*

LUCID PROGRAMMING™
by
E.A. Ashcroft*
Research Report CS-77-03

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

This paper was presented at the International Symposium on
Methodologies for the Design and Construction of Software

and Hardware Systems, Rio de Janeiro, June 28-July 2, 1976.
The reader should be warned that some of the notation has
subsequently been changed, in particular in section 4. The
‘modern' notation is given in "Lucid Scope Structures and
Defined Functions", by E.A. Ashcroft and W.W. Wadge, CS-76-22.

LUCID PROGRAMMING

E.A. Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada

Abstract

The title of this paper is a deliberate double entendre,

because Lucid is a programming language. However, the pun is not
too outrageous, since, as claimed in this paper, Lucid programming
is lucid programming.
Lucid is a very unconventional programming language, and this
paper attempts to give a "feel" for the language and justify, a

posteriori, the programming style it imposes.

1. Introduction

This paper is aimed at the casual reader. More complete
summaries of Lucid can be found in [2,3]. The formal definition of
Lucid is given in [1].

3
2. Elementary Lucid

The primary aim in Lucid is that the statements in a Lucid
program should be mathematical assertions about values tomputed by the
program, and these assertions should form the basic premises from which
properties of the program can be deduced by more or less conventional
mathematical reasoning. Elementary Lucid programs should essentially

be sets of axioms. Thic implies that the order of statements in an

elementary program should be irrelevant.

=2 =

Achieving this aim is made especially difficult by the almost
equally important requirement that the programmer should be able to write
programs in & reasonab1y~conventiona] manner, using assignment statements,
tests and iteration. (Recursion in programming languages has been around for
a long time, and is very useful in certain elegant algorithms, but, as an
everyday programming method, it is generally neglected, even avoided.
Certain Tanguages with recursion, 1ike LISP, have devoted adherents, but
it can be argued that this is because recursion is particularly useful
~when cdmputing Qith Tist structures. Recursion also bestows on the
language a certain mathematical elegance, and in fact ‘pure' LISP programs
do achieve the basic aim mentioned above.) Assignment and iteration are
at the basis of the great majority of successful programming languages,
and, whether by nature or nurture, are considered by programmers to provide
the most natural way of expressing algorithms.

' Lﬁcid throws these two requirements into the greatest conflict,
by attempting to treat assignment statements as equations. Surprisingly,
Lucid solves the seemingly irsurmountable problem that this causes.

The problem clearly arises on reassignment to variables;
for example, X = 3 and X = 2 can not both be true. Reassignment is
inextric%b1y Tinked with Tooping; with no loops in a program there need
be no reassignment (new variables can be introduced), and a loop requires
reassignment if a situation is to be reached where the loop will terminate.
The reassignment problem can be solved if we make this correspondence
between preassignments and Toops quite rigorous.

A variable X that is changing within a Toop, and whose value onany

given iteration depends on variable values at earlier iterations (usually the

previous one), will be called a loop variable. We will require that Toop

variables be updated (reassigned) exactly once on each iteration of the

1ooﬁ. Then we can distinguish between the initial value of X, denoted
first X, the current value of X, denoted simply X, and the value of X after

A A

updating for the next iteration, denoted next X. Then if, for example, X
starts off at O and is incremented by one each time around the loop, this is
expressed by the two statements firgg X =0 and next X = X+1. We now make the
observation that the correspondence between Toops and assignments has

become so close that these two statements are sufficient to indicate the

existence of the loop, and explicit control statements are unnecessary!

Suppose we have another variable Y that is varying within the
loop, which uses X. For example, Y starts off at 1, and on each iteration
we add twice the (non-updated) value of X plus 3. Well, we simply write
fiﬁiﬁ Y =1, next Y = Y+2X+3. How do we put the four statements together?
In any order we please! The meaning of "X" in the program is the same
whether it occurs before or after the statemeni'ggzg X = Xt1. The
language. has what is called "referential transparency".

We still need to be able to terminate the loop. Essentially,

.

(RS N

result = X as_soon as Y > N,

the value of result is the value that X has on the iteration where Y is,
for the first time, greater than N. (N itself could be a varying loop
variable, but Tater we will use this program in a context in which N is a
constant.) We still need impose no ordering on the five statements. It
is clear that we can choose to write the statements in an order that
suggests the usual 'flow of coniro]', but this just helps to make the
program look more conventional. In fact, the 'driving force' behind the

evaluation of the program is the flow of data - the dependencies of the

values of variables on the values of other variables.

We can easily write programs that are difficult to interpret
in 'flow of control' terms. For example, we could add to our five
statements the statement Z = Y as soon as X < 10Y. We then have two

L R N VT VL VRV VPV

exits from the Toop. In general we can think of the as_soon as as
determining a value to be plucked out of the loop. VIn the expanded
program we pluck two values from the loop. (We do not stop the loop
when we get the first of these values.) More difficult to interpret

would be the addition to our five statements of the statement

N =X as_soon as Y > 100. Now the value plucked out by this statement

1s used to determine the value picked out by the original as_soon as
statement. Notice that we determine N to be 10, when X gets to 10 and Y
gets to 121. Bui then we already have that Y > N - we should have plucked
the value for result out of the loop many iterations previously!

