENCE EQUATION AND HALFN IS ITS
"HALF—LENGTH". THEN FOLLOWS SOME INFORMATION ABOUT THE
CHOICE Of KMl AND POSSIBLY UPDATED VALUES OF KMAX WITH
RESPECT TO THE SOLUTION OF THE GENERAL RECURRENCE EQUA-
TION. FINALLY, THE COMPUTED VALUES OF THE CHEBYSHEV
COEFFICIENTS ARE PRINTED OUT, AS LONG REALS IF POSSIBLE

(LLE. IF THE GIVEN PROBLEM CONTAINED NO INDETERMINATES)
AND OTHERWISE IN SYMBOLIC FORM.

INTEGER 1, & M. MAXDEG, DEGRHS, MAXSUB, HALFN, N, DEGREE, KMIN

INTEGER KM
INTEGER OR
RATIONAL ARE:

X = SIREAD()

©(1:5) XSUB

REAL TOLD, TNEW

LONG REAL CIREAL

ALGEBRAIC ARRAY (0:ORDER) POLY

ALGEBRAIC RPOLY, LHS, EQN, NEWEQN RHS, RHCOEF, LCOEF LCVAL



DEF:

72

ALGEBRAIC (K:20, TK(—10:10):1, CK(—10:10):1, T(0:10):1,
PAR(1:10):1, X:8, Y:1, DY(I:IMAX(ORDER,1)):1, MU(1:5):30,
YX(1:5):1, DYX(1:IMAX(ORDER—1,1), 1:5%:1 ) DIFFEQ
# NOTE: THE ABOVE LAYOUT SHOULD BE SUFFICIENT IF
& 'MAX. DEG. IN X' + ORDER <= 10 .
ALGEBRAIC ARRAY (I:IMAX(ORDER,1)) CONDN
LONG ALGEBRAIC ARRAY C, VAL
ALGEBRAIC ARRAY XLIST, RLIST, INDET
EXTERNAL ALGEBRAIC XK=K
EXTERNAL ALGEBRAIC ARRAY XTK=TK, XCK=CK, XT=T, XPAR=PAR
EXTERNAL ALGEBRAIC ARRAY XYX=YX, XDYX=DYX
EXTERNAL ALGEBRAIC ARRAY XPOWER
LONG RATIONAL ALTRAN LQT
ALGEBRAIC ALTRAN CHFORM, PINTN
ALGEBRAIC ARRAY ALTRAN POWERS
LONG ALGEBRAIC ARRAY ALTRAN SOLVER, VALUES

# READ IN THE DIFFERENTIAL EQUATION.

READ DIFFEQ
WRITE DIFFEQ

# READ IN THE ASSOCIATED CONDITIONS.

CONDN(1) = DIFFEQ # JUST DEFINES THE LAYOUT FOR CONDN .
DO M = 1, ORDER '

READ CONDN((M)

WRITE CONDN(M)
DOEND

PO J =51, ~1
DO M = 1, ORDER
IF ( DEG(CONDN(M), YX(J)) > 0) GO TO DEF
DO I = 1, ORDER-1
IF ( DEG(CONDN(M), DYX(L,J)) > 0 ) GO TO DEF
DOEND
DOEND
DOEND
MAXSUB = J

DO I = 1, MAXSUB
READ XSUB(J)
WRITE XSUB()

DOEND
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# PICK OFF THE POLYNOMIAL COEFFICIENTS AND DETERMINE MAXIMUM
# DEGREE OF POLYNOMIAL TO BE CONVERTED TO CHEBYSHEV FORM.

POLY(0) = GETBLK(DIFFEQ, Y, 1)
MAXDEG = DEG(POLY(0), X)
LHS = POLY(0) * Y
DO I = 1, ORDER
POLY(I) = GETBLK(DIFFEQ, DY(I), 1)
MAXDEG = IMAX(MAXDEG, DEG(POLY(I), X))
LHS = LHS + POLY(I) * DY(I)
DOEND
RPOLY = LHS — DIFFEQ
DEGRHS = DEG(RPOLY, X)
IF (RPOLY <> 0) DEGRHS = DEGRHS + ORDER # NOTE: RPOLY IS
4 INTEGRATED BEFORE CONVERSION.
MAXDEG = IMAX(MAXDEG, DEGRHS)

# PROCEDURE 'POWERS’ COMPUTES THE CHEBYSHEV FORM OF POWERS
4 OF X.

XPOWER = POWERS(MAXDEG)

# PRINT OUT TIMING INFORMATION.

TNEW = TIME(TOLD)

WRITE "SETUP TIME IN SECONDS WAS”, TNEW

# PROCEDURE 'RECURR’ COMPUTES THE GENERAL RECURRENCE EQUA-—
4  TION FOR THE O.D.E., GIVEN ITS L.H.S. POLYNOMIALS.
RECURR(ORDER, POLY, X, EQN, HALFN)

WRITE HALFN, EQN

# COMPUTE THE R.H.S OF THE SYSTEM BY INTEGRATING RPOLY AN
# APPROPRIATE NUMBER OF TIMES (ORDER TIMES) AND THEN
# CONVERTING TO CHEBYSHEV FORM.

