NEW INSTRUMENTS FOR IMPROVING THE ANALYSIS
OF INFINITISTIC BEHAVIOUR OF PROGRAMS

by

Denis Therien

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-76-46
November, 1976

The financial assistance of the National Research
Council, under Science 67 Scholarship and grant
A-1617 is gratefully acknowledged.

NEW INSTRUMENTS FOR IMPROVING THE ANALYSIS
OF INFINITISTIC BEHAVIOUR OF PROGRAMS

Denis Therien

Abstract

Quasinets, as défined.by A. Blikle, are algebras in which it is
possible to investigate formally properties of computer programs.
.Brief1y, a quasinet is a set U of objects interpreted as meanings of
algorithms of a given class (e.g. flowchart, recursive procedures, etc.)
together with a partial orderings é, such that (U,<) is a complete lattice,
and a binary operation ° which is continuous and additive with respect to
the join of (U,<) such that (U,°,e) is a monoid for some‘e1ement e in U.
The completeness property of the Tattice provides infinitistic operations
necessary to deal with iteration and recursion. The finitistic join is to
describe branching, and the monoid operation to describe sequencing in
algorithms.

This paper introduces two new quasinets which improve the analysis
of infinitistic properties of programs (e.g. non-termination). One is a
modification of the quasinet of generalized languages (i.e. languages with
finite and infinite words); the other is isomorphic to the quasinet of
§-relations but it‘avoids many of the technical inconveniences appearing

in this algebra.

§1 Introduction

I[f we want to investigate formally the properties of a computer
program, we need a precise mathematical model in which programs are represent-
able and which is powerful enough to carry out the required analysis. Through-
out this paper, a program is assumed to consist of a finite number of
elementary modules (e.g. boxes in flowcharts, elementary instructions, etc.)
together with a control mechanism to define the order in which the elementary
modules are to be executed (e.g. flowchart structure, recursive calls,
coroutine mechanisms, etc.).

The approach developed by Blikle [74,76a,76b], consists of
building anva]gebra in which modules and sequence control are representable.
The algebra must provide enough tools to enable us to analyze formally some
properties of programs such as correctness, domain of termination (for which
class of inputs does the program terminate), domain of looping (for which
class v inputs does the program loop infinitely), domain of blocking (for
which class of inputs does the program block without reaching the end).

The algebras used by Blikle are called quasinets: they consist of a set U

of objects rebresenting the modules, a partial ordering <, such that (U,<)

is a complete lattice, and a continuous binary operation o, additive with
respect to the join of the lattice, such that (U,°,e) is a monoid for a

certain unit element e in U. Completeness of the lattice provides infinitistic
operations necessary to deal with iteration and recursion. Finitistic

join is to describe branching, and the monoid operation is to describe
sequencing in algorithms.

Obviously, there are many ways in which one can associate a

meaningful object with a given computer program. The first step of the

approach is thus to define quasinets which are adequate to investigate
some class of properties. In section 2, we discuss informally two types of
semantics of programs, that is, ways of aséociating a "useful meaning"
to a given program. Section 3 defines quasinets formally and introduces
an important concept, the €-operation. Section 4 introduces a new quasinet
in order to deal with symbolic semantics. In section 5, we introduce
another new quasinet, this time to deal with input-output semantics.
These last two quasinets are superior to previous existing ones, specially
to analyze the infinitistic behaviour of programs. In section 6, we prove
some properties enjoyed by our new quasinets.

The present paper is self-contained except in section 5 where some
basic knowledge of the usual algebra of relations is required. Also, the
reader is occasionally referred to some other articles in order to have a

more complete discussion of some concepts presented here.

§2 Semantics of Programs

To describe the semantics of any language, we need to define a
meaning for every expression in the language in such a way that the
expressions will be understood by the users. In the case of programming
languages, the expressions are programs but there exist many different
ways of associating a meaning with a program. In this paper we use two
different semantics of programs, and this section intends to give a brief
discussion of each of them.

