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ABSTRACT
A list of problems polynomially equivalent to graph isomorphism is
given. A short description of each problem and the associated
reductions 13 included. Some open problems involving graph
isomorphism are also discussed. '
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reference to the first appearance {that we know of) is given.

2. Automorphisms of Graphs

In this section we consider problems dealing with isomorphisms and
automorphisms of undirected graphs. In some reductions we allow the
introduction of vertex labels; we postpone until section 4.1 a proof that equivalent
reductions exist which do not use vertex labels. Following [50], we denote by
Gy ... the labeled graph in which v; is distinguishable as the unique 7’th labeled

vertex.

2.1 Connected Graphs

In many of the constructions which follow we shail require the following
trivial result.

THEOREM: Connected graph isomorphism is isomorphism complete.

PROOF:

Since all connected graphs are graphs, we need only show how to solve
graph isomorphism using an algorithm for isomorphism of connected graphs.

Given two n-vertex graphs G and H, find the connected components
G...Gy of G and H|...H, of H If k#m, G and H are nonisomorphic.
Otherwise, find a component H; of H which is isomorphic to G ;. If no such
component exists, G and H are nonisomorphic. Otherwise, G and H are
isomorphic if and only if G—G | and H —H; are. We proceed recursively to solve
this smaller problem. O :

ALTERNATE PROOF:

Given two graphs, determine whether G and H are connected. If both are
connected, we use the connected graph isomorphism algorithm to decide whether
they are isomorphic. If neither is connected, their complements are connected.
Further, their complements are isomorphic if and only if ¢ and H are. We then
use the connected graph algorithm to decide whether their complements are
isomorphic. Obviously, if one graph is connected and the other is not, the graphs
are nonisomorphic. & :

2.2 Finding an Isomorphism

The graph isomorphism problem is to decide, given two graphs, whether an
isomorphism exists, A related problem is to find an isomorphism and explicitly
present it, whenever one exists. The equivalence of these two problems has been
known for many years; it is implicit in [27]. We follow the proof in [50].

THEOREM: Finding an isomorphism of two graphs is isomorphism complete.

PROOF:
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A method for finding an isomorphism clearly will solve the graph
isomorphism problem. We therefore need only show how to find an isomorphism
given an algorithm to solve graph isomorphism.

Given two n-vertex graphs, G and H, one first ensures ‘that they are
isomorphic; if they are not, no isomorphism can be found. If they are, a vertex v
of G is selected and labeled uniquely, the resulting graph being denoted by G,. A
search is then performed for a vertex a of H for which G, and H, are isomorphic.
There is such a vertex since G and H are isomorphic. One now selects and
uniquely labels a second vertex w of G, and a search for a vertex b of H is
performed: for which G, ,, is isomorphic to H, ;. This process is repeated until all
vertices are labeled, at which point an isomorphism is the map carrying the 7’th
labeled vertex in & onto the i"th labeled vertex in H.

The method requires only O (n 2y calls to the isomorphism algorithm. O

2.3 Automorphism Partition

Computing the automorphism partition of a graph has also long been known
to be isomorphism complete. The equivalence seems to have been noted first by
Karp; we follow the proof in [57]. This proof follows the same pattern as the
proof in section 2.2.

THEOREM: Computing the automorphism partition of a graph is isomerphism
complete. )

PrROOF

Two connected graphs G and H are isomorphic iff there is a similarity class
in G-+H containing vertices from each of G and H. Computing the
automorphism partition of G +H will thus automatically provide enough
information to decide if G and H are isomorphic.

We need therefore only show that, given an isomorphism algorithm, we can
find the automorphism partition of a graph in polynomial time. Given a graph G
and a vertex v, define G*v to be the result of first adding a complete graph on n
vertices to G and then connecting v to each of the added vertices. Two vertices x
and p are similar (in the same class of the automorphism partition) if and only if
G*x and G*y are isomorphic. Thus, with O (# 2} invocations of the isomorphism
algorithm, we can find the automorphism partition of a graph. O

2.4 The Order of the Automofphism Group

Recently, the problem of finding the number of automorphisms of a graph
has been shown to be isomorphism complete [3,50]. Valiant [65] proved that the
counting analogues of many NP-complete problems are polynomially equivalent;
such problems are called #P-complete. Angluin [2] observes that counting the
number of automorphisms of a graph is unlikely to be #P-complete. Thus the
Babai-Mathon result (given next) lends evidence to our opinion that graph
isomorphism is not NP-complete (this is discussed further in [28]).
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THEOREM: Computing the order of the automorphism group of a graph is
isomorphism complete.

SKETCH Of PROOF:

Two connected graphs G and H are isomorphic if and only if G +# has
more automorphisms than the product of the number of automorphisms of ¢ and
that of H. Since connected graph isomorphism is isomorphism complete, this
effectively reduces the graph isomorphism problem to the automorphism counting
problem.

One counts automorphisms, given an isomorphism algorithm, by observing
that the order of the group of G, ..., _, is exactly d times the order of the

group of Gvi_“‘_v where o is the size of the similarity class of vy in
GV].....Vk_]'
This leads to a recursive algorithm which finds the order of the

automorphism group and whose running time is polynomial in the time required to
compute the automorphism partition of a graph. O

k

The reader should note that this last proof technique is essentially an
application of Burnside’s Lemma [15] which is used in combinatorial enumeration
problems.

2.5 Generators of the Automorphism Group

Mathon showed that as well as finding the number of automorphisms we can
also find a representation for the automorphism group at essentially no additional
cost.

THEOREM: [50] Computing a set of generators for the automorphism group of a
graph s isomorphism complete,

PrOOF:

As in section 2.3, we note that two connected graphs G and H are
isomorphic if and only if there is a generator in a set of generators for G +H
which carries a vertex in & to one in H, or vice versa.

Suppose we are given a graph G with vertex set {v...,v,}. Applying the
procedure for finding an isomorphism to G,, ., and G, Vi —1.vp 10T
k <m n, we obtain a set of automorphisms A, of G. One set of generators for

the automorphism group of G is the union of the 4; for 0gi<n. O

3. On proofs of isomorphism completeness

In the next four sections we consider variants of the graph isomorphism
problem; we show that these variants are isomorphism complete. The proofs of
isomorphism completeness are usually straightforward and follow a simple pattern,
which we illustrate here.
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3.1 A Sample Proof

et us consider a specific problem, We are told to devise an isomorphism
algorithm, and we are given the additional information that all of the graphs we
consider will have diameter at least n /2, where n is the number of vertices in the
graph. We cull such graphs thin graphs. '

We have looked for a polynomial time isomorphism algorithm for thin
graphs, and failed to finrd one. Before giving up the search, we would like evidence
that our “‘restricted” problem is as hard as graph isomorphism. How do we go
about demonstrating that our problem is isomorphism complete? We must show
that with polynomially many invocations of an isomeorphism algorithm for thin
graphs, we can test isomorphism of arbitrary graphs.

Given a pair of graphs (i.e., an instance of the graph isomorphism problem),
one approach is to transform this to a pair of thin graphs. Consider, then, the
following transformation.

Given an n-vertex graph G, add to G a path with # +1 new vertices. Let x
be a leaf (endpoint) of this path., Defing THIN (G ) to be the graph obtained from
G by connecting x to each original vertex of . We observe that

(1) THIN(G) has 2n+1 vertices, and it has diameter n +1, thus it is
indeed a thin graph.

(2) THIN(G) and THIN({H) arec isomorphic exactly when G and H are
isomorphic. We can see this by noting that, given THIN((G), we can
recover G as follows. As long as ¢ has at least two vertices (i.e., as long
as THIN(G) has at least five vertices), there is a unique vertex of degree
I which is adjucent to a vertex of degree . This is the unattached end of
the added path. Using this fact, we can uniquely identify the added path.
To recover ¢ from THIN (G ), we simply delete this added path and all of
its incident edges. '

(3) Given G, we can compute THIN(G) in time polynomial in the
number of vertices of G.

We now know that isomorphism of thin graphs is isomorphism compiete. Why?
Because given an instance (G, H) of the graph isomorphism problem, we solve it
by solving the thin graph isomorphism problem (THIN(G)THIN{HY).
Observations (1) and (2) guarantee that the answer to the thin graph problem is
also the answer to the original problem. Observation (3) guarantees that the
reduction can be done in polynomial time.
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3.2 The General Case

Let us consider a general isomorphism problem. The problem involves
determining isomorphism of graphs in a class C. There will typically he two
reductions involved, one in each direction. The first transforms an arbitrary graph
into a graph in class ) this shows that graph isomorphism is polynomial time
reducible to C-graph isomorphism. The second transforms a graph in C into a
graph, reducing C-graph isomorphism to graph isomorphism.

Consider a construction 7T transforming arbitrary graphs into C-graphs
where (' is any class of graphs. The transformation must satisfy three properties:

(1) T(G)is in C for each graph G.
(2) T(G) and T(H ) are isomorphic iff & and H are,

(3) T{G) can be computed in time polynomial in the number of
vertices in G.

An equivalent version of (2) is often used:
(2" T{G) uniquely determines G up to isomorphism.