XLIST = ORDER$X # LE. XLIST = (X/X,...,X) OF LENGTH ORDER.
RHS = CHFORM( PINTN(RPOLY,XLIST), DEGRHS, X)
# PRINT OUT TIMING INFORMATION.

TNEW = TIME(TOLD)
WRITE "TIME IN SECONDS TO GENERATE EQN WAS’, TNEW
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# THE FOLLOWING CODE SOLVES THE RECURRENCE EQUATION AND THE

4  ASSOCIATED CONDITIONS FOR THE DESIRED CHEBYSHEV COEF—
4  FICIENTS.

# ENSURE THAT KMAX IS LARGE ENOUGH, AND DETERMINE THE VALUE
# KMIN SUCH THAT THE COEFFICIENTS C(KMIN), ..., C(KMAX)
# CAN BE SOLVED FOR EXPLICITLY IN THE RECURRENCE EQUATION,

WRITE KMAX
[F (KMAX < DEGRHS) DO
KMAX = DEGRHS

WRITE “DUE TO DEGREE OF R.H.S., KMAX INCREASED TO”, KMAX
DOEND # END OF IF-STATEMENT.

LCOEF = GETBLK(EQN, CK(—HALFN), 1)
REDEF: KMIN = 0
DO J = 0, KMAX
LCVAL = LCOEF(K = J+HALFN)
IF (LCVAL == 0) KMIN = J+1
DOEND
WRITE KMIN

IF (KMAX < KMIN+HALFN) DO
KMAX = KMIN + HALFN
WRITE "DUE TO VALUE OF KMIN + HALFN, KMAX INCREASED TO”
WRITE KMAX

GO TO REDEF # REDEFINE KMIN.
DOEND # END OF IF-STATEMENT.

# DETERMINE THE LIST OF RIGHT-HAND-SIDES INVOLVED IN SOLVING
4  THE RECURRENCE EQUATION FOR C(KMIN), ..., C(KMAX) .

RLIST = 0%(1) # I.LE. RLIST IS THE EMPTY LIST, INITIALLY.

DO DEGREE = KMIN+HALFN, DEGRHS
RHCOEF = GETBLK(RHS, T(DEGREE), 1)

RLIST = (RLIST, RHCOEF)
DOEND
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4 PROCEDURE 'SOLVER' SOLVES THE RECURRENCE EQUATION FOR THE
4 COEFFICIENTS C(KMIN) TO C(KMAX) IN TERMS OF THE PARA-—

4  METERS PAR(l), ..., PAR(HALFN). THE RECURRENCE EQUA-

4  TION MUST BE IN STANDARD FORM WITH THE INDETERMINATES
4  INDEXED FROM 0 TO N.

N = 2*HALFN
NEWEQN = EQN(K = K+HALFN)

INDET = 1$( CK(—HALFN) )
DOl =1 N

INDET = (INDET, CK(—HALFN+1))
DOEND

SOLV: C = SOLVER(NEWEQN, N, ISINDET, K, RLIST, KMIN, KMAX, PAR, HALFN)

# INTRODUCE FURTHER PARAMETERS FOR UNDEFINED COEFFICIENTS.

DO I = 0, KMIN—1
C(I) = PAR(HALFN + 1 + 1)
DOEND

# PRINT OUT TIMING INFORMATION.

TNEW = TIME(TOLD)
WRITE "TIME IN SECONDS TO COMPUTE PARAMETRIC SOLUTION WAS"
WRITE TNEW

# DETERMINE THE VALUES OF THE PARAMETERS WHICH SATISFY THE
#  ASSOCIATED CONDITIONS AND THE "SPECIAL’ FORMS OF THE
4  RECURRENCE EQUATION, IF ANY.

VAL = VALUES(CONDN, ORDER, XSUB, MAXSUB, EQN, HALFN, HALFN+KMIN,
RHS, C, KMAX, REPEAT)

# SUBSTITUTE THE VALUES FOR THE PARAMETERS IN ARRAY C.

DO I = 0, KMAX
DO J = 1, HALEN+KMIN
c) = CI) PAR(J) = VAL(Q) )
DOEND
DOEND
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# WRITE OUT THE VALUES OF C, AS REALS IF POSSIBLE.

DO I = 0, KMAX
C(l) = LQT(C(I), ASIS) # "LONG RATIONAL TEST".
CIREAL = LR( C(I) ) # "LONG REAL CONVERSION".
WRITE 1, CIREAL
GO TO CONT
ASIS: WRITE C(I) # IF C(I) NOT RATIONAL, WRITE OUT AS IS.
CONT: DOEND

# PRINT OUT FINAL TIMING INFORMATION.

TNEW = TIME(TOLD)

WRITE "TIME IN SECONDS TO COMPUTE VALUES FOR THE PARAMETERS WAS”
WRITE TNEW

TNEW = TIME()

WRITE "TOTAL ELAPSED TIME IN SECONDS WAS", TNEW

GO TO STOP

# IF LINEAR SYSTEM WAS SINGULAR IN PROCEDURE 'VALUES',
# REPEAT WITH KMAX INCREMENTED BY ONE.

REPEAT: KMAX = KMAX + 1
WRITE "PARAMETER EQUATIONS SINGULAR —— KMAX INCREASED TO”
WRITE KMAX .
IF (KMAX <= 20) GO TO SOLV
ELSE WRITE "TERMINATION DUE TO SIZE OF KMAX"