First, we can identify the meaning of a program with its input-

output function (I-0 semantics). Given a program m in an arbitrary language

L, and appropriate vectors x and y of data, we can associate with = a
partial function f such that f(x) = y whenever the program m, accepting x
as its input, processes the data, eventually stops and yields y as its
output. In this case, f will be the meaning of m. Consider for example

the two following Algol programs:

"o begin integer a,b;
loop : a := a-1;
b := atl;

if a < 0 then goto Toop

end
Ty begin integer a,b;

loop : b := a;

a := a-l;

if a < 0 then goto loop
end

The 1-0 functions f; and f, associated respectively with m, and m, are

defined by the equations

f](x],xz) = f2(x1,x2) = (x1-1,x1)
where Xps %o are 1ntegers'and X1 = 1. For arguments (x1,x2) with Xq < T,
both f1 and f2 are undefined since the programs m and Ty enter an infinite
loop. This example shows that in I-0 semantics, two different algorithms can
have the same meaning, i.e. they can compute the same I-0 function. But
very often it is important to analyze the different steps required by an

algorithm to compute a function. In this case, [-0 semantics are not suffi-

cient and we need a different tool.

To this effect, we can use the so-called generalized formal languages.
With every instruction of a program i{s associated a single character which
is understood as the name of this instruction (symbolic semantics).
Sequences of characters generated along all the control flows in the program
are called runs and can be interpreted as symbolic executions of the
program. The meaning of a program here is defined to be the set of all its
runs; the meaning is therefore a formal language, possibly with infinite
words. In the case of programs ™ and Ty above, if we establish the

following dictionary of characters

character instruction
A a := a-1
B b := atl
C b :=a
T ' a < 0 (first branch of the test)
Ty a = 0 (second branch of the test)

then the generalized language of runs generated by our programs are:
*
(ABT;)*ABT, v (ABTABT,...)
and (CAT1)*CAT2 u (CAT|CAT;...).

Of course, if we know the functional meanings of the symbols,
then we realize that the only possible executions of ™ are ABT2 and

ABT . ABT But we cannot establish this fact dealing with the set of

I‘I]l.. .
runs since in this semantics we assume to have no access to the functional

meanings of the characters.

§3 Quasinets

3.1 Preliminary Notions

Let (U,<) be a complete lattice. For any set P < U and any

elements x and y in U, we denote by:

uP : the 1.u.b. of P
nP : the g.1.b. of P

i

xuy = u{x,y} : the join of x and y

xny = n{x,y} : the meet of x and y

A set P < U is said to be directed provided that it is non-empty
and that every finite subset of P has an upper bound in P,

A function ¢: U~ U is said to be additive if it preserves
finite joins, i.e. for any x,y € U, ¢(x v y) = ¢(x) v ¢(y). It is said
to be continuous if it preserves 1.u.b. of directed sets, i.e. for any
directed set P < U ¢{uP) = u{e(x)|x e P}.

A function ¢:U" > U with n = 1 is called additive {continuous)
if it is additive (continuous) for each argument separately.

By a quasinet we shall mean any system Q = (U, <, o, e) where U is a

set, < is a partial ordering in U, © is a binary operation in U called

composition, e is an element in U and the following conditions are satisfied:

i) (U,<) is a complete lattice
i) (U,°,e) is a monoid with unit e
111) o is additive and continuous |
iv) for all x in U, 0 ° x = o where o0 = nU is the bottom element of the

lattice.

For any element x in U, we define the n-th power and the

*_{teration:

X0 = e
+
X 1. xMox
0
x* =y x".
n=0

3.2 Interpretation

The set U is a set of objects that we associate with algorithms
and their modules. From now on we will not distinguish between a module and
the elcment of U to which it 1s associated. The lattice and the monoid
over U should be defined so that join corresponds to alternative branching

and composition to sequencing (Fig.3.2.1)

— _____]-f«—a— AR AT

XUy Xoy
Fig. 3.2.1

This interpretation motivates in a natural way the additivity

of composition (Fig.3.2.2}.

:ﬁbt»ﬁmj*1 | 'ﬂﬂ{::? X [—= z ?—_m
y }W“>{ z iuﬁb

(xuy)ez (xez) u (yoz)

Fig. 3.2.2

The *-iteration corresponds to a denumerable alternative branching,
hence can be used to describe finite looping.

The bottom element 9 can be interpreted as the meaning of an
"empty algorithm" 1.e. an algorithm without any runs. Clearly, if we Tink
sequentially two algorithms x and y and if x = o then the compound
algorithm x°y has no runs at all. Hence we require condition iv) to hold
in a quasinet.

| Consider now the case x°y where y = ¢o. [f control never reaches

y (e.g. if x loops infinitely) then the fact that y = o is of no concern.
On the other hand, whenever x terminates, the compound algorithm x°o has
no runs and x°0 = 0. If we are interested only in the finitistic behaviour
of programs, we can require that xco = o for all x ¢ U. Blikle [74] defines
a net as a quasinet in which this Tast property is satisfied. Thus one
should work with nets whenever interested only in finitistic behaviour

of programs and in quasinets otherwise.

