INTERMITTENT ASSERTION PROOFS IN LUCID

by
E. A. Ashcroft
Research Report CS-76-47
Department of Computer Science

University of Waterloo
Waterioo, Ontario, Canada

November 1976

INTERMITTENT ASSERTION PROOFS IN LUCID
by

E. A. Ashcroft
Department of Computer Science
University of Waterlioo -
~ Waterloo, Ontario
Canada

Abstract

The‘intermittent assertion technique df Burstall can be formujated
and made rigorous in the formal-system/programming-language Lucid; in a
very straightforward way. This reinforces the contention that Lucid
is a framework within which manyrsorts of proofs of program properties

may be expressed.

This paper includes three proofs, all of which are the Lucid

versions of intermittent assertion proofs found in the Titérature.

Introduction

Three years ago, Burstall presented an invited papéf af IFIP74
entitled "Program‘Proving asAHand:Simu]ation with a little Induction" [3].
‘Seldom érerinvited papefs,so original. The technique he presented, which
has been called the "intermittent assertion” method by‘Manna and Waldinger
[5], took some time to register with the program;proving community, but
is now being increasingly recognised as a methodlof paramount importance.
Not only does it subsume pfevious methods (Manna and Waldinger [5]), but
also it is very natural to use, and could prove to be the 16ng-sought
phi]osdpher's stone which transmutes‘base prograhmers into golden program-

provers.

At the same time, Lucid was being deve]oped [1,2]. The intention
~with Lucid was not So‘much to present new proof techniques as to rebuild
the foundations of programming and program proving to give a single cdherent
‘structure. There‘were two guiding principles used in its construction; the
programming language was to-ﬁe reasonably natural and understandable, using
_iteration as its basic "control stkucture" and assignment as 1£s basic
"operation", and yet the language was‘to'bé Comp]ete]y denotational, with
mathematical properties such as substitutivity and "referential transparency".
Moreover, assignment statements were to be equations. The solution to these
seemingly contradictory requirements w111;not be detailed here (see*Ashcroft

& Wadge [1,2]).

If Lucid is a general structure within which both program-writing
and program-proving can be carried out, it is natural to ask (even demand)

‘whether the intermittent assertion technique fits into Lucid. This paper

-2-

shows that in fact it does, and moreover suggests that the technique can
only be put on a sound semantical footing by embeddihg it within a moda’

logic with some of the properties of Lucid.

The intermittent assertion technique

I shall use the notation of Manna ahd~Wa1dingef [5]. For a program
P containing a Iabéi L, the statement "sometime A at L" asserts that,
at some stage in the computatiqn of P, control will be at label L with
the assertion A being true at that time. Which computatibn of P is being
considefed is taken.tolbe understood. ‘(One can imagine the full statement
is "sometime P at L in c" where ¢ denotes the éomputaﬁion in QUeStibn.
During proofs, ¢ never changes, and we can consider that normally the |
phrase "in c" is suppressed; This is qﬁite justifiable sincé somé sort
of a modal logic is being used anyway, as pointed out by Burstall in his

‘paper.)

Using such statements it is possible to carry out very natural-
seeming proofs about programs,‘proving~not just partial but also total

correctness.

Many such proofs are baSéd on Temmas of the form
"sometime A at L implies sometime B at M".

The way such a'statemeni is usually understood (and thié'is what is normally
proved) is to consider B to be true at M after A is ffue at L. However,
the above statement would also be true if B were true at M ggfgigiA is true
at L. For pfograms for which the finaT re$q1t is the important thing,
this doesn't really make any difference. But one of tﬁe attractive areas
~ of application is‘in the‘study of continﬁouﬁly oberaiing phograms'Where

"sometime" statements look promising as ways of describing desired behaviour.

-3-
And in this application; we really do want "sometime" to mean "sometime“
later", as‘in “sometime A at L implies sometime later B at M". If this

is to bé a formal statementfn‘a proof, it is by no meéns ;]ear how the
word "1ater5 is to be~interpreted; is "smetime later" a single thing;Aor
is "later" qualifying the whole "sometime" clause? And if we ask "later
than what" we can only reply “"after A is true at L", so that time infor-

| mation has crossed the imb]ication. Another way of 100king at this is to
note that "sometime B at L"ﬁis either true or false, but the truth or
falsity of “sometime later B at " debéndslon time, the stage reached in
the computation. It appéars hard to formalise such statements, but fbrmaTs
isation is needéd if we are to propose rules for reasoning abqut them. -