The only conventional operational interpretation is that the loop is
duplicated, and, after determining N, the values of X and Y are recomputed
from the beginning. |

The purpose of the last paragraph is not to confuse but rather
to warn the reader that the simplicity of Lucid can be deceptive.
However, in future we will avoid programs with obscure 0peratfona1‘
interpretations.

The simple program we started with has a single loop. We can
also write programs consisting of concatenated Toops and nested loops.
Such programs will be introduced later, when necessary. This paper is
not intended to be a complete exposition of Lucid. More details can bé'
found in [1,2].

;

3. Lucid reasoning

Since e]ementaky Lucid programs.are simply sets of equatiohs,

=5 -

it is not surprising that proofs of program properties tend to be simple

and direct. We will also see that the construction of programs benefits

from the freedom from 'control flow!,
Take the simple program considered in Section 2:

0

first X

flest ¥ = 1

next Y = Y+2X+3

X+1

next, X

i

result = X as_soon_as Y>N

This 1s actually a program to compute the integer square roof of N. We
)2 '

can prove that Y = (X+1)", i.e. the current value of Y is always equal to

the current value of (X+1)2. We prove this as follows - by 'Lucid

induction':
(i) Base step:

First ¥ = 1
(0+1)2

(first x+1)

2

(i1) Induction step:

- Assume Y = (x+1)% (the Induction Hypothesis).
next ¥ = Y42X+3
= (X+1)2+2X+3 ~(by Induction Hypothesis)
= (x+141)2
= (next x+1)% ,
Y= (02 o pext(v=(x¢1)2)

Therefore, by induction, Y = (x+1)2.

-6 -

Notice that we just use the statements in the program as properties
to be called upon when required. The reasoning is not complicated by

4
having to consider at which point in the loop something is true; and the

property proved, Y = (X+1)2, is a property of the whole program, not
something true at a particular point. And yet this whole proof is very
analogous to a proof of_the same property using 'inductive assertions’,
in which one has to be very clear about exactly where in the loop one is
talking about.

As well as the induction rule there are rules that allow reason-
ing about the function as soon as, which essentially involve proving
program termination. For details, see [1,2]. |

It is interesting to note that, having proved Y = (X+1)2, simple

substitution 'massages' the program into the following equivalent form:

first X = 0
next X = X+l
result = X as_soon as (X+])2>N

We see that the 'mathematical' nature of the program makes it very easy to

transform the program without changing its meaning. Such transformations

may be useful for optimization as well as for proving correctness. They
also suggest the possibility of program synthesis techniques in which we
start with the desired property of the. program, and then_massage it so that
it looks more and more like a Lucid program. The fact that there is a smooth
continuum from straightforward mathematics to Lucid programs makes this look
like a promising technique.
Even 1f such a technique is not used, the construction of Lucid

programs is made relatively straightforward by the lack of control flow.

_ ~ For examp1é, suppose we are | setting out to write an integer square root

program, without using squaring. The idea“may occur to us to generate

successive squares until we find one larger than N. So we first generate
all the non-negative integers, first I = 0, next I = I+1, and then decide

A~ s ~

how to get their squares, represented by a variable J. Well clearly fifff
J = 0. Now if we have the square of I, we can get the square of I+1 by
adding 2I+1, so we can say next J = J+#2I+1. We are now sure that J = I”.
Now we note that we are to find the first I2 that exceeds N, and return
the previous value of I, which is clearly I-1.provided N 2 0. (If N< 0
there will be no previous value of I, but in that case WN is imaginary

and we do not expect our program to deal with it anyway.) So the complete

program is

next I = I+}

first =0
next J = J+2l+]
result = I-1 gs soon as J>N.

The thing to note is that the construction was quite 'modular'. The

sequence of values to be taken on by I is independent of the values of the other
variables, and the complete specification of I can be made before producing
program for the other variables. Assembling the program fragments is

trivial - they are just put together as a set. There is no worry about

where the statement that breaks the loop should be‘p1aced, or which variables

should be updated before the others, etc. It is a very different style of
programming, and one which has been found to be simpler and more reliable

than that for conventionaly]anguages. In fact, even when programming

in a conventional language, it is often easier to write the program first

in Lucid, and then translate 1it.

4. More Lucid

Here we will consider extensions to Lucid that are more
completely described in [3]. One feature of programming languages that is
missing in elementary Lucid is scope of variables. An elementary Lucid
program is a set of equations specifying some variables, and each variable
has one specification.