Almost all of the transformations satisfy the stronger condition that G can be
uniquely recovered from T{G) in polynomial time; this stronger condition is not
necessary, however. The existence of two transformations satisfying the above
properties, one representing graphs as C-graphs, and one representing C-graphs as
graphs, demonstrates the isomorphism completeness of isomorphism testing of C-
graphs. In fact, a somewhat weaker condition is acceptable; the transformations
can fail to have one {or more) of the properties in finitely many instances and the
same conclusion holds. This is because an algorithm can deal with a fixed number
of special cases at no asymptotic increase in running time.

In many of the subsequent problems, one of the transformations is trivial.
This happens when all graphs are C-graphs, or when all C-graphs are graphs.

It is important to note thut once isomorphism of a class C' of graphs is
known to be isomorphism complete, we may transform graphs to C-graphs by first
transforming graphs to C'-graphs and then C'-graphs to C-graphs. In instances of
this, we shull not repeat the transformation from graphs to C’-graphs.

4. Edge Replacement Techniques

In this section we consider transformations which transform graphs by
replacing single edges with instances of a more general subgraph.

Problems Polynomially Equivalent to Graph Isomorphism 7

4,1 Labeled Graphs and Pseudographs

A labeled graph is o graph with labels associated with its vertices and edges.
A pseudograph is a graph with (possibly) multiple edges and loops. We here
reduce labeled graphs to pseudographs, and thence to graphs. One transforms a
labeled graph into a pseudograph by first sorting the vertex labels on the graph.
When checking isomorphism, a necessary condition for two labeled graphs to be
isomorphic is that the sorted lists for the two graphs be identical. In the
pseudograph. a vertex will have a number of loops determined by the rank of the
verlex’s label in the sorted list. One next sorts edge labels and in a similar manner
the multiplicity of an edge in the pseudograph is the rank of the edge’s label in the
sorted list. We can therefore represent labeled graphs as pseudographs. We now
reduce pscudographs to graphs.

THEOREM: Pseudograph isomorphism is isomorphism compiete.

PRroOOF:

Observe that the subdivision graph of a pseudograph (every edge is split into
two edges and a new vertex is inserted between them) is a graph without loops.
The subdivision graph of this multigraph is a graph. The resulting graph uniquely
represents the pseudograph (up to isomorphism), and is created in polynomial time
from the pseudograph.

An alternate transformation is the transform LONG which replaces each
edge (including loops) of an n-vertex pseudograph by a path of length n +1. O

Yet another proof of this result can be found in[34].

4.2 Directed Graphs

A directed graph (digraph) is a set V of vertices and a set £ of arcs, where £
is a subset of V2 and loops are not allowed.

THEOQOREM: Digraph isomorphism is isomorphism complete. -

PROOF:

Representing graphs by digraphs can be done by replacing each undirected
edge <x,y> of the graph by arcs <x,y> and <px>

Representing digraphs by graphs can be done by replacing each arc <x,y>
of the digraph with the subgraph shown in Figure 4.2.1. [1 '

A similar construction is given in[54].
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FIGURE W4.1: THE PSEUDOGREPH CONSTRUCTION

4.3 Oriented Graphs

An oriented graph is a digraph in which the presence of the arc <xy>
precludes the presence of <px>. In light of the isemorphism completeness of
digraph isomorphism, we need only show

THEOREM: Graph isomorphism is polynomial time reducible to oriented graph
isomorphism.

PROOF:

Replace each edge <x.y> of the given graph by the graph shown in Figure
4.3.1. The resulting digraph is oriented, and the transformation has the three
desired properties. [

4.4 Acyclic Rooted Digraphs

An acyclic rooted digraph is a digraph having no directed cycles, with a
distinguished vertex called the root. The oriented graphs constructed in the
previous section are acyclic. Rooting the digraph uniquely is done by adding a
new vertex s to the oriented graph and directing arcs from s to each source of the

Problems Polynomially Equivalent to Graph Isomorphism 9

FIGURE W.2.1

oriented graph, The resulting acyclic orienied” graph is then rooted at 5. We
conclude the following.

THEOREM: [1, Problem 10.26] Acyclic rooted digraph isomorphism is isomorphism
complete.

4.5 Bipartite Graphs

A bipartite graph is a graph whose vertex set can be partitioned into two
classes, both being a set of pairwise nonadjacent vertices.

THEOREM; Bipartite graph isomorphism is isomorphism complete.

PROOF:

Given a graph &, we transform it to its subdivision graph S(G).
Subdivision graphs are bipartite and the transformation has the three desired
properties. [
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c S N

FIGURE H.2.2: THE DIRECTED CRAPH CONSTHRUCTION

4.6 Chordal Graphs

A chordal graph is a graph having no induced subgraph isemorphic to a
cycle of length greater than three. Chordal graph isomorphism is isomorphism
complete [49]. One transformation which demonstrates this maps a graph G to its
subdivision graph, and then connects all of the vertices of §(G) which were
vertices in G. Stewart [63] notes that this construction also demonstrates the
isomorphism completeness of split graph isomorphism. A split graph is a graph
whose vertex set can be partitioned into two classes, one containing pairwise
adjacent vertices, and the other containing pairwise nonadjacent vertices.

4.7 Graphs with a Forbidden Induced Subgraph

Let F(H) be the family of graphs having no induced subgraph isomorphic to
H.

THEOREM: [20] Testing isomorphism of graphs in F(H) is isomorphism complete
unless & is an induced subgraph of the path on four vertices.

PROOF:

Problems Polynomially Equivalent to Graph Isomorphism 3

FIGURE H.3.1

Observe first that testing isomorphism in F(H ) is polynomially equivalent to
testing isomorphism in F_(ff). Observe next that either H or H is cyclic unless H
is an induced subgraph of the path on four vertices. We therefore assume without
loss of generality that H is cyclic,

Given a graph G, transformm G by replacing each edge by a path of length
|V(H)| +1, where V() is the vertex set of H. The result has no cycles small

enough to be cycles in H; thus the result contains no induced subgraph isomorphic
to H. O

Testing isomorphism of graphs containing no induced paths on four vertices -
(cographs) can be done in polynomial time [45,63]. All other induced subgraphs
of the path on four vertices result in trivial isomorphism problems.

4.8 Transitively Orientable Graphs

An oriented graph is transitive if the existence of arcs <x,y> and <y,z>
necessitates the presence of <x.z>. A rtransitively orientable graph is a graph
which is isomorphic to the underiying graph of some transitive oriented graph.
Booth and Lueker [13] show that isomorphism testing for transitively orientable
graphs is isomorphism complete, We give an alternate proof here.
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FIGURE 4.3.2: THE UORIENTED GRAPH CONSTRUCTION

THEQOREM: Transitively orientable graph isomorphism is isomorphism complete.

Proovr:

Given a graph G, transform it to its subdivision graph S(G). One transitive
arientation of S{G) orients edges from the original vertices to the added vertices
(asin 4.3). O

4.9 Series-Parallel Digraphs

A digraph is fransitive series-parallel (TSP) if it is a single vertex, or the
series composition of two TSP digraphs, or the parallel composition of two TSP
digraphs. The parallel composition is the usual disjoint union of the twe digraphs.
The series composition of D and F is their union followed by the addition of arcs
from each vertex of D to each vertex of F.

A digraph is series-paraliel if its transitive closure is TSP.
THEOREM: Series-paraliel digraph isomorphism is isomorphism complete.

PROOF:

Problems Polynomially Equivalent to Graph Isomorphism 13

FIGURE . 4. ROOTED ACYCLIC DIGRAPHS

Given a graph , construct a series-parallel digraph by taking the oriented
graph constructed in section 4.3 and adding a new vertex v. Arcs are added from
each original vertex to v, and from v to each added vertex. The result is a series-
parallel digraph, since its transitive closure is obviously transitive series-parallel. O

This result is especially interesting in light of the existence of a polynomial
time isomorphism test for TSP digraphs [43].

4.1¢ Undirected Path Graphs

Consider a tree T and a set of undirected paths which are subgraphs of T.
We represent each path by a vertex, and connect two vertices when the
corresponding paths intersect in T. Undirected path graphs are graphs which can
be represented in this manner by paths in some tree [58].

THEOREM: [12] Undirected path graph isomorphism is isomorphism complete.

PROOF:

Given a graph G, we construct an undirected path graph UP(G) as follows.
We first create the subdivision graph of G (as in section 4.5). We then connect
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N

b

FIGURE 4.5: THE BIPARTITE GRAPH CONSTRUCTION

each pair of new vertices added in the construction.

The crucial step in the proof is to show that UP(G) is an undirected path
graph. Consider the dominant (maximal) cliques of UP (). The added vertices
(representing the edges of &) form a dominant clique, and each original vertex
together with the edge vertices adjacent to it form a dominant clique. A cligue
tree for UP(G) is an n-star whose centre is the clique containing the edge vertices
and whose leaves are the other cliques.

Each original vertex in UP{G) lies in one dominant clique of UP(G); each
edge vertex lies in three dominant cliques. In either case, the cliques in the clique
tree of UP({G) containing a vertex of UP(G) induce a path in the clique tree.0]

5. Composition techniques

In section 4, we described transformations which substituted fixed graphs
(e.g.. paths) for edges in the given graph. In this section, we turn our attention to
transformations which substitute the given graph into a fixed graph. A
substitution for a vertex v by a graph S is defined to be the replacement of v by
the vertices and edges of S, followed by the addition of edges connecting each

Problems Polynomially Equivéient to Graph Isomorphism 15

FIGURE H4.6: THE CHORDRL GRAPH CONSTRUCTION

vertex of 8 with each vertex which was adjacent to v.