3.3 Generalized Composition

We now introdﬁce another operation that plays a central role in
this approach of analyzing programs. To each sequence of elements in U, finite
or infinite, we want to associate an element in U: the operation, denoted by €,
should correspond to sequential linking of a ffnite or infinite number of modules.
We require that the following properties hold for our £-operation:

Cn] = e where) is the empty sequence

C[u],...,un] = u]°C[u2,...,un] for n <

It can be proved that an operation € with the two properties above
exists in any quasinet, but is not unique. Consequently, when dealing
with a quasinet where a particular generalized composition € is defined, we
have to mention it explicitly and consider an extended system Q = (U,<,°,e,€).
Finally, given a C-operation in Q, we define an infinitary
iteration, also called =-iteration, in U. For any x in U, define

0

X = €[X,X,...). This =-iteration corresponds to infinite looping.

§4 Generalized Languages

4.1 Preliminaries

let A be an arbitrary non-empty set (possibly infinite).
We consider the set of finite and infinite sequences over A; we

denote finite sequences by (a],...,a) and infinite sequences by (a1,a2,...);

n
we also call these sequences words (over A). We will sometimes use
(a],...,an) n < o as a shorthand notation for a sequence that may be finite
or infinite. .
We denofe by:
r: the empty word which is assumed to be of length 0
‘seq"(A): the set of all words of length n; for example, seq®(A) = {A}

seq*(A): U seq"(A): the set of finite words over A
n=0 '

seqw(A): the set of infinite words over A
seq(A): seq*(A) u seq (A): the set of all words over A
We define a binary operation on seq(A), denoted by ~, and called

concatenation:

i) (a1,...,an)“(b1,...,bm) = (ai,...,an,b],...,bm)
forn <o, ms<®

ii) (a],az,...)“(b],...,bm) = (a],az,...) fqr m< e,

It is clear that (seq(A),”,A) is a monoid. Any subset L of

seq(A) is called a generalized language and we denote by:
GLan(A) = {L|L < seq(A)}

We extend the operation ~ to the set GLan(A) by defining:
L,°L, = {x]“lex] e Ly &xye Lot

Again, it is clear that (GLan(A),”,{A}) is a monoid where the
unit {1} is the set consisting of the empty word alone. It can easily be
shown that * is continuous and additive with respect to unions. The system
G = (GLan(A),E,“,{A})-is thus a quasinet where < is the set theoretic
inclusion. Moreover, we clearly have that the bottom element of the
lattice (GLan(A),c) is the empty set ¢, and this element acts as a two-sided
zero in GLan{A), i.e. L™¢ = ¢°L = ¢ VL e GlLan(A). Thus the system defined
above is a net and can be applied to analyze programs only in so far as
finitistic behaviour is concerned.

The present paper was written to solve an open problem proposed
by Blikle, namely, to transform G in such a way that it can be used to

analyze non-finitistic properties of programs as well.

- 10 -

4.2 The New Quasinet of Generalized Languages

We denote by:
Fin(L)
Inf(L)

L n seq*(A): the set of finite words of L

L n seq (A): the set of infinite words of L

Some properties of the Inf and Fin operators will be needed in

this section. From Redziejowski [72], we extract the following:

1) L = Fin(L) v Inf(L)

2) Fin(L) n Inf(L) = ¢

3) Fin(ygFLy) = yngin(Ly)

4) Inf(ngLy) = ygrlnf(Ly)

5) Fin(L;"L,) = Fin(L])“Fin(Lz)

6) Inf(Ly"L,) = Inf(Ly)"L, v Fin(Ly)"Inf(L,)

We will also need the obvious:

7) Fin(Fin(L)) = Fin(L)
8) Fin(Inf(L)) = ¢
9) Inf(Fin(L)) = ¢
10) Inf(Inf(L)) = Inf(L)

We now proceed to define a new operation on GLan(A), which we

denote by ~ and which we simply call the new concatenation:

L]QL2 = Inf(L]) u Fin(L]) ~ L,

We can check some of the properties enjoyed by this new operation

by applying properties of ~, Inf and Fin.