Local variables can be introduced by using the 'parenthesés'

produce ... end. For examplie, in

first I =1

~ s A

o~~~

first J = 1
next J = J+]
result = I+J

end
the variables J and result are local to the produce "clauge", and are
Togically distinct from any variables J and result that might appear
outside the clause. Variables appearing in the Tist following "using" are global
variables. Locals like J (not result) can be consistently renamed to
anything that does not conflict with any global or other local. If the
local variables of a produce clause (except result) do not have the same
names as any local or global variablesin the enclosing clause or program, the

parentheses produce ... end can be removed, replacing the local variable

result by the expression following the word produce. Thus, the above

piece of program is equivalent to

first 1= 1
first 0 = 1
next J = J+1
next I = I+J,

ooy

-9 -

We can use a similar construct for nested Toops. Suppose we
wanted to sum the integer square roots of the integers 1 through 100,
We write

¢ ficst N =1

next N = N+
first SUM = 0
compute next SUMsusing N, SUM
first I =0
i next I = I+1
first J =0
next J = J+2I+]
result = SUM+(I-1 as. soon_as J>N)
end

result = SUM as_soon_as N>100

The parentheses compute ... end delimit the inner loop, which is evaluated

for all values of the glchal variables SUM and N. Inside the inner loop,
the global variables are constant, even though they vary in the outer
1oop. |

These parenthesising notations 'structure' the equation sets,
and corresponding structuring of program proofs is necessary. We have to
associate with properties the clauses within which they are valid.
This gets back a Tittle towards localising assertions, but happily doesn 't
go all the way to considering particular points in the program.

Similar notations can be used to specify user—defined‘”functiqns'
and 'mappings'. A mapping is a "pointwise" funétion, one whose value

depends only on the values of its arguments at the time it is called.

Functions need not work pointwise. For example, we can write a function

- 10 -

STAT(X) which, when called at any time, returns the mean and standard

deviation of all the values of X up to that time.

5. Implementations

The reader may agree that programming in Lucid might have some
advantages, but wonder how practical the language is. Are there any
implementations of Lucid, for exampTe?

The formal proof thebry for proving prOpert{es of Lucid programs
is an intrinsic part of Lucid. This proof theory is based on a formal
specification of the semantics of Lucid, given in a quite abstract mathematical
way. If the proof theory is to apply to 'real' Lucid ﬁrograms, the implementa-
tions must agree with this formal semantics. Thus, perhéps more than for
other languages, interpreters and compilers for Lucid must be proved to be
correct.

We have seen that evaluation of Lucid programs must be 'data
driven', This complicates the job of compiling the language, and in fact
the full language seems not to be compi]ab]e. A Targe subset can be
compiled however. The only compiler currently operational, in fact the
only compiler even contemplated, is that of Christoff Hoffman [5].

It is written in the language B, and runs under the timesharing system of
the Waterloo Honeywell 6060. A discussion of the new, and complicated,
compiling techniques that were necessary is beyond the scope of this paper.

For a completely correct implementation of the full language,
an interpreter is required. The construction of an interpreter is relatively
straightforward, by basing it directly on the formal semantics. In the
formal semantics, for elementary programs,‘the variables in a program
denote infinite sequences of values. For example, in the square root program

constructed in Section 3, I is <0,1,2,3,...> and d is <0,1,4,9,...>. MWe

- 11 -

write I, to denote the t-th value in the sequence for I. The formal

semantics shows that, for example (At+B) At + Bt,‘and, for the Lucid

t
functions, (first A), = Ay and (next A)

i

Apep- (A as soon as B), is Ay
where By is the first true value in the sequence of truth values B. A
sequence whose values are independent of t, such as first A or A as, soon as B,
is said to be constant. A1l numerals denote constant sequences. I¥F, say, resu]to‘
is the value desired, we can use the formal semantics to determine it,
which will inyo1ve finding the values of other variables at other 'timeé'.
This 1s'essentially how Lucid interpreters work.
There are two interpreters currently working, one at

Warwick (David May) and one at Waterloo (Tom Cargill [4]).

6. - Programming Style

Lucid programs are well-structured, being formed from nested and
concatenated loops. (There is no conditional statement but there are
conditional expressions,) Morever, the use of variables corresponds to good
programming practice. Each variable is used for one purpose, and has one
'meaning' (naturally considering local variables in different clauses as
different variables). This style is not imposed because it is thought to
be beneficial. Rather, this discipline of programming, which is becoming
generally approved, is the natural result of designing a language which can
treat assignment statements as equations.

It is very satisfying, even significant, that the studies of good
programming practice and of ways of unifying mathematics and programming

should Tead to such similar results.

7.

[1]

[2]

(3]

[4]

(5]

- 12 -

References

- Ashcroft, E.A., and Hadge, W.NW., "Lucfd, a Non Procedural Language
with Iteration", CACM (to appear).

Ashcroft, E.A., and Wadge, W.W., "Lucid, a Formal System for
Writing and Proving Programs", SIAM J. Comput. , 5, No. 4.

Ashcroft, E.A., and Wadge, W.W., "Lucid: Scope Structures and
Defined Functions". C(CS-76-22, Computer Science Dept.,
University of Waterloo.

Cargill, T., "Deterministic Operational Semantics for Lucid",
€5-76-19, Computer Science Dept., University of Waterloo.

Hoffmann, C.N., “Design and Correctness of a Compiler for Lucid",
C5-76-20, Computer Science Dept., University of Materloo.

