Eh Reference Manual

INSIWIETEEA 20NZIIS daULNdNCD

|
JINZIN L elve 0 M@ZMEQ@ CIENRGEl @)

INSIMLEEI0 JONZSIDS H8LNeNO0
JNSINILEvERId SOINSIOS G210 IS

November 1976
CS-76-45

Reinaldo S. C. Braga

OO0 TElTM S0 ALISHSIAIND
QQTelslly =0 ALISEEAINN
O0TE=lLgn O >§@@M>zzg
QU leiglym 20 ALSESININI |

Eh Reference Manual

Reinaldo S. C. Braga

Department of Computer Science
University of Waterloo

~This research was supported by the National Research Council.

R VR RV VTR T S
Lo B — —

7.1
7.2
7.3
74
7.5
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.7
8
8.1
8.2
9
10
10.1
10.2
10.3
10.4
10.5
10.6
11

Appendix 1

Table of Contents

Introduction
The Eh Machine
Basic Symbols
Comments
Metalanguage
Identifiers and Constants
Identifiers
Constants
Byte and String Constants
Names, values and pointers
Expressions
Arithmetic Operators
Bitwise Operators
Relational Operators
Logical Operators
Assignment Operators
Special Operators
Increment/Decrement Operators
Address Operator
Indirection Operator
Indexing Operators
The Query
Function Calls
Precedence of Operators
Storage Class
Externals
Automatic variables
Functions
Statements
Declarative Statements
Transfer Statements
Interrupt control statements
Twit Statement
Alternative Statements
Iterative Statements
Manifests and Input File Indirection

Differences between Eh and B

SO N B b —

Eh Reference Manual

Reinaldo S. C. Braga

1. Introduction

Eh is a programming language designed for writing portable systems and real-time
software for minicomputers.

Programs written in Eh are not automatically rendered portable, in the same sense that
programs written in high level languages are not correct simply because they compile.
However, the language Eh facilitates the writing of programs which can be executed in
many computers with few, if any, changes.

Eh evolved from B, a language developed at Bell Laboratories, described in "The
Programming Language B”, by S. C. Johnson and B. W. Kernighan, Bell Laboratories
Computing Science Technical Report #8, January 1973.

th retains most of B's structure, which was slightly modified to eliminate portability
hazards. Eh introduces the concept of controlling interrupts and incorporates a means of
adding machine instructions, which cannot be generated by the compiler.

This manual covers every aspect of the Eh language. Except for the last section, examples
consist of segments of programs; the variables referenced are assumed to be correctly
defined.

Eh programs are usually executed under Thoth, which is a real-time executive. It has
functions to perform 1/0 and a process monitor. Thoth is described in ”A Portable Real-
Time Executive — THOTH", by Lawrence S. Melen (Master's Thesis, University of
Waterloo-1976).

Other general use functions are described in "The Portable Eh Library”, by Michael A.
Malcolm. :

These documents include progra:n listings which are examples of good programming
style.

2. The Eh Machine

The Eh language is designed in a such a fashion that it can be implemented on most
minicomputers. Due to the fact that minicomputers have different addressing capabilities
and arithmetic units, a computer model has been chosen to specify the semantics of the
language. This model is based on characteristics of real minicomputers, and is what we
call the "Eh machine”.

The Eh machine has the following characteristics:

It is a binary computer, but its arithmetic unit is not defined. That is, the arithmetic unit
of the target machine is used as it is. Therefore the Eh machine might use one's com-
plement, two's complement or even signed-magnitude arithmetic.

It is word oriented. All operators require (with one exception) word operands, and
produce word results. A word is assumed to be at least 16 bits long.

Eh has one other type of data: the string. Strings are arbitrarily long sequences of byres.
A byte has at least 8 bits and no longer than a word. A byte is not a data type of the
language. It exists only in strings. Strings are terminated by a special byte ("*0"). This
byte cannot occur within a string.

Each word has a unique address. Addresses are represented by integers which fit within a
word. The address of a word plus one is the address of the next consecutive word. Word
addresses are referred to in the text as Eh-addresses, since on some hardware they differ
from machine addresses. The primary assumption here is that the target machine has a
linear (piecewise) store. '

The Eh language makes use of a run-time stack (see Section 8). This stack is used by
functions to allocate automatic variables, temporary results, arguments for function calls
and other quantities. The part of the stack used by a function invocation is called a stack
frame.