5.1 Compact Graphs
A graph is compact when the distance between any two vertices is either one
or two.

THEOREM: [30] Compact graph isomorphism is isornorphism complete.

PROOF:

Given a graph (, define COMP(G) = Cs[G] (equivalently, C5 with G
substituted for each vertex). COMP{() is compact; it uniquely represents G as
follows. A copy of & can be obtained by taking any vertex v and all vertices
sharing at least 2n adjacencies with v. O
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FIGURE d.7: GRAPHS WITHOUT TRIANGLES

5.2 Composite Graphs

Corneil [29] observed that a more general proof is possible which does not
rely on properties of Cs. A graph & is a composite graph if there exist graphs C
and H for which G is isomorphic to C[H].

THEOREM: Isomorphism of composite graphs is isomorphism complete.

PROOF:

Consider an arbitrary fixed graph C with maximum degree & and any
connected n-vertex graph G having no vertices of degree exceeding (-1)/2. C[G]
is & composite graph and uniquely represents G as follows. Select a vertex v with
maximum degree in C[G]. Consider the graph induced on the vertices sharing at
least 2n adjacencies with v. Each connected component of this graph is a copy of
G. 0O

It should be pointed out that the isomorphism completeness of composite
graph isomorphism follows from the theorem in 5.1; we include the present result
simply as an interesting proof technigue.
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FIGURE 4.9: SERIES-PARARLLEL DIGRAPHS

5.3 Self-complementary graphs and digraphs '
A graph is self-complementary if 1t is isomorphic to its complement.

THEOREM: [18] Self-complementary graph isomorphism is.isomorphism complete.

PROOF:

Define SC(G) to be the result of substituting G for vertices 1, 4, 5, and §,
and substituting G for vertices 2, 3, 6, and 7 in the graph S displayed in Figure
5.3, SC(G) is self-complementary and uniquely represents G. [J

5.4 Regular self-complementary graphs and digraphs

We can state an even stronger result which subsumes the theorem in section
5.3.

THEOREM: [19] Regular self-complementary graph isomorphism is isomorphism
complete. O

Corresponding isomorphism completeness results for digraphs are also
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9

3 S 7 8
FIGURE 5.3: THE SELF-COMPLEMENTRRY GRAPH 5

proved in [19].

5.5 Graphs with a Unique Centre

A centre in a graph is a vertex whose maximal distance to any vertex is
minimal (i.e., a vertex of minimal eccentricity [37]). Tree isomorphism algorithmms
operate by first rooting the tree at its unique centre. With this in mind, one might
suspect that graphs with a unique centre would be easier for isomorphism testing
(see, for example, [61]). This is not the case.

THEOREM: Isomorphism of graphs with a unique centre is isomorphism complete.

PROOF:

Given a graph G, substitute a copy of G for both leaves in the path on three
vertices. The centre of the path is the unique centre of the resulting graph. 0
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c 2]

FIGURE 5.5: GRAPHS WITH A UNIQUE CENTRE

5.6 Cospeciral Graphs

The spectrum of a graph is the set of eigenvalues of its adjacency matrix.
Two graphs are cospectral if the characteristic polynomials of their adjacency
matrices are identical.

We can immediately conclude that cospectral graph isomorphism is
isomorphism complete, as follows., Given two graphs, we compute their spectra in
polynomial time (via the usual algorithm using Gaussian elimination {1}). If their
spectra differ, the graphs are nonisomorphic; otherwise, the graphs are cospectral
and we may apply the tests for cospectral graph isomorphism.

This reduction is, in some ways, unsatisfying. It does not tell us that pairs of
cospectral graphs occur frequently. We give here a construction which, given two
arbitrary graphs, represents them by a cospectral pair of graphs which are
isomorphic if and only if the given graphs are.

THEOREM: Cosbectral graph isomorphism is isomorphism complete.

PROOF:
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Let C be the graph shown in Figure 5.6. Given two graphs ¢ and H, let L
be the graph obtained by substituting G for vertices I, 2, and 3 and H for vertices
4,5, and 6 in C. Let R be the result of substituting K for vertices 1, 2, and 3 and
G for vertices 4, 5, and 6 in €. The graphs L and R are cospectral for any choice
of G and H [60].

Further, L and R are isomorphic if and only if G and H are isomorpﬁic. O

! 2 3

4 5 6
FIGURE 5.B6: COSPECTRAL GRAPHS -- THE GRAPH C

6. Other Techniques

In this section we consider a pot-pourri of other transformation technigues
used for restricted classes of graphs.

6.1 Line Graphs

The line graph of a graph G(V,E) is the graph # =(E.F) in which Whitney
[66] examined the question of when an isomorphism of the edges of two graphs
necessitated that the graphs be isomorphic, He proved that the only two graphs
which are edge-isomorphic but not (vertex) isomorphic are the 3-star and the
triangle. His result has as a corollary that

e iin ey e e e
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THEOREM: Line graph isomorphism is isomorphism complete. O

6.2 Regular Graphs

A regular graph is a graph in which every vertex has the same degree. Booth
established that

THEOREM: [11] Regular graph isomorphism is isomorphism complete. [

Booth’s construction for regular graphs significantly increases the maximum
degree of the graph. Miller described a construction which does not have this
behaviour,

THEOREM: [54] Isomorphism of graphs with maximum degree d is polynomial
time reducible to isomorphism of regular graphs of degree d, whenever d is odd. O

Miller’s result was later improved:

THEOREM: [30,56] Isomorphism of graphs with maximum degree 4 is polynomial
time reducible to isomorphism of regular graphs of degree 4.

PROOF:

A graph T(d) is defined; T(d) has all vertices of degree d except two, 5 and
t, which have degree d— 1. Further, s and ¢ must be similar in T'(d).

Given a graph G, we take two copies of it, G | and G 5. Each vertex x of G
corresponds to a vertex x; of G and a vertex x of G . For each vertex x in G,

we take d —deg (x) copies of T(d) and connect x 1 to the *s” in each, and x> to the
‘#" in each. The result is regular of degree 4, and uniquely determines G. O

6.3 Regular Bipartite Graphs

THEOREM: [56] Isomorphism of graphs with maximum degree d is polynomial
time reducible to isomorphism of bipartite graphs which are regular of degree 4. O

6.4 Marked Graphs and Marked Trees

A marked graph is a graph together with a partition of its vertices. An
isomorphism of marked graphs is an isomorphism of the underlying graphs which
preserves the partitioning.

THEOREM: [31] Marked graph isomorphism is isomorphism complete.

PROOF:

A graph is a marked graph in which every vertex belongs to its own class.
We therefore need simply represent marked graphs as graphs. We will in fact
create a labeled graph, which we have shown is equivalent (section 4.1). This
labeled graph contains a vertex labeled “0° for each vertex in the marked graph,
and a vertex labeled ‘1" for each class in the partitioning of the marked graph.
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Edges connect the ‘0” vertices as in the marked graph. Additional edges connect a
‘1" vertex to the vertices contained in the corresponding class of the marked graph.
O

THEOREM: [31] Marked tree isomorphism is isomorphism complete.

PROOT:

In light of the previous result, we need only show how to represent graphs as
marked trees. Given a directed graph &, we number its vertices | through n.
Each arc is assigned a number equal to the number of the vertex towards which it
is directed. Each arc is then replaced by a vertex adjacent to the source of the
arc; this vertex is assigned the arc’s number. Finally, a vertex x is added and
connected to each of the original vertices; x is given the number n+1. The result
is a tree, and the vertex numbering induces a partition of its vertex set. Thus the
result is a marked tree; further, & can be recovered by deleting the only vertex in
a singleton class and then identifying all vertices in the same class. O

/

FIGURE G.4: THE MARKED TREE CONSTRUCTION
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S
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6.5 K-trees

A k-tree is recursively defined as follows. K is a k-tree. If G is a k-tree,
the result of adding a vertex adjacent to every vertex in a k-clique of & is a k-tree.

THEOREM: [31] k-tree isomorphism is isomorphism complete, O

This result is especially interesting when one considers that if &k is a fixed
constant, k-tree isomorphism can be tested in polynomial time [31].

6.6 C-Subgraph Regular Graphs

A graph G is c-subgraph regular if, for any § with at most ¢ vertices, the
number of ways of embedding § in G for which a particular vertex p of § is
mapped to a particular vertex v of G depends only on p and §.

THEOREM: [30] For fixed constant ¢, c-subgraph regular graph isomorphism is
isomorphism complete. O

A Zykov regular graph [14] is a graph having the property that the
neighbours of a vertex induce a graph which is independant of the particular
vertex chosen. The c¢-subgraph regular graphs constructed by Corneil and
Kirkpatrick are Zykov regular; the induced graph is void. Corneil [29] observed
that even if one excludes void and complete neighbourhoods, Zykov regular graph
isomorphism is isomorphism complete. Given a graph G and the c-subgraph
regular graph H which represents it, Cs[H] is Zykov regular and the
ncighbourhood is neither void nor complete; further, it uniguely represents G.

6.7 Eulerian Graphs

A graph is Eulerian if one can start at a vertex, walk along every edge of
the graph and return to the starting point never walking along an.edge twice.

THEOREM: Eulerian graph isomorphism is isomorphism complete.