Intermittent assertions in Lucid

Lucid cﬁn be 1ookedAupon as a modalu1ogic, which reasons about time
while suppressing all explicit mentionlof time. This is achieved by making
variables and expressions in Lucid, sayAXQ denote generalised infinite
sequences, with the t-th component,.xt, represehting the t-th;value thaf X
would take on during a "computation“. (In general the t's are not just
natural numbers, bot infinite seqﬁences of natural numberé, corresponding to
-numbers of iterations of various loops.) In Lucid, a statement A +jB means
that, for all times, if A is true at some‘time then B is true at the same
time. Time information trosses‘the implication. It is‘not surprising that
Lucid can take "sometime later" in its stride, in fact by simply,considering‘
it as a new Lucid function, which we call "lgigg“. The "sometime" of Burstall
énd Manna & Waldinger is rendered by a function “sometime“ which is actually
the same as the aiready existing Lucid funétion “eventually". The function
"later" will actually be defined in terﬁs of a further function "when next"
which has already been used (with a different name) by Cargill [4] to define
the Lucid function "as_soon as”. | | |

Definitions

We use the notation in [1].

(Cargill's function:)

(o when next B) . . o _
t0t1t2"' Tt]tz..._ rtltZﬁ“‘ T

is false for
_. 2t T
‘ all ;, t0 s <r, o |
undefined if no such r exists.

énd. Bst]t

This function can also be defined as follows:

P when next’Q = if Q theh P else next (P when next Q).

(This_]ooks Tike a non-terminating recdrsive definftion,,but ih fact the
when next on the right is looked at at a different time than the one on the
left (because -of the function next), and we are simply defihing when next

in terms of its own "future".)

We now have

1éter P

P when next P

sometime P = first later P

first (P when next.Q).

P as soon as Q

Using these functions we can now write terms such as

which can be interpreted as saying that, at all times, if sometime in the |
future A is trué, then sometime in the future B is true. Since this is
true at all times, even the times when A is true, it follows that B is
true later than A. In fact, it is a simp]e‘deduction from the above
that |

A — Jlater B,

~namely whenever A is true, B is true sometime afterwards (or even at the

same time).

Unfortunately, there are features.of~Lucid_thch slightly complicate

proofs using sometime»and later. The variables in Lucid denote generalised -
infinité ~equences, even if they‘are used in a "tefminating“ 1oop.A Thus,
even if sometime Y > X say, there is no guafantee that Y becomes bigger
than X before the ldop using‘x and Y has terminated. If the test on the
as soon}as for the Toop is P, what we want to know i$ whether sometime

(Y > X A hitherto 7P). We introduce a more ggnérai form of sometime

te express this; we say sometime Y > X before P. (We really should use
sometime Y > X not later than P Which more a;cuhate]y conveys the meaning.)
Note that sometime...before is a single function. We also have such a
function corresponding to lgggﬁ.

- Definitions |

later P before Q = (Q = P) when next P v Q

sometime P before Q = first later P before Q

= sometime (P A hitherto 7Q)

It is eqsiiy.seen that later...before can also be defined as fo!]ows;

- and is in fact continuous, even though the previous definition used "t

(later o before Bt + ¢ ... = true if
_ 07172
art]tz..._is true
and ast1t2... is false

and Bst]tz'f' is false
for all s, tyss<r,

false if srt]tzl.. is true

and art1t2"' is false

and agtity... s false

and Bst]tZ"‘ is false
for all s, ty <s<r,

undefined if no such r exists.

Note that

| later P = later P before P

fl

sometime P = sometime P before P

Axioms and ru]es of inference‘

To formalise reasoning using these functlons the following axioms

and ru]es of 1nference are usefu] (It is assumed that P, Q etc. are

formulas, and at any t?me can only take the values true, false or

undefined. The assert1on def P means P=T v p=F,)

(0) (P=T) |= (later P before q = T)

(0') AP=T) |= I(sometime P before Q = T)

(1) |= P - later P before Q
(1') |= first P - sometime P before q -

(2) P> (10 A next R), def P > def R
|= later P before Q - Jater R pefore Q
(2')y P~ (1Q & next R), def P > def R

|= sometime P before Q > sometime R before Q

(3) P] P,s Q2 - Q], def P] A def Qq ~ def P,y A def Q
|= later Py before Q, ~ later P, before Q,

(3') p

1> Pas Qp > Qy, def P, A def Qy » def P, A def Q,
|= sometime Py before Q, ~ sometime P, before 0,
- (4) P~ Q [= later P before R - later P A Q beforg R