Elements in the stack frame are referenced in a arbitrary order. Therefore, it is highly
desirable that the target computer has an index register which can be used for addressing
the stack frame. The lack of a dedicated index register will adversely affect the execution
efficiency of Eh programs.

Another implementation detail, which also affects the efficiency of execution, is that if the
target computer is not word addressed, an Eh-address is a multiple of the machine
address. This results in substantial overhead in converting Eh-addresses to machine
addresses.

3. Basic Symbols

To enhance the portability of Eh programs, the ASCII character set is used (with one ex-
ception). Eh programs are written with the following subset of the ASCII character set:
-the ferters, uppercase and lowercase.

-the digits: 0123456789

-the special symbols : \ — ., ;: {}[]()'"<>7+ —* /%1 & =4~

-the non-printable characters: space, horizontal tabulation and form feed. These can be
used interchangeably to improve the style of Eh-programs.

The non-printable new line is the only change to the ASCII set: It denotes the end of a
line, and takes the place of the ASCII character SO (octal 016).

-the keywords:
auto break case default disable else enable extrn for goto if next return select while

In this manual, keywords are printed in boldface, the other symbols are printed in roman.
They are distinguished only in the manual, to stress usage. In source programs they are
represented with ASCII characters.

Other printable ASCII characters can be used only within strings, character constants
and comments.
3.1. Comments

The character "\" is used to begin comments. A comment is the text following the '\’ up to
the first new line character. Comments can appear anywhere.

Examples:
\ comments....
current_line ; \ variable used to store the current line number of the input file.

The last example shows a comment which is called a remark. Remarks are used to com-
ment examples in the following sections.

4
4. Metalanguage

Eh is described with a metalanguage similar to Backus Normal Form. This metalanguage
is used to define the syntax of Eh by giving rules for the synthesis of all the possible Eh
programs. '

The set of Eh’s basic symbols is called terminals and is denoted by =. =*, the reflexive
and transitive closure of 2, is the set of all possible phrases from . The set of syntactical-
ly correct Eh programs is a subset of *,

The metalanguage is used to define subsets of Z*, in terms of other defined subsets and
terminals. These subsets are denoted by names written in italics and they are referred to
as non-terminals. '

Non-terminals are defined by productions which are of the form:

subset; : list]
list2

listn;

where subset; is the non-terminal being defined; listj (1 < j < n;) are sequences of ter-
minals and/or non-terminals. At most one of listj can be the empty set.

A production defines a non-terminal as the set produced by the union (for all J)of the con-
catenation of the terms in each listj. Here, concatenation is defined as:

If x and y are sets;

Xy is the set { ab| foralla € x, forall b € y |

A terminal names the set consisting of itself.

There are some non-terminals which are more easily described in English. Non-terminals
which fall in this category, are described as follows:

null is the empty set.

digit is the set { 0, 1, 2,3,4,5,6,7,8, 9}

non-zero-digit is the set { 1, 2,3, 4,5, 6,7, 8,9 |.

octal-digit is the set { 0, 1,2, 3,4,5,6, 7 }.

hexa-digit is the union of digit and { a, b, c,d, e, f, A, B, C, D, E, F }.
letter is the union of the sets { a, b, ¢,...,z } and | A, B, C,...,.Z b
printable-ASCII is the set of printable ASCII characters except the character
1%

alpha-character is the union of letter and | ., _ |.

new-line is the new line character.

5. Identifiers and Constants

5.1, Identifiers

Syntax:

alphanum-character :

identifier :

Restrictions:

alpha-character
digit.

alpha-character
identifier alphanum-character

Identifiers consisting of the same letters which differ only in their case are regarded as the
same identifiers. Identifiers must not exceed 32 characters in length.

Note that although the set of keywords (see Section 3) are valid identifiers according to
the rules above, they cannot be used as such.

Identifiers beginning with '.’ are used to designate system functions and external variables
used in the Thoth operating system, the profiler, debugger, etc. Therefore, to avoid nam-
ing conflicts, the ordinary user is advised against using '." as the first character of an iden-

tifier.