PRrROOF:

Given a connected graph G, take two copies of G, G and G 5. Each vertex x
of ¢ is associated with a vertex x| in G| and a vertex x5 in G 5. When x has odd
degree, add a new vertex connected to both x; and x5 When the degree of x is
even, add two new vertices, both connected to x; and both to x» The resulting
graph is connected and all degrees are even — thus the resulting graph is Eulerian.
O

An easier proof technique is to use previous constructions to transform
graphs into connected graphs (section 2.1) and thence to connected graphs which
are regular of even degree (section 6.2). :
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[

FIGURE 6.7: THE EULERIAN GAARPH CONSTRUCTICN

6.8 Hamiltonian Graphs

An n-vertex graph is Hamiltonian if it has as a subgraph the cycle on »
vertices.

THEOREM: Hamiltonian graph isomorphism is isomorphism complete.

PROOF:

Given a graph, construct an Eulerian graph from it, and then take the line
graph of this Eulerian graph. The result is Hamiltonian [37]. O

ALTERNATE PROOF:

Given any graph G, observe that G +¢ has K, , as a subgraph; thus, G +G
is Hamiltonian. In addition, G +G uniquely represents &, O
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6.9 Hypergraphs

A hypergraph is a set V of vertices together with a subset E of the powerset
of V.

THEOREM: Isomorphism of hypergraphs is isomorphism complete.

PROOF:

All graphs are hypergraphs; we need thus only show that we can uniquely
encode a hypergraph as a graph. We construct a labeled graph with a vertex
labeled ‘v’ for every vertex of the hypergraph and a vertex labeled ‘¢’ for every
edge. A ‘v vertex is connected to an ‘¢’ vertex if and only if the vertex
corresponding to the ‘v vertex belongs to the edge corresponding to the ‘e’ vertex,
O

7. Isomorphism of Algebraic Structures

7.1 Algebras

An algebra is a set A together with some fixed constant number of relations.
A relation is a subset of 4. Miller and Monk [54] proved the following

THEOREM: Algebra isomorphism is isomorphism complete.

PRrROOF:

Since graphs are algebras, it suffices to uniquely represent an algebra as a
digraph. The digraph has a vertex for each element in the algebra. Each tuple in
each defining relation is encoded; a tuple <x, - - x3> in the 'th defining
relation is represented by a subgraph involving the k vertices representing the
elements, as shown in Figure 7.1. O ‘

7.2 Lattices and Posets

A lattice is a set of elements together with a partial order <, with a unique
maximal element and a unique minimal element. Element e dominates fif f < e.
The smailest element dominating any two (their joir) and the largest element
dominated by any two (their meer) are each unique.

In 1950, Frucht {35] demonstrated that any abstract group is isomorphic to
the group of some lattice. In so doing, he proved that

THEOREM: Lattice isomorphism is isomorphism complete.

PROOF:

It suffices to represent a graph uniquely as a lattice. Given a graph G with »
vertices and m edges, we define a lattice with an element for each vertex, an
element for each edge, and two additional elements “0° and ‘1. Element *I’
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FIGURE 7.1: THE HLGEBRA CONSTRUCTICN

dominates all others (the supremum), and element ‘0’ is dominated by all other
elements (the infimum). An edge dominates exactly those vertices which are its
endpoints. The result is a lattice which uniquely represents G. O

7.3 Semigroups

A semigroup is a set of clements together with a binary operation. This
result, proved by Booth [11], is proved in a simpler manner here.

THEOREM: Semigroup isemorphism is isomorphism complete.

PROOF:

Lattices are semigroups under the binary meet operation. Thus. lattice
isomorphism is reducible to semigroup isomorphism, so the result is established. {7

In fact, lattices are comrmutative semigroups, as are the semigroups
constructed in [11].
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7.4 Finitely Presented Algebras

A finitely presented algebra is, roughly speaking, an algebra with a finite
number of generators, a finite number of operators, and a finite set of equivalences
among the applications of the operators to the generators.

THEOREM: [41] Isomorphism of finitely presented algebras is isomorphism
complete. O3

7.5 Automata and Semiautomata

An automaton is a 5-tuple comprised of a set of states, a start state, a set of
final states, an input alphabet, and a transition function (see [1] for details). A
semiautomaton is a 3-tuple comprised of an set of states, an input alphabet, and a
transition function,

THEOREM: [11] Automaton isemorphism is isomorphism complete. O

THEOREM: [11] Semiautomaton isomorphism is isomorphism complete even if the
alphabet is binary. ]

8. Combinatorial Designs

8.1 Partially Balanced Incomplete Block Designs

A partially balanced incomplete block design (PBIBD) with parameters
(v.b.rk L} is a collection of b k-sets called blocks chosen from a w-set; each
element appears in exactly r blocks and each pair of clements appear in exactly /
blocks, for some [/ in L.

THEOREM: [24.29] Isomorphism of PBIBD’s is isomorphism comﬁiete.

PROOEF:

Given a graph, we construct a regular graph G with n vertices and ¢ edges
representing it. From G we construct a PBIBD D with ¢ elements, the edges of G.
For each vertex v of G, the edges incident with v form a block of D.

Since G is regular, all blocks have the same number of elements and each
clement of Ir appears the same number of times. Finally, each pair of elements
appears either 0 or | times; thus 2.={0,1}. O

8.2 Set Packings

A set packing with parameters (v,k,M) is a collection of k-subsets (blocks) of
a v-set for which any two blocks intersect in at most A elements [17].

THEOREM: [24] Isomorphism of set packings is isomorphism complete.

PROOF:
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Given a graph we construct a PBIBD from it as in section 8.1. We then
construct the dual of the PBIBD as follows. The elements of the dual are the
blocks of the PBIBD. For each element ¢ of the PBIBD, the blocks containing e
form a block of the dual.

The dual of a PBIBD is a set packing. O

8.3 (r,A)-Systems

An (r\j-system on v elements is a collection of subsets (blocks) of any size
of a v-set for which every element appears in r blocks and every pair of elements
appedr in A,

THEOREM: [24] Isomorphism of (r,A)-systems is isomorphism complete.

PROOF:

Given a graph we construct an (r,A)-system S as follows. The clements of &
are the vertices of the graph and one additional clement a. For each edge (x,p) of
the graph, (a.x,y) is a block of S. One adds sufficient blocks of size 2 to ensure
that every pair appears the same number of times and finally adds sufficient blocks
of size 1 to ensure that every element appears the same number of times. O

8.4 Exact Set Packings

An exact set packing with parameters (v.k,A) is a collection of k-subsets
(blocks) of a w-set for which any two blocks intersect in exactly A elements.

THEOREM: [24] Isomorphism of exact set packings is isomorphism complete.

PROOF:
The dual of an (#,A)-system 1s an exact set packing. O

8.5 Pairwise Balanced Designs

A pairwise balanced design (PBD) is an (r,A)-system in which blocks of size
1 are forbidden.

THEOREM: [20] Isomorphism of PBD’s is isomorphism complete.

PROOF:

We will construct a PBD from a regular self-complementary graph which we
have shown is equivalent (section 5.4). Given an n-vertex sc graph G =(V,EF) which
has g edges and is regular of degree d, we construct a PBD D as follows. The set
of elements of D consists of ¥ and an n-set X disjoint from V. For each edge
{v.w} of E and each pair of distinct elements <x.p> of X2 the set {v,wx,y} is a
block of D. Each nonedge {v.w} of G (v#w) forms a block of D; it is repeated 2¢
times. Each pair of distinct elements in X2 is a block of D; they are repeated ¢
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times. Finally, for each element x of X and each vertex v of &, {vx) is a block
of G; it is repeated 2q - 247 times,

D is a PBD. It uniquely determines G as follows: when all blocks of size 2
are discarded, the remaining pairs appearing 2¢q times are precisely the edges of G.
O

9. An Equivalent Clique Problem

Until this point, all of the problems considered have been isomorphism
problems. It is of considerable interest to determine problems which are
isomorphism complete and yet not transparently isomorphism preblems.

One such problem was described first by Levi [46], and later by Barrow and
Burstall [6]. Kozen [42] first observed the importance of this construction as it
concerns the complexity of graph isomorphism, answering a question posed in
[11]. We follow Kozen’s presentation here.

An  M-graph of order n? is any graph G with #n? vertices

fvi ;| 1<i<n, 1<j<nl, satisfying

{1) (x;j.xg ) is an edge of G only if i #k and j#L

(2) (x;;.xg 1) is an edge of G only if (xg ;,x;/) is also an edge.

(3) Any two quadrilaterals of & are connected by an even number of edges.

THEOREM: [42] Finding an a-clique in an M-graph with n?2 vertices is isomorphism
complete.

PROOCF:

We first reduce graph isomorphism to finding an a-clique. Given two n-
vertex graphs G and A defire a graph M for which V(M) = V(G )Y*V(H), and
EM)Y = li<vaa> <wb>}| (v.w) is an edge in G if and only if (a.F) is an edge
in H}. M is an M-graph, and has an nclique if and only if G and H are
isomorphic. :

We now reduce the clique problem for M-graphs to graph isomorphism.
Given an M-graph K with n? vertices x; ;. we defire two graphs, G and H (it is
not clear to the present authors how one can find the indexing of the x;; in
polynomiul time, unless it is given). & has vertex set v;, and H has vertex set Wi
The edges of G are as follows — v; is connected to v; if and only if (w; 1, w; ) 1s
an edge of K. The edges of H are given by the following rule — w; is connected
to w; if and only if cither (x .y, x33) is an edge of K and (x ;, x; ) is an edge of
K, or neither are edges of K.