(4') P >Q |= sometime P before R + sometime P A Q before R

7=

(5) |= somefime P AVQ'§££QEQ Q- Pas sooﬁ as Q
(6) .s,é.nss,fﬁms P before Q, P> Q |= P womz Q
(6') later P before Q, P > Q |= P as soonas Q@
(7) ﬁ as soon as Q [= eventﬁa11x Q

(8)‘ P as soon as Q, P ~ R |= R as _soon as Q

Each rule (i') can be derived from the corresponding rule (i). Rule 6 is

derived from rules (4') and (5).
 Examples of proofs '

The proofs given in sections 2 and 5 of Burstall's paper will be
carried out within Lucid. Also, a proof will be given‘for a continﬁous1y
operating program, taken from Manna & Waldinger's paper.

1) The program which computes- 2" is as follows:

first P =1

first N =n

next P=2xP
next N = N-1

QUTPUT = P as_soon as N <0

In the above program, and in the rest of the paper, variables written in
small 1etters will range over constants, in this case_integers, (In the
next proof they will also be'binary‘trees and 1ists.) Quéntification over
such variables does gg;_aTlow'Undefined aé a possible va]uef (This means
that universal quantification can not be instahtiated using an arbitrary
term, and arbitrary terms can not be converted to éxistentia1]y quantiffed
vdriabies, In bdth cases the term must first be proved to be defined and
constant.)‘ The reasoning about such variables is then very much like
conventional mafhematical reasoning,.and we can use,mathematicaliinduCtion,

structural induction etc.

Theorem 1. For this program

n=0-0UTpPuT = 2"

Prbof. We first prove the following lemma

Lemma 1

yi 0 < i< n, sometime P = 2" A N = n-i before N < 0

fgiggf_ by induction on i
i=0 We immediéte]y have from the brogram that
 first (=20 A N = n-0).

Thus, by rule (1')

sanetine P=2° A N = n-0 before N < O.
This completes the base step.
Now assume that for some i, 0 < i <n

p=2' A N = n-i. |

We thus have that the,terminatfon condition is false, and we find the effect of

"going round the loop": N>0AnextP = 21+]

i.e. N>0 A,next(P=21+] AN = n-(ifl))-

A next N = n-(i+1)

Discharging our assumption (because no Lucid rules used, no substitution
within Lucid functions), we get

p=2' A N = n-i - N >0 A next (P=21+] AN =n-(i+1)).

1

Now it is obvious that def (P=21+ A N =n-(i+1)) since "=" always gives -

true or false at any time. Thus, applying rule (2') we get

sometime P=2' A N=n-i before N <0 —

sometime P=2' "1 A N=n-{i+1) before N < 0
~ This is the induction step, completing the proof of the lemma.

a

To prove the theorem we now assume n > 0, and take i=n in the

Lemmé. (This instantiatidnlis,a]iAright;becauseAn_is‘bbvious]y constant

~9-
and defined.) We get
~ sometime P=2" A N=0 before N < O,

Now P=2" AN=0 + N <0, so applying rule (6) we get

(P=2" A N=0)as_soon as N < 0

and hence (P=2")as soon as N < 0 (by (8)). Since eventua?]x N <0 (by (7))

we can push the as soon as inside (this rule being given in [1]), giving
P as soon as N <0 =2"

Since OUTPUT = p as soon as N < 0, and our original assumption, n = 0,

is constant, in two steps we get

n=0 — OUTPUT = 2",

II) This program, which counts the tips of a binary tree; is as follows:
first (COUNT,T,STACK) = (0,t,A)
next (COUNT,T,STACK) =

if Teq nil then (COUNT+1,right(hd(STACK)),t2(STACK))
| else (COUNT,Teft(T), ToSTACK)
OUTPUT = COUNT+1 as_soon as Teq nil a STACK eq A.

Variable STACK holds lists, with A denoting the empty Tist, hd, ti and o
having the usual property s = hd(s) o t¢(s). Variable T holds binary trees,
with "nil" denoting the tree consisting of single leaf, and left(T) and |
righf (T) being the Teft and right subtreés of T. We wiT1.uSe'the<function
tips defined by tips(t) = if T=nil then 1 else tips(iéft(r))+‘tipé(right(r));
We take this as our definition of what the'number of tips of a tree 1

actually is.