SUBSEQUENCES IN STACK SORTABLE PERMUTATIONS
AND THEIR RELATION TO BINARY TREES

by
D. Rotem
Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

The class SSn of stack sortable permutations is known to be in 1-1
correspondence with n-noded binary trees. Expressions are deriyed for the
average length of several types of monotonic subsequences in members of‘
SS,. The relations between these subsequences and properties of the
corresponding tree are demonstrated. It is also shown that the permutation

graph of a member of SSn is an interval graph of a special type.

1. Introduction

Given a permdtation I= < p],pz,;..,ph> and an empty stack, the
elements of 1I can be passed through the stack using two elementary
operations coded 'S' and 'X'. The operation 'S' denotes 'put the next
element of 1 on top of stack' and 'X' stands for 'transfer the element
on top of stack to the output'. A sequence L of the above mentioned
operations, is called a valid operation sequence (or simply an operation
sequence) if and only if (1) all elements of 1 are transferred to the
output and (2) the operation 'X' is never specified when the stack is
empty. Conditions (1) and (2) imply that an operation sequence must consist
of 2n operations, n of each kind, the number of ‘X' operations méy
never exceed the number of 'S' operations when L 1is scanned from left
to right.

We denote by L(II) the output permutation which results from passing
I through a stack. For example if T = <1,3,2,4> and L = <5,X,5,X,5,5,X,X>
then L(1) =" <1,3,4,2>. A permutation I 1is sortable with a stack if and
only if there exists an operation sequence L such that L(m) = <1,2,...,n>,
it is realizable with a stack if and only if an operation sequence R
exists such that R{(<1,2,...,n>) = T.

Given a permutation i let [be the sequence of operations

which sorts I with a stack. Scanning L[from left to right, we call each
sequence of consecutive 'S' operations an S-group and such a sequence of 'X'
operations an X-group. Clearly, the number of X-groups is equal to the number

of S-groups, two S-groups.are seperated by an X-group and vice versa.

The S-specification and the X-specification of L are

.yectors < S1sSpseersSy> and < X}sXps-+.5X, > respectively, where for

1<is<y 54 denotes the size of the ith S-group and X; the size of
the ith X-group. |

We denote by SSn the class of permutations of order n which are
sortable with a stack, and by SRn the class of permutations of the same
order which are realizable with a stack. Those two classes are related as
follows, |

Tess, if and only if 17" ¢ SR, (1)
The class SRn is characterized by Knuth [3, p..239] by the following

theorem,

Theorem 1: The permutation I = < PpsPps--.aby > is a member of SRP if
and only if it does not contain a subsequence
< D1,Pjspk> such that p_] > pk > pJ. (2)
From this theorem and the relation (1) we obtain a characterization of

SSn as follows,

Theorem 1*: Il « SSn 1f and only if it does not contain a subsequence

7'< P;sPysPy > such that Py > Py > Py (3)

Two binary trees T and T' are similar (T = T') if they have the
same 'shape', formally, they both have the same number of nodes, with the
left subtree of T similar to the left subtree of T' and the same holds
true for right subtrees. For a node j in T, we denote by LT(j) and

RT(j) the Teft and right subtrees of j respectively.

A permutation can be mapped into a labelled binary tree T using the

following well-known construction.

Construction - T

Given I = < p],pz,...,ph> and an empty tree T, assign P to the
rbot of the tree; for each pk, k=2,3,...,n apply the rule
| C-=- if Py is inserted into a non-empty subtree rooted by Py it
is inserted into LT(pi) if pk'< P otherwise Py is inserted
into RT(pi) -
until an empty subtree is reached and then a root labeled p, 1is created
to that subtree.
Construction-T establishes a 1-1 correspondence between the set SSn
and the set of n-noded binary trees [33;6.2.2]. Given a labeled tree T,
its corresponding member of SSn can be obtained by reading the labels of
T in symmetric order (root, left subtree and right subtree).
The class SSn was studied in Knuth [3] and its relation to the classical
bqi]ot problem is shown in [4] and [7]. The correspondence between SS,
and the set of binary trees is used in [8] to generate and rank all

= (1) (A

'shapes’ of n-noded binary trees. The cardinality of SSn is Cn

(the n'th catalan number).
In this paper we Qtudy in detail some of the combinatorial properties
- of the class SSn. In sections 2 and 3 expressions are derived for the
expected length of some types of monbtonic subsequencesrand the average
number of inversions. The set SSn n SRn is characterized and enumerated
in section 4. In the last section the permutation graph associated with Il « SSn

is shown to be an interval graph of a special type.

2. Monotonic subsequences‘in _SSn and their relation to binary trees.
Let T = < PpsPos---sPy> be a permutation on the set N ={1,2,...,n}.

A descending subsequence of length k in 1 satisfies,

| pi] >p_i2 >...>p,ik and Ty <dy < <.
A descending subsequence is maximal in T if no element of T can be

added to it without violating its monotonicity. A longest descending

§g§§§gggggg_in m (LDS) contains the maximum number of elements among all
descending subsequences in II. We get the corresponding definitions for
ascending subsequences by replacing '>"' with '<' din the above, where LAS
stands for 'longest ascending subsequence’. For Jj ¢ N, we denote by

Rﬂ(j) the set of elements to the right of j in 1, and by Lﬂ(j) the

set of elements to the Téft of j in HI. Two elements pi‘ and pj

form an inversion in I if (pi—pj)(i—j)'< 0.