G and H are isomorphic if and only if K has a n-clique. O

An interesting aspect of this result, noted in [42], is that finding a (1—€)n
clique in an n? vertex M-graph is NP-complete for ¢ arbitrarily small.
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Further, one should note that the Babai-Mathon result from section 2.4

demonstrates that we can count the number of a-cliques in an M-graph using an .

isomorphism algorithm. The problem of counting, cliques in graphs in general is
#P-complete [65]. This constitutes further evidence that graph isomorphism is not
NP-complete.

10, Other Problems

In this section we describe three other problems which are isomorphism
complete, but are not isomorphism problems in the restrictive sense used in
sections 4 through 7.

10.1 Recognition of Seif-complementary Graphs

THEOREM: [18,19] Deciding whether a graph is self-complementary is isomorphism
complete.

PROOF:

Recognizing self-complementary graphs is reducible to graph isomorphism;
one simply asks whether the graph is isomorphic to its complement.

Graph isomorphism is reducible to recognition of self-complementary graphs
as follows. Given graphs G and H, take the graph S in Figure 5.3. Substitute G
for vertices | and 4, H for 6 and 7, G for 2 and 3, and H for 5 and 8. The
resulting graph is self-complementary if and only if G and H are isomorphic. O

10.2 Regular Legitimate Decks

The deck of a graph G is the set of one-vertex deleted subgraphs of G. A
deck of » graphs each having #—1 vertices is legitimate if and only if it is the deck
of some graph. A regular deck is a deck in which every graph has the same
degree sequence. Necessary and sufficient conditions for a regular deck to be
legitimate have been the objective of much research in the area of reconstruction
theory [8].

THEOREM: [62] Deciding whether a regular deck is legitimate is isomorphism
complete.

PROOF

Given a regular deck D = <Gy, ..., G,>, create n graphs H, ... , H, as
follows. H; is created from G; by adding a vertex to G; and connecting the added
vertex to all vertices not having maximum degree in ;. Then D is a legitimate
deck if and only if /{; and H; are isomorphic for all i and ;.

Given two regular graphs ¢ and H, let D = <H,, ..., H,;> be the deck of
H let £ = <H|+G. - H,+G>. Finally, let F be two copies of E. Fis a
regular deck, and is legitimate if and only if ¢¢ and H are isomorphic. O
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10.3 Hadamard Equivalence
We define four matrix operations:

(1) interchanging two rows,

- (2) interchanging two columns,
(3) multiplying each entry in a row by —1,
{4) multiplying each entry in a column by —1.

Two (—1,1) matrices are Hadamard equivalent if one can be obtained from the
other by a finite sequence of operations of types (1)-(4).

THEOREM: [53] Hadamard equivalence of (1,—1) matrices is polynomial time
reducible to graph isomorphism.

PROOF:

Given a (1,—1) matrix H = (h;;), we construct a graph H4D(H) as follows,
There are two vertices v; and v'; for the #th column and two vertices w; and w';
for the jth row, The edges of HAD(H) are

(viowy) and (' w')) if By = 1
(vi, w')and (v, wy) it by ; = =1

Two (1,—1) matrices X and ¥ are Hadamard equivalent if and only if H4D{X)
and HAD(Y') are isomorphic. [J '

The converse also holds.

THEOREM: [22] Graph isomorphism is polynomial time reducible to Hadamard
equivalence of (1,—1) matrices.

PROOF:

Given a graph G, let E be the n by m incidence matrix of G, with 1 replaced
by —! and O replaced by 1. Define the matrix N (G) as follows. N(G) is 2n by
2m, and

no.o= 11 ifi>n or j>m
L e j otherwise

If N(G) and N(H) are Hadamard equivalent, there is some sequence of
operations of type (1)-(4) mapping N(G) into N(H). If a row is multiplied by
—1 in the mapping, it must either be multiplied by —1 again (in which case both
operations can be removed), or at least 2r—2 columns must be multiplied by —1.
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This must be done in order to preserve the number of [’s in the row. It is clear
that multiplying 2r—2 columns by —1 cannot be required, since the matrix has a
majority of | entries. :

A similar argument demonstrates that multiplication of columns by —1 can
be ignored. O

10.4 The Star-System Problem

The star of a vertex v, denoted by *v, consists of v together with its
neighbours, and the edges connecting v to its neighbours. The star-system of a
graph is the family set {*v| v is in ¥(G)}. The star-system problem is to decide,
given a collection of subsets (a set-system), whether it is the star-system of some
graph.

THEOREM: [5] The star-system problem is isomorphism complete.

PROOF:

Given a set-system S, let J(S) be its incidence graph. 7(S) is bipartite, and
has an automorphism interchanging the two classes of the bipartition which carries
each vertex to a vertex adjacent to it whenever § is a star-system. We omit the
remaining details.

Given a pair of graphs, G and H, assume both have at least two vertices.
Let G'=S{COMP{(GY) and H' =5(COMP(H)). Now G'(H’) is a bipartite graph
with vertices of degree >3 in one class of the bipartition and vertices of degree 2
in the other class. Let X be the disjoint union of G' and H' with additional edges
connecting each vertex of degree 2 in G' to each vertex of degree >3 in H', and
similarly for H and G’ .

X has an automorphism interchanging the two classes of its bipartition
which carries each vertex onto an adjacent vertex if and only if G’ and H' are
isomorphic {(and thus, & and A are isomorphic).

Consider the stars obtained from one class of the bipartition of X. These
stars form a star system if and only if there is an automorphism of X which is of
the desired type. O

11. An NP-complete Automorphism Problem

An automorphism is fixed point free (fpf) if it fixes no vertex. Recently,
Lubiw [48] proved that deciding whether a graph has a fixed point free
automorphism is NP-complete. This constitutes the first example of an NP-
complete problem which involves the automorphisms of a graph.

THEOREM: [48] Deciding whether a graph has an fpf automorphism is NP-
complete.

PrROOF:
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The problem is in NP. One simply “guesses” an fpf automorphism; in
polynomial time, it can be verified that the guess is an automorphism and that it
fixes no vertex. ‘

Completeness is shown by reducing 3-CNF satisfiability to the fpf problem.
Given a formula, a graph is constructed which has an fpf automorphism if and
only if the formula is satisfiable. We are given a formula C. C is the conjunction
of m clauses {¢;| 1<i <m}, and contains r variables fu;| 1 <fn}. Each clause is
the disjunction of three variables or their negations. We assume without loss of
generality that no clause is repeated.

We construct a labeled graph G as follows. G has vertex set consisting of
two parts;

(1) {xci, pis wg 1, w2 w2 wg s w's g u o w0l 1€i€n)
() ejx| 1< <m, 1<k <8}

Labels are assigned to some of the vertices from a set of distinct labels
{a|. ---.a,.b). - .b,}. The vertices x; and y; are given label a;, for 1<ign.
The vertices {c;x} are given label b, for 1<j <m, 1<k 8.

The edges of G are of two types, the first between vertices in (1), the second
connecting vertices in (1) with vertices in (2). We build a gadget (subgraph) for
each variable, and a gadget for each clause. The gadget for variable u; is shown
in Figure 11.1. Suppose (for instance) ¢; is the disjunction of u;, u;, and u'y.
Figure 11.2 shows how a gadget for this clause is constructed.

The edge set of G consists of the union of the edge sets of the gadgets for
the variables and the edge sets of the gadgets for the clauses.

Suppose G has an fpf automorphism F. It must then be the case that F
moves each u; . Since x; and y; are the only two vertices with label a;, u; | must
map to one of u; 5 u; !, of u;,. Clearly the latter is not a candidate since F
would then fix x;. Thus u; ; maps to either u; ; (an assignment of false to u;) or
to u; ' (an assignment of true to ;). The reader can easily verify that the gadget
for a variable ensures that if the variable is assigned true, its negation is assigned
false, We conclude that F induces an assignment of truth values to the variables.
We must now show that the assignment satisfies the formula. Consider a clause ¢;
of C. If none of the three variables in ¢; is assigned true by F, then F must fix
¢;o- Thus some variable in the clause must be assigned true; thus the clause is
satisfied, Therefore, each clause evaluates to true under the truth assignment
induced by F; thus the formula is satisfiable.

We leave to the reader the proof that (i) a satisfying assignment to the
variables of the formula induces an fpf automorphism of G, and (ii) the vertex
labeling applied is not essential. O

COROLLARY: Counting the number of fpf automorphisms is #P-complete.
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¥i
FIGURE 1i.1: GADGET FOR VARIABLES

PROOF:

The satisying assignments to the variables of € are in 1-1 correspondence
with the fpf automorphisms of G. O

Orne might suspect at first that a minor modification to Lubiw’s construction
would demonstrate that graph isomorphism is NP-complete, This does not appear
to be the case. The problem of deciding whether a graph has an fpf
automorphism remains NP-complete even given a set of generators for the
automorphism group of the graph. Lubiw’s construction can easily be modified to
show that deciding whether a permutation group A4 contains a fixed point free
permutation (a derangement), given a set of generators for A4, is NP-complete.
" This latter problem remains NP-complete in the case when 4 is a 2-group (i.e.,
the set of generators contains only transpositions).

An isomorphism algorithm seems to be little help in deciding whether a
graph has an fpf automorphism; these observations suggest that the difficult step is
not finding a set of generators for the automorphism group, but rather deciding
the existence of an fpf automorphism given this set.

