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Interpolation and Interpolation Hash Searching

Gaston H. Gonnet

Abstract

Interpolation search is an algorithm to search a table containing numerically ordered
keys using the value of the key and assumptions on the distribution of keys in the table to select
each probe position.

First we describe the modet of a table we will use, consisting of random uniform ordered
real - variables, together with some immediate generalizations to -arbitrary continuous
distributions as well as to discrete distributions.

The general interpolation search scheme is presented with the corresponding algorithm.
Some restrictions of the interpolation formula lead to the definition of coherent algorithms.

The main emphasis is given to the simplest of the linear interpolation algorithms, for
which we derive: average asymptotic behaviour. O(log{log«(n))) (done by a conventional
approach and also by information theory); the exact average behaviour and the complexity of
its computation; an asymptotic probability density function of the number of probes to find an
element, from which we derive that its variance is O(1), later corrected to obtain better
approximations; numerical approximations to the exact average number of probes and
simulations that confirm the theoretical results. Several. resuits concerning asymptotic
expansions of probability distributions and entropies are derived as a by product.

Some variations of the algorithm are studied in detail: binary interpolation search, the
optimal search algorithm, the unsuccessful search case which is also O(log{logy(n))), the
optimal known successful search, binary interpolation search, and the one-interpolation
then—sequential algorithm, the latter being O(n").

The second main section merges the interpolation search algorithm idea with hash
searching techniques to produce an interpolation-hash searching algorithm. The search
algorithm is presented as well as an approximate construction algorithm. The optimal
configuration, addition and deletion of elements, and the complexity of the algorithm are
discussed. The method has the advantages of being O(1) for any fixed occupancy rate (as are
hash coding techniques) and O(logy(logy(n))) for a full table, keeping the table in order.
Simulation results are presented to corroborate the theoretical ones.
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1. - Introduction.

The main purpose of this thesis is a detailed study of the interpolation search techniques.
This involves the description of thé basic algorithm, the complexity analysis of it and some
related algorithms, as well as some extensions that lead to the definition of a special kind of
hash searching.

The interpolation search algorithm can be used to search ordered tables. The search
procedure involves, at each step, the selection of a probe position based on the value of the
searched key and the values of the keys that delimit the subfile. This selection is usually
accomplished by linear interpolation. After the selected location is inspected, we either have
found the element or we repeat the search in the corresponding subfile.

The search is so natural when dealing with numerical keys, that it makes little sense
trying to attribute it to somebody. W.W. Peterson [1957] was the first one to describe the
search algorithm in the published literature and he attempted to compute its running time by
computing the uncertainty of a file under consideration. Unfortunately there is no detailed
description or code for the algorithm, and this approximation to the entropy contains an error.
In a survey of table lookup techniques, Price [1971] describes a variation of the interpolation
search algorithm that we describe as one-interpolation-then-sequential. There is no detailed
description or code of the algorithm. Price also considers the case when the distribution of the
key values is not uniform, and suggests possible remedies by approximation with polynomials.
In chapter III of D.E. Knuth’s book [1973], we find only a brief verbal description of the
algorithm without much enthusiasm. H.S.M. Kruijer [1974] presents a paper on Interpolation
Search in which he describes the algorithm in words and with some detail. He claims that “in
certain cases [the algorithm] behaves better than binary search”. He also points out the
relation between the search problem and the zerofinding problem. R.P. Brent [1973] also
realizes this latter relation in his book and defines a function for each searched key, whose zero
is its index. The author wrote a term paper on search techniques [Gonnet 72], that remains
unpublished, in which the log,(log,(n)) average behaviour of interpolation search was proven
with the aid of information theory. Whitt and Sullenberger [1975] discuss an application of
interpolation for external search. Unfortunately there is no detailed description of the
algorithm or analysis of its running time. Recently A.C. Yao and F.F. Yao presented a paper
[1976] that shows an upper and a lower bound of log,(log,(n))+O(1) on the average number of
accesses.

It is important to note that there is no complete and correct description of the algorithm
in the literature. The algorithm, however, is not trivial, and difficult to code correctly without
some insight into the problem. It is a particularly loop-prone algorithm. This fact together
with the requirement of multiplication and division are probably the causes of the lack of
interest in the algorithm.



In section 2 we define the basic tools needed to study the algorithm. Section 3 contains a
study of the interpolation search algorithm for full tables. We derive correct versions of the
algorithm, exact running times, asymptotic behaviour, empirical formulas and simulation
results. Some variations of the basic algorithm are also studied. Section 4 is concerned with the
use of the interpolation search algorithm for partially filled tables. This algorithm may be
visualized also as a particular hash coding technique. The algorithms for construction,
searching, addition and deletion are studied as well.

Finally appendix I contains a collection of asymptotic expansions used in connection
with the analysis in section 3.

It is customary in a Ph.D. thesis to state explicitly which results are original and

_ presented here for the first time. All the results for which there is no explicit reference given in

the text are, to the best of my knowledge, new. Clearly not all of them are of the same
importance. The most significant new results are in chapters three and four, that except for the

~concurrent work of A.C. Yao and F.F. Yao [1976] contain original results, Some results in

chapter two, notably the lower bounds on hash searching as well as other formulae plus most
of the non trivial asymptotic expansions in Appendix I are also new.




2. - Basic Concepts.

In this chapter we will define the basic assumptions, definitions and common tools we
will use later. First we define the model of the search procedure we will analyze. Secondly we
will review some theoretical lower bounds on the number of accesses required by different
algorithms. This will give us the idea of which algorithms cannot be better than interpolation
search. In the third part we discuss the general problem of real distributions and how to
translate them to the uniform case. Section 4 contains some basic as well as specific probability
tools to deal with ordered random variables, and finally in Section § we consider the discrete
model of keys.



2.1 - Definitions.

Notation.

The notation is consistent throughout the chapters. For most of the well known
constants and functions we adopt the notation used by Abramowitz and Stegun [1964], with
the exception of /g(x) that will denote the base 2 logarithm of x.

The notation for probability functions is fairly standard; in all cases it is the same as
Johnson and Kotz [1969].

Capital letters X and Y, possibly subscripted, denote an instance of a random variable.
Their most common appearance is as keys of a file or table.

Consistently we use « as the name of the key for which we are searching. Any
probability that is a function of « should be interpreted as: probability of ... given that we are
searching for «. .

Particular functions defined inside chapters use upper case letters e.g. A, B, C, or lower
case greek, e.g. ¢(...).

Inside programs we will use bold face type to denote all keywords of the language.

Formal Definitions.

We will define a file or table as a finite homogeneous collection of records or elements. A
record or element is a nonempty set of not necessarily homogeneous variables. There exists at
least one variable in a record called the key that serves to identify the record.

A record or element has an index, which is its ordinal number in the file. The index will
range from 1 to n. '

The record with index i will be denoted by R;. The key value of R; will be denoted K.

The search problem consists of: given a variable «, either find at least one i such that
K;=a, or prove that there is no i such that K;=. The first outcome will be called the
successful search, the latter the unsuccessful search.



The known successful search problem is: find i such that K;=« kno&fng that there exists
at least one i such that K;=a.

The known unsuccessful search is: prove that there is no i such that K;=q, given that «
is not one of the keys. The above definitions sound trivial in the mathematical sense. However
we should understand “find” or "prove” as algorithmic actions rather than theorems.

We define a file to be ordered when there exists an order relation R such that
KR K;; forall i such that [<i<n.

We define an access to an element or record in the file as any use of any component of the
record by the algorithm. Our measure of complexity of a search algorithm is defined by the
number of accesses required to answer a search problem.

Other measures of complexity may be relevant or interesting. They are, however, either
closely related to the implementation or easily derived from the one analyzed here. E.g.
number of multiplications and divisions; index computations etc. Consequently we will restrict
our study to the number of accesses.

We will not base our conclusions or study on real files, but on models of files. Moreover,
the search procedures are concerned only with the key portion of the record, so hereafter we
will ignore non-key parts of the record.

We will mode! our files with a set of n independent random variables from the same
probability distribution. If the files under consideration are ordered, we relabel or sort the keys
according to the order relation. There are some other ways to model files (or ordered files) e.g.

'K, = K;_, + lindependent random variable} etc., but we fecl that the above modelling is the
one that reflects more closely real files, besides being almost a standard for complexity
analyses.

We will refer to the number of accesses needed to solve a search problem for a given key
a and a given file as-the number of accesses. We can define several possible average number of
accesses. We will restrict oursélves to the average number of accesses given a for any instance
of our model, and the average number of accesses for any « and any instance of our model.

To find the latter we will need to know or assume a particular distribution of successful
and unsuccessful searches. Since algorithms may differ for these situations, and so their
analyses, both averages will be independently computed for the successful and unsuccessful
case. This provides more information than assuming a distribution and giving a single answer.

The uncertainty of the position in a successful search is the information-theoretic

- measure defined by the entropy of the index i given a. Formally the uncertainty will be defined

by the entropy of a random source [Ash 64] that produces i (index of &) for any random file of
size n (1<ign) that contains «. Uncertainties will be normally measured in bits.
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2.2 - Theoretical Lower Bounds.

In this subsection we will analyze average lower bounds on the number of accesses
required for some search algorithms that are comparable to interpolation search. Later we can
compare these lower bounds with the actual behaviour of interpolation search and decide
which algorithms will never be better.

In all the following models we will use the three way comparison of keys, i.e. we decide

on X>a, X=a or X<a. We will further assume that each comparison requires one access to
the record.

Lower Bound on Binary Search.

To find the lower bound on the average number of comparisons we construct, for any
algorithm, the corresponding decision tree. This tree will have 3 branches at each node, one of
which (the equal outcome) cannot be spanned further.

First we will consider the successful search case. The tree must have at least n leaves. It is

easy to show [Knuth 73] that the shortest tree will contain non-central leaves only at two
levels. Moreover if

(2.2.1)  h = lgn),

where h is the height of the tree, there are 2b-1-1 interior nodes (branches on =),
(2.2.2) 2b-l-[(n-2h+1)/2) leaves at level h-1, and

(2.2.3)  [3(n-20+1)/2] leaves at level h.

Finally we compute the average number of accesses to be
(2.2.4) E[accesses] = (h+14+nh-20%1+[(n+1)/2])/n ~ h-12, or

(2.2.5) h-1% < Elaccesses] < h.
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This result differs from the one in Knuth [1973] because we are considering a lower bound and
do not require some redundant comparisons.

The unsuccessful case is analyzed in the same way, except that now each node of the tree
has only two possible branches and the complete tree has to have n+1 leaves. The height of

the optimal tree is h+1.

There are 2h+l-n-1 leaves at level h and 2n+2-2b*1 leaves at level h+1 giving an
average number of accesses of

(2.2.6) E[accesses] = h+2-20+1/(n+1), or

(2.2.7) ~ h+1 < Elaccesses] < h+3/2.

Lower Bound for Hash Coding with Separate Overflow Chaining.

This algorithm has several implementations [Knuth 73]. In all cases the collisions are
stored in a linked list. This implies that after the first probe we search sequentially through ail
the records that “hashed” to the same place. The average behaviour or lower bounds for this
algorithm are not affected by the order in which the table is created.

Let 8 denote the occupation factor i.e. {number of records} / {size of table}. Assuming

that the hash function is uniform enough so that the number of elements that hash to a given
position are Poisson distributed we derive

(2.2.8) Efaccesses] = %2 o Bl fii+1)/it / 22 Blefil
=1+ 3/2,
for the successful search and
(2.2.9) E[accesses] = e-f + 21: lﬁie‘ﬁi/i!
=g+ ef,

for the unsuccessful case.




For the unsuccessful case we are assuming that we can detect whether an element is the
head or the tail of its corresponding list with only one access.

Lower Bounds for Hash Coding.

We will consider here the hash coding search without any clustering [Knuth 73] of n
records placed in a table of m entries. The occupation factor is defined as 8 = n/m < 1.

In this case the order in which the table is created alters the properties of the average and
maximum number of accesses for the successful case. Consequently we need to define and
analyze two of the possible optimums of this hashing technique and then conclude its bounds.

The minimax hash coding problem is defined as follows: given a file and a hashing
function, find the order in which elements have to be inserted so that the maximum number of
accesses to locate any single element is minimized. This minimum maximum number of
accesses will be called the minimax value.

We will first consider the case of a full table, i.e. 8=1. We will require that the hashing
function produce for any random key, an independent sequence of probes distributed discrete
rectangular in (1,m). This is slightly different from the usual hashing functions since we allow
probe positions to be repeated.

A necessary, but not sufficient condition, to solve the minimax problem with k accesses
is that the kXn probe positions “occupy” all possible values from 1 to m. Since this is a
necessary condition, minimax>k.

Given k, the probability of all table positions (1,m) appearing in between kXn probe

positions, is an occupancy distribution, also known as Arfwedson’s distribution [Arfwedson
51, Stevens 37]

(22.10) Prix<k} = % oD Dat-i/mkn
~ (1-e7kym,

The expected value of x for the above distribution is

@.2.11) EBlx] = 2y = ok[Prix<kj-Prix<k-1)]



= 2T e0( Dasi/mkn
= 2% 0 Di-(t-i/myer-
= /n(n) + 1.07... + o(1).

When we do not have a full table, using the expected value of the occupancy distribution

(22.12) E[x] = m[1~(1-1/m)"]

we can approximate the expected value of the lower bound on the minimax from

{22.13) n= m[l_(1_1/m)nk] —
k ~ -8-lin(1-8).
The above approximation is valid when m—>< and 0<g<1-e.

The second possible optimum is the average number of accesses. The problem is then to
find an order in which elements have to be inserted so that the average number of accesses is
minimized. We will find a lower bound on the number of accesses for the case of a full table. In
this case our model of the hashing function is one that produces, for each key, a random
permutation of the locations 1 through m.

Since the table is full, n=m, each location must contain a key. Consequently, whatever
the order of insertion is, the location i will contain a key that needed a number of accesses
greater or equal to the smallest order of appearance of i in any hash probe sequence, i.e. in
any of the n permutations of 1 through m. The probability that location i does not appear in
position 1,2,..,x of any random permutation is

(2.2.14) Prifirst appearance of i is after x probes} = [(m-x)/m}™.

The expected value of the "first appearances” is a lower bound of the expected value of the
number of accesses and is equal to

(2.2.15)  E[first appearance] = Zr?(;loi(m—k) /m]™ = e/(e-1) + O(m-1) ~ 1.5819...

This lower bound can be further improved if we consider the collision of unique "first
appearances”. More precisely, we define a “first appearance” of position i in x probes as

e e o e e



critical when only one ey probes to i in x probes. For each collision (two critical) we will
need at least on more access to fill both critical table positions. Counting colilisions we obtain
(2.2.16) E[collisions] = Prf{2 critical for each key} + 2XPr{3 critical} + 3X...
= Elcritical] - 1 + Pr{no critical}
= (e-1)-1 -1 + [1:2 [ (1-e) + O(m-).

The lower bound is now

2217 2/(e-1)+ I1 {2 j(1-e7) ~ 1.66838...
The unsuccessful search case depends only on the load factor of the table. Under the
natural assumption that probe positions do not repeat, the average number of accesses needed

to complete the unsuccessful search is equal to the number of access needed to find an empty
position, i.e. [Knuth 73]

(22.18) Efaccesses] = 2y = {k(m-mn!(m-k)!/[(n-k+1)!m!]
= (m+1)/(m-n+1) ~ (1-8)~! ifm>n,

=n if m=n.

10
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2.3 - Distribution of Keys.

In the following sections we will assume that the keys of the record are independently
generated from a U(0,1) distribution.

In this section we will analyze how real keys relate to the probability distributions and
how we can relate these distributions to the U(0,1).

In actual applications, keys are far from being random variables; they are assigned or
derived from records and play an important role in the identification of the record. We will
now formalize some concepts about keys and their relation to probability distributions. We
will call the set of all possible key values the domain of the keys. The keys of a certain file are a
subset (almost always a proper subset) of the domain. The key probability distribution
specifies, for each key in the key domain, the probability that a randomly selected record has
that key value. The file contains records selected independently of the distribution of the keys.

To clarify these definitions, let us follow a complete example. Let the record be a
collection of information that partially describes a living human being. Our key will be'its
birthdate (for example taken in Julian form). The domain of the key is the set of all integers
less than or equal to the current date. The probability distribution of the keys, for this example,
is a composition of a birth rate and a mortality distribution. A file is a set of such records. This '
distribution applies to a file as long as we do not choose the records based in any way on people
ages; i.c. the subset is independently chosen from the distribution of the keys.

We find some problems with our model. Real numbers do not exist in the practical

- world, only approximations of them. Secondly the model presented fails to describe situations

in which keys are interdependent; e.g. assignment of different keys to each member of the
population (sampling without replacement). Finally, although distributions may exist, they
may be constantly changing, as in the example above, and/or may be very difficult to obtain.

The second step to convert the key probability distribution to a U(0,1), is almost trivial.

We will assume that the key cumulative probability distribution is continous and has an
inverse. Let Y be a key, and let

2.3.1) F(a) = Pr{Ygal.

If we define the key transformation

232) X = FY),

P 15 et i T
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then -

(2.3.3)  Pr{X<b} = Pr{F(Y)<b} = Pr{Y<F-I(b)} = F(F-(b)) = b,

and we verify that X is distributed U(0,1). More detailed analysis would show that the only
requirement to perform the transformation is that F(x)} should be continous.

As said before, we will never work with real numbers but only with approximations to
them (e.g. floating point numbers). Consequently it will be equally approximate to "continuize”
discrete distributions. In section 2.5 we will take a closer look at one type of discrete
distribution.

When the distribution of the keys is unknown we may approximate it based on a sample
of points or on other type of approximation. Isaac and Singleton {1956], Kronmal and Tarter
[1965 & 1968}, Price {19711, Simon and Guiho {1972] discuss several types of approximations
to cumulative distribution functions. Knott {1975] surveys some of these approximations in
connection with hashing schemes.

Finally let us consider another example of a real distribution. We will call it a decayed
sequential distribution, and results from the following model. Keys are integers assigned

sequentially to records at a constant birth rate b. Records "die” at a constant probability rate
d, i.e. ‘

(2.3.4) Pr{a given record dies in (t,t-+At)}/At = d; At—0,

When the system is stabilized we find
(2.3.5) Prirecord i still exists} = e~d(K-D)/b,
(2.3.6) E[number of records] = [1-e-4/8]-1, and

(2.3.7)  Prix<i} = e~d(K-/b,

where K is the largest of the keys, the one just assigned, and x is the key value of a randomly
chosen alive record. The records are then geometrically distributed, and if b/d is rather large,
we can well approximate the above with an exponential distribution.



2.4 - Ordered Uniform Real Random Variables.

In the following chapters we will use properties of a set of ordered U(0,1) random
variables. Therefore we will describe here some of the formulas involved that will ease later
computations, We will study the properties of a set of " n random independent variables
Y. Ys,..,Y, from a U(0,1) distribution. We order the random variables in increasing order,
and relabel them so that: 0<X;<Xp<...<Xp<1.