STOP: END # END OF PROCEDURE MAIN,
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PROCEDURE POWERS(MAXDEG)
INTEGER VALUE MAXDEG

4 PROCEDURE TO COMPUTE THE CHEBYSHEV FORM OF THE POWERS X**K
4 FOR 0 <= K <= MAXDEG. THE K—TH CHEBYSHEV POLYNOMIAL IS

4 REPRESENTED BY THE INDETERMINATE XT(K), WHERE XT IS AN

4  EXTERNAL ALGEBRAIC ARRAY OF INDETERMINATES. THE VALUE

4  RETURNED IS AN ARRAY DIMENSIONED 0 TO MAXDEG CONTAINING
4 THE APPROPRIATE CHEBYSHEV FORMS. THE FOLLOWING DECLAR—

4  ATION MUST APPEAR IN THE CALLING PROCEDURE:

4 ALGEBRAIC ARRAY ALTRAN POWERS .

INTEGER K, HALFK, KMOD2, J
INTEGER ARRAY KCHOOS, TEMP
ALGEBRAIC ARRAY (0:MAXDEG) A
EXTERNAL ALGEBRAIC ARRAY XT

AQ) = XT(0)
IF (MAXDEG > 0) A(l) = XT(1)
IF (MAXDEG > 1) AQ2) = (XT(Q2)+XT(0))/2

KCHOOS = 1$(1)
DO K = 3, MAXDEG
KMOD2 = IMOD(K, 2, HALFK)

4 UPDATE ARRAY KCHOOS SO THAT KCHOOS(J) = "K CHOOSE J”,
4 FORJ =1, ., K/2.

IF (KMOD2 == 1) TEMP = KCHOOS
ELSE TEMP = (KCHOOS, KCHOOS(HALFK—1))
KCHOOS = HALFK$(0) # CREATES ARRAY OF DESIRED LENGTH.
KCHOOS(1) = K
DO J = 2, HALFK
KCHOOS(J) = TEMP({J) + TEMP(J—1)
DOEND

# COMPUTE CHEBYSHEV FORM OF X**K INTO ARRAY ELEMENT A(K).

A(K) = XT(K)
DO J = 1, HALFK—1
A(K) = A(K) + KCHOOS(J) * XT(K — 2*J)
DOEND
IF (KMOD2==1) A(K) = (A(K) + KCHOOS(HALFK)*XT(1))/2**(K—1)
ELSE A(K) = (A(K) + 1/2*KCHOOS(HALFK)*XT(0))/2**(K—1)
DOEND
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PROCEDURE RECURR(ORDER, POLY, X, EQN, HALFN)
INTEGER VALUE ORDER
ALGEBRAIC ARRAY VALUE POLY
ALGEBRAIC VALUE X
ALGEBRAIC EQN
INTEGER HALFN

# PROCEDURE TO COMPUTE THE GENERAL RECURRENCE EQUATION FOR A

# LINEAR ODE WITH POLYNOMIAL COEFFICIENTS.

#

# INPUT PARAMETERS:

ORDER — THE ORDER OF THE DIFFERENTIAL EQUATION;

POLY — ARRAY OF LEFT—HAND SIDE POLYNOMIALS SUCH THAT
POLY(ORDER) IS THE COEFFICIENT OF THE HIGHEST-~ORDER
DERIVATIVE, ETC.;

X — THE NAME OF THE INDETERMINATE IN THE POLYNOMIALS.

OUTPUT PARAMETERS:
EQN — THE LEFT SIDE OF THE GENERAL RECURRENCE EQUATION;
HALFN — THE "HALF-LENGTH” OF THE GENERAL RECURRENCE
EQUATION.

EXTERNAL VARIABLES:

XK — THE NAME OF THE INDETERMINATE WHICH WILL APPEAR IN
THE COEFFICIENTS OF THE GENERAL RECURRENCE EQUATION;

XTK — THE ARRAY OF INDETERMINATES SUCH THAT XTK() IS
USED TO REPRESENT THE CHEBYSHEV POLYNOMIAL OF DEGREE
K+J, WHERE K IS AN INDETERMINATE;

XCK — THE ARRAY OF INDETERMINATES SUCH THAT XCK(J) WILL
APPEAR IN THE GENERAL RECURRENCE EQUATION REPRESENT-
ING C(K+J) WHERE K IS AN INDETERMINATE.

PROCEDURES REQUIRED:
CHFORM; PRODTK; INTEGR; DIFFN(A SYSTEM PROCEDURE).

S e S Sk S S S Sk S Sk S Sk Sk T T S Sk Sk S S T T Sk

INTEGER 1, J, M, DEGREE, HALF, SIGN

INTEGER ARRAY ( I:IMAX(ORDER,1), :IMAX(ORDER,!1) ) COMB
ALGEBRAIC P, FACTOR, TERM, COEF

ALGEBRAIC ARRAY XLIST

EXTERNAL ALGEBRAIC XK

EXTERNAL ALGEBRAIC ARRAY XTK, XCK

ALGEBRAIC ALTRAN CHFORM, PRODTK, INTEGR, DIFFN
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# SET UP BINOMIAL COEFFICIENTS IN ORDER—-BY—-ORDER ARRAY COMB.

