EbARHMENT
EPARTMENT

EPARTMENT

ER SEENGE B
RN S

A Portable Assembler Writing Kit

Michael A. Malcolm
Gary R. Sager
Gary J. Stafford

November 1976
CS-76-48

A Portable Assembler Writing Kit

Michael A. Malcolm
Gary R. Sager
Gary J. Stafford

Department of Computer Science
University of Waterloo

November 1976

This research was supported by the National Research Council of Canada.

Preprint: To appear in the IEEE Proceedings of the Conference on Mini and Micro
Computers, November 1976, Toronto.

A Portable Assembler Writing Kit

M. A. Malcolm
G. R. Sager
G. J. Stafford

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

abstract: The Last Assembler (TLA) is an "assembler kit” designed to support the
portable programming system being developed at the University of Waterloo. TLA
Assemblers are capable of cross or on-site operation .

Approximately 80% of the TLA code remains unchanged across all implemen-
tations. Another 10 to 15% of the code is generated automatically from descriptions of
the target machine. The implementor must also supply a table of mnemonic opcodes,
their values and “classes”. The remaining 5 to 10% must be provided in the form of
small well-specified functions which deal with error detection for each class of operand
and the combining of operands with opcodes.

To date TLA has been used to generate assemblers for six machines. The average
time to completion for each of these assemblers has been less than eight man-hours.

1. Introduction

In this paper we describe one component of a system being developed by the Por-
table System Software Project at the University of Waterloo. This project is develop-
ing software tools that can be used for programming on and for a variety of different
machines. We have found, through using these tools for programming minicomputers
in our own laboratory [1], that the effort required to convert the system for a new
minicomputer is far less than the effort required to implement it initially. Further-
more, our portable system obviates the need to learn and maintain new vendor
systems (when available!) thus making it easier to integrate a new machine into the
laboratory. As the first step in this project, we have defined and implemented the
language Eh [2], which is designed to facilitate portable systems programming. The
Eh compiler is written in Eh and constructed to be easily converted to generate code
for new machines. The output of Eh programs is relocated and linked with precompil-
ed and assembled routines by ULD, a portable linking loader [3].

It is not possible to avoid assembly coding altogether, even though Eh provides the
ability to emit machine instructions inline. We find that assembly language is most
appropriate for filling interrupt vectors, for dispatching interrupt routines and for
certain functions critical to system performance. Since our system will undoubtedly be
incompatible with the assembler and loader supplied by the vendor, we must im-
plement our own assembler to interface with Eh and ULD. But if we must write a
complete assembler for each machine, the portability of our system is reduced. We
have, therefore, implemented an "assembler-writing kit” which enables us to build an
assembler for a new machine with a minimum of effort. Since we do very little
assembly coding, the assemblers we build need not be ‘efficient’ or 'powerful’.

Before proceeding, we must define a few terms. We say that a program is portable
over a set of environments if it is significantly easier to move to and maintain in those
environments than to implement and maintain separately in those environments. By
the term environment we mean the combination of a machine and system software
necessary to execute a program. The target environment is the environment for which
the output of the program is intended, and the host environment is the environment in
which the program executes. All programs have host environments, but only certain
system programs such as assemblers, have target environments. A program is machine
dependent if it requires some particular set of host machine hardware features. A
program is machine specific if it requires some particular set of target machine
hardware features.

Thus, portability is a matter of degree, and portability problems may take many
forms. The Eh compilers and TLA assemblers are portable in the sense that they are
easily adapted for a new target as well as being easily moved to a new host. In this
paper, we will focus on the design features of TLA which make it easily adapted to a
new target.

2. Structure of the Assembler

There are a number of commercially available cross-assemblers (usually written in
FORTRAN) which are portable in the sense that they execute in a wide range of host
environments to produce assembled output for their target environment. We of course
want this form of portability, but we also want our assembler to be portable in the
sense that it can easily be modified to assemble for a new target machine with little
effort. A term sometimes used to denote this type of portability is adaptability. We
have built our assembler to be machine independent, and parameterized those parts
which must change from one target to another.

On close inspection, one may observe that large portions of a typical assembler are
simply algorithms which can be expressed in terms independent of the target or host
environments. These algorithms’ include symbol table managment, processing of
assembler directives, scanning of input lines, expression evaluation, formatting the
output listing, and creation of the load module. Our experience and that of others {4]

has shown that these algorithms constitute approximately 80% of the code in an
assembler,

3

If this invariant portion of the code is written in a machine independent fashion, it
is only necessary to code the remaining 20% in order to obtain an assembler which will
assemble for and potentially execute on another machine.