-10-
Theorem 3 For this program

~ QUTPUT = tips(t)
~ Proof We first need the following Lemma:
Lemma 2

sometime COUNT=c A T=t' a STACK = s before (Teq nil a STACK eq A)

—>sometine COUNT=c+tips(t')-1 A T=nil A STACK=s
before (T eq nil A STACK eq A)
Proof By structural induction on t'. A
3:5311, In this case c=c+tips(t')-1 and the result is immediate.
Otherwise (t'#nil, in fact t' ne ni]): Assume COUNT=c A T=t' A STACK=s.
It is easily.seen that the termination condition is false, and we go around the
Joop: (T me nil v STACK ne A) A next(COUNT=c A T=Teft(t')
| | A STACK=t'o s).

This giyes us the implication need as a premise -of rule (2'), and since.

def(COUNT=c A T=left(t') A STACK=t'e s) we get

(*) sometime COUNT=c A T=t' A STACK=s before (T eq nil A STACK eq A)

—> sometime COUNT=c A T=left(t') a STACK=t'e s before (T eq nil A STACK eq A).
Now, by the induction hypothesis, since left(t') is a subtree of t',
(**) sometime COUNT=c A T=left(t') A STACK=t'c s before (T eq nil A STACK‘eq A)

—» sometime(COUNT=c+tips(left(t'))-1 A T=nil A STACK=t's s
before (T eq nil a STACK eq A).

Now we assume that in fact

COUNT=c+tips(left{t'))-1 A T=nil A STACK=t'o s.

-1-
Again, it quiék]y follows, by a "hand simulation", that
(T ne nil v/ STACK ne A) A next(COUNT=c+tips(left(t')) A T=right(t') a STACK=S)
~and we can discharge our assumption, giving an imp]ication. Once more

def(COUNT=c+tips(left(t')) A T=fight(t') A STACK=S) and so by (2')

(***) sometime COUNT=c+tips(left(t'))-1 A T=nil. A STACK=t'e s
o before (Teq nil A STACK eq A)
—>sometime COUNT=c+tips(left(t')) a T=right(t') STACK=S
B * before (T eq ail o STACK eq A)

‘Since right(t') is a subtree of t', we app1y‘the‘inductioﬁ hypothesis to
N | .
(**#%) sometime COUNT=c+tips(left(t')) a T=right(t') A STACK=S
o before (T eq nil A STACK eq A) |
—>sometime COUNT=c+tips(Teft(t')+tips(right(t')))-1 a T=nil A STACK=S
‘before (T eq nil » STACK eq A) |

If We now chain togéther the implications (*), (**), (***) and (****),
and use the definition of tips, we get -
sometime COUNT=c A T=t' a STACK=s before (T eq nil A STACK eq A)
—>sometime COUNT=c+tips(t')-1 A T=nil A STACK=S
o before (T eq nij A STACK eq A)

which is what we wanted.
]

We'can now use the Lemma to prove the theorem as follows.

Since first(COUNT,T,STACK) = (0,t,A) we get, using (1'),

sometime COUNT=0 A T=t a STACK = A before (T eq nil a STACK eq A)

-12-

"Applying the lemma we get

sometime COUNT=tips(t)—] A T=nil a STACK = A
before (T eq nil a STACK eq A).
Rule (6) followed by (8) gives | | |
| (COUNT+1=tips(t)) as sqon as (T eq nil A STACK eq A).

| As in theorem 1, we now say o

eventually (T eq nil A STACK eq A) and so we can push
the 3§~§Qggwg§>inside: |

(COUNT+1) as soon as (T eq nil a STACK eq A) = tips(t)

i.e. OUTPUT = tips(t).‘

g

I11) The following program is a Lucid version of the simple operating

system program in the Manna & Waldinger paper.

begih
first JOBQUEUE = INPUT
first PRINTOUTS = ni]

JOB = hd(JOBQUEUVE)
next PRINTOUTS = PRINTOUTSeprocess.(JOB)

next JOBQUEUE = t&(JOBQUEUE)

OUTPUT = PRINTOUTS as_soon as JOBQUEUE eqg nil
" end '

The begin and end indicaté thét-the enc]osed program is "executed"
for each value of "INPUT", giving a corresponding va]ﬁe of "OUTPUT". Each

"INPUT" value will be a list of jobs, and the corresponding “QUTPUT" value

-13-
will be a Tist of the resu}ts‘of these jobs.

We can express the fact that jobs never get lost by the following

theorem.