DO I = 1, ORDER
COMB(L,1) = 1
DO J =2, I-1
COMB(1,J) = COMB(I-1,J—1) + COMB(I—1,])
DOEND
COMB(,D = 1
DOEND

THE FOLLOWING CODE CONVERTS THE L.H.S. OF THE O.D.E. TO
INTEGRATED FORM:
PO*Y + INTEGRAL(P1*Y) + INTEGRAL(INTEGRAL(P2*Y)) +
. + INTEGRAL(INTEGRAL(..(INTEGRAL(PN*Y))...)
WHERE N=ORDER. EACH PASS THROUGH THE M—LOOP DETERMINES
THE APPROPRIATE POLYNOMIAL PM AND CONVERTS IT TO CHERY—
SHEV FORM.
THEN THE SUBSTITUTION
Y = 1/2 * CO)*T(0) + SUM( C(K)*T(K) )
(WHERE THE SUM IS OVER K = 1, 2, 3, ... ) MAKES THE
L.H.S. OF THE O.D.E. AN INFINITE SUM WITH GENERAL TERM
C(K) * FACTOR ,
WHERE
FACTOR = PO*T(K) + INTEGRAL(PI*T(K)) + . . .
+ INTEGRAL(INTEGRAL(..(INTEGRAL( PN*T(K) ))...) .
EACH PASS THROUGH THE LOOP ADDS ONE TERM INTO FACTOR .

S Sk Sk Sk Sk Tk Tk T Tk Sk T Sk Sk Sk Sk Sk

DEGREE = DEG( POLY(ORDER), X)

P = CHFORM( POLY(ORDER), DEGREE, X)
FACTOR = PRODTK(P, DEGREE)

HALFN = DEGREE

DO M = 1, ORDER
# DETERMINE THE M—-TH POLYNOMIAL IN THE INTEGRATED FORM.

P = POLY(ORDER—M) — (ORDER-M+1)*DIFF( POLY(ORDER—M+1), X)
SIGN = -1
XLIST = 1$X # LE. XLIST = (X) INITIALLY.
DO 1 = M-2, 0, —1

SIGN = — SIGN

XLIST = (XLIST, X)

P P + SIGN * COMB(ORDER-I, M—I) *

DIFFN( POLY(ORDER-I), XLIST)

wnZz

T

DOEND
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# CONVERT THE POLYNOMIAL TO CHEBYSHEV FORM.

DEGREE = DEG(P, X)
P = CHFORM(P, DEGREE, X)

# ADD THE APPROPRIATE TERM INTO FACTOR .

TERM = PRODTK(P, DEGREE)
HALF = DEGREE
DOI =1 M
TERM = INTEGR(TERM, HALF)
HALF = HALF + 1
DOEND
FACTOR = FACTOR + TERM

HALFN = IMAX(HALFN, HALF)

DOEND

4 IN EACH TERM OF THE EXPRESSION
# C(K) * FACTOR  (SEE COMMENT ABOVE)

4 DO A CHANGE OF INDEX SO THAT THE COEFFICIENT OF T(K) IS
4  OBTAINED; THIS YIELDS THE GENERAL RECURRENCE EQUATION.

EQN = 0
DO J = —HALFN, HALFN

COEF = GETBLK(FACTOR, XTK(J), 1)

COEF = COEF(XK=XK-1J)

EQN = EQN + COEF*XCK(-1J)
DOEND

END # END OF PROCEDURE RECURR.
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PROCEDURE CHFORM(P, DEGREE, X)
INTEGER VALUE DEGREE
ALGEBRAIC VALUE P, X

# PROCEDURE TO COMPUTE THE CHEBYSHEV FORM OF A POLYNOMIAL P
# OF GIVEN DEGREE IN THE INDETERMINATE X. IT IS ASSUMED

# THAT THE EXTERNAL ARRAY XPOWER HAS BEEN INITIALIZED TO

# CONTAIN THE CHEBYSHEV FORM OF THE POWER X**K AS ITS

# ELEMENT XPOWER(K), FOR 0 <= K <= DEGREE. THE FOLLOWING

# DECLARATION MUST APPEAR IN THE CALLING PROCEDURE:

# ALGEBRAIC ALTRAN CHFORM .

INTEGER K
ALGEBRAIC COEF, NEWP
EXTERNAL ALGEBRAIC ARRAY XPOWER

NEWP = 0
DO K = 0, DEGREE

COEF = GETBLK(P, X, K)

NEWP = NEWP + COEF*XPOWER(K)
DOEND

RETURN(NEWP)

END # END OF PROCEDURE CHFORM.
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PROCEDURE PRODTK(P, DEGREE)
INTEGER YALUE DEGREE
ALGEBRAIC VALUE P

# PROCEDURE TO MULTIPLY A POLYNOMIAL P OF GIVEN DEGREE, AS—
# SUMED TO BE IN CHEBYSHEV FORM, BY THE CHEBYSHEV POLYNO-—
# MIAL OF DEGREE K, WHERE K IS AN INDETERMINATE. IN P,