Examples:
a
first
i12.5
Key_word
Nargs

5.2, Constants
Syntax:

constant .

constant-expr !

constant-expr
string-constant

unary-op constant-token
constant-token binary-op constant-token
constant-token

constant-token : . octal-constant
decimal-constant
hexa-constant
byte-constant
(constant-expr)

octal-constant : 0
octal-constant octal-digit

decimal-constant : non-zero-digit
decimal-constant digit

hexa-constant : $ hexa-digit
hexa-constant hexa-digit

Examples:
octal decimal hexadecimal
0 2 $F
0100 785 $OFEIL

These forms of constants in addition to the byte-constant (described in next section)
can be used to form expressions which can be used anywhere a constant is required.

5.3. Byte and String Constants

There are 2 ways to define constants which are used in character manipulation.
These constants are used to specify ASCII characters. The ASCII control characters
must be specified by an encoding because they have special meaning to the 1/0 software.

This encoding is done with printable characters. The character "*” is used as an escape
symbol. Following are the escaped characters defined in Eh:

*0 - null character, also used as string delimiter
*b - backspace

*e - cot

*f - form feed

*n - new line

*r - carriage return

*] - line feed

*t - horizontal tabulation

** - asterisk

* - single quote

* - double quote

*#oo0 - 000 is an octal encoding

*$hh - hh is a hexadecimal encoding

Syntax:
escaped-character is the set containing all escape sequences as defined above.

character-element : escaped-character
printable-ASCII

byte-constant : " character-element '

string-element : null
String-element character-element

string-constant : " string-element "

Semantics:

Except in global initialization (see Section 8), byte and string constants can be used
wherever numeric constants can be used. Note that the definition of a string constant can-
not start in one line and be continued on the next.

Internally, strings are stored in a packed format, several bytes per word.
Following the last specified byte of a string constant, an end of string delimiter (the
ASCII null character *0) is automatically added.

Examples:

byte constants:

[N

a
10'

"*n' \ the new line character
"*4034 \ the ASCII FS

string constants:
"hello”
"Jul/6/1976 *n"”

n

\ a null string

6. Names, values and pointers

i

Each identifier is associated with a unique word of the Eh machine. An identifier is said to
refer to, or name its associated word. Syntactically, this is expressed by:

name : identifier

An identifier has a value which is the contents of the word it refers to. Given a name, its
value is always accessible. Therefore,

value : name
specifies that the contents of the word referenced by name is to be used.
Constants have only a value. They cannot be used where a name is required. The value of
a string-constant is a pointer to the word containing the first byte of the string. A pointer

is a value which is used as an Eh-address, or as a relative displacement to a word.

There is an operator which can refer to bytes within strings. This operator has the follow-
ing syntax:

byte-name : value | value |

The first value is a pointer to a string, and the second value is the offset which specifies
which byte from the string is to be referred to. A byte-name can be used anywhere as a
value. That is,

value : byte-name

means that the byte referred to by byte-name is available (right-justified in a word) as a
value.

To store a value into a byte within a string it is necessary to use the operator ”=", describ-
ed in the Section 7.5.

There are two operators for converting pointers into names, these operators are the in-
direction operator and the array indexing operator, which are described in the Sections
7.6.3 and 7.6.4; and there is one operator for converting a name into a pointer, it is the
address operator and is described in the Section 7.6.2.

1t should be noted that the non-terminals name and value can-represent expressions, as it
is described in the next section.

7. Expressions

Eh has a large set of operators. These operators correspond closely with operators
available on most computers. Thus one can code expressions using the most convenient
operators and the expressions can be compiled to efficient machine code. Eh does not
check the validity of arguments during execution. An incorrectly written program could
try to address nonexistent memory locations causing hardware traps. The results of such
hardware traps are computer dependent. Wherever possible, such exceptions are ignored.

The operators are formed with one or more symbols. If an operator is represented by two
or more symbols, then there must be no spaces between the symbols.

Each operator in an expression has a precedence value. This precedence is used along
with association rules to determine the order of evaluation of the expression. If two
neighboring operators have the same precedence, the left operation is performed before
the right, except in the cases of assignment operators and the query for which the right
operation is performed before the left.

The highest-precedence operation is designated by the parentheses which are used only
for controlling the order of evaluation. Its syntax is:

value : (value)
name : (name)

The order of operand evaluation is also fully defined. Most binary operators require that
the left operand be evaluated before the right, after which the operation is performed. In
function calls, the arguments are evaluated in a left-to-right order, then the function
name is evaluated, and the function call is performed. The assignment and array
operators evaluate the right operand before the left.