- 11 -
X 1s associative
(LAl ALy = Inf(Inf(Ly) v Fin(ly)Ly) v Fin(Inf(Ly) v
Fi‘n(L])ALZ)“L3
= Inf(lnf(L1)) u Inf(Fin(L1)“L2) u Fin(Inf(L]))“
Ly v Fin(Fin(L{)"L,) "Ly |
= Inf(L]) U Fin(L])“Inf(Lz) U Fin(L])”Fin(LZ)“L3
22L3) = Inf(L]) U Fin(L])A(Inf(LZ) U Fin(LZ)“L3)
= Inf(Ly) v Fin(Ly) ~ Inf(L,) u Fin(Ly)7Fin(Ly) "Ly

{A} is a two-sided unit

LA{A} = Inf(L) u Fin(L)~{x}
= L '

(AL = Inf({a}) v Fin({A})"L
= ¢ u {A}L
=L

We have thus shown that (GLan(A),~,{A}) is a monoid.

~ distributes over arbitrary unions

0

L*(UyL)

Inf(L) v Fin{L)~(U L)
J y

y
Inf(L) v U Fin(L)"L
y Yy

U (Inf(L) u Fin(L)"L,)
y y

U (LAL)
y Yy

H

1

(UL,)AL y

U Inf(L.) u U (Fin{L)"L)
y Yooy Y

U (Inf(Ly) u Fin(Ly)AL)

Inf(U L) v Fin(U L)"L
y Y y

(L,AL)

i
<C <

- 12 -

4) Properties of ¢
oL = ¢
LA¢ = Inf(L)

Consider now the system G' = (GLan(A),c,”,{\}), where ¢ is the set
theoretic inclusion on GLan(A)}; from the above properties, it is clear
that 2 is additive and continuous. |

By property 4), we see that G' is a quasinet but not a net.
Our new operation has eliminated the undesirable effect of ¢ as a right zero

but otherwise has conserved all the properties needed to ana]yzé programs.

4.3 Generalized Concatenation

We now proceed to define a C-operation in the new quasinet. First
we need the following operation, C:seq(seq(A)) - seq(A) defined by
i) C[A] = a
CLx],...,xn] = x]“C[xz,...,xn]
i1) C[x],xz,...] is the shortest word in seq(A) with the following
property
vn > T Xy"%" X E[g‘c[x1,x2,...] where x pre y iff
3z e seq{A) such that x"z = y.
Alternatively, since {C[x]],C[x],xz],...} clearly forms a chain
with respect to pre, we can define C[x;,x,,...] = T.u.b.{C0x11,C0x5%p15. 000
and clearly both definitions are in agreement.

We extend this Tast operation to the following:

€: seq(GLan(A)) - GLan(A)

- 13 -

where i) €[] ¥_{A}
Ly, ..l]

L1AC[L2,...,Ln] n < o

i) E[L1,L2,...] = {C[x],xz,...]l(vizl) Xy € Fin(Li)}

ng]{C[x],...,xn]lxi € Fln(Li) for i = 1?...,n-1

[

& X, € Inf(Ln)}

We call € the generalized concatenation of languages and clearly the
properties of a C-operation are satisfied.

Now let the n-th power, the *-iteration and the «-iteration have
the meaning defined in an abstract quasinet (see section 3.1 and 3.3). The

foliowing properties can be checked to hold for the « operator:

1) o = ¢ 4) Inf(L)” = Inf(L)
2) Ay = {1} 5) Lycsly= Licl,
3) LA = |

nong these properties, the third is specially important, for we
can show that if L is A-free (i.e. A ¢ L), then L” is the greatest solution

of the equation X = LAX. To get this result, we need some lemmas:

Lemma 4.3.1 If R is a solution of X = LAX, then (Fin(L))*AInf(L) < R.

Proof ~ We show by induction on i that (Fin(L))'AInf(L) < R.

For i = 0, since R = L#R = Inf(L) v Fin(L)~R, we have
Inf(L} = (Fin(L))°# Inf(L) < R.

Assume the lemma to be true for an arbitrary i =2 0. We have .
(Fin(L))iﬁlnf(L) c R by induction hypothesis. It {s easily verified that the

inclusion stays valid if we multiply on both sides by any language. In

- 14 -

particular, Fin(L)2(Fin(L))AInf(L) < Fin(L)"R. But Fin(L)?*R = Fin(L)~R < R.
Thus (Fin(L))i+]?Inf(L) < R. This proves that

U (Fin(L))"AInf(L) = R

n=0
or equivalently

(Fin(L))**Inf(L) < R. 0

Lemma 4.3.2 L = (Fin(L))*AInf(L) u (Fin(L))"
Proof By definition
L™ = {C[xqsXps ... J[(¥iz1) x; e Fin(L)}

U u

{C[x],...,xn][xi e Fin(L) for i =1,...,n-1
n=1

& X, e Inf(L)}.
It is a simple matter to check that the first term of the right-hand
side union is (Fin(L))” and the second term is (Fin(L))*AInf(L). 0
Lemma 4.3.3 If L is A-free, any solution of X = LAX is A-free.