# THE CHEBYSHEV POLYNOMIAL OF DEGREE J IS REPRESENTED BY

# XT(J) WHERE XT IS AN EXTERNAL ARRAY. THE REPRESENTA-

# TION OF THE CHEBYSHEV POLYNOMIAL OF DEGREE K+J IN THE

# RETURNED POLYNOMIAL, WHERE K IS AN INDETERMINATE, IS

# XTK(J) WHERE XTK IS AN EXTERNAL ARRAY. THE FOLLOWING

# DECLARATION MUST APPEAR IN THE CALLING PROCEDURE:

# ALGEBRAIC ALTRAN PRODTK .

INTEGER J
ALGEBRAIC COEF, NEWP
EXTERNAL ALGEBRAIC ARRAY XTK, XT

NEWP = 0
DO J = 0, DEGREE

COEF = GETBLK(P, XT(J), 1)

NEWP = NEWP + COEF * (XTK(J)+XTK(-J))/2
DOEND
RETURN(NEWP)

END # END OF PROCEDURE PRODTK .
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PROCEDURE INTEGR(P, HALFN)
INTEGER VALUE HALFN
ALGEBRAIC VALUE P

4 PROCEDURE TO INTEGRATE A POLYNOMIAL P WHICH IS ASSUMED TO
4 BE IN CHEBYSHEV FORM, MORE EXPLICITLY IN THE FORM

4 V(0) * XTK(=H) + . .. + V(2*H) * XTK(H)

4  WHERE H = HALFN, XTK IS AN EXTERNAL ARRAY SUCH THAT

4 XTK(J)) REPRESENTS THE CHEBYSHEV POLYNOMIAL OF DEGREE

4 K+J WITH K AN INDETERMINATE, AND V(0), ..., V(2*H) ARE

4  RATIONAL EXPRESSIONS IN THE INDETERMINATE SPECIFIED BY

4 THE EXTERNAL VARIABLE XK. THE FOLLOWING DECLARATION

4  MUST APPEAR IN THE CALLING PROCEDURE:

4 ALGEBRAIC ALTRAN INTEGR .

INTEGER J

ALGEBRAIC NEWP

EXTERNAL ALGEBRAIC XK
EXTERNAL ALGEBRAIC ARRAY XTK

NEWP = 0
DO J = —HALFN, HALFN
NEWP = NEWP + GETBLK(P, XTK(J), 1) * ( XTK(J+1)/(XK+J+1) —
XTK(JI-1)/(XK+I-1) )/2
DOEND

RETURN(NEWP)

END # END OF PROCEDURE INTEGR .
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PROCEDURE SOLVER(EQN, N, ZK, K, RLIST, KMIN, KMAX, PAR, NPAR)
INTEGER VALUE N, KMIN, KMAX, NPAR
ALGEBRAIC VALUE EQN, K
ALGEBRAIC ARRAY VALUE RLIST, PAR
ALGEBRAIC ARRAY (0:N) VALUE ZK

# PROCEDURE TO SOLVE A RECURRENCE EQUATION FOR AN NPAR-—

4  PARAMETER SOLUTION.

#

# INPUT PARAMETERS:

EQN — THE LEFT SIDE OF THE RECURRENCE EQUATION;

N — INDICATES THAT EQN CONTAINS N+1 TERMS:

ZK — ARRAY OF THE N+1 INDETERMINATES APPEARING IN EQN
REPRESENTING THE DEPENDENT VARIABLE Z —— LE. EQN IS
OF THE FORM

U0 * ZK(0) + Ul * ZK(1) + ... + UN * ZK(N)
WHERE THE Ul ARE RATIONAL EXPRESSIONS IN THE INDE—
TERMINATE K AND ZK(I) REPRESENTS Z(K+1I);

K — THE NAME OF THE INDETERMINATE IN EQN;

RLIST — LIST OF RIGHT—HAND SIDES OF THE RECURRENCE EQU-—
ATION CORRESPONDING TO THE CASES K = KMIN, ..., KMAX
OF EQN(THE RIGHT—HAND SIDE IS ZERO BEYOND THE NUMBER
OF ELEMENTS IN RLIST);

KMIN, KMAX — INDICATE THE RANGE OF SUBSCRIPTS FOR WHICH
THE SOLUTION IS TO BE COMPUTED —— IL.E. THE SOLUTION
Z(KMIN), ..., Z(KMAX) IS DESIRED:

PAR — NAMES OF THE PARAMETERS TO BE USED:

NPAR — NUMBER OF PARAMETERS DESIRED IN THE SOLUTION.

OUTPUT:

THE VALUE RETURNED IS AN ARRAY DIMENSIONED FROM 0 TO
KMAX CONTAINING THE DESIRED NPAR-PARAMETER SOLUTION. IF
KMIN > 0 THEN THE FIRST KMIN ELEMENTS OF THE ARRAY ARE
ARBITRARILY SET TO ZERO.

ASSUMPTIONS:

IT IS ASSUMED THAT KMIN >= 0, KMAX >= KMIN+NPAR, AND
THAT KMAX >= KMIN+LENGTH-1 WHERE LENGTH 1S THE LENGTH OF
THE ARRAY RLIST.