Theorem 3 For this program
later JOBQUEUE = & A j e 2 before JOBQUEUE eq nil
—> later JOB = j before JOBQUEUE eq nil

Proof
By structural induction on 2.
% = nil. Since (JOBQUEUE = £ A j e &) # T, by (0) we have
later (JOBQUEUE = % A j e 2) before JOBQUEUE eq nil # T
and the result is immediate.

otherwise, assume the theorem for t2(2).

Now j = hd(&) v j#hd(1).
Assume j = hd(2)
Then (JOBQUEUE = & A j ¢ &) > JOB = j
and so, by (3),
later JOBQUEUE = & A j e & before JOBQUEUE eq nil
—> later J0B = j before JOBQUEUE eq nil.
Since our assumption is constant we can discharge it:
j = hd(2) » (later JOBQUEUE = & A j < & before JOBQUEUE eq nil
— later JOB = j before JOBQUEUE eq nil)
Now assume j # hd(g), and further assume JOBQUEUE = & A j ¢ &. Clearly
JOBQUEUE ne nil A next (JOBQUEUE = t2(2) A j e t2(2)).
Since def (JOBQUEUE = t2(2) A j e t2(2)) we can discharge the

latter assumption, and then apply (2), to give

-14-

later JOBQUEUE = & A j e % before JOBQUEUE eq nil
—> later JOBQUEUE = t&(%) A j « ta(2) before JOBQUEUE eq nil.
Now, by our induction hypothesis, since t2(2) is a sublist of %,
later JOBQUEUE = t2(%) ~ J e t2(2) before JOBQUEUE eq nil
— later JOB = j before next JOBQUEUE eq nil.
Combining these results,
later JOBQUEUE = £ A j < & before JOBQUEUE eq nil
— later JOB = j before JOBQUEUE eq nil.
We can discharge our former assumption, since it is constant, to give
J # hd(2) ~ (later JOBQUEUE = & A j ¢ 2 before JOBQUEUE eq nil
— later JOB = j before JOBQUEUE eq nil).
Thus, since j = h(&) v j # hd(2), we have
later JOBQUEUE = 2 A J e & before JOBQUEUE eq nil
—1ater JOB = j before JOBQUEUE eq nil.

This completes the induction step.‘

These three proofs have closely followed the steps in the original
versions. Note however that the third proof actually proved a stronger
statement than was proved in the original version in the Manna & Waldinger
paper. In order even to state the desired property requires a time-

dependent logic, and is beyond the scope of informal methods.

-15-

Conclusion

It hés been shown that proofs using Burstali‘s intermittent assertion
method can easily be accomplished using Lucid. Moreover, more powerful
-and useful statements using intermittent assertions can be stated and
proved in‘Lucid than are possible usihg the 1nforma]‘description of the

‘method.

It is difficult to think of a wéy of‘formalising the method, to deal
with these more powerfu1 statements, that does not result in statements
whose value varies with time and in logical connettfves such‘as "implies"
' conveyihg some information about time. This means that the whole body
of maihematfca] reasoning used will be affected with this time dependent
component. At this stage it becomes apparent that a self-contained formal
theory must be developed which reasons about time, without mentioning
time explicitly. I suggest that that theory is the part of Lucid dealing
with logical statements. Whether that part of Lucid can be used without

the rest of Lucid remains to be seen.

Acknowledgement

Thanks are due to Tom Cargill for stimulating discussions in which
some of the ideas presented here were worked out; in particular the

definition of when next.

The idea of introducing special variables into Lucid proofs to
denote constants, thus allowing proofs by mathematical induction, structural

induction, etc. is due to Bill Wadge.

[51

'Refereﬁces

‘[1] Ashcroft,
[2] Ashcroft,
31 Burstall,
[4]

E.A. & Wadge, W.W. "Lucid, a Formal System for Writing
and Proving Programs" SIAM J. on Computing Vol.5, No.3.
pp.336-354.

E.A. & Wadge, W.W. "Lucid, a Non-Procedura] Language
with Iteration', to appear in CACM. -

R.M. "Program Proving as Hand Simulation with a little

Induction" IFIP74 Congress, Stockholm.pp 308-312.

Cargill, T.A. "Deterministic Ope-ational Semantics for Lucid".

Manna, Z.

Research Report CS-76-19, Computer Science Department,
University of Waterloo.

& Waldinger, R. "Is 'sometime' sometimes better than
'always'? Intermittent Assertions in Proving Correctness
of Programs", STAN-CS-76-558, Computer Science Dept.,
Stanford University. ’

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