Proof Let R = LAR = Inf(L) u Fin(L)"R and suppose that A ¢ R. This
implies that A e Fin(L)"R, and hence A should be in Fin(L) which contradicts
the fact that L is A-free.]

Theorem 4.3.1 If L is A-free, L™ is the greatest solution of X

LAX.

Proof Suppose that R is an arbitrary solution, i.e. R = LAR

Inf(L) u Fin(L)"R.
By Lemma 4.3.1, R = (Fin{L))*~Inf(L) u B, where we can assume that

B n (Fin(L))*~Inf(L) = ¢. By Lemma 4.3.2, it is sufficient to show that

B < (Fin(L))”.

- 15 -

If B = ¢, there is nothing to prove. Else, let y ¢ B: we define
an infinite sequence {x],xz,...} as follows:

Since y ¢ R, we have y ¢ Inf(L) or y ¢ Fin(L)"R. The first case
is ruled out by the assumption that B and (Fin{(L))*XInf(L) are disjoint.
Thus y = X{%yq = Clx{17yy, where x; « Fin(L), x; # A since L is A-free,
and ¥y € R. Also A # A by Lemma 4.3.3. |

Now assume that we have x],...;x

n

and there exists Yy € R such that y = x]”..."xn“yn = C[x],...,xn]“yn. We

have either y e Inf(L)} or y, ¢ Fin(L)"R. Again the first case is ruled out

and the second case yields Yo = xn+]“yn+], Xt € Fin(L), Yoi1 € Re Also

y C[x],...,xn]“xn+]“yn+]

C[x],...,xn+]]“yn+1.

By passing to the 1limit, we have an infinite sequence (x],xz,...) such that
for all i, Xg € Fin(L). By construction, for all n 2 1, x]"..."xn pre y
and thus y = C[x],xz,...] or equivalently y « (Fin(L))".

We conclude that B < (Fin(L))” and the theorem is proved. 0

The motivation to introduce our €-operation is as follows:
consider a program m winich has been splitted in a number of modules
TyseeesTp: For each module Tis We associate to the set of its internal runs
a generalized]anguage,Li (cf: symbolic semantics of section 2). Runs of 7
in terms of wi's are finite or infinite sequences of these languages.

Given such a run, (Li ,....L:) n <o, the set of the corresponding runs

i
1 n
of 1 described in terms of instructions is of course C[Li ""’Li].
1 n
If Li # ¢ for all i, this reduces to the analysis made in the net G. But

such that X; € Fin{(L) for i = 1,..

< s

- 16 -

if a module m has no computations (Lik = ¢), then the set of computations of

m will be Inf(C[Li R I

i }]) instead of ¢. The quasinet G' can thus be
k-

used to analyze infinitistic behaviour of a program in a more adequate

way than the net G.

§5 i-O Relations

5.1 Preliminaries

The previous section was concerned with symbolic semantics. In
this chapter, we show how we can use similar tools to deal with I-0
semantics. We assume that the reader is familiar with basic notions of the
algebra of binary relations.

First of all, we describe briefly the algebra of §-relatjons as
defined in the works of Blikle. Let D be an arbitrary non-empty set and

let § be an element not in D. We define

D6 =D u {8}
A= {(a,é)la € Dg}
Re]a(D) ={QuS|QcDxD &S cAS& (6,8) € S}

The elements of Rela(D) are called S-relations over D. They are just
ordinary relations with the following assumptions:
i) (8§,8) « R for all R « Re15(D)

1) there is no pair (§,a) ¢ Rwitha # ¢

If R=Q u S as defined above and R is an I-0 relation of some
program, then Q describes the transmission of inputs into outputs of the
program and S describes the domain of looping: the element (6,8) € S has

no interpretation and is required only for technical reasons.