THE FOLLOWING DECLARATION MUST APPEAR IN THE CALLING
PROCEDURE:

ALGEBRAIC ARRAY ALTRAN SOLVER .
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INTEGER I, J, NZEROS, KVAL, KLAST, LENGTH, L
ALGEBRAIC U0, ZK0

ALGEBRAIC ARRAY UNLIST

LONG ALGEBRAIC ZKVAL

LONG ALGEBRAIC ARRAY GENSOL, SOLN, VALIST
LONG ALGEBRAIC ARRAY (0:KMAX) Z

4 SOLVE RECURRENCE FOR Z(K).

U0 = GETBLK(EQN, ZK(0), 1)

ZKO = ZK(0) - EQN / U0

4 'UNLIST' IS THE LIST OF UNKNOWNS IN ZKO.
$C ZK(1) )

1%
N
= (UNLIST, ZK(L))

# COMPUTE NPAR INDEPENDENT SOLUTIONS AND FORM THEIR LINEAR
# COMBINATION INTO GENSOL.

GENSOL =
DO I = 1, NPAR

SOLN = 15(1)
NZEROS = N

DO KVAL = KMAX-I, KMIN, -1

NZEROS = NZEROS - 1
IF (NZEROS >= 0) VALIST = (SOLN, NZEROS$0)

ELSE DO
VALIST 1$( SOLN(1) )
DOJ =2 N
VALIST = (VALIST, SOLN(J))
DOEND

DOEND # END OF ELSE-CLAUSE.

ZKVAL = ZKOK = KVAL)UNLIST = VALIST)
SOLN = (ZKVAL, SOLN)

DOEND

GENSOL = GENSOL + PAR(I) * (SOLN, (I-1)$0)




# COMPUTE A PARTICULAR SOLUTION AND ADD IT INTO GENSOL.

LENGTH = DBINFO(RLIST)(0,1)
IF (LENGTH > 0) DO
KLAST = KMIN + LENGTH - 1
SOLN = 1$( RLIST(LENGTH) / UO(K=KLAST) )
NZEROS = N; L = LENGTH
DO KVAL = KLAST-1, KMIN, —1

NZEROS = NZEROS -1
IF (NZEROS >= 0) VALIST = (SOLN, NZEROSS$0)

ELSE DO
VALIST 1$( SOLN(1) )
DOJ =2 N
VALI = (VALIST, SOLN())
DOEND

DOEND # END OF ELSE- CLAUSE.

ZKVAL = ZKO(K = KVAL)UNLIST = VALIST)
L = L-1
ZKVAL = ZKVAL + RLIST(L) / UXK=KVAL)

SOLN = (ZKVAL, SOLN)

DOEND

GENSOL = GENSOL + (SOLN, (KMAX-KLAST)$0)
DOEND # END OF IF—STATEMENT.
4 RETURN 'GENSOL’ IN POSITIONS KMIN TO KMAX OF ARRAY Z,
4 WHICH IS DIMENSIONED FROM 0 TO KMAX.
7 = 1$(KMIN$0, GENSOL)
RETURN( Z )

END # END OF PROCEDURE SOLVER .
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PROCEDURE VALUES(CONDN, ORDER, XSUB, MAXSUB, EQN, HALFN, NEQNS,

_ RHS, C, KMAX, LAB)

INTEGER VALUE ORDER, MAXSUB, HALFN, NEQNS, KMAX

RATIONAL ARRAY VALUE XSUB

ALGEBRAIC VALUE EQN, RHS

ALGEBRAIC ARRAY VALUE CONDN

LONG ALGEBRAIC ARRAY VALUE C

LABEL LAB

PROCEDURE TO DETERMINE VALUES FOR THE PARAMETERS APPEARING
IN THE GENERAL SOLUTION OF THE RECURRENCE EQUATION BY
INVOKING THE INITIAL EQUATIONS, WHICH ARE DETERMINED BY
THE ASSOCIATED CONDITIONS OF THE DIFFERENTIAL EQUATION
AND ALSO BY THE SPECIAL CASES OF THE GENERAL RECURRENCE
EQUATION.

#

#

#

#

#

#

#

# INPUT PARAMETERS:

# ~ CONDN — AN ARRAY OF THE ASSOCIATED CONDITIONS OF THE

4 DIFFERENTIAL EQUATION;

# ORDER — THE ORDER OF THE DIFFERENTIAL EQUATION;

4  XSUB — AN ARRAY CONTAINING THE POINTS OF EVALUATION

# USED IN THE INITIAL CONDITIONS;

4 MAXSUB — THE LENGTH OF ARRAY XSUB;

# EQN — THE GENERAL RECURRENCE EQUATION;

4 HALFN — THE "HALF—-LENGTH” OF EQN;

# NEQNS — THE NUMBER OF INITIAL EQUATIONS TO BE USED,

4 WHICH MUST CORRESPOND TO THE NUMBER OF PARAMETERS IN
4 THE GENERAL SOLUTION (THE FIRST ORDER EQUATIONS COME
4 FROM THE ASSOCIATED CONDITIONS OF THE DIFFERENTIAL

4 EQUATION AND THE REST ARE SPECIAL CASES OF THE GENE—
4 RAL RECURRENCE EQUATIONY;

4 RHS — THE RIGHT-HAND SIDE OF THE INTEGRATED FORM OF THE
4 DIFFERENTIAL EQUATION, IN CHEBYSHEV FORM:;

# C — AN ARRAY DIMENSIONED FROM 0 TO KMAX CONTAINING

4 THE PARAMETRIC SOLUTION OF THE GENERAL RECURRENCE

4 EQUATION;

4  KMAX — THE DEGREE OF THE SOLUTION BEING OBTAINED:;

4  LAB — LABEL VARIABLE TO WHICH THE PROCEDURE WILL RETURN
4 IF THE LINEAR EQUATIONS DEFINING THE PARAMETERS ARE

4 SINGULAR.

#

# OUTPUT:
#  THE VALUE RETURNED IS AN ARRAY DIMENSIONED FROM 1 TO
# NEQNS CONTAINING THE COMPUTED VALUES OF THE PARAMETERS.
#
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4 EXTERNAL VARIABLES:

4 XK — THE NAME OF THE INDETERMINATE WHICH APPEARS IN THE
# GENERAL RECURRENCE EQUATION AS THE INDEPENDENT VARI-
4 ABLE;

4  XCK — THE ARRAY OF INDETERMINATES SUCH THAT XCK(J) REP—
# RESENTS THE TERM C(K+J) IN THE GENERAL RECURRENCE
4 EQUATION;

# XT — THE ARRAY OF INDETERMINATES SUCH THAT XT(J) REPRE-
4 SENTS THE CHEBYSHEV POLYNOMIAL OF DEGREE J IN THE
4 POLYNOMIAL RHS;

4 XPAR — THE NAMES OF THE PARAMETERS APPEARING IN THE

4 GENERAL SOLUTION C;

4 XYX — THE ARRAY OF INDETERMINATES APPEARING IN THE AS—
4 SOCIATED CONDITIONS (L.E. IN THE ARRAY CONDN) REPRE-

4 SENTING THE Y-VALUES AT VARIOUS POINTS;

4  XDYX — THE ARRAY OF INDETERMINATES APPEARING IN THE AS—
4 SOCIATED CONDITIONS (I.LE. IN THE ARRAY CONDN) REPRE—

4 SENTING THE DERIVATIVES OF Y AT VARIOUS POINTS.

#

#

#

#

#

#

#

#

#

#

#

PROCEDURES REQUIRED:
EVAL; DERIV; ASOLVE AND LIT (TWO SYSTEM PROCEDURES).

ASSUMPTIONS:
IT IS ASSUMED THAT KMAX >= HALFN AND KMAX >= ORDER-1
(THE FORMER SUBSUMES THE LATTER SINCE HALFN >= ORDER).

THE FOLLOWING DECLARATION MUST APPEAR IN THE CALLING
PROCEDURE:
ALGEBRAIC ARRAY ALTRAN VALUES .

INTEGER I, J, M, L, DEGREE, NDIFF, KVALUE
ALGEBRAIC RHCOEF

LONG ALGEBRAIC LHS, NUM, DEN, COEF

LONG ALGEBRAIC ARRAY (1:NEQNS) ROW, B, SOLN
LONG ALGEBRAIC ARRAY (1:NEQNS, I'NEQNS) A
ALGEBRAIC ARRAY UNLIST

LONG ALGEBRAIC ARRAY VALIST, CDIFF
EXTERNAL ALGEBRAIC XK

EXTERNAL ALGEBRAIC ARRAY XYX, XDYX, XCK, XT, XPAR
LONG INTEGER ALTRAN LIT

LONG ALGEBRAIC ALTRAN EVAL

LONG ALGEBRAIC ARRAY ALTRAN DERIV, ASOLVE
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4 BUILD UP LIST OF SUBSTITUTIONS FOR ALL Y—VALUES APPEARING
4 IN THE INITIAL CONDITIONS.

DO J = 1, MAXSUB
DO M = 1, ORDER
IF ( DEG(CONDN(M), XYX(J)) > 0 ) DO
UNLIST = ( UNLIST, XYX(J) )
VALIST = ( VALIST, EVAL(C, KMAX, XSUB(J)) )
GO TO OUT
DOEND # END OF IF-STATEMENT.
DOEND
OUT: DOEND

# BUILD UP LIST OF SUBSTITUTIONS FOR ALL DERIVATIVE VALUES
# APPEARING IN THE INITIAL CONDITIONS.

CDIFF = C; DEGREE = KMAX

DO I = 1, ORDER-1
DO J = 1, MAXSUB
DO M = 1, ORDER

IF ( DEG(CONDN(M), XDYX(1,J)) > 0) DO

# "CDIFF” SHOULD REPRESENT THE I-TH DERIVATIVE

# OF Y. IF DEGREE = KMAX-I THEN IT DOES; OTHER—
# WISE NDIFF DIFFERENTIATIONS OF THE SERIES ARE
# REQUIRED.

NDIFF = DEGREE — (KMAX-I)

DO L = 1, NDIFF
CDIFF = DERIV(CDIFF, DEGREE)
DEGREE = DEGREE - 1

DOEND

UNLIST = ( UNLIST, XDYX(L,J) )
VALIST = ( VALIST, EVAL(CDIFF, DEGREE, XSUB()) )
GO TO ESCAPE

DOEND # END OF IF-STATEMENT.

DOEND
ESCAPE: DOEND
DOEND
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# THE FIRST "ORDER” ROWS OF THE LINEAR SYSTEM ARE DETERMINED
# BY THE INITIAL CONDITIONS.