Problems Polynomially Equivalent to Graph Isomorphism 35

FIGURE 11.2: GRDGET FOR CLAUSES

12. Open Problems

In this section we briefly describe some open problems concerning theoretical
aspects of the graph isomorphism problem.

12.1 Canonizing or Coding Graphs

A coding or certificate for a graph is a function f for which f(G)=F(k) if
and only if G and H are isomorphic. It is clear that the existence of a polynomial
time computable coding function would provide an efficient isomorphism test.
The converse is an open problem. Does the existence of an efficient algorithm for
graph isomorphism necessitate the existence of polynomial time computable
certificates? (See [54])

Many of the obvious candidates for coding functions are not suitable, as
shown in [38].
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12.2 Strongly Regular Graphs

Strongly regular graph isomorphism was early identified as an important
subcase of the graph isomorphism problem [27]. Many hard graphs for practical
isomorphism programs are strongly regular [S1]. On the other hand, Babai has
described an algorithm for strongly regular graph isomorphism which is a small
improvement over the best current algorithms for graph isomorphism [4].

12.3 Transitive Graphs

Transitive graphs have automnorphisms carrying each vertex onto every other
vertex, Because of this, an algorithm operating by vertex refinement techniques (as
many do, see [57]) will fail to reduce the number of candidate isomorphisms. No
proof of isomorphism completeness for isomorphism of transitive graphs is known,
however.

12.4 Rigid Graphs

At the other end of the scale from transitive graphs, rigid graphs are
automorphism free. Nevertheless, the lack of symmetry does not seem to be of
assistance. The hard graphs given in [51] are rigid. Moreover, it appears that new
techniques are required to demonstrate isomorphism completeness in this case
[19].

12.5 Block Designs

Isomorphism of block designs is intimately related to strongly regular graph
isomorphism. Although some success in determining block design isomorphism
has been achieved by counting subdesigns [36], the problem appears to be difficult
[32].

Isomorphism testing in some cases does appear to be easier, however. Miller
[33] gives a subexponential algorithm for isomorphism of Steiner triple systems
{i.e, 2-(v,3,1y designs), Latin squares, and projective planes (i.e., 2-
(n2+n+1,n2+1,1) designs). Marlene Colbourn [24] recently extended Miller’s
result to obtain a subexponential algorithm for #-(v,¢ +1,1) designs; one important
instance of designs with these parameters is Steiner quadruple systems.

Restrictions of the isomorphism problem for block designs have also been
considered; of note in this area is the problem of equivalence of Hadamard
matrices [26].

.12.6 Tournaments

A tournament is an oriented complete graph. Tournament isomorphism
appears to be as hard as graph isomorphism, but is not known to be isomorphism
complete. The problem is discussed in [19].

IH.‘.': R
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12.7 Graphs of Fixed Genus

Planar graph isomorphism can be tested in polynomial time. In 1966,
Lehman [44] conjectured that this behaviour extends to graphs of fixed constant
genus,

12.8 Degree Bounded Graphs

Chemical “graphs”, or molecules, have a fixed constant bound on the
maximum degree of the graph. If we restrict our input graphs to have maximum
degrec at most some fixed constant k, does the problem remain isomorphism
complete?

Common reduction techniques used to prove isomorphism completeness fail,
as proved by Miller [54] and Kucera [3].

12.9 A Good Characterization

Edmonds introduced the concept of a good characterization of a ~ problem;
the following anecdote of Edmonds® brings home the importance of the concept,
We paraphrase from Chvatal [16]: :

“A rich and powerful King, driven by his aristocratic whims, desires to know
whether a certain graph (with an awful lot of vertices and edges) has a 1-factor.
He hires a team of mathematicians and they set to work. If they eventually find a
1-factor, they can just show it to the King; it won’t take him long to see that he
wasn’t cheated. However, what happens if there is no 1-factor in the graph? Will
the King take their word for it? Won’t he suspect this bunch of intellectuals of
doing nothing, only pretending to work? Spending their time at wild orgies? No.
If G has no I-factor, then there is a set S of vertices such that G-S has more than
IS] odd components; this is Tutte’s theorem. If they cannot find a 1-factor, they
had better find that set §. Needless to say, they may have a hard time finding it;
however, it will be easy — for the King — to check that they did their job. And
this is exactly what we mean when we say that Tutte’s theorem provides a good
characterization of graphs without i-factors.” ' '

No good characterization of graph nonisomorphism is known.

A good characterization would imply that graph nonisomorphism is in NP;
equivalently, it would imply that graph isomorphism is in co-NP. No NP-
complete problem is known to be in co-NP. Thus, a good characterization of
graph nonisomorphism would constitute strong evidence that graph isomorphism is
not NP-compiete [28].

12.10 Modular Lattices

Isomorphism of lattices is isomorphism complete [35], but isomorphism of
distributive lattices is polynomial [23]. The class of modular lattices is properly
contained in the set of all lattices, and properly contains the class of distributive
lattices. .
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12.11 Subgraph Isomorphism

The subgraph isomorphism problem is to determine, given two graphs ¢ and
H, whether H is isomorphic to a subgraph of . It has long been known to be
NP-complete [25]. The only nontrivial restriction of subgraph isomorphism for
which a polynomial time algorithm is known occurs. when G and H are both trees
[52]. When H is a tree and G is planar, the problem is NP-complete [67]; thus,
extensions of the subtree isomorphism algorithm seem quite difficult.

However, an elementary extension of Tarjan’s group isomorphism algorithm
demonstrates that subgroup isomorphism can be tested in O(n'°8") time. In fact,
given two balanced incomplete block designs B | and B » with parameters (v,k,A),
determining whether B, is isomorphic to a subdesign of B can be done in
O(D(v) vI°8"), where D(v) is the time required to test isomorphism of (v,k,A)
designs [24]. Thus a subexponential algorithm for block design isomorphism gives
a subexponential algorithm for subdesign isomorphism.

Do there exist other nontrivial classes of structures also having this close
relation between testing isomorphism of the structures and testing substructure
isomorphism?

12.12 The Complexity of Graph Isomorphism

Lipton [47] observes that no asymptotic improvement on the O(n!) brute
force algorithm for graph isomorphism has appeared in the literature. Recently,
an O{c™ algorithm for graph isomorphism has appeared [23]. Can this be
improved?

12,13 Directed Path Graphs

Given a rooted directed tree T and a set of directed paths in 7T, we define a
graph as follows. Each directed path is represented by a vertex; two vertices are
adjacent if the corresponding directed paths share at least one vertex in 7. A
graph is a directed path graph if it represents directed paths in some rooted
directed tree.

The class of direcied path graphs properly contains the class of interval
graphs and is properly contained in the class of undirected path graphs. Interval
graph isomorphism can be tested in linear time [49] and undirected path graph
isomorphism is isomorphism complete. How difficult is testing isomorphism of
directed path graphs?

13. Probabilistic Methods

There has been much recent nterest in the development of algorithms which
yield an efficient isomorphism test for almost all graphs (in the asymptotic sense)
[33,40,47].

These methods confirm our real world experience that testing isomorphism
of garden variety graphs is usually easy. In practice, however, hard graphs for
isomorphism are regular, or even strongly rcgular, Is there an efficient

3
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isomorphism test for almost all regular graphs? strongly regular graphs?
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Appendix

In this appendix, we give a formal specification of the reductions described
in the text of the paper. This is done for two reasons: to present reductions not
presented in the text due to the difficulty in giving a concise English description of
the reduction, and to help the reader if the English description in the text is found
to be confusing or ambiguous.

We formally specify reductions as follows. We are given a structure to be
transformed. When this structure is a graph, we assume it has vertex set V={v,,
vy} and edge set E={e |, ... ,¢,;}. The result is another structure, which we will
specify in terms of its constituent parts. For example, a digraph is specified in
terms of its vertices and arcs.

3.1 A sample proof

Given: an arbitrary graph with # >2
Result: a thin graph

Vertices:

(0 {Vlv evn}

(2) w; | 1<i<n+2)

Edges:

(Der, - em}

@) v v | 1<i <)

(3) {wi.wi+1) | 1<i<n+1}

4.1 Labeled Graphs and Psendographs

Given: an arbitrary pseudograph
Result: a graph

Vertices:

(N {vh ey Vn]

Edges:

(D Ay jowij+0) | 1i€m, 1€ <n =2}
@) fviwe, s Vwpn =0 | ex = (vl
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4.2 Directed graphs

Given: a directed graph
Result: a graph

Vertices:

(1 {vlv seny vn}

(2) {w; | 1<i<m}

(3 {yi | 1<i<m}

4) {z; | I<i<m]

Edges:

(D {0vwp | e = (vive )]
(2) lz;vi) | e; = (viovgd
(3) f(wj.zi) | 1<j <
@) Yz;y )| 1< <m)
Given: 4 graph

Result: a digraph
Vertices:

(D {v1, oo vt

Arcs:

(DA (v (vg,v)) s in E]

4.3 Oriented graphs

Given: a graph

Result: an oriented graph
Vertices:

(D vis oes Vil

2 et o el

Arcs:

(1) {(viept viisin ey

4.4 Acyclic rooted digraphs

Given: a graph

Result: an acyclic rooted digraph
Vertices:

(1) {Vl, cees ‘I/‘"}

(@) {eiv reey em}

(3) {st

ArCS: _

(1) {(ve;) | vi is in e;)

) {svp) | 1<ignl

Root: s

41
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4.5 Bipartite graphs

Given: a graph

Result: a bipartite graph
Vertices:

Uy fvq. s vl

(2) fess .o e}

Edges:

(1) {(vi.e) | viis in ej}

4.6 Chordal graphs

Given: a graph

Result: a chordal graph
Vertices:

(D vy s v}

(2) {e L] em;

Edges:

(1) {(vi,e;) | viis in e;}
(2) {(viv)) | P54}

4.7 Graphs with a forbidden induced subgraph

Given: a graph, and a forbidden cyclic graph H with p vertices.