The probability density function {p.d.f.) of X; is then

(41 pdf(Xj) = W10 BG =+ 1) = I G- +D),

where B(a,b) is the Beta function, Iy(a,b) is the Incomplete Beta function and Iy'(a,b) is the
derivative of the Incomplete Beta function respect to x.

The cumulative distribution function (c.d.f.) of Xj is

(242)  PriXj<x} = L(.n-j+1).

We find also
(2.4.3) E[Xj] = xg = j/(n+1),

2449 Var(Xj) = j(n-j+1)/{(n+ 1)2(n+2)),

and in general the sth moment of Xj is

245 E[st] =pg = I‘(i+s)I‘(n—j+1)/[I‘(j)1"(n—j+s+1)].

The truncated moments are given by

X
(2.4.6) g XSL o=+ Ddx = ' T +s,0-j+1).

From 2.4.5, expanding the binomial, we find that the central moments are

247 E[Xj-x0)f] = us,

13



(248) up =

=1,
249 4 =0,

(24.10)  wp = Var(X;) = =i+ 1)/((a+1)2(n+2)),

Q4.11) w3 = 2=+ DEj-n-1) / (a+1P@+2)n+3),  ete.

From a general asymptotic expansion for fy(a,b) given by Temme {1975], assuming that
e<xg<l-¢ when n—>o, we derive

(24.12)  Iggn-i+1) = % + (n+1-2))[2j(n-j+ D(n+1]-%/3 + 0(=3/2),

(24.13) Iy Go-+1) = (n+1)3/Qri(n=ji+ 1% X {t + o1
Let IpG.n-j+1) = ¥ then

(24.14)  p = xg + (2j-n-1)/3(n+1)2) + O(n~2).

It is also of interest to know the central signed moments. Using 2.4.6, 2.4.7 and 2.4.12 we
find

(2.4.15)  Elsgn(Xj-x0)(X;=x0)¥] = v,

and

(24.16)  vg = 12 (n-j+1) ~ 2Qj-n-D)27j(n=j+ D(n+DI-%/3 + 0(@3/2).

.The mean deviation is

2417 vy = 2@+ FID@+1) / DT+ 1)+ 1) T2

~ Rila-j+ 1)/ (ra+DHN% + 0n-3/2)

~ O(n—'/z)’

Nt I o £ 5+ 1 gt - 0t 1 8 pemm e et s mas iew



(2.4.18) vy = uyvg - v1(2i-n=1)/[(n+ 1)(n+2})]

~ 4(n+1-2)(j(n=+1)/Qr(n+13]% / B(n+2)) + O@=5/2)
~ 0(,1-3/2)’

and

(24.19) vy = pyy + plin(n-j+D+2+(0-j+ D2}/ [(n+ 1)2(a+2)(n+3)]

~ 4[-3i2n+2j2+3jn2+jn-2j+2n2+4n+2] X
[(a=j+1)/Qr(a+1)N1% / (3n+2)(n+3)) + On=3/2)

~ O(n'3/ 2),
where ~ denotes asymptotic expansion of the expression.

Some nontrivial sums involving the Incomplete Beta function are
(2.4.20) Ziklx(j,n-j-i-l) = nxIy(k-1,n~k+1) - (k-1)Ix(k,n-k+1),

(2.421) Z';l!x(i,n-jﬂ) = nx/,(0,n) = nx,

and

(2.4.22) Zi {xGon=i+1) = nx{1-Ix(k,n-k)] + kl(k+1,0-k).
Let Fr(x],X2,...%p) = Pr{X<x;X9<x9;5..;X <Xy} be the joint c.d.f. of the n U(0,1)

independent ordered random variables. Let us assume also that 0<xy<x<...<x< 1 s0 we
can simplify the notation. Then we have

(24.23)  Fu(xp,x2,..0%g) = x1Fpo1(x2,X3,...%g) +
(x9—x1)Fp_1(x1,X3,....x0) +

(Xp=Xp- DFp-1(X1,X25e- X 1)-

This recursion formula comes from studying the insertion of the ! element between the n-1
already ordered. There is no known compact form to write F;, explicitly for the general case.
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An associated problem is to find the probability that the element « is in position j. That
is, given a randomly generated file, find the distribution of the location of , that is one of the
X's each being equally probable ‘a priori’, conditional to the value a. Let S = {X},X..... Xp}
be the file we search, we find that

(2424) PriXj=ajaesi = ( Jf‘_‘ll)aj~1(1-a)n~i = I,/G.n=j+1)/n

is a binomial distribution, whence
(2.4.25)  E[j] = (n-Dea+l,
(2.4.26) Modefj} = [na] or |na+1],
(2.4.27 Var(j) = (n-Da(l-a),

and

(2.4.28) ualil = (n-Dea(1-a)(1-2a).

A close.ly related problem is to find the probability of locating a new element o (different
from all X's) in between Xj—l and Xj. That is, given a random file, find the distribution of the
location of « that is not one of the X's, conditional to the value o. We find

(2429) PriXj<a<Xjaees) = ([ Jal -0t

which is also a binomial distribution. This implies
(2.4.30) Efj] = na+l,

(2.4.31) var{ji = na(l-a),
and

(2.4.32) #3lil = na(l-a)(1-2c).

Further information about the Incomplete Beta function can be found in: Abramowitz
and Stegun [1964]; Johnson and Kotz {1969]; Temme [1975]; Dingle [1973]; Luke [1969].




2.5 - Discrete Distributions of Keys.

When the keys come from a discrete distribution, we do not usually have a
transformation like 2.3.1 to change it to a canonical form. Consequently the study of any
particular discrete distribution will not throw much light on other discrete distributions, in
contrast with the continuous case.

As a good example, and as one of the most common discrete distributions, we will
analyze the discrete rectangular distribution. Moreover we will specify a rather natural
assumption for real files; that is, that the keys are not repeated; i.e. they are sampied without
replacement. The file is sorted so that 1<X;<X;<... X,<m. For the successful search, the
distribution of the location of « is

e Prixg=al = ($)(55)/ (50

a hypergeometric distribution with parameters m-1l, n-1 and «a (« is now an integer,
1<agm). The expected value is

(2.52)  Ef] = (n=1)e-1)/(m-1) + 1,

and the mode of the distribution of j is

- (253) mode{j} = [na/(m+1)}, or

T
e
gt

= [na/(m+1)] + 1.

The probabilities of Xj>a and Xj<a are hypergeometric cumulative distributions.
These and their approximations are well described in Johnson and Kotz [1969, chap. 6].

The distribution of the jth ordered variable is the same as 2.5.1, except that now we
consider « to be the variable.

The distributions related to the unsuccessful case, when e is not one of the keys, are

(2.5.4) Pri{Xj_1<a<Xj} = ?z:ll)( nrll__?-l-l)/ (mr:l)’

_also a hypergeometric distribution except now with parameters m-1, n and « (« is an integer,
1<ag<m), and Pr{Xj<a}, a cumulative hypergeometric distribution.

7



These distributions are well approximated by corresponding Incomplete Beta
distributions, as in 2.4, such that the first two moments coincide [Johnson 69]. Consequently,
based on a numerical approximation argument, we can translate the problem to a similar
continuous one.

18



e AR 3 okt i+

3. - Pure Interpolation Search.

3.1 - Motivation.

In this chaptef we consider the search of an ordered table or file whose keys are scalars,
using this fact to improve the average number of accesses. As a model of the file we will
consider a set of n random independent variables, Y,Y5...Y,, drawn from the same
distribution. The only restriction we will impose on our model is that the source cumulative
distribution function, F(y) = Pr{Y<y}, should be continuous.

As we saw in 2.3, without loss of generality, using the transformation

G.L.DY) X = F(Y),

we need only to consider keys drawn from a U(0,1) uniform distribution.

It is immediate that the variable X is distributed U(0,1) and furthermore if Y <Y, then
X =F(Y)<X,=F(Y,), so the transformation preserves order. Later we will only use an
interval of the range, e.g. {a,b]; in this case the transformation of the variables in the interval
will be

(3.12) X = (F(Y)-F(a)) / (F(b)-F(a)).

Actually we do not need to convert the keys, but only the functions applied over them to
achieve this transformation.
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that k(0)<a<k(n+1).

3.2 - Definition of the Search Algorithm.

Let 0=X,<X<X5<...<X;<X 4 =1 be our file obtained from n ordered random
variables. The interpolation search algorithm will be defined by the function

(320 $la,n) = j,

where « is the search key, n is the size of the file and 1<j<n is the probe position to inspect.
We will assume that the keys X are contained in a vector k, that k(0) and k(n+1) contain the
limit values of the keys, and k(0)<a<k(n+1). The algorithm, for U(0,1) random variables, is
defined in a pseudo-language as follows:

select (&)
case <k(0) or >k(n+1): return(FAIL);
case k(0): return(0);
case k(n+1): return{n+1)
end select;
low:= 0; high := n+1;
while (high-low>1) do
j = ¢( (a=k(low)) / (k(high)-k(low)), high-low-1) + low;
select (k(j))
' case oo return(j);
case <a: low := j;
case >a: high := j
end sefect
end while
return(FAIL);

If the variables are not U(0,1), then we use the transformation [3.1.2] for the
computation of ¢, i.e.

i = &( (F(a)-Fik(low))) / (F(k(high))-F(k(low))), high-low-1) + low;

Note that from the point of view of our definition of number of accesses, the select-case
statement allows us to use only one access per location inspected. In some low level languages,
or in languages that allow three way branches, this will also mean only one comparison. The
first select-case statement may be completely avoided if we know, without need of verification,

20
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To prove this algorithm correct we first note that a successful exit only occurs when
k(j}=«. Furthermore, if the file is ordered, the condition f[k(low)<a<k(high) and
high--low< 1} implies failure. We find that {k(low)<a<k(high)} is an invariant relation, if we
do not return, in the body of the while statement. Also inside the loop, if 1<¢(a,n)<n, then
high-low is a strictly decreasing magnitude, hence the while will terminate. To complete the
proof of correctness, upon exit from the loop, given the initial conditions, we verify the failure
condition. Note that the condition 1g<é{a,n)<n for all &« and n, is crucial to guaranteé
convergence of the algorithm.

We will define a coherent algorithm as one for which ¢ satisfies:
(3.2.2) a) ¢o(1-a,n) = n+1-¢(a,n) (symmetry),

(3.2.3) b)#Ot,m)=1 (boundary).

A general linear interpolation is defined by

(3.2.4) ¢(a,n) = |ag+a,atan+asan).

By coherency we have at least the conditions:

(3.2.5) az = 0, 3.3 = ]., 1<a0<2, ‘ao<a[<1-‘a0.

The symmetry condition will not be satisfied if we use floor functions for all the range of
a. There are two solutions to this problem. Use ¢(a,n) for 0Kag< and n+1-¢(1-a,n) for
h<ax1, or-ignore the lack of symmetry, since it occurs over a finite set of points with total

probability equal to zero.

- The interpolation formula

(3.2.6) #(a,n) = |(naj+1,

or the symmetric

(327 é(en) = [na),

are the simplest coherent linear interpolation formulas. They have also the interesting property
that the position searched is the mode of the distribution of the location of « [2.4.26], i.e.
Pr{Xj=a} is maximum.




alway

conversion. We will now describe a FORTRAN interpolation search algorithm for a table of.

The -formula 3.2.6 has a slight advantage over 3.2.7 since the floor function is almost
s available, for positive arguments, in a high level language using real-integer

U(0,1) random keys using the interpolation formula 3.2.6.

FUNCTION ISEAR(K,LBOUND,HBOUND,ALPHA)
REAL K(1), ALPHA

INTEGER LBOUND, HBOUND, LOW, HIGH, J, ISEAR
LOW = LBOUND

HIGH = HBOUND

IF( ALPHA - K(LBOUND) )80, 60, 10

10 IF( K(HBOUND) - ALPHA )80, 70, 20
20 IF( HIGH-LOW LE. 1 )GO TO 80

J = (ALPHA-K(LOW)) / (K(HIGH)-K(LOW)) * FLOAT(HIGH-LOW-1)
J = J+LOW+1
IF( K(J) - ALPHA )30, 50, 40

30 LOW =]

GO TO 20

40 HIGH = J

50

60

GO TO 20

ISEAR =]
RETURN

ISEAR = LBOUND
RETURN

70 ISEAR = HBOUND

RETURN
SEARCH FAILURE, ALPHA NOT IN K.

80 ISEAR = -1

same

RETURN
END

Note that the computation of ¢ should be done by itself. The addition of LOW+1 in the
statement does not guarantee, because of rounding, the correct evaluation of the floor

function. The above code makes use of the unpopular arithmetic three way if statement. This
construct usually produces a shorter and more efficient code.

set of

The rational interpolation search algorithm, is the algorithm to search when we have a
keys from a discrete rectangular distribution R(1,m) drawn without replacement. This

distribution is described in 2.5. The corresponding FORTRAN algorithm to 2.3.3 is the same




" as the above except for the declarations that become

INTEGER K(l1), ALPHA, LBOUND, HBOUND, LOW, HIGH, J, ISEAR
and the interpolation function that becomes

J = (ALPHA-K(LOW)*(HIGH-LOW-1)/(K(HIGH)-K(LOW)) + LOW + 1

When the keys are R(l,m) but drawn with replacement, the equivalent interpolation
function is given by

j = [nXin((m-a)/(m-a+1))/Un((a-1)/a)+n((m-a)/(m-a+ )]
This formula is clearly impractical and expensive to compute.

It should be noted that despite its appearance this algorithm is not trivial. In our opinion,
the lack of a correct published algorithm, the difficulties involving transformation of
non-uniform keys and not knowing, until recently, its asymptotic behaviour are among the
major reasons for the lack of popularity of interpolation search.

It is practical, for some special interpolation functions, to define ¢(a,n) by its break

points.
Iff Ajpisa break point of the function ¢(e,n), then

(3.2.8) Appq<a<A;, => éla,n) =i

For the interpoiation formulas 3.2.6 and 3.2.7, \; ;= i/n.
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33- Information-The(;retic View.

One way to compute the expected number of accesses to find a given key in an ordered
table is with the aid of information theory. The general scheme we will follow is: we compute
the uncertainty of the search at a given step as a function of the key value, size of the table etc.;
secondly we compute the information gain in any step of the algorithm; if we are successful in
expressing this gain in terms of the same parameters as the uncertainty, we then can compute
the number of steps needed to reduce the uncertainty to zero, i.e. to find the element in the
table.

The uncertainty of a search is expressed in simple terms by observing that the probability
of the key a (known to be in the file) of being in position j is given by 2.4.24. The uncertainty,
which formally is the entropy of the random variable "location of a” is expressed [Ash 64] by

(33.0) H(en) = -2 | PriX;=allg(Pr{X;=a})
= H(l-a,n).

Although exact, this formula is of little help, so we will use an asymptotic expansion in n
of H(a,n). The first term of this expansion was obtained by Peterson [1957], but he had a )
mistake in the O(1) term that deteriorated greatly the, otherwise good, numerical
approximation. His approach was based on approximations of the binomial distribution
[Feller 57; Johnson 69]. To obtain further terms in the expansion we need to use a more
powerful method. The best suited seems to be a parallel of the ones described by Dingle [1973].

Since Pr{Xj=a} is a binomial distribution, H(a,n) is the expected value of
-lg(PrlXj=a}) in that distribution. For the binomial distribution the main contribution to
H{(a,n) is given by the terms near its expected value, in our case (n-1)a+1 = u’y. Then we
expand the slowly varying factor of the summand in a Taylor series at u'y ’

(332) -lgPriX;=a)) = Zodil-'D)i

‘If higher derivatives of the slowly varying factor imply lower order in the asymptotic variabie,
by Watson’s lemma we invert the order of integration and obtain the formula

(333) Han) = 2 oguid;.



The central moments of a binomial distribution are given in 2.4.7; higher order moments can
be obtained from the recurrence formula [Romanovsky 23]:

(3.3.4) pi+1 = a(l-a)[nXiuj_1 + duj/de],

which implies that uj=o(n li/2) +1y. For d; we write
(3.3.5) -ln(2)1g(Pr{Xj=a}) = n(T(n)-In(T(§))-n(T(n-j+ 1))+ (- Din(a)+

(n-§)in(1-e),

and then we compute

(3:36)  dp = YU+ DHn/ - |, = Oln(o),
B3T) &y = VYD | = Oy,

and
(3.3.8) dy = " ()+¢"(n-j+1) tj:"#'l = 0(11‘2).

We conclude then that d; = O(nl‘i). Each term of the infinite sum 3.3.2 is o(n L4-)/ ZJ) and
has an asymptotic characteristic. The computation of terms is tedious and error prone; in this
case the ALTRAN algebraic manipulator [Brown 71] was used to obtain

(3.3.9)  H(an) = higre(n-a(l-a)) - (1-2a)2/(12/n(2)(n-1)e(1-a)) -

(a?+(1-0)h)/(24In(2)[(n-De(1-a)12) + O(n~3).

Historical note.

One of the first derivations of the expected number of accesses using information theory
was done by Gonnet [1972], and although it has some weaknesses it is interesting to follow the
approach. From the information-theoretic point of view, we gain information about the
location of the variable in the table in two steps: when we know the value of the variable with
respect to the bounds of the file, and secondly when we examine the selected location and
discard part of the table.




The first gain is given by the difference between the entropy of the search when we do not
know the value of the key, namely:

(33.10) -2 ;(1/n)ig(1/n) = lg(n),

and the entropy when we do know the key value, i.e. 3.3.1. This difference is

(3.3.11) gy = Y%ig(n/Rrea(l-a)]} + o1,

The second gain is given by the.information gained in a three way decision, namely
X =q, Xj<o¢ or X >a. The first event occurs with probability [2#na(1- af)]“'/2 + 0(n~1), and
the last two with probablhty s + O(n="2). Then the information gained with the actual
comparison with the variable in the table is

(3.312) g =1+ W%2wna(l-a)]ig2rna(l-a)) + O@m1).

More detailed analysis shows that if nXmin(¢,1-a)>1 then gy > 1. The total
information gain is

(3.3.13) g = %ig(2n/[rea(l-a)]) + O(n~%) > Wig(n) - 0.09419... + O(@~1).

Thus we can say, with good approximation, that the uncertainty is halved on the first
step of the search.- There was an arithmetic error in the original work that made a stronger
inequality, and consequently a slightly more optimistic resuit. If we make the assumption that
* a search with uncertainty A bits is equivalent to a search between 2k equally probable elements
(that has uncertainty %), we can repeatedly use the reduction formula for the entropy.

The above formula breaks down when nXmin{e,1-a)<1 but as we shall see in section
3.4, when this happens, the average number of accesses is-less than 1+ min(e,1-w). For the

asymptotic analysis let us assume that after a fixed threshold A is reached we do bisections to
find the element. The total average number of accesses performed is

(3.3.14)  [igaln)/hg)) + kg + o(1).
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Information gain in a general step.