Note that the order of evaluation is fully defined and hence side effects are well-defined
and therefore portable.

Operators can be roughly divided into the following categories:

1 arithmetic

2 bitwise

3 relational

4 logical

S assignment

6 miscellaneous

10

7.1. Arithmetic Operators
Syntax:

value : value binary-arith-oper value
unary-arith-oper value

binary-arith-oper : +

*

unary-arith-oper : —
Semantics:

+ results in the algebraic sum of its operands.

— (binary) results in the difference of its operands.

* results in the product of its operands.

/ results in the quotient of its operands.

% results in the remainder of the division of its operands. This result conforms with the
value most computers return as a remainder when dividing two numbers. That is, given x
and y, the relation

=(x%y)+(x/y)*y
is true.

The unary operator — results in the negation of its operand.

7.2. Bitwise Operators

‘Syntax:
value : value bitwise-oper value
~ value
bitwise-oper : <<
>>
&

t
1

11

Semantics:

~ results in the logical one’s complement of its operand.

<< results in the shifting of the left operand to the left by the number of bits specified by
the right operand.

>> is similar to << but the shifting is to the right.

& results in the bitwise and of its operands.

4 results in the bitwise exclusive-or of its operands.

| results in the bitwise or of its operands.

The operations above treat the operands as strings of bits. The shift operators always fill
vacated bit positions with zeros.

7.3. Relational Operators

Syntax:
value : value relational-oper value
relational-oper : ==
1=
<
<=
>=
>
Semantics:

== is the equality operator,

1= is the inequality operator;

< is the arithmetic less than operator

> is the arithmetic greater than operator;

<= is the arithmetic less than or equal operator;

> = is the arithmetic greater than or equal operator.

The result of any of these operators is 1 if the relation is true; 0, if the relation is false.

7.4. Logical Operators
Syntax:
value : value binary-logical-oper value

unary-logical-oper value

binary-logical-oper : &&

unary-logical-oper . !

Semantics:

&& is the logical and operator;

| | is the logical or operator;

! is the logical complement operator.

The result of these operators is:

&& : 1 if both operands are non-zero, 0 otherwise

[: Lif either (or both) of its operands is non-zero, 0 otherwise

1. 1 if its operand is zero, O otherwise

7.5. Assignment Operators
Syntax:

value : name assign-oper value
byte-name = value

assign-oper : =
-l— =

Semantics:

The operator = is the conventional assignment; the value replaces the contents of the ob-

ject referred to by name. (or byte-name.) Expressions using the other operators are
equivalent to

name = name X value

where x is one of the symbols which can precede =", in the assign-oper set, except for the
fact that name is evaluated only once.

13

A byte-name can only be used as the left operand for the simple assignment operator or
as a value. For example, ‘

x{y}+=1 is illegal.
7.6. Special Operators
There are several operators which are used mainly in conjunction with array addressing,

or indirect addressing. These operators are also used in other ways.

7.6.1. Increment/Decrement Operators

Syntax:
value : ' name inc-dec-op
inc-dec-op name
inc-dec-op : ++
Semantics:

The value of the named word is incremented (or decremented) by 1. If the operator
precedes the operand, then the result is the value of the operand after the increment
(decrement). If the operator follows the operand, then the result is the value of the
operand before the increment (decrement).
Examples:
If the identifier x initially has the value 10, evaluation of the expression

i=++x
causes both x and i to have the value 11.
But after evaluation of the expression:

i=x++

the value of i is 10 and the value of x is 11.

7.6.2. Address Operator

Syntax:
value : & name

Semantics:

The address operator results in the Eh-address of the operand.

7.6.3. Indirection Operator

Syntax:
name : * value

Semantics:

The indirection operator results in a name.

7.6.4. Word Indexing Operator

Syntax:
name : value [value |

Semantics:
This operator is used to reference an element in a word array. This operator is com-
mutative (except for side effects), that is one of the operands is regarded as a absolute

pointer, the other is regarded as an offset (or a relative pointer.)

The address, indirection and word indexing operators have the followmg properties (ex-
cept for side-effects in X and Y):

X[Y] = YIX] = M X+Y)=*Y+X)
*&X = &*X =X
The symbol = denotes equivalence.

*& X is another name for the word referred to by X, whereas &*X yields the value of X.