Result: a graph having no induced subgraph isomorphic to H
Vertices:

(Div, ., vyl

(2) fwi; | 1<i<m, 1j<p — 1}

Edges:

(D Ay wij+) b 1<i<m, 17 <p =2

D w1 Vi wip-0 | ;= (Vv

4.8 Transitively orientable graphs

The construction is the same as that in 4.5

4.9 Series-parallel digraphs

Given: a graph

Result: a series-parallel digraph
Vertices:

(]) {Vla rees vn}

@D {ern o em)

(3) {new}
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Arcs:

(1) {(vi.e;) | v is in e
(2) {(vimew) | 1<i<n}
(3) {(new.e;) | 1</ <m}

4.10 Undirected path graphs

Given: a graph

Result: an undirected path graph
Vertices:

(W vy oo val

2) {elv s B }

Edges:

(1) {(vi.ep) ] v isin e}

(2) {(ejep) | i# 7

5.1 Compact graphs

Given: a graph

Result: a compact graph

Vertices:

Edges:

(D) f(w;owie ) | (vpvg) s in B, 1< <5
(2) (Oovypwa) | J#1 1<k <nl

5.3 Self-complementary graphs and digraphs

Given:; a graph
Result: a self-complementary graph
Vertices:
(0 {z;; 1 1<i<in, 1</ €8]
(2) [new}
Edges:
(1) {(new,z; ;) | 1<i<n, 1</ <4}
(2) Wzi 57k} | (iovj) is in E and j=1,4.6, or 7}
(3) {(zi 5.2k ;) | (vg.v;) is notin E and j=2.3,5, or 8}
(4 Wz pzi ) | 1<Kik <, (J1) is one of:
C(1.2), (L6), (2.3), (2.5), (2,6}, (2,7), (3.4),
(3.6), (3,7), (3.8), (4,7, (5,6), (6,7), or (7,8)

43
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5.4 Regular self-complementary graphs

Given: a self-complementary graph

Result: a regular self-complementary graph
Vertices:

(1) fwi; | 1<ign, 1€/ <4

(2) [new}

Edges:

(1) {(new,w; )| 1<i<n, 1< <2}

() {wijowis) | 1<k <n, ) = (1,3) or (2,4)
(3) §(w; (:wj2) | (viv;) is not in E and i #}

(4) {(w; 3w, 9 | (vi,v;) is not in E or § =}

5.5 Graphs with a unigue centre

Given: a graph

Result: a graph with a unique centre
Vertices:

(1) {w; | 1<i<n

@) fz; | 1<i<n}

(3) {centre}

Edges:

(D) {(centre,w;) | 1 <i<n}
(2) {{centre,z;) | 1<i<n}
(3) {wpw) | (vi,v)) is in E}
(4) {(21'=zj)| (vi,vj) is in E}

5.6 Cospectrai graphs

Given: two graphs, G with vertex set {vq, .., v,} and edge set E, and H with
vertex set {w, ..., wp} and edge set F.
Result: a cospectral pair of graphs

Graph 1, vertices:

(1) {12 | 1<i<n)

(2) frispt; | 1<i<p}

Graph 1, edges:

(1) {(Eixj)’ (yi’yj)v (ZJ',Zj)l (V",Vj) is in E}
(@) {(riory), (si87), (i) | (wiw)) is in F)
B3y {&ry) | 1<ign, 1< <p}

(@) {zitp) ] 1<i<n, 1 <p}

{5) {(yierj)v (yr',sj)s (yistj)l I<ig<n, 1<) ép}
Graph 2, vertices: as Graph 1

Graph 2, edges: as Graph 1, except

(5) t(sfvxj)v (Shyj)w (‘E’z_,')l 1*<-l*<-p1 14]4”}
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6.1 Line graphs

Given: a graph, not isomorphic to K3o0r K| 3
Result: 4 line graph

Vertices:

(D {ets - €m)

Edges:

(2) {(es.€;) | i#), e; and e; meet at a vertex|

6.2 Regular graphs — Booth

Given: a graph with m—#n >2 and no isolated vertices
Result: a regular graph

Vertices:

(D {vis s vyt

et - emd

O i | 1<i <m)

(@) lgr| 1<i<m—2]

(5) {h; | 1<i<m—n+2]

Edges:

(1) {(vi.e;}| viisin ¢}

(2) {(Vl’fj)i Vi is not in eJ.}

(3) {(ejngi) | 1<) <m, 1<k <m =2

B ki) | 1<) <m, 1<k <m —n +2}

6.2 Regular graphs — Miller

The construction can be found in [30,56,54]

6.3 Regular bipartite graphs

The construction can be found in [56]

6.4 Marked graphs and marked trees

Given: a marked graph with partitioning P={p |, ..., px}
Result; a labeled graph

Vertices:

(1) {vla s vnl

(2) {P [N pk}

Edges:

(e, o en}

(2 {(v;p;)| vy is in class p; of P}

Vertex labels:
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() vy, ..., v, } have label ‘0

2 ip 1y .or pi) have label ‘1
Given: a directed graph

Result: a marked tree

Vertices:

(1) {Vl1 (R Vn}

)i | 1<i<m}

(3) {g; | 1<i<m

(4) {root}

Edges:

(1) {(root, v)| 1<i<n}

(2) {(vt'afk)w (vj:gk)l e = (V,',Vj)}
Partitioning:

(1)p11+] = {I‘OOI}

@ pi = b U lex | ex = vl U Uk | ek = (v}

6.5 K-trees

Given: a directed graph with no sources or sinks
Resuilt: a k-tree (with k=n-—1)
Vertices:

(1) [vl’ rana Vr.']

(2) {w; | 1<i<n}

(3) {z; | I1<i<m}

Edges:

() {(viv) | P#4

(2 {viwp)d | i #)

(3) {{zrvn) | ep = (v, T#), [ £k}
) {wiz;) | e = (vived}

6.6 C-subgraph regular graphs

The construction can be found in [30]

6.7 Eulerian graphs

Given: a connected graph G with degree(v;) = d;
Result; an Eulerian graph

Vertices:

(1) by | 1<i <n)

(2) (g 1<ign}

(3) {zi; | d; odd, j=1}

(4) {z;; | d; even, 1€ <2}

Edges:

(1) {(W“Wj)l (Vi,vj') is in E}

Problems Polynomially Equivalent to Graph Isomorphism

(2) {&xN | (vvp) s in £
(3 {(&.zi 1) (wizi )| d; odd)
(4) {(E.2;.5), (winzij} | di even, 1€/ <2}

6.8 Hamiltonian graphs

Given: a connected graph
Result: a Hamiltonian graph
Method: take the line graph of the Eulerian graph constructed above.

6.9 Hypergraphs

Given: a hypergraph
Result: a graph
Vertices:

(1) [Vl, vy V,T}

(2 fers - em}

Edges:

() {(vpe)) | vy is ine;)

7.} Algebras

The construction can be found in [54]

7.2 Lattices

Given: a graph with no isolated vertices
Result; a lattice

Elements:

(D) V1o e V)

(2} {1, s €m)

(3) {0,1}

Domination relation R:

(DT Re, ILi<m

(2) e; R v;, when v; is in ¢;

Grv; RO, Iign

7.3 Semigroups

The construction is identical to that in 7.2

47
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7.4 Finitely presented algebras

The construction can be found in [41]

7.5 Automata and semiautomata

Given: a graph

Result: an automaton
States:

(D) {vys oo val

(2) {start,stop}

Input alphabet: {vq, ..., v,;}
Start state: start

Final states: {vy, ..., v}
Transition function:

(1) D{start,v;) = v;

{2} D{(stop,v;y = stop
(3) D(v,-,v_,-) =V if i'=j

r (4) D(V'.',Vj) = Vj lf Vf,‘l/‘j iS in E

(5) D(v;,vjy = stop if i#j and (v;,v;) is not in E
Givern: a digraph

Result: a semiautomaton with binary input alphabet
States:

(1) {Vls seen V”}
2 et .. end
(3) {dead}

Input alphabet: {in,out]
Transition function:
(1) D(g.in) = v if g =v;,
= v; if g =(v;,v;)is an arcin E|
dead otherwise.

(2Y D(g.,out) = v; if g =(v;,v;) is an arc in E, dead otherwise.