The uncertainty after one access is the expected value of the uncertainties of the three
possible outcomes:

1) a=Xj =2 uncertainty 0,
1
2)a<Xj == f Iy'(-1,n-j+1) H(e/w,j-1) dw / [1-1,(i-1,n-j+1)],
84
[23
HNa>X; = J{; Iy (=) H((1-a)/(1-w),n-j) dw / I, (j.n-))
(according to 2.4.1, 2.4.2 and 3.3.1).

The expected uncertainty after one comparison is then

1 o
(3.3.15) h*=f Iw'(j—l,n—j-i-l)H(a/w,j—l)dw+‘J(; Iy (,n=-)H((1-a)/(1-w),n-j) dw
[44 .
= (s1+s72)/In(2).
{Note that the second summand is the symmetric analog of the first one under the
transformation (e,j) => (l-a,n—j+1)). This formula is inconvenient even to compute

. * . .
numerical values of 7', so. we will deduce a simpler formula.

Let py denote PriXyg=a/w} (1<k<j-1). We have

(33 16) Pk = Wz—.,( lizzl)ak’l(w_a)]-l-k’

and

3317 in(ey) = in{(J2)) - G-2)in(w) + (k=1)in@) + (-1-K)in(w-a),

whence we can write

(3.3.18)

=1 j= ; R .
sp=f ~Zp2 ({23) ekl w-a=1Kin(py)(1-w)n=3 BG1,nej+ 1) dow.
Decoffiposing In{py) according to functions of w we find that the summand corresponding to
(j-1-k)n(w-c) is




= f 2 (k-z) k- l(w-a)l— ~K(j-1-K)n(w-a)(1-w)N=] / B(-1,a-j+1) dw
= 3! (‘2 k-1 f (w-a)i~1=K(1-iw) 13 n(w-a)/ B(j~1,0-j+1) dw.
Using the definite integral
b
(3.3.19) £ In(x-a)(x-a)(b-x)1 dx =
(b-2)M+ 0+ 1 B(m+1,n+ 1) {In(b-a)+¥(m-+ 1 )-¢(m+n+2)]
and rearranging the factorials we get

(3.3.20) -2{( 110 1 k)(n_l)ak"l (1-a)=K[In(1-a)+¢(-k)-p(n-k+ 1)].

For the summand (j-2)}n{w) we obtain

lwint (i . '
332 [ Zi=I(]J(:l)ak"l(w—a)]‘l‘k(j—z)ln(w)(l-w)n"J/B(j—l,n—j+1)dw.
a

Summing the inner binomial this simplifies to

(33.22) (-2)f Ly'G-1,0-j+D)in(w) dw.
o

Finaily for the summands independent of w, using the definite integral

(3.3.23) f (x-2)M(b-x)0 dx = (b-a)M+t0+1B(m+1,n+1),
a

and rearranging factorials we obtain

a3 -2 (0 1-D)ak=1 (1-apn=kpgn((J-3 ) + (k-D)in(a)].

Collecting 3.3.20 and 3.3.24 we finally obtain -

(33.25) sy =(-2) f I/ G=1,n=5+ Din(w) dw +

3 1( L Yark=1(1-0) 1=K [~ L)@k + Dk (i w= 1),

Using the symmetry of the search the expression for sy is
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o
(3.326) 53 = (n-j~1) 4; Ly Guni)in(1-w) dw +
St (5] ek L1-a0nK (k- D0 =)o)
where now py stands for (é‘_’}-j:ll)ak'j‘l(l—a)ﬂ‘k.
The above formulas allow the numerical computation of the information gain equation.

The following table shows some selected file sizes and key values with the corresponding
information measures.

n a initial s1/in(2) s2/In(2)  information
uncertainty gain
5 0.5 2.031 0.204 0.204 1.624
15 0.5 2.950 0.599 0.599 1.752
51 0.5 3.869 0978 0.978 1.913
101 0.5 4.369 1.166 1.166 2.037
201 0.5 4.869 1.341 1.341 2.187
501 03 5.530 1.556 1.556 2.418
991 0.5 6.023 1.706 1.706 2.610
51 0.1 3.162 0.528 0.861 1.773
51 0.2 3.557 0.752 0.960 1.846
51 0.3 3.747 0.868 0.994 1.885
51 0.4 3.840 0.937 0.997 1.906

These results show that the information gain in one step of the search, which is always
larger than binary search, is a significant fraction of the initial uncertainty.

However, these formulas are not appropriate for obtaining asymptotic expansions of the
information gain. The reason lies in the difficulty of summing the terms containing the ¥(j-k)
function. The main contribution for such sums is made where its argument is small, hence
preventing one from obtaining higher asymptotic orders. The problem may be solved by a
method similar to the one described earlier in the chapter with the aid of the definite integrals
Al.4.]1 through A1.4.7 and our "Euler-Riemann” [A1.5.2] summation formula. We will use in
this case the integral expression for the information gain and a proper approximation of
H(e,n).

The main problem with the asymptotic expansion for H((w-a}/w,j-=1) is that it has a pole
at w=q. This causes an unbounded error term for sy since I,'(j-1,n-j+1) is O(n %2y near w=a.
Consequently we need better asymptotic approximations of H(x,n) when x—>0. For x—=>0 we
find that '
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(3327)  H(xn) = nxXx(l-la(nx)) + O(n?x2).
Hence we conclude that there is no asymptotic power expansion for H(x;n) in terms of x. Even

subtracting the In(nx) term, the series integrated term by term with I/(~1,n-j+1) =
O(e~2°X7) does not show the desired asymptotic behaviour

(3.3.28) f e-a2x2yini dx = O(ni/2),  a2=0(n).

“The problem involved with the pole is solved by changing the series 3.3.9 to equivalent
ones but with /g(1+2x...) instead of lg(2we...) and powers of na(l-a)+1 instead of na(l-a).
The resulting asymptotic series is

(3.3.29)
H(a,n) = lg(l+2we(n-1)a(l-a)) - {1 /(41re)+(1—2a)2/ 121/(In([na(l-a) +17)+

O(Ina(1-c)+1172).

Let Ay(a,n) be the asymptotic expansion 3.3.29 up to order k; i.e. H(a, n)—AkLa n) =
0([na(1—a)+1]_k 1y, For any fixed z we find that

(3.3.30) H(z/n,n) = Aglz/n.n)+0(1) = O(1) = z(1-In(z)) + €2 22 (Ziln(il)/il .

Before going further we will show the general approach to find asymptotic expansions of
integrals of the type

1
(3.331) 1B = [ IyG-1n-j+1)f(w) dw.
[s4

The method is carefully described in Dingle [1973]. We first rewrite the integral as

(3.332) () = I/G-1,n-+1) g e-a2x2G(x) f(x) dx,

with
(33.33) G = (a/w)Bf(w)/f(x)dw/dx  and

(3.3.34) - -a2x2 = (j-2-B)in(w/a)+(-in((1-w)/(1-a)).



We choose B=(1+A-2a)/(I-a) to avoid a discontinuity of dw/dx at x=0, A= nx-|nx]j,
j=lnx)+1, and a2=(n-j)/[2a(l-e)?] so that dx/dw=1.

The idea is to group slowly varying terms in G(x), then expand

G(x) = Z:Ogixi, and finally we obtain

(33.35) 10 = I/ G-La-i+ 1) Zog & {)‘ e-a2x2if(x) dx.

Back to our problem, we conclude that

(3.3.36) I(H) = I{Ay) + R(a,nk),

where

(3.3.37)  R(ank) = 0, (j~1,n~+1))X g 32X 4 nx k-1 dx)

O(n~"2in(n)) . for k=0 (Al1.4.7), and

om=") for k1 (Al.4.8-A14.9).

Hence, with this scheme, we cannot do much better with Ay(a,n) than with Ag(a,n).
Finally to compute sy we define

(3.3.38)  G(x) = (a/W)Bin(1+8(w-a)/w2)/In(1+bx)dw/dx
with #=2re(j-2)e, and b=6/a2.

From 3.3.34 we expand x in powers of w-c. G(x) can be easily expressed in terms of powers of
x and w-a and with the aid of an algebraic manipulator we find

(3.3.39 g0 =1 g1 = Qa-4a-2)/la(l-a)], etc.

Using Al.4.4 we obtain after substituting u = bx, the term corresponding to gg is

(3340) b1 g @2/ +uydu =

-2 /(4a)[y+2In(2a/b)] + O(In(n)/n),
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where v is Euler’s constant and the term corresponding to g; using A1.4.5 is

(3.341) IG-10-+1) g e~(@2/5202 11 44y u du = O@~"in(n)).

Using Stirling’s approximation we obtain

(3.342)  I/G-ln-j+1) = [n/QCra(l-a)](1+0(1/n)),

and regrouping the above terms we have

(3.343) 51 = [In(2n2e2(-2)a(1-a)]-v)]/8 + O(n~"2in(n)),

or without changing the order:

(3.3.44) 5| = [n(2x2e2(n-1)a(1-a))-v]/8 + O(n~"in(n)).

By the symmetfy in the search we find

(3.345)  sy+sy = [n(2x2e(n-Da(l-a))-v1l/4 + O(~"in(n)),

or the total information gain in one step

(3.3.46) B = H(an)/2 + Un(re)-y]/@in(2)) + O(n~"2in(n))
~ H(a,n)/2 + 0.56536... = H(a,n)/2 + e.

The analyzed case is a general step of the search algorithm, so if we define, asin 3.3.14 a

threshold kg after which we bisect, the expected number of probes required by the algorithm
will be:

(3347) - ~ le([[hlg(2re(n-Da(l-a))-2¢]/(hg-26)]) + ko

~ lg([[Yelg(na(1-a))+0.9163..]/(hg~2¢)|) + hyg.
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3.4 - Average Number of Accesses for a Successful Search.

'

In the following section we will assume that we are searching for the key a, known to be
in the table 0<X<...< X<

Exact Average Number of Accesses.

Let B(a,n) be the average number of accesses needed to locate the position of a in the file of n
random variables. Let A denote the number of accesses required to solve a search problem in
the filte S={Xj,...Xp}. Then by analyzing one step of the algorithm we find the recursive
formula

(3.4.1) B(a,n) = E[A|aE€S]
= E[A| Xj<a,aES]XPr{Xj<a1 asS) +
Pr{Xj =a} +
E[A] Xj>al aESIXPr{X;>qf aEsS),
where j = ¢(a,n) is the interpolation probe position. Using the fact that Xj is distributed like
the (j-if'h random ordered variable of a set of n-1 (we know « is one of the variables) for the

first case and as the fh of n-1 in the second, and simplyfing the conditional distributions, we
derive

1
(34.2) B(a,n) = 1+f I/ (~1,n=j+ 1)B(et/w,j-1) dw +
a
a
fo I Gon=)B((=w)/(1-w),n~]) dw
with the boundary conditions

(34.3) B(a,l) = 1,

(3.4.4) B(O,n) = 1,

and



(345  B(x0) = 0.

The last one is used to have a uniform notation even when j is | or n and one of the integrals
disappears. For coherent algorithms we find as immediate results that

(34.6)  B(a,n) = B(l-a,n),

and

(3.4.7) B(a,2) = 1 + min{a,1-a).

Theorem:
B(a,n) is sectionally defined by a polynomial in « of degree at most n-1.

This is proved by induction on n. It is true for n=1 since B(a,1)=1, is a polynomial of degree
0. Using the recurrence formula for B(a,n), for the first integral, the first factor can be written
as

Iy G-1n-j+1) = Axwi=2(1-w)nJ.

By the induction hypothesis, the function B(a/w,j-1) is a polynomial in e/ w of degree at most
j-2. The product of both, after cancelling all negative powers of w in B(a/w,n) gives a
polynomial of degree n-2 in w. Also for any term of the form alwi we have i+j<n-2. After
integration and evaluation at « and 1 the degree of the result is at most n~1. The same
arguments apply for the second integral with 1-w in the role of w.

Consequently there is nothing peculiar or contrived about the function B(a,n); it is just a
polynomial. Its only complexity lies on the fact that it is defined sectionally by different

polynomials.

The first B(a,n) for the simplest linear interpolation algorithm are given to illustrate
their simplicity, and at the same time their complexity.

(3.4.8) B(a,3) = 1+2a, 0<a<1/3,

Aa2-a+1), 1/3<a<2/3,

i

B(l-a.3), 2/3<a<l.

1
fo B(e,3) dex = 1.39506...
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(3.4.9 B(a,d) = 1+3a, 0Oga<l/4,
= 203+6a2-3a+2, 1/4<a<h,
and it is symmetric with respect to a=14.

1
fo B(a,4) da = 1.50390...

(3.4.10) B(a,5) = 1+4a, O0ga<l/5,

=2a4-8a3+12a2-4a+2, 1/5€a<1/3,

22104/16-131a3 /4421902 /8-31/4+37/16, 1/3<a<2/5,

-2004+4003-2402+40+2,  2/5<a<i,

1
fo B(a,5) dax = 1.59347...

(3.4.11) B(a,6) = 14+5a, 0<g1/6,

“2a5+10a4-20a34+20a2-5a+2, 1/6<a<g1/4,

i

(~50300:5+ 1603004~ 1868003+ 1016002-2035a+527) /243,

1/4<ag1/3,
= (959a°-241004+223003-86002+ 115a+30)/16, 1/3<ag .
1
{ B(0,6) dor = 1.66859...
0
We see that for this algorithm, and likely for any reasonable algorithm, that we have
discontinuities at a=i/n (of B(a,n) or its derivatives). Moreover if (j-1)/n<a<j/n, B(a,n)
reflects also the discontinuities of B(a,j~1) and B(a,n-j). For example, B(«,20) has at least 60

discontinuities (is defined by at least 60 different polynomials).

The following graph plots B{a,n) for 0g<ag’ and 2<ng7.
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We prove by induction on n that

(3.4.12) B(a,n) = 1 + (n-1e, iff na<l

[+ 4
Bla,m) =1+ (n-l)fo (1-w)0-2B((a=w)/(1-w),n-1) dw

a
1+ (n-l)fo (1=w)8=2{1 +(n-2)(@-w)/(1-w)] dw

1 + (n-Da

Applying the recursion formula one step and using the previous result we find that if
1/nga<1/(n-2) then

i o
(34.13) B(an)=1 +f Iy'(1,n-1) dw +J(') L' (2,0-2)[14+(n-3)(c-w) /(1-w)] dw
o

= 2(1-a)-1 + (n-1)e.

Optimal Interpolation Search.
The discontinuity of B(a,n) at a=1/n has a jump of

(3.4.14)  B((1/ny,n)-B((1/ oyt .n) = 1=2e-1(1+1/(2n)) + O(n-2)
As we can see in figure 3.4.1, these discontinuities also happen for other break points for small
n. This means that the break point to decide to search in position 1 or 2 is not optimal. If we

break in the point A, such that B(A,n) has no jump, we reduce the expected number of accesses.
The break point A satisfies the equation

(3.4.15)  14(n-DA = 2(1-01+(a-1)),
A =1 -2-11/@-D] = ;n2)/a + 0(n-2).

The average number of accesses gained by using A instead of 1/n as a break point is

‘ 1/n ' .
(3.4.16) J; [1-2(1-x)"=1] dx = 2e~1-In(2))/n + O(x~2),

~ 0.0426/n.

e e e e
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After noticing this peculiarity we are lead to the definition of the optimal algorithm. We
want to determine the optimal ¢(a,n) that will minimize the corresponding B(«,n) for any « or
1. Let B¥(a,n) be the optimal average number of accesses needed to locate an entry in the table
and ¢'(a,n) the interpolation formula that defines the optimal algorithm. We have the
boundary conditions Be,1) =1 and B*(@,2) = 1+min(a,1-a). Note that for n=2 there is no
jump in B(%4,2).

In the recursion formula 3.4.2, I;'(...) and B(a/w,...) are always nonnegative. Hence the
optimal B'(a,n) will imply the use of optimal #'(....j-1) and ¢°(...,n—j). Let H"j(a,n) be the resuit
of searching position j looking for « between n elements using ¢ after the first probe. Let
A*i,n be the break point of the optimal interpolation formula as defined in section 3.2, then

@417 By pn) = B4 1000

The first few B and their corresponding X'j  are

(3.4.18)  F(a3) = 1+2a, 0<a<1-27% = X'| 3 = 0.292893...
= 2(1-a+a2), )\*1’3<a<1-—)\*1’3.

1
% B(e,3) da = 1.39052...

(3.4.19)  BYad) = 1+3a, 0<a<N'y4 = 1-271/3 = 0.206299...

= 2a3+6a2-3a+2,  X'| g<a<in.

(3.4.20)
1 = .
{) B'(c,4) dar = 1.49695... B(@,5) = 1+4a, 0<a<X'| 5= 0.159103...
= 2a4-8a3+12a2-4a+2, X'| §<a<0.292893...
= 14a4-(32\"| 3+24)e3+96X"] 302-(96N"| 3+20)a+32X"1 3-7,
0.292893<a<X\" 5 = 0.387457...
= -2004+40a3-2402+4a+2, X' s<a<ih,

1
[ B'(e.5) da = 1.58511...
0

3



defined by an interpolation formula which is not linear for n=5.

The following graph piots B'(a,n) for 0gag and 2<ng7.
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It should be noted that the differences between the optimal and the simple linear
algorithms are practically negligible. The following table compares the average for any a of
both methods and the percentage difference with respect to the optimal up to n=7.

1 1

n J(; B(x,n)dx J(; B'(x,n)dx % difference
2 1.25 1.25 0.0

3 1.39506 1.39052 0.326

4 1.50390 1.49695 0.465

5 1.59348 1.58511 0.528

6 1.66859 - 1.65903 0.576

7 1.73192 1.72121 0.622

Numerical Approximations.

The computation of the exact B(a,n) for even moderate n seems a hopeless task. Before
studying its asymptotic behaviour we may try to find numerical approximations of B(a,n). We
will consider in the following analysis the linear interpolation algorithm 3.2.6. In this case the
function B(a,n) has a continuous first derivative in each (i-1)/n<a<i/n interval. For large n,
intuitively, the function in these intervals is rather “smooth”.

We should not attempt to use a high order numerical method of integration that relies on
high derivatives, since we may have discontinuities in the derivatives of B(a,n) that will cause
singularities in higher derivatives. We will choose here a 3-point sectional definition of B(e,n),
and a Simpson type quadrature formula. The approximation can be done with any other
numerical method of any number of points [Davis 67]. Let the jth continuous section of B{«,n)

[G-1)/nga<]j/n] be described by the set of points

(34.21)  Bj(k,n) ~ Bley,n), (1€k<3),
where ag=(2j+k-3)/(2n).

To approximate the integrals that define B(a,n) we will integrate separately in each
interval where B(«,j-1) or B(a,n-j) are continuous. Moreover since I,,'(j-1,n—j+1) may
introduce substantial errors because of its large derivatives, we will approximate B(«,...) with a
parabola (midpoint and both extremes, as in Simpson’s rule) and integrate the resulting
rational polynomial with an approximate or exact method. For the first integral we obtain
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(3.4.22) .