The syntax for TLA assembler languages is given in appendix 11. The languages
include directives, pseudo operations, classes of machine instruction mnemonics, iden-
tifiers and constants, plus a set of operand symbols. The input scanner classifies tokens
into these categories. Strings of alphabetic and numeric characters which begin with
an alphabetic character are compared with symbols in the symbol table to categorize
them as directive, pseudo operation, mnemonic or identifier. If the symbol is a
mnemonic, it is further categorized into one of the instruction classes specified by the
implementor (this is described later). Strings beginning with a numeric character, $ or
" are categorized as constants. The scanner computes the value based on the first
character of the constant: 0 indicates base 8, $ indicates base 16, indicates the base
specified by the last .BASE directive, otherwise the base is 10.

The 20% of the code which is machine specific is related to the pseudo operations,
machine operations and error checking. The structure of these functions is predeter-
mined both by the manner in which data is provided to them by the higher level func-
tions and by the information they must pass on to the lower level functions. Because of
this structure, it it possible to construct them in skeletal form from parameters
describing the target machine. The construction of these modules is done by an in-
teractive program called HELPER (see appendix 111). The parameters of interest to
HELPER include bits per byte, bits per addressable cell, the number of bits in the
largest address, etc. Based on this information, HELPER outputs the skeletal forms
of the functions which must be augmented by hand. Typically, the amount of code
added by the implementor is 5 to 10% of the total assembler, or up to 250 out of a total
of 2500 lines of code. In addition to these functions, the implementor must prepare a
table of machine operation mnemonics and their values, and categorize each
operation into a "class” which indicates the number and position of operands within
the instruction,

Of the time spent by the implementor, approximately 50% is to build the table of
machine operation mnemonics, classes and values, 5% for interaction with the
HELPER and 45% to augment the code skeletons for directives and machine
operations.

3. Expressions and Relocatability

Expression evaluation in TLA follows a simple set of rules: evaluation is left to
right, but can be over-ridden with parentheses. The standard set of operations
available include addition (+), subtraction (—), bit-wise and (&) and bit-wise or (|).
The special symbols ++, ——, @, !, # %, [and] are not processed by the expression
evaluator, but their presence at either the beginning or ending of an expression is
reported to the machine specific functions, which may interpret them as appropriate
to the target machine. For example, the implementor may choose to have the symbol
@ indicate indirection.

There are two basic problems to confront in expression evaluation: we must be
able to complete the evaluation for the target machine independently of the precision
and type of arithmetic available on the host. We have solved the problem of precision
by storing all symbol values as strings of bytes and by performing all evaluations
serially by bytes. This is one of the few places in TLA assemblers where we have found
it necessary to make a significant sacrifice in time and space efficiency to gain in por-
tability. The problem of matching the type of arithmetic on the target is avoided by
standardizing on two’s complement. This is one of the most common forms of data
representation in use; in cases where the target is not a two’s complement machine, the
implementor must add code to convert the two’s complement representation to that of
the target. A

A major problem which must be resolved in the machine invariant code of the
assembler is the question of evaluating "relocatable” expressions which are subject to
modification at load time. Some expressions can only be evaluated by the loader. Here
we have the advantage of knowing fully the operational characteristics and
capabilities of our relocating loader, ULD [3]. Basically, our loader allows programs
to be loaded in up to 8 separate relocatable "sections” and have up to 8 types of field it
can relocate. The user indicates the relocatable sections of his program with the direc-
tive: '

rel <expr>

where <expr> must evaluate to a number between 0 and 7. The value must be chosen
to be compatible with the relocations used by the Eh compiler, so the user is required
to have some knowledge of the implementation of Eh before doing any serious
assembly language programming.

Values in the TLA symbol table have an associated attribute which may be gither
absolute (i.e. known at assembly time) or relocatable. In the case of relocatable
values, a further distinction is made to indicate the relocation which will apply at load
time. External symbols have attributes which cannot be determined until load time, so
TLA assemblers give them a relocatable attribute which will not match that of any
other symbol at assembly time. .