A descending run in I is a sequence of successive elements

Pi> Pygpoe--sPjqp Such that
(@) pyq <
(B Piag < Piaket
(c) Py > Piey > oo Pk

(We assume that Py > Py and Py < Ppe1e

The inversion-table of I, is a vector < bysbys...sb, > such that for
T<isn bi counts the number of elements in Rﬂ(i) “which are smaller

than i. It is well-known, that an inversion-table

1

uniquely determines its corresponding permutation. We denote by I ' the

-1

inverse permutation of I, if I =1 it is called an involution.

Example: |

Let T = <3,6,4,5,2,1>. Then <3,2,1> s a maximal descending
subsequence in 1, <6,4,2,1> and < 3,4,5> are an LDS and an LAS
respectively in 1, Rﬂ(4) = <5,2,1> and L“(S) = <3>. The inversion-table
of T is <0,1,2,2,2,4>. The runs of 1 are <3>, <6,4> ‘and

"< 5,2,1>. V O

Theorem 3: The expected length of an LDS in a random permutation in
SSn is asymptotically

1 il -3 ‘ '
JIn - 1.5 + é%gg + 0(n"3/2) ()

Proof: We show that the lTength of an LDS in 1 e SS, is equal to the

depth of stack which is needed to traverse TH in symmetric order.

Equation (4) is Knuth's result for the average depth of stack [3,Ex. 2.3,11].
We observe that the sequence of insertions dnd~kemova]s from stack

made during the symmetric traversal of TH is equivalent to the sequence

of operations required to sort I with a stack.

Let D= <d. ,d; ,...,d. > be an LDS 1in 0. While sorting T,
i, iy
no member of D can Teave the stack before di so the stack must have at

2
Teast £ entries.

Conversely, assume that the stack contains m elements during the

sorting process and m > 2. Let B = < b1 ’bi ""’bi > be the elements in
: 1T 2 m :
the stack, then B must be a descending subsequence in 1, a contradiction

to the definition of D. ' O

Remark: The problem of finding the expected length of an LDS (or an LAS)
in a random permutation is still unsolved analytically. Experimental
results show good agreement with 2\/n [21.

We need the following definitions to prove the corresponding result on the

- LAS.
A composition of a whole number n into m parts is a vector
m
C =< CpsCosnresCy> such that c; > 0 for 1 sism and 1§]Ci =n.

A compbsition C of n can be represented as a zig-zag graph, this graph
contains m rows with Cs dots in the i-th row, for i >1 the first dot
in the i-th row is written under the Tast dot in row i-1. Given a composition

C, we obtain its conjugate composition C = < E},E',... > such that

CntT-m
for 1 <1 < ntl-m, E} is equal to the number of dots in the i-th
column (from left) of the zig-zag graph of C. For example let

C = <3,2,4,1> be a composition of the integer 10. The zig-zag graph of

C is

therefore C = <1,1,2,2,1,1,2> .
Let I and HRF be two members of SSn (not necessarily distinct)
such that their corresponding trees T1T and T are reflections of each

TRF
other about the vertical axis.

Lemma 1: Let X = <X{.X,5...5% > and Xpe =" < X]sXps+.esXy> be the

X-specifications of L and EﬁF respectively. Then the vectors
R . V |
X =" < XpsX_qoneeoXy> (the reverse of X) and XRF are

conjugate compositions of n.

Iliustration: Consider the permutations T = <6,3,2,1,4,5,8,7> and

HRF = <3,1,2,6,5,4,7,8>. The corresponding binary trees are shown in
Figure 1 (a) and (b) respectively.
The X-specification of [s X = <3,1,2,2> and XX =" <2,2,1,3>

The zig-zag graph of XR is .. and therefore its conjugate

is

Figure 1

(@) ‘ (b)
Proof: A binary tree is traversed in reverse symmetric order if a root and

its two subtrees are visited in the order (1) right subtree (2) root (3)
Teft subtree. We observe that the operations which are required in order

to traverse TTr in reverse symmetric order are equivalent to those necessary

for traversing Tﬁ in symmetric order. Therefore [and LRF specify
' RF ‘
the stack operations for traversing TW in symmetric and reverse symmetric

order respectively. For two consecutive labels i and 1i-1 we can have

(a:)w ie RTv(i-l) or (b) i-1ce LTTr (). Wnile traversing T in
symmetric order, (a) implies that i must be stacked after 1i-1 1is written
on output and therefore X(i-1) and X{i) are in different X-groups,

(b) implies that i 1is present in stack wheh i-1 1is written, hence X(i)
and X(i-1) are in the same X-group. It is easy to see that in the reverse
symmetric order traversal of TTT we have exactly the converse, i.e. the
labels i and i-1 are written on output by the same X-group in EﬁF in
case {a) and by different X-groups in case (b).