1 1 b(i)
[ 1/ G-Lnj+ DB(a/wi-1) dw = 27 [ 0 Iy (-1,n=5+ D)B(a/w.j-1) dw.
23 afl

According to the discontinuities of B(x,j-1), we conclude that

(3.423) m = [(-Da)+1,

and

(3.424)  (-1)/G-D < a/w < i/G-1),

whence

(3.4.25) a() = a(j-1)/i and b)) = min[e(-1)/(-1),1}
Let Bj(x,j-1) denote the ith interval polynomial approximation of B{a.j-1).

Similarly for the second integral we obtain

o
(34.26) {) L/ Gn=)B((c=w)/(1-w),n-j) dw =
m b(i)
2 o WOTDB(a/ 1) av
agl

where
(3.427) m = [(n-j)e],

(34.28)  (i-1)/(n-j) < (a=w)/(1-w) < i/(n=j),

and

(3.429)  a(i) = max[0,(a(n-j)-i)/(n=-D)], b = [a(n-j-i+1]/(n-j-i+1).

The computation of B(a,n) requires the computation of all B(e,j) for j<n, hence
requiring 1.5(n+Dn values to be stored and 0(113) time.

The approximations may be enhanced by incorporating the exact results obtained in
3.4.8-3.4.13,
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Formally there is no way of guaranteeing convergence of these approximations.
However we can compute exact and approximate values of B(e,n) for small n and observe the
actual errors. These errors happen to be encouragingly small as shown in the following table.
The table also shows the remarkably good empirical approximation /g(/g{n+3)).

1
J{; B(a,n) da approximation Ig(lg(n+3))

=

1 1.0 1.0 1.00000000
2 1.25 1.25 1.21532329
3 1.39506173 1.39506173 1.37014335
4 1.50390625 1.50390625 1.48921147
5 1.59347704 1.59320666 1.58496250
6 1.66858659 1.66843432 1.66444871
7 1.73191730 1.73203984 1.73202085
8 1.7864062 1.7905350

9 1.8339951 1.8419580

10 1.8764515 1.8876967

11 1.9148106 1.9287891

12 1.9497450 1.9660209

13 1.9817598 2.0000000

14 2.0112674 2.0312056

15 2.0386100 2.0600214

16 2.0640689 2.0867591

17 2.0878730 2.1116751

18 2.1102112 2.1349823

19 2.1312421 2.1568598
20 2.1511005 2.1774592
25 2.2363592 2.2652433

30 2.3045439 2.3346810
35 2.3610800 2.3917478
40 2.4091944 2.4399594
45 2.4509556 2.4815476
50 2.4877650 2.5180115

55 2.5206141 2.5504035

60 2.5502289 2.5794891

Figure 3.4.111



Numerical Bound on the Average.

For a fixed first probe position, the function B(e,n) has a minimum (the optimal key
value to search in that location). Let us make the natural assumption, without demonstration,
that in the interval (i-1)/n<a<i/n this minimum is unique and B”(«,n)>0. Consequently, as
we can also verify for small - n, the maximum of B(e,n) in this interval occurs either at

a=(i-1)/n or at a=i/n.

Using the recursion formula 3.4.2 we can numericaily bound the values of B(«,n) for
each interval and also bound the average B(a,n) for any «. Unfortunately the bound is only
numerical and not tight enough to deserve more attention.

The following table compares exact values of the average number of accesses and the

numerical -bound.

n exact value numerical bound
1 1.0 1.0

2 1.25 1.5

3 1.3950 1.6296
4 1.5039 1.7822
5 1.5935 1.8969
6 1.6686 1.9775
7 1.7319 2.0409
8 1.7864 2.0892
9 1.8340 2.1366
10 1.8765 2.1765
11 1.9148 2.2131
12 1.9497 2.2472
13 1.9818 2.2795
14 2.0113 2.3085
15 2.0386 2.3353
16 2.0640 2.3599
17 2.0879 2.3829
18 2.1102 2.4042
19 2.1312 2.4242
20 2.1511 2.4429

Figure 341V
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_ Asymptotic Behaviour of the Average Number of Accesses.

Several measures on the algorithm indicated that the quantity na(l-a) was of key
importance. Intuitively we find that after the first step of the search, the key tends to be located
at the extremes of the interval, rather than near the middle. This fact together with the
symmetry of the search are well reflected by na(l-a).

Consequently, let us regard the quantity § = na(l-a) as a basic parameter in the search

and relate it to any step in the algorithm. The expected value of 87 = njaj(l-ay) (where n;
and o; will indicate the size and relative key value of the file after the ith iteration) is given by

1
(3430) E[9;] = OXPr{Xj=a} + [ Iy -1n-j+ DG-Do(w-c)dw/w2 +
2.4

&
[ 1w/ Gneio-ia-mii-a)iw/ (1.
As in section 3.3, we will separate the rapidly varying and slowly varying parts of the
integral. We note that the expansion of the slowly varying factor contains terms$ of the type

|w-a|, so we will slightly modify the Incomplete Beta function so that « coincides with its
average, and then apply the central signed moments described in equation 2.4.15. We find

(3.431) E[Bi] = {) 1IW'(j-l+B,n-j)G(w) dw,
where
G-148)/(a-1+6) = a => B8 = (&-a)/(1-a),
A = na - |nal,
and
G(w) = dg + d(w=a) + ey |w-a| + dy(w-a)2 + ep|w-a|(w-a) + ...
The coefficients d; and e; are obtained by equating the corresponding Taylor expansions
at w=a for w>a and w<a. We note that at most d;=0O(n) and e;=O(n). Consequently if we

want an asymptotic expansion up to o(1), we need dg,d(,d; and e;. Hence using the notation
of 2.4 we obtain

(3432 dy=0,




and

(3.4.33) = (A-a)/[afa-1)] + O(F~D),

(=
—_
|

(3434  dy

]

-3n/Ra(1-a)] + O(1),

(3435) ey =n + 0O(1),

(3.4.36)  E[6;] = dy + eqrq + dopy + O(F™")
= [20/x]" - 3/2 + O~ ").

Let hy be a threshold such that for #>hgy we have

(34.37)  El8)] < [26/x])%.

At this point we should be careful to notice that #1 is a random variable in contraposition
to 8, which is a function of & and n. To recursively use the above inequality, we observe that

E[61] is a convex function of # and we can apply Jensen's inequality to obtain

(3.4.38)  E[x6;/2] < [«9/2}24,

When #;<hg we change the algorithm, and search sequentially from the left if a2 or
from the right otherwise. Under this condition, applying 2.4.24, the remaining average number

of accesses is

- (3.4.39) Efaccesses} = nXmin(a,l-a)+1 < 2hg+1.

Finally the total number of accesses is

(3.4.40) E[accesses] < Zho+1+/g(lg(n8/2)/Ig(xhg/2))
< lg(lg(na(1-a))) + O(1).

More precisely, if we construct

(3441 - G'(w) = @/m)%|w-a|/v12 + di(w-a),
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then

1 |
(3.4.42) fo Iy G~1+B,n=)G(w) dw = [20/1%.

We find, rather laboriously, that
(3443) G(a) = G(a),

(3.444)  [G(W)-G' W)y’ > 0, for w<a,

and

(3.445)  [G(W)-G'(W)]y' €0, for w>a.

Thus G(w)gG" (w) and finally 3.4.37 is true for any 8. Consequently we canset hg=1 and
we find

(3.4.46) E[accesses] < lg(/g(=8/2)) + 3.6181... .

We find a slightly different approach in Yao and Yao's work [1976]. First, their
interpolation formula is defined by la(n-1)+1] for a<% and [a(n-1)+1} for a>'4. The
main proof is for an upper and lower bound on the average number of accesses in the
unsuccessful search only. Also of interest is the claim that small perturbations of the probe
position do not affect the order of its running time. This result follows from our analysis too,
since as long as A=o(n"?), we have the same asymptotic results [egs. 3.4.30-3.4.36].



3.5 - Distribution of the Number of Accesses.

The main motif of this section is to find the probability function of the number of
accesses needed to locate an element known to be in the table. We already know that the
average of this distribution is /g(/g(n))+ O(1) so our interest will be mainly to prove asymptotic
properties of higher moments and/or to obtain more accurate approximations of the average.

We will start by analyzing the probability of success in the first trial for the linear

interpolation algorithm. That is, given the key «, and

(3.5.1)  #(en) = lna)+1 = j,

the probability of success in the first trial [2.4.24] is

352) Pr{Xj=a} = I,/G,n-j+1)/n.

Computing the average value for any a for any random file we obtain

(3.5.3) Prfsuccess in first trial} = .gl Pr{X}-=a] da
= 071 2L | Uj jnGon-io+ DI 1y/nGor=i+ 1]
= a1+ 252 /G DTy i+ L
= om1p1 + 2323 (Deprdor
= [r/@0I%11+1/(120)] - 1/Gn) + 02,
which is a very satisfactory asymptotic expansion.

However when we compute the probability of exactly 2 trials we find

X k/n
(3.5.4) Pr{2trials} = 2/11121:= 12E=j+1 J;k_l)/r{w'(i,n-j+l)

(L (k~j,n=k+1)-Tp(k—j,n-k +1)] dw,

where
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(3.5.5) & = min(w(k-j)/[G-1)(1-w)],1),

b

max(w(k-j-1)/[j(1-w)L0),

n

p = ([nj]").

This formula is very difficult to handle, and for further trials it seems even more
complicated. Consequently we resort to a different approach. Let 6; = njaj(1-a;) be a basic
parameter of the file we are searching, as we already used in 3.4. We know a recursion formula
that relates 6;4 to 6;. This recursion formula is independent of the outcome of the search.
We now give a recursion formula, conditioned to the failure of the trial, i.e.

(35.6)  Bipq = {[203/71%-3/2+0(67)}/ (1-Pr(Xj=ai).

We will first express the probability of finding the element in the 1B trial in terms, if
possible, of  8;. Using Stirling's expansion for /n(I'(n)) we find that

(3.5.7 ln(Pr{Xj=a§) = -WnQ2xd) + 1/(12n) + [6A(1-4)-1]/(128) +
AQA-1YA-1)2a-1)/(1262) + 0(-3),
where A = na~|ne«). This is an asymptotic expansion in terms of 4, but unfortunately, also a
function of n and a (not only ). For practical purposes, or to compute average situations, we

assume that A is a random variable U(0,1). This is true for §—>o and fixed o. We may then
compute the average value, with respect to A, of each term of the expansion, yielding

(35.8)  PriXj=a} = 278]72[1 + 1/(12n) + 1/(288n) + 1/(144062) + 0(6~3)].

This expansion suggests that the approximation

(359)  PriXj=a} = 2761
should be very good on the average.

The following table shows some values of the exact probability and its approximation for
0.5<8<2.5, which can be considered an extreme situation.
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¢} n=5 n=10 n=w approximation

0.5 0.6198 0.6138 0.6065 0.5642

0.75 0.4439 0.4645 0.4724 0.4607

1. 0.4189 0.3897 0.3679 0.3989

1.5 0.3258 0.3347 0.3257

2. 0.2857 0.2707 0.2821

2.5 0.2461 0.2565 0.2523
Table 3.5.1

Let £ = 2/(w6;), and £ = 2/[wne(l-)]. The probability of success in the first trial is
approximated by

(35.10)  Pr{X;=a} = g2,

In case the probe is unsuccessful we compute the conditional expected value of the
resulting 4,

@BS5.11) b4 = 26y + w1372 + 0067,
Using 3.4.38 we find
i

(3.5.12) & <827

The probability of success in the second trial, conditioned to an unsuccessful first trial
and using equation 3.5.9 is

(3.5.13)  Prisuccess in second trial} = [20y/x]% > wgl/4.

Similarly,

(3.5.14)  Prisuccess in third trial] > %¢1/8,

ete.
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The probability of no success in k trials is

(3.5.15) Pr{no success in k trials} < Hlk= 1(1-'/252‘1).

Consequently we can bound all positive moments of the distribution of the number of
accesses. We can check the probability of finding an element in the first probe with the exact
result. In this case

(3.5.16)  PriXj=a} ~ 2mne(l-w)] %,

and for any « we have

1
(3.5.17) Pr{success in 1 probe} ~ [2«11]-'/2{ [a(1-a)]~ " da'= [x/(20)]%,

which coincides with the first asymptotic term of 3.5.3.

Doubly Exponential Distribution.

We will study in some detail the characteristics of thé probability distribution defined
before, namely

(3.5.18) Prix>k} = Hik=1(l-‘/2£2—i), 0<i<l.

The expected value

(3.5.19) E[x] =T = 5ol Lz (-2

satisfies the functional equation

(3.5200  T(E2) = T(EX1-£/2) + 1,

with

(3.5.21) T{0) = =,

and



(3.522) T =2

Let H(£) be the solution of the homogeneous part of the functional equation for T(£). We have

(3.523)  HENI-£/2) = HED) =
H(E) = [1 + E/2 + 262/4 + 383/8 + 156%/16 + ..]XPUg(-Ig(£)),

where P(x) is any periodic function with period 1. Fortunately we find that for this distribution
|P(x)-C| ~ 10-6 where C is a constant and we can safely ignore this periodic factor for
practical purposes. Notice that

(3.524)  T(a) = T(l-¢) = 2 - 2¢/5 +0(e2)

is a continuous function when 0. This supports our contention that we may safely ignore the
periodicity of P(/g(-/g(£))).

We compute then

(3.5.25) T = [C + le(-gENIHE) + R,
where
(3.526)  RGEX1-£/2) + 1 - HE?) = REDH) =
R(E) = £2/2 + £3/4 + 1148 + ..,

and

(3.5.27) C = 1.3580.. .

Clearly for £&>0 we have

(3.5.28) E[x] = T(¢) = lg(-/g(§&)) + 1.3580.. + O(¥).

For the variance of x, we first compute the second moment,
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(3529) Ep2l=V(d) = Sog@i+ DIL; a-ne2 ™.

The second moment satisfies the functional equation

(3.530)  [V(® + 2TE)1-£/2) + 1 = VD),

where
(3.5.31) V() = o,

(3.5.32) V(1) = 6,

and if

(3.5.33) V() = G®)lig(-Ig(e)]?> + Gy(E)e(-lg(8) + Gold),
we find that Gp(§) and G(§) have the same general solution as H(®).

Computing the general homogeneous solution to 3.5.30 and evaluating the constants
involved we can compute the variance:

(3.5.34)  var{x} = 3.876..P({g(-Ig(£))) + o(D).

The following table shows some exact results of the mean, variance, skewness and excess
of the distribution for various £.

£ Elx] . E[x2] “var{x} skewness eXxCcess

0.5000 2.43848 8.6006 2.6543 1.6300 -0.8778
0.1000 3.27465 14,1975 3.4741 1.4399 ~1.4736
0.50E-01 3.56448 16.3424 3.6369 1.3910 -1.6074
0.10E-01 4.11092 20.7095 -3.8098 1.3155 -1.8020
0.10E-02 4.67741 25.7451 3.8669 1.2554 -1.9494
0.10E-03 5.09037 29.7866 3.8748 1.2207 -2.0330
0.10E-04 5.41206 33.1662 38738 1.1980 -2.0876
0.10E-05 5.67507 36.0823 3.8759 1.1817 -2.1268
0 10F-06 589746 __ 38.6560 __ 3.8759_ 1.1694 -2.1566

53



- 0.10E-07  6.09011 40.9654 3.8759 1.1597" -2.1803

0.10E-08 6.26003 43.0639 3.8759 1.1517 -2.1997
0.10E-09 6.41203 44.9901 3.8759 1.1451 -2.2161
0.10E-10 6.54953 46.7723 3.8760 1.1394 -2.2301
0.10E-11 6.67506 48.4325 3.8760 1.1345 -2.2422
0.10E-12 679055 49.9875 3.8760 1.1302 -2.2529
0.10E-13 6.89746 51.4509 3.8759 1.1264 -2.2624
0.10E-14 6.99700 52.8340 3.8759 1.1230 -2.2710
0.10E-15 ©7.09011 54.1456 3.8759 1.1200 -2.2787
0.10E-16 717757 55.3935 3.8759 1.1172 -2.2857
0.10E-17 7.26003 56.5840 3.8759 1.1147 -2.2922
0.10E-18 7.33803 57.7227 3.8759 1.1123 -2.2981
0.10E-19 7.41203 38.8142 3.8759 1.1102 -2.3036
Table 3.5.11

The main conclusion of the above section is that the variance of the number of accesses is
o(1).

Approximate Distribution of the Number of Accesses.

So far we avoided the problem of retaining some degree of accuracy when ¢ is small. To
accomplish this, in a numerical way, we will study the distribution of the aumber of accesses
when na<l. From 2.4.24 this is

(3.5.35) Prik accesses} = (ﬁj )ak'l(l-a)“‘k.

The algorithm to compute 2 more approximate distribution is to compute the probability
of exactly k accesses using equation 3.5.9 and the recursion formula 3.5.12 and then, when
na< !, use 3.5.35.



The following table was obtained by this procedure.

0 E[x] E{xz] ‘var{x} skewness excess

10.00 2.39788 6.7405 0.9906 1.2701 -1.1056
100.0 3.24137 11.6635 1.1570 1.1639 -1.497
1000. 3.35907 12.1719 0.8886 1.1293 -1.5961
1.00E04 4,18445 18.7022 1.1926 1.1026 -1.6981
1.00E05 4.34638 20.0031 1.1121 1.0921 -1.7274
1.00E07 4.98395 25.9686 1.1288 1.0682 -1.8048
1.00E09 5.26824 28.9285 1.1742 1.0655 -1.8111
1.00E10 5.33687 29.6065 1.1243 1.0620 - -1.8205
1.00E14 5.96079 36.6432 1.1122 1.0474 -1.8665
1.00E15 6.06544 37.9617 1.1722 1.0487 -1.8625
1.00E19 6.30007 40.8478 1.1568 1.0456 -1.8704
1.00E20 6.33166 41.2201 1.1301 1.0443 -1.8737

Table 3.5.111

Note that the adjustment of the tail makes an important reduction in the variance that
now coincides nicely with the simulation resuits in 3.9.

These results are for a specific 4, i.e. a combination of size and key value. However due
to the flatness of lg(/g(#)), for large 4, these results are very close to the average for the
corresponding size,



3.6 - Average Number of Accesses for an Unsuccessful Search.

In this section we will study the search for the key «, distributed U(0,1), that is known
not to be in the table 0< X, <...<X < 1. We will use the algorithm described in 3.2 expecting a
FAIL outcome.

Exact Average Number of Accesses.

Let C(a,n) be the average number of accesses needed by the interpolation search
algorithm to complete the unsuccessful search.

Analyzing one step of the algorithm we derive a recursion formula similar to 3.4.2,
namely

1
(3.6.1) Clan) =1+ I/Ga-j+1)Cle/wi-1)dw +
o
44
fo 1,/ G+ DC((a=w)/(1-w),n-j) dw,
“where j = ¢(a,n) = {naj+1, is the search position.