Problems Polynomially Equivalent to Graph Isomorphism 49

References

A.V. Aho, J.E. Hoperoft, and J.D. UHman, The Design and Analysis of
Computer Algorithms, Addison-Westey (1974)

D. Angluin, “On counting problems and the polynomial time hierarchy”,
submitted for publication

L. Babai, “On the isomorphism problem™, Proceedings of the Foundations
of Computation Theory Conference, Poznan-Kornak (1977)

L. Babai, “On the complexity of canonical labeling for sirongly regular
graphs”, submitted for publication

L. Babai, “The star-system problem is at least as hard as the graph isomor-
phism problem”, Proceedings of the Combinatorics Collogquium of the
Bolyai Math. Society, Kesthely (1976)

H.G. Barrow and R.M. Burstall, “Subgraph isomorphism, matching rela-
tional structures, and maximal cliques™, Information Processing Letiers 4
(1976) 83-84

G. Birkhoff, Lattice Theory, American Mathematics Society (1948)

J.A. Bondy and R.L. Hemminger, “Graph reconstruction - a survey”, Jour-
nal of Graph Theory I (1977) 227-268

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications , Macmil-
lan {1976)

K.S. Booth, PQ-iree algorithms, Ph.D. thesis, University of California at
Berkeley (1975)

K.S. Booth, “Isomorphism testing for graphs, semigroups, and finite auto-
mata are polynomially equivalent problems”, SIAM Journal on Computing
7 (1978) 273-279

K.S. Booth, “Problems polynomially equivalent to graph isomorphism
{abstract)”, in Algorithms and Complexity (1.LF. Traub, editor), Academic
Press (1976) 435 :

K.S. Booth and G.S. Lueker, “Linear algorithms to recognize interval
graphs and test for the consecutive ones property”, Proceedings of the
Seventh Annual ACM Symposium on the Theory of Computing (1975} 255-
265

M. Brown and R, Conolly, “On graphs with constant link™, in New Direc-
tions in the Theory of Graphs (F. Harary, editor), Academic Press (1973)
19-51

W. Burnside, Theory of Groups of Finite Order, Cambridge University Press
(1911)




30

K. S. Booth and C. J. Colbourn

Problems Polynomially Equivalent to Graph Isomorphism 51
| [16] V. Chvatal, “New directions in Hamiltonian graph theory”, in New C e ) . ]
Directions in the Theory of Graphs (F. Harary, editor), Academic Press (331 P. Erdo_s and L. Babai, “On random graph isomorphism™, submitted for
(1973) 65-95 publication
i:% [17} M.J. CO]bOUTn, “Analytic and Computer techniques for set packings”, M.Sc. [34] ?’;[9750‘?531;0 “AutomOl‘phismes de grﬂphes et Planarite", A.S'terfsque 38-39
E thesis, Department of Computer Science, University of Toronto (1977) )73
8 " . . 35] R. Frucht, “Lattices with a given abstract group of automorphisms”,
. [18] CJ. Colbourn and M.J. Colbourn, “Graph isomorphism and self- [35] Canddinn Journul of Mothomaricr 3 (1950) 417435 T P
% complementary graphs™, SIGACT News 10, 1 (1978) 25-29 i . ] _ '

32 {19] C.J. Colbourn and M.J. Colbourn, “Isomorphism problems involving self- [36] ijB‘k?ilbl?ons’ gc})}mf)uut;qg. te{c_]hn_zque-s fo; %he construction and analysis of
g} complementary graphs and tournaments”,.} Proceedings of the Eighth Ock designs,. D thests, .mversny of Toronto (1976)

;% Manitoba Conference on Numerical Mathematics and Computing (1978) [37] F. Harary, Graph Theory, Addison Wesley (1969)

. [20] C.J. Colbourn and M.J. Colbourn, unpublished [38] D. Hirschberg and M. Edelberg, “On the complexity of computing graph
. [2i] C.J. Colbourn, “A bibliography of the graph isomorphism problem”, ‘}Efi‘:]’;?;i'Sgni;;zih“(f;;;)‘epo” 130, Department of Electrical Engineering,
% Technical Report 123/78, Department of Computer Science, University of y- o

% Toronto (1978) {39] I}MC Karp, “Rgdumbilltles am(;ng comblilnatori?ii problems™, in Complexity
0 . 0 omputer Computations .E. Miller and J.W. Thatcher, editors),
§ [22] C.J. Colbourn, unpublished - . A y . Plenum (1972) 85-104

%ﬁ (23] CJ C(.)lbm,lm.’ ,,A pOIynomial t'm.e' algorithm  for  isomorphism 0 [40] R.M. Karp, “Probabilistic analysis of a canonical rumbering algorithm for
B distributive lattices”, submitted for publication - . ’ h

o i oo graphs”, Proceedings of the AMS Symposium on the Relation Between
;ﬁ [24] M.J. Colbourn, private communications ‘ Combinatorics and Other Branches of Mathematics (1978)

% [25] S.A. Cook, “The complexity of th?orem-pr}(l)wr}i procedu(rjes , Pijocee;ig;gs [41] D. Kozen, “Complexity of finitely presented algebras”, Proceedings of the
(]?j;lfhléjnghlrd Annual ACM Symposium on the Theory of Computing (1971) Ninth Annual ACM Symposium on the Theory of Computing (1977) 164-
. - 177 ‘

. [26] J. Cooper, J. Milas, and W.D. Wallis, “Hadamard equivalence”, in [42] D. Kozen, “A clique problem equivalent to graph isomorphism”, SIGACT
. . . : : . , ,

. Combinatorial Mathematics (D.A. Holton and J. Seberry, editors), Springer News 10, 2 (1978) 50-52

% Verlag (1978) 126-133 . o _ [43] E.L. Lawler, “Graphical algorithms and their complexity”, Math. Centre
%% [27] gécgé)Comeli, Graph Isomorphism, Ph.D, thesis, University of Toronto Tracts 81 (1976) 3-32 - ' :

. [44] A.B. Lehman, private communications

[281 D.G. Corneil, “Recent results on the graph isomorphism problem™,
Proceedings of the Eighth Manitoba Conference on Numerical Mathematics
and Computing (1978)

[29] D.G. Corneil, private communications (1979}

[30] D.G. Corneil and D.G. Kirkpatrick, “A theoretical analysis of various

SR

[45] H. Lerchs, “Cographs and their applications”, unpublished manuscript,
Department of Computer Science, University of Toronto (1972)

T

=
=N
=

G. Levi, “A note on the derivation of the maximal common subgraphs of
two directed or undirected graphs”, Calcolo 9 (1972) 341-354

[47] R.J. Lipton, “The beacon set approach to graph isomorphism™, to appear in

|
;

A

|
&

heuristics for the graph isomorphism problem”, to appear in SIAM Journal
on Compuling

configurations™, Annals of Discrete Mathematics 2 (1978) 1-32

SIAM Journal on Computing

: [31] D.G. Corneil, M. Klawe, and A. Proskurowski, “Marked trees and the [48] A. Lubiw, private communications (1979)

§ ‘ graph isomorphism problem™, in preparation [49] G.S. Lueker and K.S. Booth, “A linear algorithm for deciding interval
. [32] D.G. Corneil and R.A. Mathon, “Algorithmic techniques for the graph isomorphism™, to appear in Journal of the ACM

. construction and analysis of strongly regular graphs and other combinatorial [50] R.A. Mathon, “A note on the graph isomorphism counting problem”,

submitted for publication




52

(51}

[62]

[63]

[64]

K. S. Booth and C. J. Colbourn

R.A. Mathon, “Sample graphs for graph isomorphism testing”, Proceedings
of the Ninth Southeast Conference on Combinatorics, Graph Theory, and
Computing (1978) '

D.W. Matula, “Subtree isomorphism in O (132 time”, Annals of Discrete
Mathematics 2 (1978)

B.D. McKay, “Hadamard equivalence via graph isomorphism”, submitted
for publication

G.L. Miller, ““Graph isomorphism: general remarks”, to appear in the
Journal of Computer and System Sciences

G.L. Miller, “On the n'%8" isomorphism technique”, Proceedings of the
Tenth Annual ACM Symposium on the Theory of Computing (1978) 51-58

G.M. Prabhu, “Graph isomorphism: a heuristic approach™, M.Tech. thesis,
Indian Institute of Technology Kanpur (1978)

R.C. Read and D.G. Corneil, “The graph isomorphism disease”, Journal of
Graph Theory 1 (1977) 339-363

P L. Renz, “Intersection representation of graphs by arcs”, Pacific Journal
of Mathematics 34 (1970} 501-510

1.J. Rotman, The Theory of Groups, Allyn and Bacon (1965)

A.]. Schwenk, W.C. Herndon, and M.L. Ellzey, “The construction of
cospectral composite graphs”, Proceedings of the Second International
Conference on Combinatorial Mathematics, New York (1978)

C.R. Snow and H.1. Scoins, *Towards the unique decomposition of graphs”,
in Machine Intelligence 4 (D. Michie, editor), Edinburgh University Press
(1969) 45-55

R. Statman, “The graph isomorphism problem is eqguivalent to the
legitimate deck problem for regular graphs”, unpublished manuscript (1978)
L. Stewart, “Cographs - a class of tree representable graphs”, M.Sc. thesis,
University of Toronto {1978); also Technical Report 126/78, Department of
Computer Science, University of Toronto (1978)

A.P. Street and W.D. Wallis, Combinatorial Theory: An Introduction,
Charles Babbage Research Centre (1977) :

L. Valiant, “The complexity of computing the permanent”, to appear in
Theoretical Computer Science

H. Whitney, “Congruent graphs and the connectivity of graphs™, American
Journal of Mathematics 54 {1932) 150-168

J.K. Wong, Isomorphism problems involving planar graphs, Ph.D. thesis,
Cornell University (1975)