We can represent X as a zig-zag graph in which the i-th row contains
the elements written by the 1~th>X—grou§ in L. By the above argument, it
follows that the i-th X-group in [ﬁF will write out elements of the i-th
column in this graph, where counting starts from the rightmost column. For
example in the above illustration the graph is 123 and the X-group of

| 56
78
ko write out <8>, <7,6>, <5,4,3>, <2>, <1>, where brackets
enclose elements of the same X-group. Therefore XR and XRF are conjugate

compositions and k = n+l-m. 0
Lemma 2: The Tength of the LAS in 1 SSn is equal to the number of
components in the S-specification (X-specification) of its sorting

sequence.

Proof: Let L be a sorting sequence for I with S—specificatioh .

< $15Spse 055> - Then clearly I must have exactly 2% descending runs
where the size of the i-th run is S Let an LAS in I be of length k.
Then k < & since no two elements in an LAS are in the same descending run.

To show that € < k, we construct a sequence D = < d],dz,...,d2> where

d. is the last element in the i-th descending run in 1. We show that D
i .
is an ascending subsequence in T by deriving a contradiction. Suppose

that for some 1 d, >d. then there must be an element d in the

i+1?
1'+1St run such that d > di and d > d1+] and I must contain a

forbidden subsequence <d.,d,d 4>]

Theorem 4: The expected length of the LAS in a random permutation is
n+1 '

SSn is 5 -
Proof: HWe define a mapping RF:SSn > SSn such that 1II ¢ SSn is mapped
into Mpe by RF. Suppose that the length of the LAS in I is equa? to
k. By Lemma 2 this is also the number of components in the S-specification
and X-specification of the sorting sequence L. From Lemma 1, the length
of the LAS in Mpe is ntl-k. Since RF 1is a one-to-one correspondence
our result follows. [| |
Another subsequence, which was studied in permutations is the sequence

of left to right maxima which is also called the distinguished subsequence
by Brock & Baer [1]. For example the distinguished subsequence in
1<1,3,2,5,4,6> is <1,3,5,6>. It is shown by Knuth [3], [4] and in [1]
that the expected length of this subsequence in a random permutation is

Hn (the n-th harmonic number). The next theorem gives the corresponding

10

result for a random permutation in SSn.

Theorem 5: The expected length of the distinguished subsequence in a

. . _ 6
random permutation of SSn is 3 T

Proof: Given I = < PysPysesnsl, > € s, Tet "< pi],piz,...,p1n> be the
distinguished subsequence in T. We can form k+1 permutations
H]’HZ”"’Hk+1 of Tength n+t1 from I by inserting the number ntl in
each of the‘pos%tions immediately to the left of P; . in T for 1=<j=<k
or placing nt+1 as the Tast element in II. For example, if I = <1,3,2,4>
then " <5,1,3,2,4> <1,5,3,2,4> <1,3,2,5,4> and <1,3,2,4,5> are

formed in this way. We now show that for 1 < i < ktl Hi € SSn+]. If

not, then for some 2 < J s‘k Hj ‘must contain a forbidden subsequence of
the form < pi,n+1,p£> and Fi > Py (5)
i<

-‘But this implies that 1 must contain a subsequence

< PyaPy 5Py > (6)
3 |

Now p., 'is 1in the distinguished subsequence, and therefore sequence (6)

is of type (%) thus contradicting I e SS . It is easy to see that
inserting n+l in any other posfticn of T will create a permutation Hf
such that T' £ SS 41° On the other hand all the members of SSn+] can

be generated from the members of SSn' in this way. Let a, be the Tength
of the distinguished subsequence in 1. Then

= 3 1). | 7
nessn(a“+))

ISSn+1| = Cn+1

Lep]
I
g}
bl
=
+
(e
=]
Cam)
co
S

ntl
1 ,2n+ 2,
T T T T 1 (2n) h '
n n nl Y n
which gives
' Za'rr 6
C = 3 ~) {1 (]O)
n

Remark: This result is directly related to & theorem by Munro [5] which

shows that the average length of a random walk on a binary tree is

6

2“?‘?2’.

Corollary: The expected length of the first descending run in a random

6

permutation of SSn is 3 - Pl

Proof: Given I ¢ SS , the elements of the LAS in T form the rightmost
path in Tﬂ. By symmetry, the average]éngth of the leftmost path over all
n-noded}binary‘trees is also 3 - ﬁgﬁ"' This path in T1T is formed by the
members of the first descending run in 1, Since under Construction -T this

path is completed before any other part of the tree is constructed. a

3. The Number of Involutions in SSn

It is well known [4] that a permutation is an involution if and only if
it does not contain a cycle with more than two elements. Using this fact,
we prove in Lemma 3 that the set of involutions in SSn is equal to
SSn n SRn' A simple expression for the cardinality of this set is then

calculated in Theorem 6.