The boundary conditions are

(3.6.2) Cla,l) = 1,

and

(3.63)  C(e0) = 0.

By an analysis similar to the one done in section 3.4 we conclude that C(e,n) is
sectionally defined by a polynomial of degree at most n.

The discontinuities of C{a,n) appear at the same a's as in the B(a,n) since the
recursion formulas differ only in their continuous terms.

The first C(a,n) for the linear interpolation algorithm [3.2.6] are

(3.6.4) C(a2)=-a2+2a+l, 0<aglh.



(3.6.5) C(a,3) = -a3+3a+1, 0<a<l/3,

=2, 1/3<a<h.

(3.6.6) C(a4) =-a*+da+l, 0<a<l/4,

= 3at+dad+2,  1/4<agh.

(3.6.7)V Cla,5) = -’ +5a+1, 0<a<l1/5,
= 20210+ 1003+2,  1/5<a<1/3,
V=(—202a5+815a4—l240a3+850a2-230a+55)/16, 1/3€a<2/5,
= 48a5+7004-2003-10a: 24 5a+2, 2/5<ag .

The following graph plots C(a,n) for 0<a<'%t and 2<n<7.
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We prove by induction on n that

(3.6.8) C(an)=1+na-a" iff nagl
[s3
=1+ ,(f) I,/(1,m)C((a-w)/(1-w),a-1) dw
o
=1+ n{, (1-w)r=1{1+ (n=1)(ce=w)/ (1)~ [{x=w)/(1-w)]"-1] dw
=1+ na-al |

Applying the recursion formula one step and the previous result we find that for
I/n<ag1/(n-2) we have

1 a
(3.69) Clam) =1+ I1,/@n-1)dw+ % 1, (2,n=1)C((a-w)/(1-w),1-2) dw
o
= 2+(n-2)a)(1-a)™! + na - am,

The discontinuity of C(a,n) at a=1/n has a jump of

(3.6.10)  C((1/ n)*,n)-C((1 /ay,n) = (3-2/n)(1-1/n)2-1-1

=3/e-1+ O(1/n) ~ 0.1036 - 0.184/n.

The optimal break point, Al is given by the equation

(3.611)  2+{0-2A pl(1-Ap ol =1
=> M, = 8/n + O(n~2) ~ 1.1462/n

where 2+8=eS. We notice now that Ayn>1/n, contrary to the successful case. This is a
rather natural conclusion of the search.
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Following the numerical method described in equations 3.4.22-29, changing only the
arguments in the Incomplete Beta functions, we derive a method for computing approximate
values of C(a,n) and its average. The following table shows a comparison between the exact

Numerical Approximation.

values, the numerical approximation and the empirical formula /g(/g(n))+0.58.

=

N B W N e

15
20
25
30
35
40
45
50
55
60

1
f C(a,n) do
0

1
1.4166667
1.6604938
1.8304688
1.9610972
2.0665118
2.1537838

Asymptotic Behaviour of the Average Number of Accesses.

numerical
approximation

1
1.4166667
1.6604938
1.8304036
1.9608513
2.0661508
2.1535058
2.3469752
2.5539017
2.6922305
27945151
2.8748405
2.9405102
2.9957660
3.0432753
3.0848178
3.1216359
3.1546291

Figure 3.6.11

Following the same development as in 3.4 we define
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Ig(lg(n))+0.58

0.58
1.2444
1.5800
1.7953
1.9501
2.0692
2.3120
2.5460
2.6917
2.7953
2.8748
2.9388
2.9919
3.0373
3.0767
3.1114
3.1424



(3.6.12) ;= nafi-a)

to be considered a basic parameter of the search, where the subscript i indicates the respective
value after step i of the search algorithm. We have
1

(3.6.13) EB] = L/Gnei+D(~Dea-w) dw/w? +
a3

(43
[ 1t w1 dw/ 12
We separate the rapidly varying factor of the Incompiete Beta function and modify it so

that .« coincides with the average. We expand the remaining factor in.a power series in {w-a)
and {w-a| obtaining . :

1
(3.6.14)  E[,] = % I G+B.n-+ 1D)G(w) dw,
where (i‘-i-ﬁ)/(n-i—H-ﬁ) =g => = (A-1+a)/(1-a),
S A = ne~inal,

j = ¢lan) = .'Lna'J+l,

and
G(w) = dg + dy(w-a) + ej{w-a| + <112(w-oz)2 + ey |w-a|(w-a) + ...
The coefficients d;j and &; are obtained by equating the corresponding Taylor expansions -
at w=a for w>a and w<a. We note that at most d;=0(n) and ¢;=O(n). Consequently if we

want an asymptotic expansion up to-o(1), we need' dg,dq,dy and ¢q. Hence using the notation
of section 2.4 we -obtain

(3615 dg =0,

(3.6.16) dy = ~(A-a)/Re(l-0)] + O@Y),

1]

(3:6.17)  dy = -n/[a(l-a)] + O(1),

(3.6.18) & =n + O(l),

S e Sk o L s b e A i i e S £ 2 et ey eun o v
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and

(36.19) E8,] = do+ ey + dyuz + 00"
= [20/x1% -1+ 0.

Since we are also interested in the case of smail 8 we want a formula of the type

(3.6.20) E[4] < [26/7)"
This inequality is valid for all g>0 and is demonstrated, rather tediously as in
3.4.41-45. The remaining analysis is exactly the same as in 3.4 since the. reduction formula

3.6.20 coincides with 3.4.37. The expected number of accesses for the unsuccessful search is
bounded by

(3.6.21) - Efaccesses] < lg(lg(x0/2)) + 3.6181.. .

T“rfis asyrxiptotic bound confirms: the validity of the empirical approximation
Ig(lg(n))+0.58. ' ‘

Simulation -results corresponding to this section appear in section 3.9.




3.7 - Average Number of Accesses for Known-Successfui Search.

Normal search algorithms do not rely on the fact that it may be known that the element
is in the table. Surprisingly, the optimum algorithm varies greatly if we con51der this
assumption.

This assumption will normally be considered "too dangerous”, since we want to construct
fail-proof algorithms. Nevertheless it is theoretically interesting because of the low average
number of comparisons required, and because it is the optimal search algorithm under these

conditions (ordered random table and element known to be in it).

The algorithm, coded in a pseudo language, is the same as the one descrlbed in 3.2 except
for the while statement that is changed to

- - while (high-low>2):do
and the final return statement that becomes
return(low+1);
Let D(e,n) be the average number of accesses needed to find « among n ordered
elements using the optimal algorithm. Note that the normal linear interpolation algorithm is

not interesting for this type of search, since it is almost the same as the case described in 3.4.

The function D(a,n) follows the same recurrence formula as B(a,n) (3.4.2)
(37.0) D(eny = 1+] 1,/G-1.n~j+ D)D(a/w.j-1) dw +
@ . .
f 16D/ (1-wn) dw,
but with the boundary’ conditions

(372 Dle,l)y =0,

(3.7.3) D(x,2) = 1,

and

(3.74)  D(a,3) = 1.

I oo e e e e a5 o —




Let \; , be the break points, as in 3.2.8, that define this optimal aigorithm
immediately that

(3.7.5) Ajp=? (anyvalueis optimal},

(3.7.6) A ,=0, n>2,

and

GBI Np= FApjere 12

Using 3.7.1 we find that
(3.7.8) Dlad)= 2034+3a2+1,  0<agl,

(3.1.9)  D(a,5) = 3a4-8a?+6a2+1, 0oy 5=0.462475,
= -6at+12a36a2+2, \,s<a<i,

and

(3.7.10) D(a,6) = -8a5+20a4-2003+ 10a241, 0<La<),=0.363533..,
= 10a5-30a*+3003-1002+2, )xzvééaé'/z.

The following graph shows D(a,n) for 4<n<7 and 0gag .
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It is surprising to find that we need, for example, only 1.43 access on the average to
locate one element in a table of 7 entries! '

The following table compares the pure interpolation with this optimal algorithm and
with the average uncertainty of the search (3.3.1). .

1 1 !

n | Blan)da [ D(an)der | H(en) de
0 0 | 0

2 1.25 L. 07213475

3 1.3950617 L 11093617

4 15039062 11875 13715613

S 15934770 1.285078 1.5683976

6  1.6685866 1371263 17254522

7 L7319178 1.434874 1.8558517




3.8 - Variations of the Algorithm,

Binary Interpolation Search.

- The idea behind this algorithm is to bisect the file into equally probable remainders as
nearly as possible. That is, to arrange that

- (38.1)  Pr{X;<a}~ Pr{X>al.

This goal is achieved if both probabilities are less than or equal to ‘4. This sole condition
defines the function @(w,n). The first few break points A 5, as defined by 3.2.8, are given by

(82 I, Ga-) =,

(383) Aj,n 3')‘n—j+1,ﬂ’

3.8.4) )\Ln = 1-2-(1/~D],

(3.8.5) A, =4,

n,2n

(3.8.6) 1= [1+(n-DAy J(1-2y )™,
Ay s =0.38572..,
Ay = 0.3138L..,
A3z = 0.421402..,

etc.

(38.7) A, =i/n+ (2j-0)/(3n?) + O@-2).

The latter result is derived from 2.4.14,
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Notice that A , coincides with the optimal algorithm, and the other values are much
closer to the optimal than the linear interpolation. However, as mentioned before, these
differences are only of theoretical interest, and in this case the computation of the exact Ajn
represents a very expensive task compared with the whole search process!

Interval Reducing Method.

The rationale behind this algorithm is to minimize the resulting interval; i.e., to bracket
as soon as possible the searched value. The interpolation formula, ¢{a,n) = j is defined by the
j that minimizes the expected resulting length.

-(3.8.8) E[resulting length] = (i—-l)Pr{Xj>a} + 0X Pr{Xj==ai + (n—-j)Pr{Xj<a]
= (j-DIG-1n=j+1) + (n=j)[1-1 (.01

There does niot seem to exist a simple expression for ¢(a,n) in this case, except for the
implicit minimum. function.

Simulation results in section 3.9 show that this algorithm is inferior to - pure
interpolation.

There is an intnitive argument to explain this behaviour. When we search-for elements
‘near either end of the table, this algorithm probes in positions closer to the centre than the
normal algorithm. This is caused by the imbalance of the possible resulting lengths, i.e., the.
algorithm really tries to minimize the interval. This usually prevents this algorithm from being
successful in the first steps. The argument is that although the interval may be big, the
probability of finding the element may still be significant.

One Interpolation then Sequential.

The interpol_ation algorithm - described by Price [1971] performs only. a first
interpolation, and then, in.case the element is not .in the position searched, searches
sequentially towards the appropriate end of the table, This variation of the algorithm does not
follow the general algorithm given in 3.2. Consequently we will give the corresponding
algorithm in pseudo-language. -
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j = ¢la,n);

select (k(j))
case «: return(j); :
case <a: for j:=j+1 untit n do if k(j)>« then break end for;
case >q: for j:=j~1 downto 1 do if k(j)<a then break end for;
end select;

if k(j}=« then return{j) else return(FAIL);

In the analysis of this algorithm we will first consider the successful search. Consider the
search of the fh key, X;=a. The expected number of accesses is-given by

1
(38.9)  Elaccessesto find X)] = [ {1+ |¢(a,n)j |}, G,a-j+1) da
, | 0

1
= U+ [ lotam-i|1 G- da.
The average number of accesses to find any X;is

1
(3.8.10) E[accesses] = 1 + 1 /an“= . % | ()i | I, Gon=j+1) dev.

To continue the analysis we need to define’ ¢(a,n) for this search. In this case we will use
the linear interpolation algorithm defined in 3.2.7 ¢(a,n) = [ne], to obtain

(3.8.11) Efaccesses] = 1 + l/nzjn=1{I;/n(i,n—j+l)+12/n(i,n-j+1)+...
+I(]—1)/Il(~]’n—]+ 1)+I—[J/n(],ﬂ—_]+ I)+ i-..+ I—I(n_l)/no,ﬂ“j“‘}‘ 1)]

Using the symmetry relation I (a,b) = 1-I,_(b,a) we transform 3.8.11 into

(3.8.12) E[accesses] = 1 + 2/:12;1:._1211—:111 /a0~ + 1.

Reversing the order of summation and using the formula 2.4.20 we derive

(3.8.13) Blaccesses] = | +2/n ﬁ;li[kfk seln=K)=k 1y (k+1,0-k)]
= 1+ 2/0 2 ¥} )/ [D0OT (-0 [k /n] Ki(nmk) /m],

So far the result is exact, but not very useful, so we will look for an asymptotic expansion in
terms of n.
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Using Stirling’s approximation we decompose each summand into

(G8.14) [2/(*m]AX[1+1/120+1/(28809)+ O(n-3)]X
[1-n/ [12k(ﬂ—k)]+n2/ (288 [k(n-k)19+ O(n/ [k(n-k)]2] X {k(n-k)] 4

(Note that with this method we would not be able to obtain an order higher than n-*2) Using
the summation formulas A1.2.1 through A1.2.3 we finally obtain

(3.8.15) Efaccesses] = | + [nw/32]%[1-7/12n] + O(n~}
~ 1+ [(n-1)r/32]% + O(a-D),

the latter being an equivalent asymptotic expansion but with better numerical approximation
to the exact result,

The method described above does not apply to the unsuccessfut case. The approach we
will take is slightly different and is as follows:

(38.16) Efaccesses for a] = 2XPr{X;_ <a<X} + 3XPr{X; <a<X; | + .. +
- Pri-@<a<X} - PriX, <a<+w}.
2 n+l . ' a n
= 22 B2+ ik + 1 [PriX <a<Xy - at - (1-a)"
Averaging for any o -we obtain

1 |
(3.8.17) E[accesses}ﬁj(;( L B/24 [k | Pr{X _ <er<X J-at(1-c)") der.

After transformations similar to those used in the successful case we obtain

(3.8.18) Elaccesses] = 2/(n+1)[1+2E;II{,(n+1)k/nlk;_n{k+l,n—k)—
(k+1)1k/n(k+2,n—k)}]

= [ar/32]% + 0(1)
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~ 1.5 + [nx/32]%
This search, as expected, behaves as O(n").

In both the successful and unsuccessful cases, the constant that muitiplies the n"term is
. rather small; consequently, this search behaves better than binary search for n up to about

1000.

Unless we are searching in a blocked file in secondary storage or other special situation,
this algorithm seems less efficient than linear interpolation.
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3.9 - Simulation Resuits.

This section contains the results of several simulations of the different interpolation
search algorithms and different source distributions. In all cases the simulation pattern is
roughly the same. A file of the stated size, n, is generated with pseudo~random numbers, and
then the file is sorted into ascending order. Each element of the file is then searched with the

corresponding interpolation algorithm, keeping a histogram of the number of searches needed
to locate the element.

For each file we record the average number of accesses, its variance, and the maximum
number of accesses needed to locate any single element. For each size we repeat this
experiment several times, recording statistics of the average number of accesses, variance of
the number of accesses and maximum. A typical output of this phase is shown below:

SIZE OF FILE= 17= 15+2
STATISTICS OF AVERAGE NUMBER OF ACCESSES
NUMBER OF SAMPLE POINTS= 1200 (different files)

MEAN=2.045833 STANDARD DEVIATION=0.358526
SKEWNESS= 0.391013 EXCESS= '0.217053 -
MINIMUM= 1.066667 MAXIMUM= 3.333333

Uniformly we will display the results of a simulation run in a single line, always in the
same order. These values displayed are
- size of the file being searched,
- the best known theoretical result, for n up to 7 it is the exact value, for 8<n<60 is a
numerical approximation, and for n>60 an empirical formula;

- the ‘mean average number of accesses found by simulation with a 95% central confidence
interval

- the sample size, i.e. number of different files created and analyzed;

- the maximum average number of accesses for any of the files;

_ the maximum number of accesses needed to locate any single element in any of the files, and
- an estimate of the variance of the number of accesses needed to locate any element.

The calculation of most of these measures is straightforward. The confidence limits are
set as : ‘

(3.9.1) +var|average number of accesses}/[samplesize-1}"X1.96,

and the variance of the number of accesses is {Kalbfleisch 73]



(3.9.2) = var{average number of accesses} + E[variance of number accesses].

Pure Interpolation Search Simulation (successful case).

The following table contains the results for various file sizes (n) of the interpolation
search algorithm described in section 3.2. The interpolation formula is ¢(a,n) = {naj+1.

table pure average number sample maxim. maxim. variance
size interpolation of accesses size average probes
7 1.731918 1.7406+0.0203 1200 3.000 5 0.5615
10 1.876452 1.8831+0.0208 1200 3.900 6 0.6800
I5 2.038610 2.0458+0.0203 1200 3.333 7 0.7790
20 2.151100 2.1534£0.0204 1200 3.600 6 0.8525
25 2.236359 2.2301£0.0200 1200 3.560 8 0.9171
30 2.304544 2.3088+£0.0193 1200 3.567 8 0.9420
35 2.361080 2.3530+0.0201 1200 3.800 8 0.9855
40 2.409194 2.4171£0.0194 1200 3.700 8 1.0081
45 . 2.450956  2.4476+0.0194 1200  3.711 8 - 1.0278
50 2.487765 2.486340.0197 1200 3.920 10 1.0564
55 2.520614 2.5249+0.0190 1200 3.982 9 1.0747
60 2.550229 2.552440.0180 1200 3.533 9 1.0694
70 2.629898 2.6099+0.0319 400 3.943 8 1.1256
80 2.672434 2.6376+0.0304 400 3.713 9 1.1189
90 2.709105 2.6802+0.0314 400 3.600 9 1.1610
100 . 2.741251 2.6877+0.0205 800 3.690 9 1.1268
120 2.795458 2.7640+0.0411 200 3.675 9 1.1559
140 2.839934 2.8056+0.0382 200 3.629 8 1.1926
160 2.877495 2.8476+0.0367 200 3.863 8 1.1662
180 2.909907 2.9017+£0.0392 200 3.861 9 1.2115
200 2938349 2.9289+0.0404 200 3.700 9 1.2049
250 2.996930 2.974440.0353 200 3.788 10 1.2342
300 3.043200 3.027540.0340 200 3.677 9 1.2244
350 3.081259 3.0672£0.0327 200 3.774 9 1.2111
. 400 3.113473 3.1211+£0.0350 200 3.727. 10 1.2639
450 3.141329 3.1312+0.0323 200 3.751 .9 1.2298
~ 500 3.165818 3.1613£0.0312 250 4.022 10 1.2368



600 3207270 3.2332+0.0452 100 3793 9 12634

700 3.241441 3.2603£0.0457 100 4,187 10 1.2908
800  3.270418 3.2929+0.0419 100 . 3.7%9 10 1.2696
900  3.295515 3.3271+0.0437 100 3.900 10 1.2842
1000 3.317609 3.3270+0.0297 200 3.906 10 1.2824
2000 3.455222 3.5184+£0.0575 50 3.952 10 1.3162
3000 3.530094 3.5940+0.0488 50 3.951 11 1.3340
4000 3.580973 3.5956£0.0448 50 3.944 10 1.3018
5000 3.619246 3.6262+0.0356 100 4.005 it 1.2945
6000 3.649784 - 3.6644+0.0516 20 3.857 10 1.3031
7000 3.675111 3.70214£0.0727 20 4.026 10 1.3163
8000 3.696698 3.7342+0.0788 20 3.989 10 1.3236
9000 3715475 3.8374:0.0847 20 4.179 13 1.3598
10000 3.732068 3.7688+0.0431 50 . 4214 11 1.3272
Table 3.9.1

Several conclusions can be drawn from these results. The most significant are:

— For all exact or numerically approximated values, the mean average number of accesses falls
within the confidence limits of the predicted theoretical values. For files of size greater than 60
we use the empirical formula. Comparing its value at 60 with the numerical approximation, we
may conclude that for n>30 /g(/g(n)) may be a better approximation. This explains the fact
that the simulation results, for n in the range 70-200, are below the empirical values.