As an expression is evaluated, each operation and the attributes of its operands are
used to determine the attribute of the result. The rule for deriving attributes of results
is best presented in the form of a table:

right operand

+ A R R’

left

operand

In this table, A stands for absolute, R is a relocatable and R’ is a relocatable whose
attribute is different from R. The symbol E is used to indicate an error. The table then
tells us, for example, that it is not possible at any point during an expression
evaluation to add a relocatable to another relocatable. Tables for the other operators
are:

right operand

left
R R A E
operand
R’ R’ E A
right operand
& A R R’
A A E E
left
R E E E
operand
R E E E
right operand
| A R R’
A A E E
left
R E E E
operand
R’ E E E

4. Some Implementation Details

The interactive session between the implementor and the HELPER program, as il-
lustrated in appendix III, results in the creation of three files. These files contain
manifests (a weak form of textual macro) which define machine-specific parameters in
the invariant code, externals containing byte-serial representations of constants re-
quired by the implementor, and skeletal forms of functions to implement the .dcl,
dc2, .de3 and .dc4 pseudo operations (these are used to assemble expression values
into memory locations). Since the HELPER program generates these completely for
most machines, we will not discuss them here.

The implementor must provide opcode functions for each class of operation code
he has defined in the opcode table. These functions must perform a number of tasks,
as outlined below:

OPCOn()
{
declare externals
declare local variables

if (pass 1)
advance to end of input line

if (pass 2)
{ .

call expression evaluator for each
operand

verify that each operand is in
range and has the proper
relocation attribute

output assembled bytes to listing

output assembled bytes and reloca-
tion data to load module

copy remainder of line to listing

J

increment location counter

!

For some machines (e.g. the PDP11), the evaluation of the operands may reveal that
the location counter is to be incremented more than once. In such a case, the CPCO
function must call the scanner to check for special symbols during pass 1.

Since the operations which must be performed in a typical opcode function are
well standardized, lower level functions are provided to aid the implementor in
accomplishing each of the tasks in the outline above. The use of byte string
representations and byte-serial arithmetic complicates the task somewhat, but these
low level functions do range checking, output of listings in octal or hexadecimal, and
other common duties. Thus, the coding of the opcode functions is largely a matter of
selecting the correct arguments to the lower level functions.

Finally, for the output of the relocatable load module, there are two functions
which add loading information. In order to interface the output modules correctly
with modules output by the Eh compiler, the implementor will have to obtain
information regarding the types of fields which can be relocated (the person who is
writing the compiler will know this). If these are not adequate, it should be possible to
define more fields for use by TLA. ‘

5. Conclusion

We have used TLA to generate assemblers for the Honeywell H6060, Texas
Instruments TI1-990, Data General NOVA, Microdata 1600/30, Interdata 70 and
Motorola M6800. The average time to completion for each of these assemblers is less
than eight man-hours for a person experienced with TLA but not with the target
machine. Time to completion for the Microdata by a person unfamiliar with both
TLA and the target machine was approximately 13 hours.

The H6060, T1-990 and NOVA assemblers have been used to write support
software for Thoth, our portable real-time executive [3].

A more formal approach to solving some of the problems in automating the
generation of assemblers has been published by Wick [6]. It is difficult to compare the
effectiveness of Wick’s approach with that discussed here.

BIBLIOGRAPHY

(11~ Malcolm, M. A. and G. R. Sager "Report on the Real-Time/Minicomputer
La.boratory", Technical Report CS-76-11, Feb 1976, Dept. of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada.

2] Braga, R. S. C. "Eh Reference Manual”, Technical Report CS-76-45, Oct
1976, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada.

[3] Braga, R. S. C. , M. A. Malcolm and G. R. Sager "A Portable Linking
Loader”, Symposium on Trends and Applications 1976: MICRO and MINI
Systems, May 1976, pp 124-128.

(4] Mue!ler, R. A.”Automatic Generation of Microcomputer Software”, Master’s
Thesis, Apr 1976, Dept. of Mechanical Engineering, Colorado State Univer-
stiy, Fort Collins, CO.

[5]

(6]

Melen, L. S. "A Portable Real-Time Exccutive, Thoth”, Master’s Thesis, Oct
1976, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada.

Wick, J. D. "Automatic Generation of Assemblers”, Ph. D. Thesis, Dec 1975,
Dept. of Computer Science, Yale University.

Appendix I: TLA Directives and Pseudo Operations

The following directives are used in all implementations of TLA.

1.

10.

1.

ALIGN : used to align the next instruction on an addressable cell which is a
multiple of the expression (which must be a power of two).

.BASE : specifies the base to be used in evatuating constants which start with the
escape character '.