Lemma 3: Let T e S5, then T ds an involution if and only if
e SSn n SRn.
Proof: The ‘'only if' part follows directly from the definitions. MWe prove
the 'if' part by showing that a permutation which is a non-involution must
contain at least one of the subsequences (2) or (3), therefore it is not
a member of SSn n SRn‘

Let T be a non-involution, then T contains a cycle of Tength k = 3.
Let this cycle be [a],az,...,ak] where a; fis the smallest element in
this cycle. We can arrange the elements of the cycle according to their
original order in M in the following way. First we sort the cycle into
ascending order, then write under each element its right successor in the
cycle, the second line thus obtained forms a subsequence of M. For
example, if 1 contains the cycle [1,4,3,6,5] then the above operations

456 and <4,6,3,1,5> is a subsequence of T (a] is

will give {1 34 :
(463 15
b

considered to be the right successor of ak). We distinguish between two cases:

13

Case 1: a2'< as. Let k = 3, then after sorting the cycle we get
n.T .

31 2 431

and < 85,85,37 > forms a subsequence (3) in 1. Assume

a, ag ay . ,

that k > 3. We sort the cycle by placing a, on the right of Ay then

inserting the elements sy _1s--0dg ONE by one into their correct

positions. We write under each element its right successor when it is

inserted. If Q. >, then a is inserted on the right of a, and

we get the same result as in the case k = 3, ay playing the roie of 2y

Assume that a <a,. MWe insert a, 4,3, 5,... 1into their positions until

an element a, . is found such that a . >a,, the existence

of such an element is guaranteed since a, >a,. The element iy IS

smaller than PR hence after inserting) _; we have the following

configuration
GNP A sy 3o Ay _s
_ ; (11)
a2 ak-—‘HZ a3 ak_‘].ﬂj
andr'< Bos8558) 441> forms a subsequence (3) in 1.
Case 2: A, >aq . If k=3 we have the configuration ay a5 a,

8 4 23
after sorting the cycle, and < 8,527585> forms a subsequence (2) in 1.
Assume k >3, If ak‘< a, we obtain the same subsequence, we therefore

consider the case 3 > a,. We use the same procedure as in Case 1, this

time we search for the first element a, . such that 3 _i41 >3 and

a,_; <a,. MHe then have the configuration
81 A 5 A, s.ee By s .
1 7k-1 “2 k~i+1 (12)
62 ak-'i‘ﬂ a3 ches ak_i+2 v
and < 35,8y 5415837 is a subsequence (3) in I. 0

Theorem 6: The number of involutions in SS = is equal to ’2n~1_

Proof: By Lemma 3, we have to show that there are 2n-1

permutations of
length n which do not contain subsequences (2) or (3). A permutation
M e SSn n SRn can be characterized by the following property of its maximal
descending subsequences.

lLet D= < di],diz,...,dik? be armaximal descending subsequence in a
permutation T of order n, then I ¢ SSn n SRn if and only if for
i< o< k-l, .

di = di 41 {elements of D appear in reverse natural order). (13)
j j+1

Proof: Clearly every permutation which satisfies condition (13) is a member
of SS n SR, since each of the forbidden subsequences (2) and (3) have

at Teast one pair of elements which be1oﬁg to a descending subsequence and
are not in reverse natural ordef. We now show that if any violations of
condition (13) occur in I then T ¢ SSn n SRn'

Suppose that for some index m, (1 =m< k-1) d, =d, +1. Let
‘ m Tk
d. +1 =&, Then & cannot appear between di and d. in 1,

T+ m T+

15

since it is not a member of D. Therefore one of the two subsequences
"< f,d. ,d. > or <d. ,d.

n Tmh T
contradicting 1 ¢ SSn n SRn'

»&> must appear in I, thus

For each permutation 1I € SSn n SRn, we can generate two permutations
I, and I, of order ntl as follows;
(a) generate I by inserting n+1' one position to the left of n 1in 1,
(b) generate H2 by putting ntl after the rightmost element in. 1.

Clearly, condition {13) is not violated in H] and T, thus generated.

2
Furthermore, inserting ntl 1in any other position of I, generates a

maximal descending subsequence (with n+l as its first element) which does
not satisfy condition (13). Therefore Iy and I, belong to SSn+] n SRn+I‘

Since all the elements of SSn+] n SRn+1 are generated in this way, we have

|SSn+1 n SRn+1’ = 2|SSn n SRnI. | : (14)
OQurresult follows from the fact that SS3 n SR3 contains 4 elements,

namely, <1,2,3>, <1,3,2>, <2,1,3>, <3,2,1>. D

4, The Average Number of Inversions in ASSn

Lemma 4: Let < b]’b2’°"’bh> be the inversion-table of‘ I e SSn, then

for node labelled k in T,]LTﬂ(k)l = by.

Proof: We show that the elements which are counted by b, are exactly

the ones which are insertéd into LT (k) ‘by Construction-T. Clearly, only
an element j such that j <k aﬁdTr Jje Lﬂ(k) can be inserted into

Ly (k). If no such element exists in 1 then b, = 0 and the subtree
LTﬂ(k) is empty. Assume b, >0. Since I e $S,» all elements in Lﬂ(k)
arz either bigger or smaller than both k and j, any other possibility
will create a subsequence (3) in 1. Therefore, application of the rule

of Construction-T will force j to be inserted into the same subtrees as

k, finally J wust be compared with k and since j <k it follows

7 (k). ¥
T

that j ¢ L

Theorem 7: The average number of inversions in a random permutation of

SSn is

n

C‘?l-h

T(e -3n-1). (15)

n
Proof: Let () denote the number of inversions in a permutation I
and int(T) the internal path length of the tree T. The sum of sizes
of all subtrees in a binary tree (or any other tree) is equal to int(T).