- The maximum average number of accesses follows its prediction closely based on a normal
distribution of the mean and the size of the sample (number of files simulated).

- The estimate of the variance of the average number of accesses is rather small. Consequently
the maximum average number of accesses for a reasonable size sample is, in practice, close to
the mean average number of accesses.

- The standard deviation of the average number of accesses noticeably decreases, which is
natural, with an increment in the size of the file. Therefore we conclude that the maximum
average number of accesses for a finite sample is Ig(/g(n))+ O(1) (e.g. for 99% of the files of size
10000 the average number of accesses is less than 4.075 and for 99.9% of the files the average
number of accesses is less than 4.181; the average is 3.732). This is a very valuable practical
consideration. : :

- The maximum average number of accesses needed to find any single element remains
reasonably small, even for the large samples. Surprisingly, for files larger than 1000, this
maximum is lower than the one required by binary search. This is also a useful practical
consideration.
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Pure Interpolation Search Simulation {unsuccessful case).

The following table contains the simulation results for the unsuccessful search case. The
simulation was done by searching, for each file of size n, n new random variables different from
those in the file.

table pure average number sample maxim. maxim. variance
size interpolation of accesses size average probes

7 2.153784 . 2.14787x0.0193 1200 3.556 6 1.0094
10 2.346975 2.35917+0.0310 500 3917 6 1.0581
15 2553902  2.54588+0.0315 500 - 3.824 6 1.1150
20 2.69223¢  2.69591+0.0288 500 3.909 7 1.1150
25 2.794515 2.79763+0.0297 500 3.926 7 1.1338
30 2.874840  2.85850+0.0271 500 3.969 7 1.1186
35 2.940510  2.94897+0.0275 500 3.973 8 1.1314
40 2995766  2.97771+0.0271 500 4.024 7 1.1415
45 3.043275 3.03745+0.0275 500 3.936 8 1.1557
50 3.084813 3.07450+0.0261 500 4.019 8 1.1349
55 3.112164 3.13207+0.0261 500 4.246 9 1.1484
60 3.154629 3.15116+0.0264 500 4.581 8 1.1573
100 3.312021 3.33098+0.0514 100 4.010 9 1.1516
200 3.514301 3.56376+£0.0775 50 4.129 9 1.1934
300 3.620685 3.73185+0.0389 50 4.460 9 1.1645
400 3.691675 . 3.76940%0.0681 50 4.328 10 1.2034
500 3.744430 3.79964+0.0633 50 4376 9 1.1890
1000 3.896983  4.03663+0.0581 50 4.559 9 1.1564
2000 4.034937  4.05415+0.0576 10 4.230 9 1.0416
3000 ~4.109914  4.19773+0.1152 10 4.541 10 1.1380
4000 4.160843  4.2539040.1006 10 4.565 10 1.1368
5000 4.199144  4.33465+0.1246 10 4.699 10 1.1687
10000  4.312021 4.48869+0.0603 20 4.757 10 1.1096

Table 3.9.11
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Reducing Algorithm.

This algorithm is described in detail in section 3.8. The computation of the exact
interpolation formula requires a lot more work than in the previous cases. This is why the
sample sizes for this algorithm are considerably smaller.

table pure average number sample maxim. maxim. variance
size interpolation of accesses size average probes
10 1.887697 2.0210+0.0496 100 2.600 4 0.5672
20 2.177459 2.4275+0.0436 100 2.950 5 0.7642
30 2.334681 2.7043+0.0384 100 3.067 5 0.8366
40 2.439959 - 2.8828+0.0350 100 3.250 5 0.9028
50 2.518011 3.0230+0.0361 100 3.460 5 0.9236
60 2.579489 3.0794+0.0543 30 3.367 5 0.9817
70 2.629898 3.2014+0.0479 30 3.457 5 0.9615
30 2.672434 3.3121+£0.0725 30 3.675 6 1.0386
© 90 2.709105 3.3559£0.0560 30 3.644 6 1.0286
100 2.741251 3.4197+0.0547 30 3.730 6 1.0930
7 1.0981 -

200 2938349 3.8198+0.0516 30 4.090 -

Table 3.9.I11

These results show, beyond any doubt, that the reducing algorithm behaves worse than
pure interpolation. -

Special Distributions.

In the following examples we will test the interpolation search algorithm when we search
a file that was not originated by a uniform distribution. Even though we know how to adjust
the algorithm to the proper distribution {2.3.2 and 3.1.2], these simulations provide some
insight into the behaviour of the algorithm in these non typical conditions. We will find that for
some distributions we have a significant departure from the /g(/g(n)) behaviour.
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Discrete Rectangular Distribution.

This is a discrete distribution of keys, i.e. 0<X ... <X, <m-1, where X, are integers
and m is usually bigger than n.

The simulation was done setting m=3n and allowing duplicate keys to occur. For large
n, assuming a Poisson distribution of the number of keys with a given value, the number of
duplicates is

(3.9.3) ef®4+B-1~0.0498.. where 8 =n/m = 1/3.

The discretization of keys should improve the number of accesses; however it is
uncertain how ‘the repeated keys may affect the algorithm, since when we search for a
duplicated key we will stop as soon as we find any, but on the other hand, while searching,
probing in repeated keys provides no information to the search.

The following table shows the results for different file sizes of the various runs.

table pure average number sample maxim. maxim. = variance
size - interpolation of accesses size average = probes

10 1.887697 1.78144+0.0206 1200 4.333 6V 1.0385
100 2741251 2.58589+0.0292 400 3.430 9 1.3074
500 3.165818 3.02289+0.0428 100 3.704 10 1.3133
1000 3.317609  3.18181%0.0582 50 3.630 - 8 1.3065
10000 3.732068 3.58564+0.0666 20 3.815 11 1.2871

Table 3.9.1V

Compound Rectangular Distribution.
In this case the table was obtained from random variables distributed as

(3.9.4) fix) = 1, f 0<xA,

fx) = 1/3,  iff h<x<2,
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f(x) = 0, otherwise.

This is-an example where the algorithm behaves poorly. Notice that roughly 50% of the

keys fall in the first 25% of the interval e.g. a key of value 0.5 will likely be located at the
middle of the table, although its search starts at 1/4 of the file.

The following table shows the simulation results for this distribution.

table pure average number sample maxim. maxim. variance
size interpolation - of accesses size average probes

10 1.887697  2.28000+0.0318 1200 4.900 7 - 1.4629
100 2.741251. 4.49040-£0.0602 - 400 6.230 16 2.5416
500 3.165818  6.24966::0.0851 100 - 7.786 21 3.3790
1000 3.317609  6.83294+0.0829 50 7.548 20 3.5521
10000 3.732068 9.31388+0.0714 20 9.783 27 5.1731

Table 3.9.V

Rectangular Bimodal Distribution. -
For thig simulation the table is constructed with random variables distributed as

(3.9.5) fix) = 1, iff 0g<xK1/4,
fix) =3, iff ‘/z<x<3/4,
f(x) = 0, otherwise.
This case is probably the most difficult for the algorithm, since in addition to the

problem of different densities we have a jump in the possible values of the keys. The results
follow. :

table pure average number sample maxim. wmaxim. variance
size interpolation of accesses : size average probes

10 1.837697  2.65833+0.0354 1200 4.600 8 1.8488
100 2.741251 = 6.42387+0.0779 400 8.460 20 4.0328



500 3.165818  9.90544:£0.1258 100 12042 29 5.6307

1000 3317609 11.44168+0.1412 50 12.528 33 6.2336
10000 3.732068  16.78742+0.1214 20 17.350 47 8.7970
Table 3.9.VI

Truncated Exponential Distribution.
In thi_s case the table is generated from variables distributed
(3.9.6) f(x)=e*, iff0LxLT,
| f(x) = 6, otherwise.
The bound T is selected only for practical reasons, and is ehosen to be

(397 T = ~in(In(2)/n)/2

which is half the value of the median of the maximum of n such random variables. Only
[/n(2)n]* variables, on the average, are greater than T, while creating a file of size n.

The following table displays the resuits for this type of file.

table pure average number sample maxim. maxim. variance
size interpolation of accesses - size average  probes

10 1.887697  2.10650+£0.0278 1200 4.200 7 1.2835
100 2.741251 5.41450+0.0616 400 7.530 16 2.4662
500 3.165818  9.91264+0.1153 100 12.856 23 3.4499
1000 3317609  12.47884+0.1345 50 13.770 25 3.8643

Table 3.9.VII



Triangular Distribution.
For this simulation the table is constructed with random variables distributed as

(39.8) fx) =x, iff 0<x<1,
fx) = 2-x, iff 1<x<2,
f(x) = 0, otherwise.

This variable is obtained as Y = X+Z, where X and Z are random variables distributed
U(0,1). Simulation resuits follow.

table pure average number sample maxim. maxim. variance
size interpolation of accesses size average = probes

10 1.887697 - 2.12708+0.0220 - 1200 3.700 6 1.1917
100 2.741251  4.04153+0.0379 400 5.370 11 1.8712
500 3.165818  6.05710£0.0612 . 100 6.764 135 2.1453
1000 3.317609 - 7.0984640.0681 50 7.947 16 2.2105
10000 3.732068 - 10.37196+0.0683 20 10.756 20 22127

Table 39.VIII

In all the above simulations a good random number -generator was used, based on a
congruence method with modutus 235 and multiplicative constant 515 [Coveyou 67]. It is not
known how "dependent” these pseudo-random variables are, when generated by the thousands
and sorted. More precise details of the values analyzed by simulation (i.e. increasing the
sample size) may be doomed with deviations due to the dependencies of these pseudo-random
variables.



3.10 - Conclusions.

In this chapter we analyzed in detail the interpolation search algorithm and its variations
to search in a full ordered table.

The main conclusions of the algorithm are related to its asymptotic behaviour. The
expected number of accesses needed to locate an element in the table is /g(/g(n))+ O(1), or the
good empirical approximation /g(ig(n+3)). The variance of the number of accesses is O(1).
Numerical study of the distribution of number of accesses and simulation strongly suggest that
its value is close to 1.10. From this we conclude, for example, that 99.9% of the accesses to
elements in a table require no more than the average plus 3 accesses.

The function /g(ig(n)) is an extremely flat function. For all applications in the near
future, the average can be considered bounded by 5 (direct accessible files of 232 = 4.3%x10°
elements are still too large for the actual technology). For all practical applications of tables in
core, the average may be considered bounded by 4 (for tables of up to 65536 entries).

The unsuccessful search has almost exactly the same properties as the successful case.
The average number of accesses is empirically approximated by /g(/g(n))+0.58 and the

-variance is near 1.10. The search time is not greatly affected by the presence or absence of the

element in the table in contrast, to some methods, such as hashing, where the presence or
absence of the element in the table may change its order.

Comparing the algorithm with hash searching we have the advantages of a full table
(that takes only O(nXIn(n)) to construct), an ordered table, a smaller variance on the number
of accesses against a slightly higher number of accesses. However for certain types of real keys,
it may be very difficult or impossibie to find its distribution; in this case the interpolation
search algorithm may not be a viable alternative.

It should be noted that the algorithm is rather sensitive to an incorrectly predicted
distribution. Simulation results involving the linear algorithm and random keys from non
uniform distributions, suggest that the search may even lose the /g(/g(n)) behaviour.

On the other hand the discretization of uniformly distributed keys slightly reduces the
expected average number of accesses.

U U O e UG [ e
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4. - Interpolation-Hash Searching.

4.1 - Definition and Motivation.

The idea of interpolation hash search can be visualized in two different ways. From the
point of view of the interpolation search, we extend the set of keys by adding empty elements in
order to improve the average number of accesses. From the point of view of hash code
searching techniques it is a special definition of the hashing and secondary probe functions and

-also a particular creation algorithm that produces an ordered table.

This technique will allow us te gain the speed of hashing while preserving an order
relation in the file or table. This becomes quite important in non-scientific computing, where
most of the data is stored and processed in an ordered sequential way.

A similar algorithm, viewed from the point of hash code searching, is discussed by
_Amble and Knuth [1973), Their first algorithm is mainly intended to reduce the number of
accesses in the unsuccessful case. Their bidirectional algorithm has a closer resemblance to
interpolation search, and except for the use of a key mapping function, instead of the
transformations suggested in section 2.3, their method is an exact extension of the
one-interpolation-then-sequential search to non fuil tables.
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4.2 - Description of the Search Algorithm.

Before going into the detailed description of the algorithm we will analyze its differences
with respect to pure interpolation search and hash coding.

Comparing it to interpolation search, the only difference lies in the treatment of an
empty position. For any general configuration, we cannot guarantee that all generated probes
are to fall in occupied positions in the file. If we probe an empty position, this access does not
contribute much information, and we have to select a new probe position with an ad hoc
function.

Comparing it to hash code searching, the main differences are the one mentioned above,
and the fact that at each step the increment is a new function of the key and the limits. That is,
with the key alone, we cannot predict more than one probe position.

We will define the property H of an interpolation hash table as the condition that the
sequence of probe positions for any key belonging to the file does not go through an empty
element.

It follows immediately that the algorithm to search a table with property H is the same
as the one described in 3.2 with the addition of a failure return in the case that a probe location
is empty.

However we cannot guarantee that property H may be obtained for ali files. We will
demonstrate, with a counter example, that there are files for which property H will never hold.
This is not a trivial example, and only can be found for files 9 or larger in size.

Let 0.35, 0.53, 0.56, 0.95, 0.96,.0.97, and 0.98 be the keys of our file to be placed in a
table of size 9, k(1),...,k(9), with the limits of the table defined as k(0)=0 and k(10)=1. -

By calculating the first probe positions of each key, we find that positions 4,5,6 and 9
should not be empty. Since k(9) is not empty, the only choice is k(9)=0.98. Now the second
probe of key 0.97 is k(8), consequently k(8) should not be empty and the only choice is
k(8)=0.97. Similarly k(7)=0.96, k(6)=0.95, k{5)=0.56 and k(4)=0.53. The key 0.35 will probe .
position. 2 in its second attempt, consequently k(2) = 0.35. All the previous allocations were
forced; so there is no possible variation. We verify that 0.56 will probe position 6, and then
position 3, which is empty.

k0) k(1) k(2) k3) k@) k(&) k(&) k(7 k@) k(O) k(10)
0 0.35 0.53 056 095 096 097 098 1
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It should be noticed that the configuration is rather contrived. However this result
prevents us from looking for algorithms that will create a file with property H. Instead we will
look for good heuristic algorithms and remedies to this problem.

The general search algorithm should contemplate the situation of probing an empty
position. For this we need to select a non empty position, if any, to continue the search. For
efficiency reasons we want to select this position as closely as possible to the original
interpolation probe position. This is achieved by the following portion of code:

jtemp 1= j;
for i := 1 until high-low do
jtemp := i-jtemp;
jabs := abs(jtemp);
if low<jabs and- high>jabs then
if k(jabs)#nuil then return(jabs) end if;
end if;
end for;
return(FAIL);

Certainly we do not want this kind of algorithm, since besides its length and complexity,
it may be very inefficient.

- From.now on, we will study only corrected files that satisfy property H. A corrected file
is an instance of an interpolation hash file that has extra keys, specially marked, added so that
property. H holds. These extra keys will be added only when needed, and the only reguirement
is that they preserve the order relation between keys. Our previous example will be corrected
with any key whose value is in the range (0.35, 0.53); for example:

k0) k(1) k@) k(3) k@ k(5) k®6) k() k@) k(O k(10)
0 0.35 040" 053 0.56 095 096 097 098 1

Note that these corrective keys do not form part of the file, so it is irrelevant whether their
search probe sequence goes through an empty record. For corrected interpolation hash files we
can use the normal search algorithm described in 3.2 with the addition of

case null: return(FAIL);

in the second select statement.
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A simple and efficient way of assigning values to the corrective keys is to. compute the
interpolated value between the two nearest non null records. In our previous example this will
yield k(3)=0.44, or in general if we want to.compute k(j) where k(a) and k(b) (a<j<b) are the
nearest non empty elements, then

@.21) k() = k(a) +(-a)[k(b)~k(a)]/(b-a).
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4.3 - Optimal Interpoiation Hash Configuration.

We will consider optimality based on the average number of accesses needed to locate
any element of the file. The optimal configuration will be an assignment of the n records to the
m locations such that the average number of accesses is minimal.

We shall restrict ourselves to study the optimality of configurations that have the
property H. This may appear to be a significant restriction but the assignment of corrective
keys increases considerably the "degrees of freedom” to search for the optimum.

There are very few generalities we can say about optimal configurations.

Lemma |

The optimal configuration may not be unique, e.g. let the file 0.49, 0.51 be assigned to k(1),
k(2), k(3)

k(@ k() k2) kGB) k4

0 049 051 1
or _

0 049 0.1 1,
are both optimal, requiring an optimal average number of accesses of 1.5.

Lemma 11

For the same file allocated in tables of different sizes, we cannot conclude that if we increase
the size of the table, the average number of accesses will decrease or remain equal. As a
counter example, taking the same file as before, allocating it in a two element table we have an

‘average of 1, i.e.

k(0) k(1) k@2) k@)
0 049 051 1,

instead of 1.5 as for a size 3.
Lemma 111, Contiguity.

Let K, <K, be two adjacent keys (there is no key, K, in the file such that K,<K<K,) such that
both probe initially to the same location. Then any allocation that preserves property H,

86



allocated -in their first or second probe locations.
To prove this lemma we observe that if K, and K, are adjaéent keys, the only possible

alternative for them not to be contiguous in the table is to be separated by an empty location.
This may not happen since

4.3.1) [Kym] =a; [K,m] =a;

and therefore k(a) is not empty. Assume that K,<k(a), (note that the only possible remaining
configuration is the symmetric K ;>k(a)), then

(432) 0<K,<K,<k(a),

(4.3.3) a-1<K;mga,and a~-1<K,mga.