.DC1, .DC2, .DC3, .DC4 : define a constant Eh-word having 1, 2, 3 or 4 sub-
fields.

DS : reserves amount of storage indicated by expression.
JENT : specifies identifiers which will be available to other programs.

_EQU : equates the value and attribute of an identifier to the value and attribute
of the expression.

EXT : specifies an identifier which is defined in another program.

LOC : sets the value and attribute of the location counter to that of the ex-
pression.

.PAGE : advances listing to new page.
REL : sets the attribute of the location counter to the value of the expression.

TITL : specifies module name for use by library editor and loader.

Appendix 11: Syntax of TLA Sourcé Programs

2.
3.

The following characters are accepted by the TLA input scanner:

alphabetics:ABCDEFGHIJKLMNOPQRTU
V W X Y Z . —.Allalphabetics are translated to upper case upon input to
the scanner.

numerics: 0 1 2 3 4 5 6 7
delimiters: + — ()Y [1 ' " & |

8 9
& : ; , \ # @ *n andblank.

Several characters deserve special attention: *n is a "newline” used to delimit input
lines; \ and ; will cause the scanner to ignore the remainder of the input line (this is
for entering comments).

[V

In addition to the delimiter characters, the tokens recognized by the scanner are:

special tokens: +-+, ——

directives: .titl, .align, .base, .page, .ext, .ent, .equ, loc, .rel, .ds, .equ, .end
pseudo operations: .dcl, .dc2, .dc3, dc4

implementor-defined opcode mnemonics

user-defined constants and identifiers

It is not possible to give a syntax which applies fully to all assemblers implemented '

using TLA. In particular, the exact form of the argument list will vary from machine
to machine, and interpretations of special symbols will vary. The following grammar
will give the flavor of TLA grammars.

program = line—list .end
line—list = line line—list
line n= label—list statement '*n’
label—list = label label—list
null

label n= identifier :

10

statement

argument—list

operand

special

expr

.align expr

.base expr

.ds expr

.ent ident—list

.ext ident—list

Jdoc expr

.page

el expr

titl identifier

identifier .equ expr

dcl expr

dc2 expr , expr

dc3 expr , expr , expr
dcd expr | expr , expr , expr
mnemonic argument—list
null

ident—list , identifier

operand
argument—list , operand

expr
expr [expr |

++

@
!
#
t

(expr)
expr & expr
expr + expr
expr — expr
expr | expr
— expr
special expr
expr special
identifier
constant

Appendix III: An Example Session with the Helper

I am here to help get your new assembler started.
Have you used me before (yes or no) ? YES

What machine are you writing an assembler for? INTERDATA 70
What is the catalog name for this assembler? PORT/TLA/INTER

Now tell me about the INTERDATA 70.
How many bits in a byte? 8
How many bits in the smallest addressable cell? 8
How many bits in the largest machine address? 16
How many bits in the largest opcode? 16
How many bits in the smallest instruction? 16
How many bytes does a no-op instruction take? 2
What is the numeric value of the no-op instruction? $0800

Now tell me about how Eh is implemented on the INTERDATA 70.
How many bits are there in an Eh-word? 16
How many relocation bases are used? 1

What is the maximum number you will allow in a .ds? 32768

Will you neced a .dcl? YES
What is the maximum value allowed? 32767
What is the minimum value allowed? -32768
Is the operand relocatable? YES
Which relocation descriptor? 0

Will you need a .de2? NO
Will you need a .dc3? NO
Will you need a .dc4? NO

Do you have type 1 opcodes? YES
Do you need to do range checking for operands? YES
Enter the minimum and maximum. 0 15
Another pair?

Do you have type 2 opcodes? YES
Do you need to do range checking for operands? YES
Enter the minimum and maximum. 0 15
Another pair?

11

12

Do you have type 3 opcodes? YES
Do you need to do range checking for operands? YES
Enter the minimum and maximum. 0 15
Another pair? -32768 65536
Another pair?

Do you have type 4 opcodes? YES
Do you need to do range checking for operands? YES
Enter the minimum and maximum. 0 15
Another pair? -32678 65536
Another pair?

Do you have type 5 opcodes? NO

The INTERDATA 70 assembler has had three files generated for it.
PORT/TLA/INTER/MANIFS contains manifests.
PORT/TLA/INTER/EXTERN contains externals.
PORT/TLA/INTER/GEN contains functions.

Best of luck with the rest of the assembler!

	
	
	
	
	
	
	
	
	
	
	
	
	
	