- 17 -

Let ° represent the usual composition 6f relations, c be the set
theoretic inclusion and I = {(a,a)|a e Dg}: then it can be easily shown
that Q = (Re]G(D),g, f,Ia) is a quasinet (but not a net) in which the bottom
element is {(8,8)}.

5.2 The New Quasinet of I-0 Relations

Let D, § and Ds be as in 5.1. By using a new operation on
relations, very similar to the new concatenation of languages defined in
section 4, we build a quasinet which is isomorphic to Q and which avoids the
carry over of a dummy element (§,8) which has no meaning in terms of the
general interpretation of the quasinet. We denote by Re](D,DG) = {R|R ¢ DxDg}s
we will also use the notation aRb to describe the fact that (a,b) ¢ Rand I
will stand for {(d,d)|d e D}.

The usual composition of relations is associative in Re](D,DG)

and I acts as a one-sided Teft unit but there is no right unit. We denote by

1

Fin(R) =R n D xD

1

Inf(R) = R n D x {8}

Properties 1-10 of section 4.2 have direct analogous in this case. We add

another one
1) Inf(Ry)°R, = ¢.

We define the new composition of relations, denoted by @ , on

Re](D,DS):

R, @ R, = Inf(R)) u Fin(R;)eR,.

- 18 -

We define a mapping,¢ from Relé(D) onto Rel(Da) by ¢(R) = R-0
for all R « Rela(D). Clearly, ¢ 1s a bijection between the two sets:

| moreover, the ordering and arbitrary joins are preserved, i.e. R] c R2

implies ¢(R1) c ¢(R2) and ¢(¥ Ri) = ? ¢(Ri)' To show that composition

is also preserved, we proceed as follows:

6(Ry°Ry) = Ry°Ry -0

Ry OR, = Inf(R]) u Fin(R])oRz;
(a,b) « R]°R2-g.imp]iés that (3c) aR]chb and a # §. If ¢ # §, then
(a,c) € Fin(R]) and (a,b) e Fin(R1)°R2. If c =68, then b = § and

(a,b) = (a,8) € Inf(R1). Thus R1°R,-0 ¢ R]CD R,

By a similar argument, the reverse inclusion also holds.
Hence ¢(R]°R2) = Ry ©R,.

Thus by isomorphism, Q' = (Re](D,DS),g£D,I) is a quasinet, but
‘not a net (note that ¢(I6) = 1).

5.3 Generalized Composition

We now proceed to define a C-operation in the new quasinet.

C: seq(Re](D,Da)) - Re](D,DG)

i) ¢[\] =1
c[R],...,Rn] = R @ C[Rz,...,Rn]

ii) C[R1,R2,...] = {(a,G)I(B(a],aZ,...) ¢ seq (D)) a = a
& viz1 aiFin(Ri) ai+]}

U {(a,G)!aR1...R16 for some i=1}

-19 -

This is clearly a valid C-operation. As usual, we use the
notation Rn, R*, R” to denote the n-th power, the *-iteration and the

w-gperation. One can check the following properties of the « operator:

1) b = ¢ 5) R = Inf(R")

2) I~ = Dx{8} 6) Ry =Ry = Ry =R, |

3) ROR” = R” 7). R = (Fin(R))* ® Inf(R) u (Fin(R))”
4) R"@Q=R

Note the difference with the case of generalized concatenation
of 1anguages in property 2): the unit of Rel(D,8) is carried over in Dx{G}
when raised to power «, while the unit of GLan(A) is carried over in itself.
Theorem 4.3.1 has an analogous part in this section, a bit weaker

in its statement.

Theorem 5.3.1 R is a solution of the equation X = R® X and for any other

soluticn P, the domain of P is included in the domain of R”.

Proof By property 3) above, R” = R® R -and thus R” is a soiution of
the equation X = R©@ X.

Let P be another solution: P = R@ P = Inf(R) u Fin(R)°P.

If P = ¢, there is nothing to prove. Else let (a],b) e Ps

we define inductively a sequence (a],az,..,,a), n <=, over Du {8}, as

n
follows:

(agsb)e P implies (a;sb)e Inf(R) or (3a, « D) a;Fin(R)a,P b:.if the
first case holds, we put a, = b = § and we stop: if the second case holds,

a, becomes the second element of the sequence and we do the induction step.