The next probe position will be
(434) [K,(a-1)/k(a)] for K and
(4.3.5) [Ky(a-1)/k(a)] for K, now

(4.3.6) (Ky-K)(a-1)/k(a) < (Ky-Kpm < 1,
and the new probe positions will be equal or contiguous.

If there are more than two steps involved we cannot guarantee this contiguity property.
The following, a rather contrived counterexample, shows how the keys 0.626 and 0.687, that
interpolate to the same initial position, end up placed in non contiguous locations for the
optimal configuration.

k(Y k(1) k() k@3 k@) k3 k(& k(7 k@B k® k(10)
0 0.626 - 0.687 0.95 0.96 0.961 0.962

k(11) k(12) k(13) k(14) k(15) k(16) k(17)
0.97 '0.971 0.972 0973 0974 0975 1

(437 m=16; [0626Xm] = 11; [0.687Xm] = 11;
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(4.3.8) [0.626/k(11)X10] = 7;  [0.687/k(11)X10] -= 8;

(439) [0.626/k(T)X6] = 4, and [0.687/k(8)X7] = 6.

This type of configuration is extremely unusual, actually only files of size 16 or larger
may show this behaviour.

Lemma 1V, Partitioning.

The intention of this lemma is to provide the tools to subdivide the optimal configuration

" problem. Let k(1), k(2), ..., k(m) denote the entries of the table. We will define two vectors

k(1) and k(i) through the following steps

A. Initially k(i) contains the minimum value of all the keys that interpolate in their first
probe to location 1. If no key interpolates to i then k(i) is not defined. The vector k(i) is
defined in the same. way, except that it contains the maximum.

B. For each key in the file we follow two possible paths using the interpolation search
algorithm with the vectors, taken as files, k, and k*. For-each probe position we adjust k* and
k., if necessary with the value of the key being searched.

C. Finally we repeat step B until no more changes occur in k, or k*.

To better illustrate this algorithm we will follow a complete example. Let k(1), k(2), ...,
k(10) be a table which we want to fill with the key values 0.44,0.49,0.60, 0.63,0.65,0.71,0.75
and 0.99. The first step defines the vectors to be

mo o &6 6 e B 0O & O (W
K : 0.49 0.65 0.75 0.99
K, 0.44 060 071 099

The blank position indicate undefined values. After one B step we obtain

K 044 049 0.63 071 0.75 0.75 0.99
k, 0.44 044 049 060 065 0.75 0.99

After the second step we obtain

& 044 060 065 071 075 075 099
K, 0.44 044 049 060 063 065 0.71
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And finally

K* 044 049 060 063 065 071 075 0.75 0.99
K, 0.44 044 044 044 049 0.60 0.63 0.65 0.71

Note that different order of keys in step B may change the number of iterations. From
the construction of K* and k,, it is concluded that k'(i} and k (i) hold the limit values of any key
that may be located in position i. Furthermore if kKXi) is null, and consequently k (i), k(i) will
be an empty entry in the table, and the problem can be subdivided into two smaller ones. If
K(i)=k,(i) the position i will contain k(i) or be empty. If K(i)=k (i) <k¥i+ )=k (i+1) the
file can also be subdivided in two, namely 1,2,....i and i+1,...,m.

There is no guarantee that we can partition a given file. Unfortunately simulation shows
that only sparse files can be successfully, and usefully, partitioned.

Lemma V, Border Conditions.

If a given key probes initially to position 1 {or m) then this location should not be empty and
the only choice is to locate the smallest (largest) key in it. The allocation of k(1) (or k(m)) is
solved: This procedure may be repeatedly applied (as can be verified in the counterexamples
for Lemma 3).

Finally the optimality problem, in view of the above lemmas, can only be reduced to
compute the average number of accesses over all possible configurations. If after all possible
reductions we have n elements to locate in m entries and the n keys hit h different locations
in their first probe (nxh), we must analyze

43.10) C(mnhy={( ™0

possible configurations. This behaviour is exponential for a fixed occupation factor, and
consequently unacceptable for practical algorithms.
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4.4 - Construction Algorithm.

In this section we will analyze the problem of constructing an interpolation hash table
starting with all the elements available. The construction will not be optimal, but we will use
good heuristics. The central idea in the construction will be to minimize the average distance
for all elements, from their initial interpolation location to their final position. This does aot
guarantee by itself optimality, but preserves the contiguity property, allocates correctly all
sparse situations and seems intuitively good. A

The allocation problem arises when we have, for a given interval in the table, more keys
that interpolate initially to those positions than entries, e.g.

k(i) k(i+1) k{i+2) k(G+3)
3 keys 4 keys 8 keys

In this example it becomes apparent that the first three keys will be “pushed” to the left
because of the “pressure” of the others. We will also expect the 8 keys to be spread more to the
right of k(i+3) than to the left for the same reason.

To solve this problem we will borrow the concept of torque from physics and apply it to
keys and their initial interpolation position. To obtain-equilibrium we want to have a nuli
torque. More precisely we define h(i) to be the number of keys that interpolate initially to k(i).
We will placé these h(i) keys contiguous, and their torque contribution will be

(4.4.1) - h{i)Xa
where a. is the distance between the centre of “gravity” of the h(i) keys and the centre of the

location i. For any sequence of keys that will be placed contiguously in the tabie, the total
torque is

(4.4.2) [a+%Bh()] () + 2(-Dh() - o[ ZhD]%
where now a represents the leftwards displacement of the centre of the h(j) keys with respect

to the centre of position j, and all sums are for i=j,j+1,.....k. Since we want a total null torque,
we derive

(4.43) a=%B2h(i) - Bh() - 2(i-Dh() / 2.

If b is the left edge of the first of the h(j) keys, then




(444) b=a+h{/2-%  for h(j)>0,

and

(4.4.5) b= h2oh() - Y - 20i-1Dh(i) / 2eh(i).

The value b is normally a rational, we must interpret it as follows: if q+%>b>q-! then the
equilibrium (or the nearest) position is obtained by shifting q positions; if q+% = b thenq+1
and g are both equilibrium displacements,

In the above example if we consider k(i) and k(i+1) only, we find

(4.4.6) b=7/2-%-4/7 =17/,

and the first of the keys that interpolate to k(i) will be displaced to k(i-2). If we consider all the
keys in the example

(447 b= 15/2-% - 28/15 = T7/15 ~ 5,

and the first of the keys will be shifted now to k(i-5). It can be easily verified, assuming enough
empty positions at the right and the left, that these are optimal placements.

From these considerations we derive the following creation algorithm

set j=0, nextpos=1, and nextkey=1.
compute h(i) for all i.
clear out.

while (remaining keys < remaining locations and j < m) do
sequentially search for next h(j)#0. '
if ( h(nextpos) > 0 or nextpos > j)
assign h(j) keys from in(nextkey) to out(nextpos)
else
compﬁte maximum b for j,j+1,....m
compute starting position = min ( max ( j-b, nextpos), m-remaining keys)
assign h(j) keys from in{nextkey) to out(starting position).
end while
assign remaining keys, if any, sequentially.
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The whole computation is O(m?2) due to the computation of all the b's. It is intuitive that
b attains its maximum value in the first steps. A rather safe procedure is to compute b;, b; 44
until b*j+i < max(b;b; p,....bj4.p), Where b* is the corresponding b that assumes that h(j+i) is
"arge” (¢.g. 10). This means that we take the decision of not shifting to the left any more when
we analyze up to certain position and even if we have 10 hits in the next single location this will
not cause further shifting of the current element. This modification makes the algorithm work
in time O(m) on the average, for 8 = n/m < l-e. Using this short cut, the algorithm in
pseudo-language is as follows

/* generates a good interpolation hash configuration from the
in(1:n) sorted keys, placing them -in out(l:m) */
for i ;= 1 -until m do h(i} := 0; out(i) := null end for,
for i:= 1 until n do j := ¢(in(i),m); h(j) := h() + 1| end for;
nextkey := 1; nextpos :=1; j:=0;
while ( 0 < n-nextkey < m-nextpos ) do
repeat j := | + 1 until h(j) > ;
if { h(nextpos) = 0 and nextpos < j-(h(j)-1}/2 ) then
bmax := 0; i:= 1; sumh := h(j); sumih := 0;
while ( i+j<m and bmax-j>nextpos and
{(sumh+10)/2-(sumih+10*i)/(sumh+10} > bmax) do
sumh := sumh + h(j+i);
sumih := sumih + h(j+i)*i
bmax := max( bmax, int(sumh/2-sumih/sumh) );
pr=1i41
end while;
nextpos := min( max( j-bmax, nextpos), m-n+nextkey )
end if;
for i ;= 1 until h(j) do
out(nextpos) :=- in{nextkey);
nextpos := nextpos + l; nextkey := nextkey + 1
end for;
end while;
while ( nextkey < n ) do
out(nextpos) := in{nextkey);
nextpos := nextpos + 1; nextkey := nextkey + 1
end while;

i
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4.5 - Average Number of Accesses for Interpolation Hash.

In this section we will evaluate the average number of accesses needed to find an element
in an interpolation hash table. Notice that the problem, although similar, cannot be attacked

-with the same tools as those used to analyze hash searching.

To find a lower bound on the number of accesses, we will study the average number of
accesses in the ideal situation that no elements are "pushed” out of their initial positions. We
know that this is going to be a rough estimate when the table is full, but a good one when the
occupation factor is low.

If we succeed in minimizing the total distance of all keys to their initial probing position
we have an asymptotic average number of accesses

(4.5.1) E[accesses] = [0XeB + 1X8eB + ... + [[i/2] X li/2] +1]8%e-B/il + ...
= (262+108-1+¢-29)/(88) ~ | + 3/2-B%/6 + B3/12 ...,
assuming a Poisson distribution of the number of keys that probe initially to a given tocation.
The same idea can be extended to consider two, three, etc. adjacent locations at a time,
improving the analysis with respect to the interdependence of adjacent keys. However we have
no guarantee now that the search, after the first probe, will be in sequential positions, and the

result is no longer a lower bound.

The average number of accesses considering two adjacent locations is given by

(4.5.2) - E[accesses] = 2[i+j + [(+§)/2] X [(i+§)/2) - min(i,j)]e-2881+i/ (15D

The above results are not satisfactory for practical purposes, so we will look for a more
accurate answer. Observe that if we have a contiguous sequence

k(i-D=null, = k(H)#null, k(i+1)#null,... k@G)#null, k(+1)=null,
where we want to count the average number of accesses to finding those keys, the problem is

equivalent to find those elements, with interpolation search, in a full table of size i-j+1. The
average number of accesses is then

(4.5.3) Elaccesses] = 2n - | kKP(K)B(K)
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where P(k) is the probability of finding a contiguous sequence of length k and B(k) is the
average number of accesses to search any key in a full table of size k [3.4]. We consider all
keys equally likely of being searched.

Since B(k) .is convex, using Jensen's inequality we derive

(4.5.4) Efaccesses] < B(E[k]).
Since B(k) is a very “flat” function this bound is also a good approximation. The expected
length of a contiguous sequence is rather difficult to compute. If we are interested in the

asymptotic analysis, and ignore the particular cases of sequences starting in the ends of the
table, we can use 6.4.41 [Knuth 73] and derive

(4.5.5). E[k] = Q(m,n) ~ (1-8)2
Using the empirical formula B(k) = /g(/g(k+3)) we derive
(4.5.6) El[accesses] = /g(ig(3+(1-8)-2).

The following table summarizes all the values discussed in this chapter for some selected
_ occupation factors and compares them with the linear probing and doubie hashing techniques.

E[accesses]
occupation interpolation hash linear double
factor [4.5.1] [4.5.2] [4.5.6] probing  hashing

100%  lgUg(n)) lg(g(n)) Ig(ig(n)) [mw/8]% In(n)+7y-1

99% 1.39 2.86 373 50.5 4.65
95% 1.38 2.11 311 10.50 3.15
90% 1.36 2.53 2.74 5.50 2.56
85% 1.34 2.35 245 3.83 223
80% 1.33 218 223 30 201
70% 1.29 1.84 1.92 2.17 1.72
50% 1.22 1.23 1.50 1.50 1.39

From the results obtained in 3.5 about the variance of the number of accesses, we
conclude that for this algorithm the variance is also O(1).

94



The above table shows that if we are only interested in the average case, the interpolation
hash scheme is only worthwhile to use when we reach very high levels of occupancy. On the
other hand if we are concerned with the variance and its consequences on-the probable worst
case, interpolation hash is a very good choice.
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4.6 - Simulation Resuits.

This section summarizes the simulation resuits for for the interpolation hash algorithm
described in 4.5. For all the cases studied we computed the average number of accesses needed
to find any element and its 95% confidence limits, the sample size, i.e. number of random files
generated, the maximum average number of accesses for any file in the sample, the maximum
number of accesses needed to locate any single element in any of the samples and an estimate
of the variance of the number of accesses. - '

The simulation was done for Sccupation factors 99%, 95%, 90%, 85%, 80%, 70% and 50%
combined with table sizes 10, 20, 40, 100, 200, 500 and 1000,

number table . average sample maxim maxim variance
keys size accesses - size average access

Occupation factor 8=99%

9¢ 100 2.6240+£0.0343 300 3.5152 8 1.142
198 200 2.8782+0.0595 100 3.8081 9 1.275
495 500 3.0478+0.0555 50 3.5152 8 1.310
990 1000 3.1980+0.0523 50 3.6283 9 1.350
Occupation factor 8=93%

19 20 1.9823+0.0220 1000 3.6316 7 0.775
38 40 2.1757+0.0290 500 3.1842 7 0.940
95 100 2.3648+0.0337 300 3.6105 9 1.103
190 200 2.4400+0.0558 - 100 3.3211 9 1.190
475 500 2.6088+0.0681 50 3.3326 8 1.282

9 1.376

950 1000 2.6734+0.0520 50 3.2242
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18
36
90
180
450
900

10
20
40
100
200
500
1000

Occupation factor §=90%

1.6588+0.0213
1.8517+0.0206
1.9949+0.0285
2.095040.0285
2.1878+0.0483
2.26900.0480
2.2738+0.0434

Occupation factor - 3=385%

9
17
34
85
170
425
850

10
20
40
100
200
500
1000

1.67314+0.0206
1.7281+0.0195
1.821440.0251
1.9119+£0.0260
1.9771+0.0396
1.9797+0.0403
2.0050+£0.0264

Occupation factor 3=380%

8

16

32
80
160
400
800

10
20
40
100
200
500
1000

1.5185+0.0187
1.6413+0.0179
1.7031£0.0218
1.77944+0.0233
1.791940.0292
1.8594+0.0328
1.8316£0.0233

Occupation factor 3=70%

14
28
70
140
350
700

10
20
40
100
200
500
1000

1.4016+0.0166
1.4695+0.0159
1.523540.0191
1.5560+0.0164
1.5909+0.0221

- 1.5891+0.0196

1.5948+0.0145

1000
500

300

100
50
50

1000
1000
500
300
100
50
50

1000
1000
500
300
100
50
50

1000
1000
500
300
100
50
50

2.8889
3.0000
3.1389
2.9778
2.8611
2.6422
2.5900

3.0000
3.2353
2.8529
2.6824
2.8235
2.3200
2.2671

2.6250
3.0000
2.7188
2.6625
2.2875
2.1650
2.0513

2.4286
2.9286
2.5000
2.2143
1.9500
1.7571
1.7229

th Lh thh QN Lh Wb B

0.545
0.703
0.862
0.958
1.052
1.149
1.178

0.540
0.628
0.731
0.821
0.906
0.927
0.958

0.439
0.560
0.638
0.727
0.742
0.842
0.809

0.33%
0.423
0.488

0.516

0.560
0.556
0.570



Occupation factor 6=50%

5 10 - 1.219440.0134 1000 2.6000 4 0.197
10 20 1.2590+0.0112 1000 2.3000 5 0.236
20 40 1.2765+0.0115 500 1.8000 4 0.250
50 100 1.3128+0.0113 300 - 1.6400 5 0.294
100 200 1.3050+0.0129 100 1.5000 4 0.282
250 500 1.3138%0.0138 50 1.4400 4 0.297

-4 0.293

500 1000 1.3096+£0.0088 50 1.3980

In all cases, the simulation shows a growth in the average number of accesses with the
size. This growth can be attributed to the edge effects, that are ignored in the analysis, and
become significant for small sizes, or for large occupation factors.

As a conclusion we may say that in general 4.5.2 provides a more accurate estimate of
the average, while 4.5.6 is too pessimistic.
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4.7 - Addition and Deletion of Records.

We will analyze in this section the addition of a new record to an interpolation hash table
created with the algorithm described in section 4.4.

Following a search sequence we may find that the new record probes into an empty
position or we find two contiguous keys that bracket the new key value. In the first case the
insertion is trivial and we need only to make sure that the record is in the right order. In the
second. case we follow a procedure similar to the one described for the creation of the table.
Since our main objective is to keep the elements as close as possible to their initial probe
positions, we want to move records in the direction (which is possible) and minimizes the total
"torque” of the keys. Consequently we find the two empty positions that delimit the contiguous
sequence of keys where we want to insert the new key, and compute the displacement of any of
the edges of this sequence. A

For example suppose that the following is part of a file of size 10

k3) k@ kG) K6 k() k@)
043 044 045 0.56

h(3) WA k() hE kD
0 0 3 1 0

and we want to insert the new key 0.52. Then k(6)<0.52<k(7).

The contiguous sequence is delimited by k(3) and k(8). Computing the displacement at
k(4) we find

4.7.1) h(6) = 2, (with the new key),

(4.72) b =5/2-% (3+4)/5 ~ 1

So the optimal allocation for this example, as can be verified, is obtained by shifting k(4)
one position to the left yielding

k3) k¢ k(5 k& k(7 k{8).
043 044 045 052 0.56

e e e




If no empty position-is found towards one end, we are forced to move in the opposite
direction. If we find no empty positions towards any end, the table is full and the addition,
obviously, is not possible.

The deletion of an element is trivial; however, if we want to preserve the minimal

- "torque” property we may need some further reorganization.

Let k(j) be the table éntry to be deleted. If k(j~1) or k(j+1) is not empty, we compute the

' rightmost displacement of k(j~1) and the leftmiost displacement of k(3+1). If any of the

displacements round to | or greater, we move the keys whose displacement was largest to the
vacated position. The shifting of records continues by computing the displacement for each
key, until it is null.

To itlustrate the procedure with an example, we will use the same file as before and delete
the key 0.52.

After deletion, the file looks like:

kG) k(4 k(). k6) k()
043 044 045 0.56.

"~ For k(7) the computed displacement is

(4.7.3) by=la-Ya-(-1X1)/1 = 1.

Note that we have to include the key 0.56 that interpolates initially to k(6). The rightmost
displacement of k(5) is

(4.74) by=3/2-14-0/1=1.

In this case both displacements are equal, and we can easily verify that any of the shifts
mininizes the total distance from the keys to their initial interpolation position.