DO M = 1, ORDER
ROW(M) = CONDN(M)UNLIST = VALIST)
DOEND

# THE REMAINING ROWS OF THE LINEAR SYSTEM ARE DETERMINED BY
# THE SPECIAL CASES OF THE RECURRENCE EQUATION FOR VALUES
# OF K (IF ANY) IN. THE RANGE ORDER <= K <= NEQNS-1 .

# FIRST, SET UP LIST OF UNKNOWNS APPEARING IN EQN .

UNLIST = 0SUNLIST # I.LE. MAKE UNLIST THE EMPTY LIST.
DO J = —HALFN, HALFN

UNLIST = ( UNLIST, XCK{J) )
DOEND

# FOR EACH ROW, SET UP LIST OF SUBSTITUTIONS AND SUBSTITUTE.
DO KVALUE = ORDER, NEQNS—1
VALIST = O$VALIST # I.E. MAKE VALIST THE EMPTY LIST.

IF (KVALUE == 0) VALIST = (HALFN$0, C(0)/2)
ELSE DO J = HALFN, KVALUE, —1
VALIST = ( VALIST, C(J—KVALUE) )
DOEND

DO J = —IMIN(KVALUE—1,HALFN), HALFN
IF (KVALUE+4J <= KMAX) VALIST = ( VALIST, C(KVALUE+J) )
ELSE VALIST = (VALIST, 0)
DOEND

LHS = EQN(XK = KVALUE)UNLIST = VALIST)
RHCOEF = GETBLK(RHS, XT(KVALUE), 1)
ROW(KVALUE+1) = LHS — RHCOEF

DOEND

# REMOVE THE DENOMINATOR FROM EACH ROW, CHECKING FIRST THAT
4 IT IS A CONSTANT, SINCE THE LINEAR SYSTEM IS

4 ROW() = 0, [ = 1, ..., NEQNS .

# THIS WILL MAKE THE LINEAR SYSTEM SOLVER MORE EFFICIENT.

DO I = 1, NEQNS

DEN = ADEN(ROW(I), NUM)
DEN = LIT(DEN, OMIT) # "LONG INTEGER TEST”
- ROW(I) = NUM  # ASSIGN THE NUMERATOR TO ROW(I).

 OMIT:DOEND # IF DEN NOT AN INTEGER, ROW(I) IS LEFT UNCHANGED.



# ASSIGN COEFFICIENT MATRIX OF LINEAR SYSTEM TO "A” AND
# RIGHT-HAND SIDE TO "B".

DO 1 = 1, NEQNS
LHS =

DO J = 1, NEQNS
COEF = GETBLK(ROW(I), XPAR(J), 1)

A(LJ) = COEF
LHS = LHS + COEF*XPAR(J)
DOEND

B(I) = LHS — ROW(])

DOEND

# SOLVE THE LINEAR SYSTEM.

SOLN = ASOLVE(A, B, SING)
RETURN( SOLN )

# IF LINEAR SYSTEM WAS SINGULAR, RETURN TO THE LABEL "“LAB".

SING: RETURN LAB

END # END OF PROCEDURE VALUES.
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PROCEDURE EVAL(C, DEGREE, XVALUE)
LONG ALGEBRAIC ARRAY VALUE C
INTEGER VALUE DEGREE
RATIONAL VALUE XVALUE

# PROCEDURE TO EVALUATE A TRUNCATED CHEBYSHEV SERIES C OF
# GIVEN DEGREE AT THE GIVEN POINT XVALUE. THE FOLLOWING
# DECLARATION MUST APPEAR IN THE CALLING PROCEDURE:
# ALGEBRAIC ALTRAN EVAL .

INTEGER I
RATIONAL TWOX
LONG ALGEBRAIC BOLD, TEMP, B

TWOX = 2*XVALUE
BOLD = 0; TEMP = 0
B = C(DEGREE)

DO I = DEGREE-1, 0, —1
BOLD = TEMP

TEMP = B
B = TWOX*B — BOLD + C(I)
DOEND

RETURN( (B—BOLD)/2 )

END # END OF PROCEDURE EVAL .
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PROCEDURE DERIV(C, DEGREE)
LONG ALGEBRAIC ARRAY VALUE C
INTEGER VALUE DEGREE

# PROCEDURE TO DIFFERENTIATE A TRUNCATED CHEBYSHEV SERIES C
# OF GIVEN DEGREE. THE FOLLOWING DECLARATION MUST APPEAR
# IN THE CALLING PROCEDURE:

# ALGEBRAIC ARRAY ALTRAN DERIV .

INTEGER 1
LONG ALGEBRAIC ARRAY (0:DEGREE—1) CNEW

CNEW(DEGREE-1)
CNEW(DEGREE-2)

2 * DEGREE * C(DEGREE)
2 * (DEGREE-1) * C(DEGREE-1)

DO 1 = DEGREE-2, 1, —I

CNEW(I-1) = 2*I*C(I) + CNEW(I+1)
DOEND
RETURN( CNEW )

END # END OF PROCEDURE DERIV,



S AR LR
S+ X**z) * DY(z) DY(I) +oX* Y
CYX() |
DYX(, 1) + 2% YX(2) . 1 /2 * YX(3)
0 -
T

‘ S‘éﬁple Input for Problem 9:

10
4 ' .

DY@ - Y

S YX(1)

YX(2) - 1

DYX(2,1)

DYX(3,3) — DYX(1,2)

(2 - X**2)
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