- 20 -

Suppose we have defined (a1,a2,...,an) such that aiFin(R)a1+]
for i = 1,...,n-1 and a P b; then either (an,b) e Inf(R) or (3an+] e D)
anFin(R)an+1 P b: if the first case holds, we put a_ , = b = & and we stop:
else LI becomes the n+lst element of the sequence and we go back to the
induction step. |

Clearly, two caseé can happen:

i) the sequence (al,...,an) n 2 2 is finite; then by construction
a, =9 and a1F1n(R)a2...an_zFin(R)an_]Inf(R)G. This means that (a],s) e R
and a, is in the domain of R™. | _

1) otherwise the set of sequences over D‘{(a1),(a],a2),(a1,az,a3),...}
has no maximal element with respect to pre. In this case, for all i = 1,
we have by construction a;Fin(R)a;,; and thus (a;,8) « R” by the definition
of theAoo operator. Again this shows that ay is in the domain of R .

In both cases the theorem is proved. d

56 Adequacy of the €-operations in the Hlew Quasinets

6.1 Preliminaries

Let Q = (U,<,°,e,€) be a quasinet withvSpecified C-operation.

We introduce another function &;(GLan(U))+ U defined by
¥S < seq(U) €(S) = ul€(t)[t e S}.

The motivation for introducing this operation is as follows:
each run of a given program defines a sequence of elements in U which are
just the objects associated with each module encountered in that

particular run; by applying € to that sequence, we can find an element of U

- 21 -

which corresponds to that run; the operation € thus gives‘us an element
of U which correSpdnds to all possible runs of a given program.

A sequence t < seq(U) is said to be proper with respect to the
given €-operation if it is either finite or whenever infinite has the

property:
vue U €(t)eu = €(t).

A set S c seq(U) is proper if all its elements are proper sequences.
Now let S be a set of sequences of elements of U corresponding

to all possible runs of a given program. If this program loops infinitely
on itself, we obtain $” as the set of all possible runs of that new program,
and the element associated to it is €(S”). For consistency, we would Tike
it to be equal to (&(S))oo since €(S) is the element of U corresponding to
all possible runs of the former program. Thus we make the following
definicion: € is said to be adequate in a given quasinet if for any proper

set S < seq(U) with A ¢ S, we have the property:

£(s7) = (€(s))”.

It is important to check that property separately since examples can be given

of quasinets with valid C—operafion in which the above equality is not satisfied.
Before proving the adequacy property in the new quasinets, we give

two lemmas which hold in any quasinet. The first one is stated without

proof.

Lemma 6.1.1 For any fami1y'{5p|p e P} with Sp c seq(U), we have

eus)= ugs).
peP P pef™ P

- 22 -

Lemma 6.1.2 For any finite or denumerable sets $.,S, < seq(U), if S; is
proper thenvg(s]ﬂsz) =\£(S])°QKSZ), except the case where S, = ¢ and
L(Fin(S3))e0 # o

1]

Proof €(5,25,) = L(Inf(S{) v Fin($;)"S,)
‘Eﬁlnf(s])) ngﬁFin(S])ASZ) by Lemma 6.1.1

= ue(ty) [ty e Inf(S{)} v u{e(t) |t « Fin(s,)"s,}

i

Using the fact that S] is proper and that ° is additive, we can rewrite

the first term of the union

u{c(t])[t] € Inf(S])} = U{t(t])°t(t2)[t] € Inf(S1),t2 € 52}

it

U{E(t1)]t] € Inf(S])}°U{C(t2)|t2 € Sy}
L(Inf(S1))°L(S,)

1

The second term of the union can also be rewritten using the second property

of the C-operation and the additivity of ° :

u{e(t) |t e Fin($;)7S,} = U{C(t]“tz)lt] e Fin(s,),ty ¢ S,}

tl

ue(t)°t(t2)|t e Fin(S),t2 e S }

U{c(t It e Fin(s, yeu{e(t 1t2 e Sy}
L(Fin($;))°L(S,)

I

Note that in this chain of equalities we need the hypothesis that we do not

consider the case S, = ¢ (hence €(S,) = o) and €(Fin($;))°0 # o.
Going back to the expression for t(S]ASZ), we get
£(5,75,) = §(Inf(S1))°8(S,) v KFIn(S;))°L(S,)

£(Inf(S) u Fin($;))°L(S,)

VE,(S) o€ (52) ']

n

- 23 -

6.2 Adequacy of € in (GLan(A),s;*,{A}.C)

From now on, we consider a proper set S c seq(U) with X ¢ S.

| Lenma 6.2.1 €(S7) is a solution of X = gﬁs)ﬂx.