Both algorithms bear a close resemblance to the corresponding algorithms described in
[Amble 73] with the change in the hash function, for an interpolation function, and a different
criteria instead of the "torque” concept.
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4.8 - Application to Sorting.

From the previous analysis we find enough arguments to look for a sorting method. We
will derive two methods, the first arises from the construction algorithm defined in 4.4 and the
second one from the repetitive addition of elements into an initially empty, interpolation hash
table. These methods are not totally original, since we have in the literature descriptions of
several algorithms making use of “address computation”. Close references to our work are I.
Flores [1960], Isaac and Singleton ‘[1956] and Kronmal and Tarter [1965].

The first method, for the case of a full table, is greatly simplified since all positions will
be occupied. With this in mind, the sorting algorithm for U(0,1) keys in a pseudo-language is
as follows.

/* sorts in(1:n) in ascending order into out(l:n)
using the auxiliary integer array iwk(lm) */

for i := 1 until n do iwk(i) := 0 end for;

for i := 1 until n do j := ¢(in(i),n);
iwk(G).:= iwk()y + 1;
end for;

for i := 2 until n do iwk(i) := iwk(i-1) + iwk(i) end for;

for i := 2 until n do j := ¢(in(i),n);
: out(iwk(j)) := in(i);
iwk(j) := iwk() - 1;
end for;
for i ;= 2 until n do
if out(i-1) > out(i) then k := i;
repeat out(k-1) :=: out(k); k ;== k - 1
until k = 1 or out(k-1) < out(k);
end if;
end for;
return

The operation :=: means interchange. The assignment j := ¢(in(i),n) will be normally
implemented as

(4.8.1) j o= in(i)*n + 15

To evaluate the algorithm we first decide which are the critical quantities to evaluate.
These will be the number of function evaluations, the number of comparisons and the number
of interchanges.
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The total number of interpolation function evaluations is constant and equal to 2m. The
total number of key comparisons is m-1-{number of interchanges}. Interchanges can only
occur between elements that interpolated initially to the same position. If we have h(i)
elements probing in position i we have then

(4.8.2) E[interchanges for elements probing in i] = h(i}{h{(i)-1]/4.

The random variable h(i) has a binomial distribution, hence the expected number of
interchanges for the elements falling into any position is

(48.3) Efinterchanges] = 1/4 2 ok(k-D( ™ )m ¥(m-1)/m]m-
= (m-1)/(4m).

Consequéntly the total average number of interchanges is

(4.8.4)  Efinterchanges] = (m-1)/4,

and the total number of comparisons is

(4.8.5) E[total comparisons] = 5(m-1)/4.

To compute the variance of the number of interchanges we find first that

(4.8.6) varfinterchanges for elements probing in i} = h(i)[2h(i)2+3h(i)~5]/72,
similar to the bubble sort algorithm applied to each “bucket” {Knuth 73].

To compute the total variance we have to compute the average {4.8.6] plus the variance
of the mean. In this case we should notice the dependence between all variables, and compute

(4.8.7) E[2h()] = 2m-1,
(4.8.8) E[2h()}) = [Sm?-6m+2]/m,

(4.8.9) E[(Zh()??] = [4m3-2m2-3m+2]/m,
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and finally

(4.8.10) varfinterchanges} = [20m2-33m+13]/(72m).

The standard deviation is approximately 0.53m" and the coefficient of variation is
O(m~*) which proves that the algorithm is very stable in its running time.

The following code is a FORTRAN implementation of this routine for U(0,1) variables.

SUBROUTINE SORT(AIN,AQUT,N,IWK)
DIMENSION AIN(N), AQUT(N), IWK(N)
DO 10 I=1,N

ITWK() = 0
10 CONTINUE
DO 20 I=1,N
J = AIN(I)*N+1
IWK(QJ) = IWK(J)+1
20 CONTINUE
DO 30 [=2,N
IWK(]) = IWK(D+IWK(I-1) .
30 CONTINUE
DO 40 I=1,N
J = AIN(I)*N+1
AOUT(IWK(J)) = AIN(I)
IWK@J) = IWK(Q) - |
40 CONTINUE
DO 60 [=2,N
[F(AOUT(I-1) .LE. AOUT(I))GO TO 60
K =1
50 AUX = AOUT(K-1)
AOUT(K-1) = AOUT(K)
AOUT(K} = AUX
IF(K .LE. 2)GO TO 60
K = K-1
IF(AOUT(K-1) .GT. AOUT(K))GO TO 50

60 CONTINUE
RETURN
END
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Running time comparisons of this algorithm with Quicksort, implemented as suggested

in Knuth [1974, 8A}, indicate that both run at the same speed for files of size approximately 30.
- Given the different orders, and also found by simulation, the relation between the average
running time is approximately 2:1 against Quicksort for files of size 1000. The comparisons
were done sorting pseudo-random numbers distributed U(0,1).

" The second sorting algorithm is derived from the repetitive addition of keys into an
empty table. This algorithm has the advantage that does not need to read the keys twice but as
a tradeoff, we will need some extra storage to guarantee some efficiency. Still, this sorting
algorithm cannot be considered an "in place sort” unless we obtain the keys from an external
source, since the table needs to be empty at the beginning of algorithm.

‘We will depart somewhat from the exact replica of the addition of elements to an empty
table in two aspects. First, we will insert elements in the first empty location we find with
interpolation. This does not guarantee complete ordering, but the very few resulting inversions,
will be corrected when we contract the table to a sorted list. Furthermore, to avoid the special
cases caused by the ends of the table, we will leave some positions to overflow records at bath
ends.

With these considerations, the algorithm in pseudo-language is as follows.

for i ;= 1 until n do
low := 5; lowkey := 0;
high := n/0.8+6; highkey := 1;
key := newkey(....);
while high-low > 1 de
j 1= ¢((key-lowkey)/(highkey-lowkey),high-low-1);
if out(j) = nuil then go to allocate end if;
if out(j) < key then do low := j; lowkey := out(j);
else do high := j; highkey := out(j) end if;
end while;
j = low;
for k from 2 while out(abs(j)) # null do j := —(j+i); end for;
j 1= abs(j); incr ;= sign(1,low-j);
repeat out(j) := out(j+incr); j := j+incr until j = low or j = high;
allocate:
out(j).:= key;
end for;
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/* 7ﬁh‘é\l"‘::'6;‘x‘1har'eésionme;x{d‘Vbﬁs‘éilﬁl‘e inversions * /
=0
for i 1= 1 until n do ,
repeat j := j+1 until out() # null;
out(i) := out(j);
for k := i-1 downto 1 do
if out(k) > out(k+1) then out(k) :=: out(k+1)
else break; end if;
end for;
end for;
return

For the above algorithm ‘the maximum level of occupation is 80%, but this can be
changed to any desired value. The following table shows simulation results from several runs of
the number of ¢(..) function evaluations, the number of moves needed to make space for the
new element, and the number of inversions required in the final compression.

file sample moves function inversions
size size evaluations

10 1000 2.541+£0.107 13.698+0.110 0.0810+0.0197
50 1000 24.809+0.825 73.292+0.318 0.5040-£0.0541
100 . 500 57.23£2.20 148.062+0.674 1.126£0.119
500 100 361.8+20.5 753.65+3.26 6.010+0.768
1000 100 730.8+26.2 1503.35+4.59 13.020+0.971



5, - Conclusions.

In this thesis we have exhaustively analyzed a family of search algorithms characterized
by the use of an interpolation function to decide new positions to probe. These algorithms are
known by the name of interpolation search, or estimated entry search.

In the second chapter, we formally introduced the model of a search algorithm, a file,
and what we expect to measure from the algorithm. Particular attention was given to some
general lower bounds of other search algorithms. A simple transformation over the keys of a
file allowed us to consider a wide variety of possible distributions of keys. Finally we derived
several formulas related to the distribution of ordered random uniform variables and ordered
discrete rectangular variables.

The third chapter is related to the interpolation search algorithms used to search a full
table. The basic interpolation search algorithm for a full tabie runs in /g(/g(n))+ O(1) time, in
both the successful and unsuccessful case. A very good empirical formula was.found, that has
the correct asymptotic behaviour and gives also very good approximation for small values, for
the expected number of accesses in a successful search, /g(/g(n+3)). The asymptotic
distribution of the number of accesses was found, from which we derived the variance of the
number of accesses that is O(1). Numerical study of the distribution of number of accesses and
simulation strongly suggested that its value is close to 1.10. From this we concluded, for
example, that 99.9% of the accesses to elements in a table require no more than the average
plus 3 accesses. This shows the stability of the algorithm which is better than that of some
hashing schemes. The function /g(/g(n)) is an extremely flat function. For all practical
applications of tables in core, the average may be considered bounded by 4. The unsuccessful
search has almost exactly the same properties as the successful case. The average number of
accesses is /g(/g(n))+0.58 and the variance near 1.10. The search time is not greatly affected by
the presence or absence of the element in the table in contrast, for example, with hashing that
may change its order. These asymptotic results were obtained by an information theoretic
argument as well as a conventional approach. We also derived the exact average which
becomes exponentially complicated to compute, and a numerical approximation of the exact
average that showed remarkably good agreement with the simulation resuits. The unsuccessful
search case and the known successful search case were studied separately. Some variations of
the main algorithm were analyzed: the optimal interpolation search, the one-iaterpolation
then sequential algorithm, the reducing algorithm which selects the probe position to minimize

" the expected resulting length of the interval in which the key is located, and the binary

interpolation search.

The fourth chapter analyzes the interpolation search algorithm when it is used to search
a non-full table. This algorithm may be viewed as a special kind of hash searching. The

- optimal configuration was analyzed and it was found that even simple properties, like probing
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a]\;ay?toa *ﬁéﬁf‘émptj( location when séarchihé;ﬁméﬂgfﬁéﬁflkécatcdf in the table, may not be

guaranteed by any construction algorithm. The construction, addition and deletion of elements
was described based on heuristics that produce good configurations. These heuristics are based
on the principle of “torque” applied to keys. The average running time of the search algorithm
was approximated with several formulas, and later they were verified by simulation runs. From
this algorithm we derived two new sorting schemes. The first resembles bucket sort, without
lists, and is derived from the creation algorithm. The second sorting algorithm is derived from
the successive addition of elements into an empty table. Both sorting algorithms run in time
O(n).
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7. - Appendix 1: Asymptotic Expansions.

This appendix contains a fairly loose collection of asymptotic expansions of common functions or
expressions. The criteria used for the length of the expansion i.e. order, is rather artificial and depends upon -
computability, number of terms in the numerator and is-at most 7.

It is assumed that the expansions are for n—> unless otherwise specified. It is also assumed that a,b,c and
z are all O(1) when n—>wx,

Al.1 - Exponential type expansions.

(Al.1.1)
(1 + 2/ = ¢ [ 1 - z2/2n + z3(3z+8)/24n2 - z4(z2+82+12)/48n3 +
25(1523+24022+ 10402+ 1152)/5760n4 - z6(3z4+8023468022+2112z+1920)/11520n5 +
/57 /
27(6329+252024+ 3528023+ 21145622+ 5261762 +414720)/2903040n0 -
28(920+ 50425 + 1050024+ 10259223+ 48585622+ 1027584z +725760)/5806080n ... |

(Al:1.2)

(14 1/mM = e [ 1~ 1/(2n) + 11/24n2 - 7/16n3 + 2447/57600% - 959/2304n5 + 238043,/580608n0 -

67223/165888n7 ... ]

=e[1-1/[2(0+1)] - 1/24(n+1)2 - 1/48(n+1)3 ~ 73/5760(n+1)* - 11/1280(n+1)> -

3625/580608(n+1)6 - 5525/1161216(n+1)7 ... |

(AL.1.3)
(1 - t/m = el [ 1 - 1/(2n) - 5/24n2 - 5/4803 - 337/5760n* - 137/3840n° - 67177/2903040n6 -

18289/1161216n7 ... ]
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(Al1.1.4)
(1 + a/n + b/n2 + ¢/ad)0 = ¢4 [ 1 - (a2-26)/2n + (3a*+8a3-12a2b-24ab+12b%+24c)/24n2 -

(a0+8a5-6a4b+12a%-40a3b+12a2b2- 48a2b+24a%c+48ab2+48ac-853+24b248bc) /4803

o

(A1.1.5)
(1 + b/02 + ¢/nd = [ 1 + b/n + (b2+2c)/202 + b(b2-3b+6c)/6n3 +

(541203 +12b2c-24bc+12c2) /24n% +
(3-306%4+2063c+4063 18062 +60bc2-60c2) /12000 +
(65-605 +306%¢+33064-72063¢ +18062¢2 +72052¢c-1080bc2 +120¢3)/ 72000 ... ]
(AL.1.6)
(1 + a/n + b/nd)" = ¢4 [1 - (a2-2b)/2n + (3a%+8a3-12a2b-24ab+12b2)/24n2 -
(a6 +8a5-6a%b+12a%-40a3b-+12a2b2-4842b+48ab2-853+2452) /4803 ... |

(AL.LT
(14 ¢/nd) = [ 1+ ¢/n? + 220t - ¢2/205 + e3/6n06 - ¢3/2n7 .

(A1.1.8)
(1 + 6/nd)0 = [ 1+ b/n + 62/202 + b2(b-3)/6n3 + b3(b-12)/24n* + bI(B2-306+40)/12005 +

b4(b2-606+330)/720n8 + B4(63-10562+14706-1260)/5040n7 ... ]

Al.2 - Asymptotic Expansions of Sums.

In the following {(z) is the classical Riemman Zeta function, defined by

£(@) = Do i 7
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(Al.2.1)
Eﬁ“jl{k(n—k)]—'fz = 74+ nmR[200%) + {(-%)/n + 35(=3 /2)/4n2 + 5¢(-5/2)/8n3 +

35¢(-7/2)/64n% + 63{(-9/2)/1281° + 231¢(~11/2)/512n6 + ... )
(A1.2.2)
I k1% = n2n/8 + A 20(-) - §(-3/2)/n - {(-5/2)/4n? - {(-T7/2)/8n3 -
5¢(=9/2)/64n% - T¢(-11/2)/128n° - 215(-13/2)/512n0 - .. ]
(A1.2.3)
ﬁ;ll [k(-K)]™S = (n/2)1~287T(1~5)/T(3/2-5) + 207S[5(s) + s§(s-1)/n + s(s+1){(s-2)/2n?
+ o+ D+)is-)/T)ilml + .. ] [5#2,34,..]
(A1.2.4) .
D KK = af [1+ 1/en + (e+2)/2¢2n2 + (Te2+48e+24)/24¢3n3 +
(9e3+160e2+216¢+48)/48¢4n% + (743¢%+30720e3 +8424002 +46080¢+5760)/5760e9n5 +
(10755 +97792¢%+486000¢3 +491520e2+ 144000+ 11520)/11520e6n6 + ... ]
(A1.2.5)
D (k7S = {(5) + 075 [n/(1-s) + % ~5/12n + T'(s+3)/7200(s)n3 - T(s+5)/302400(s)n> +
T(s+7)/1209600T(s)n” .. ]  [s#1]
(A1.2.6)
D= 25/k = —in(1-z) + -1 @4 1) + @128 2/ Din42) + .+
(z-1)"i2FiB(i,n+1) + ...
= ~In(l-z) + 221 1/Gz-Dn + 1/(z-1)202 + (z+1)/(z-1)3n3 + (22+4z+1)/(z-1)*n4
+ (3411224 112+ 1) /(z-1)07 + (Z4+2623+6622+262+1)/(z-1)0n6 +

(2345724430223 4302224572+ 1) /(z-1)"n7 + ... ]  [0<gz<1]



(A12.7)
Do (-z/mk/k = In(n/z) - E)(2) + 7 (z+1)/2n - (3z3+22+2242)/24n2 + z4(z-3)/48n3 -

(1527-13526+23025-224-873-2422-482-48)/5760n% + .1 [z>0]

Al1.3 - Gamma Type Expansions.
We will denote Euler’s constant, 0.57721... by 7.

(Al13.D
2o/l = vt +y

¥ + In(n) + 1/(20) = 1/12n2 + 1/120n% - 1/252n6 + 1/240n8 ...

(A1.3.2)
D yn(k) = In(T(n+1))

(n+¥)in(n) - n + In(2x)/2 + 1/12n - 1736003 + 1/1260n7 -
1/1680n7
(A1.3.3)
al = T(a+1) = nf2wn)%e {1 + 1/12n + 1/288n2 - 139/51840n3 — 571/2488320n* +
163879/209018880n° + ... ]
= nBQr(n+1/6)]%e N[ 1 + 1/144n2 - 23/6480n3 + 5/41472n% + 4939/6531840n° +

11839/1343692800n6 — 1110829/1881169920n7 + ... ]

Al.4 - Asymptotic Expansions of Sums and Definite Integrals Containing e"‘2

(Al.4.1)

o

[ ex?/ndx = [nr]%/2- 1+ 1/3n - 1/1002 + 1/4203 - ...
1
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(A1.4.2)

2]

fl eX2/0 dx/x = —y/2 + Win(n) + 1/(2n) - 1/(802) + 1/(3603) - ...

(A1.4.3)

@K

fl e XE/M dx /xS = e~1/n/(s—1)-2/t(s—1)nl{ /M xs2 (s> 1)
(Al1.4.4)
{) e~ /in(1-+x) dx = (am)4{in(n/4)-y1/4 ~/2 + 1+ Yeln(a) + (x /)% /2 - Unn)+5/3-)/(60)

- (r/nH%/6 + ...

(A1.4.5)

=)

[=o)
g e'xz/nln(Hx)x dx = Y%n g e"‘z/“[1+x1‘1 dx [A1.4.7]

(AL4.6)
‘f) X2/ gx = (wn)4/2

(A1.4.7)
s {) ~x%/n (x+11"1 dx = Yin(n) - v/2 + (x/n)"2 - [1+In(n)-v]/(2n) - 2= /n3)2/3 +
{Un(n)+3/2-v1/(4n2) + 4(x/n3)2/15 - .
(A1.4.8)
{) eX2/0 [x41] 2 dx = 1 - (/0" + [In(n)=y]/n + 2(r /03" - [In(n)+1-y]/n2 -
4(x /033 + [In(n)+3/2-v]/n3 + ...

(A1.49)
~£ ~X2/n x+1178dx = T(s) = 1/(s~1) + 2[T(s-2)-T(s-D)1/(n(1-s)) [s>1]

(A1.4.10)
pnl le-kzl Mn(k+1) = (xn)2[in(n/4)~y]/4 - v/2 + in(2wn) + (x/0)"/2 + [G~in(n)/6]/n - (x/n3)"2 /6 +
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where G = 1/3—‘/2[n(21r)—2§"{—1)+f’(—2)+7/6 = -0.1890087587119...

Al.5 - Summation Formuias.
Euler-MaclLaurin

(A1.5.1)
1 n © i X=n
i = [ e Szt Vel

Euler-Riemman

(A152)
Tt =f fdx e il

where the coefficients aj are all finite and

fx) = Zz_maixi.
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