This follows from the fact that in a tree T, the distance of vertex i

from the root is equal to the number of subtrees in which 1 participates.
Let < b]’bZ""’bh> be the inversion-table of a permutation
Ie SSn, then by definition
n | ‘ .
pX bi = i(1). (16)
i=1
By Temma 4, i(ll) is the sum of sizes of all Teft subtrees in Tﬁ. Hence,
by the symmetry of left and right subtrees

z int(Tﬂ)= 2r (). (17)
HeSSn HeSSn‘

The value of the left member of (17) is given in [3,p. 404] as

o int(T) = VAL (3n+1)Cn, (18)
eSS " |
n
from which (15) follows.
It is interesting to note that on the average a random permutation
of SS contains O(n]'s) inversions, where as the corresponding value

for a random permutation of order n is O(nz).

18

5. Graphs Associated with SSn

We give some definitions and notations from graph theory which are
required in this section.

A graph G(V,E), consists of a vertex set V and an edge set E,
such that each edge in E 1is associated with two vertices in V cé]]ed
its end points. We consider here only graphs which have no two edges with
the same two end points (parallel edges), and no edge for which its two

end points are the same (self loop). Two vertices are adjacent if they

are the end points of the same edge, this is denoted by Vs _G_‘Vj’ otherwise
they are non-adjacent denoted by vi——é——vj. The complement of G, denoted

C

by G, has the same vertex set as G, two vertices are adjacent in GC

if and only if they are non-adjacent in G.

A direction can be assigned to the edge Vig vj, this is denoted
by vy Vj' If all edges of G are assigned a direction, it is called
a digraph (directed graph). A digraph is transitive if for Vi’vj’vk eV,
the existence of vy vj and Vj >V implies Vi Ve A graph G is

transitively orientable (TRO), if it is possible to orient all its edges

such that its directed image is transitive.

Let G(N) be a graph which has its vertices labeled by the set

N={1,2,...,n}. Then G(N) has a defining permutation with respect to

its labeling, if there is a permutation T on N such that; |
i j (vertices are called by their labels) if and only if
G(N)

i and j form an inversion in 1.

A graph G is a permutation graph, if at least one of the possible

labelings of its vertices with N, gives rise to a defining permutation.

Example: A permutation graph G, with two labelings and their respective

 defining permutations, is shown in Figure 2

3
H] = o< 3:294,5,] >

Figure 2

The next theorem of [6] demonstrates the connection between permutation

graphs and transitive graphs.

‘Theorem : A graph G is a permutation graph if and only if both G and

c

G~ are TRO graphs.

A graph G with vertex set V(|V| = n), is an interval graph if there

exists a family of intervals on the line I = (II’IZ""’In) such that

20

Vi€ V corresponds to an interval Ii’ and Vs Vs if and only if
G

Ii n Ij # ¢. A nested interval graph is an interval graph which has a

representing family I such that for each pair of intervals Ii and Ij’
if Ii n Ij # ¢ then either Ii c Ij or Ij < Ii holds.
Theorem 8: The following conditions are equivalent:
(1) G 1s a permutation graph, with a defining permutation
Ie SSn.

(2) G is a nested interval graph.

Proof: (2) Consider the sorting sequence of I, where aliine is drawn
from each § operation to its corresponding X operation which removes .
from stack the element stacked by S. For example, for I =< 3,1,2>

the following sorting Sequence’and tines are drawn S S X S X X: Let 1
be the line drawn between the S and X which stack and unstack i in T.
For a pair of intervals I. and Ij assume that I. has its Teft end

i
to the left of I (i ¢ Lﬂ(j)). Then two cases are possible:

i

¢

(b) i >3, 1 Tleaves the stack only after Jj is unstacked and I,- I.-
. 1 J

In the permutation graph G Tlabeled with 1, vertices labeled i and J

(@) i <J, i Tleaves the stack before j is stacked and Iirn Ij

are adjacent only in case (b) where i and j form an inversion in I
hence G s a nested interval graph. Conversely, let I be a family of
n intervals which is reprasented by a nested interval graph G. Then, I
can be mapped into a sequence of $'s and X's by reversing the above
procedure. By reading this sequence of S's and X's from left to Fight
we obtain a sorting sequence of some I e SSn and I 1is a defining permutation -

for G. O

Conclusions

In this paper we studied some of the combinatorial properties of
members of SSn’ and the relations of these properties to the}corresponding
binary tree. It was observed that members of SSn tend to be more 'ordered’
than ordinary permutations in the sense that on the average they contain
less inversicns, longer maximum ascending subsequences and Shorter

maximum descending subsequences.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