Proof S and S satisfy the hypothesis of Lemma 6.1.2. Thus we obtain

>>

£(5)2(87) = &

§(s7) = g(s55)
= ¢(s7)
The following lemma is quite obvious‘and will not be proved.
Lemma 6.2.2 If S c seq(GLan(A)) is a proper set with X ¢ S, then
i) Inf{gﬂs)) j}Inf(S)) u Inf(EEFin(S)))

i) Fin(e(s)) = Fin(&(Fin(s))).

1]

Lemma 6.2.3 (Fin(ESS)))m 5\55§”).

Proof Let x be in (Fin(€(s)))".

By definition, this means

(Bx],xz,...)(xi e Fin(€(S))) x = Clxq»%ps. .. 1.
Using Lemma 6.2.2, we have

(3xq5%ps .) (x5 € Fin(€(Fin(s)))) x = C[X1?X2""]'

- Thus we can write

(Ht],tz,...)(tj e Fin(S))(Bxi € Fin(t(ti))) X = C[x],xz,...].

Since t; e Fin(S) for all i, we can change the indices of the Tanguages in

each sequence by putting t, = Ly seeeol and now x; e Fin(t(ti))

Ny q-1 i
1 i+]
implies that (Ht],tz,...)(ti e Fin(S)) x e t[C[t],tZ,...]]. Hence

X evg(Sw), using the definition of €.

- 24 -

Theorem 6.2.1 €(S) = (€(s))”

Proof By Lemma 6.2.1,v£ﬁsw) is a solution of X =UE(S)QX.
By Theorem 4.3.1, we thus have
S < (g(sN”.
Lemma 4.3.1 tells us that (Fin(€(S)))*AInf(8(S)) g\gﬁs“).
Lemma 6.2.3 yields that (FinQﬁﬂS))oo is also included invg(sm).
Using the fact that (8(S))” = (Fin(€(S)))**Inf((S)) v (Fin(&(s))” b
Lemma 4.3.2, we conclude that (lE(S))°° glg(sm). Thuslgﬂsm) = ggﬂs))m,

6.3 Adequacy of € on (Re1(D §),<,9,1,0)

The proof of adequacy of € in this second quasinet does not
differ very much from the one in the previous section. |

We first make an observation: since we assume that X ¢ S, s”
yie]ds only infinite sequences of relations and thusug(sm) c Dx{8}.
Obviously, it is also true that (gﬂs))“ c Dx{8}. Hence we need only to

compake the domain of the two relations.

Lemma 6.3.1 €(S”) is a solution of X = €(S) @ X.

Proof As in Lemma 6.2.1. O

Lemma 6.3.2 (Fln(t(S))) c €¢(s7).

A

Proof As in Lemma 6.2.3. ‘ 0

- 25 -

Theorem 6.3.1 €(5”) =g§wff

Proof By Lemma 6.3.1 and Theorem 5.3.1, the domain of €(S”) is
included in the domain of Qgﬁs))”. |

By the proof of Theorem 5.3.1, it is obvious that (Fin(R))* @ Inf(R)
is included in any sotution of X = R®@ X. In this case, we can conclude
because of Lemma 6.3.1 that (FinﬁgﬂS)))*(@ Inf(€(s)) g\§ﬂ§w). Lemma 6.3.2
also yields that (Fin(.gv:u(s)))00 g‘ggs”).

since (€(5))” = (Fin(€(s)))* @ Inf(g(s)) v (Fin(€(s)))" by
property 7 of » gperator in section 5.3, we have that (\E(S))00 E\Q‘Sm)
and hence the domain of gg;s))” is included in the domain of»E(Sm).

Thus‘gﬂsw) and (&}S))m_have equal domain and by the observation

made before Lemma 6.3.1, they are equal.
O

- 26 -

References

Blikle [74]: An extended approach to mathematical analysis of programs,
CCPAS Reports, 1974,

B]ik]é [76a]: An introduction to the mathematical theory of programs,

Lecture notes of .a course given at the University of
Waterloo, 1976.

B1ikle [76b]: An analysis of programs by algebraic means, in the Mathematical
Foundations of Computer Science (Proc. MFCS Sem. of the Int.
Math. S. Banach Center in Warsaw, Feb.l-June 26, 1974),
Polish Scientific Publishers, Warsaw (to appear in 1976).

Redziejawski [72]: The theory of general events and its application to

parallel programming, World Trade Corporation, IBM Nordic
{aboratory, Sweden, TP 18.220, 1972,

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