7.6.5. The Query
Syntax:

value : expr-test 7 expr-true : expr-false

expr-test ! value

expr-true : value

expr-false : value
Semantics:

The expr-test is evaluated. If this value is nonzero then expr-true is evaluated and is the
result of the operator. Otherwise the expr-false is evaluated and is the result of the
operator.
7.6.6. Function Calls
Syntéx:

value : name (arg-list)

arg-list : null
non-null-arg-list

non-null-arg-list : value
non-null-arg-list , value
Semantics:
The arguments within arg-list are evaluated left-to-right and the results of these ex-
pressions are passed as arguments to the function referred to by the name. If the function

~ returns a result, it is the value of the expression name (arg-list); otherwise the resulting
value is undefined.

7.7. Precedence of Operators

The operators are listed below in decreasing levels of precedence. All operators on a given
line have the same precedence.

++ and —— postfix, the array operators, function calls.
++ and —— prefix, —, ~, &, *, !, (all unary operators)
<< >, &1 |

*, /s % (binary)

+, — (binary)

== 1= <, <=, > >=
&&

1

?

=D 0O I AN AW —

0 = and all other assignments.

16

8. Storage Class

An Eh program has the following syntax:

eh-program : module
eh-program module

module : external
Sfunction

Semantics:

An identifier can be defined either with a global scope, making it potentially accessible by
all functions in the program, or with a local scope, in which case the identifier is accessible
only within the function in which it is defined. Local variables are allocated from a run-
time stack. A function allocates a frame from the stack for its local variables every time it
is invoked. The frame is released when the function returns.

Since Eh has one global level of identifiers, modules are defined sequentially, unlike algol-
type languages, where functions can be defined within functions.

Different modules may be defined with identical names, but the loader loads the first in-
stance of a module and ignores any others with the same name.

Within a function there is another type of identifier, the /abel. A label has local scope and
can only be used in goto and twit statements within the same function. (See Section 10.)

An identifier with global scope is called external and a local scope identifier (except for
labels) is called automatic. '

8.1. Externals

Syntax:

external : identifier initial-value ;
identifier | size } initial-string ;
identifier | size] initial-list

size . null
constant

initial-value : null
constant
identifier

initial-string : null
string-constant

initial-list : null

list

17

fist : constant
identifier
string-constant
[list]
list , list
Semantics:

The values of the initializers (elements from initial-list, initial-string ot initial-value) are:

null 0

constant : its value

string-constant : a pointer to the string bytes

identifier : a pointer to the external or function referred to by the identifier. The
identifier must be defined elsewhere in the program, with a global scope.
[list]: a pointer to an area where the values of elements in /ist are stored con-
secutively. ‘ '

The identifier defined as external refers to a word; its value depends on the form of its
declaration. :

The form: identifier initial-value

sets the value of the identifier to the value of initial-value.

Examples:
A \ value is zero
B 10 ; \ value is 10
CA; \ value is a pointer to A

The form: identifier { size | initial-string

sets the value of the identifier as a pointer to an area. If a null initial-string is given, the '
area is allocated to contain (size+1) null bytes. If there is a non-null initial-string, the
area is initialized with the string, and the allocation is done according to the larger of
(size+1) and the size of the string constant.

Examples:
ci{10}; \ Reserves a 11-byte area.
D {15 } "hello” ; \ The 16-byte area contains "hello”.
E {} "january” ; \ The 8-byte area contains "january”.
F{2}"two"; \ The 4-byte arca contains "two".

The form : identifier [size] initial-list

sets the identifier's value to a pointer to an area. This area is allocated in terms of words.
Values contained in initial-list are stored in consecutive words of this area. As with the
previous form, the size of the area is the larger of the specified (size+1) and the actual
number of elements in the list.

Examples:

G[I0]A, B, C D,E F;

This statement defines an 11 word area, the first 6 words contain pointers to A, B, C, D, E
and F. The rest are zero. The value of G is a pointer to this area.

H[1]0, "data", "a’; \ The vector is 3 words long.
input [100] ; \ The vector is 101 words long
FUNCS]] actl, act2, act3; \ The vector is 3 words long.
Ident2by2[][1,01, [0, 1];

The last statement shows how a 2-dimensional 2-by-2 identity matrix could be defined.

8.2. Automatic variables
A function allocates all its automatic variables, plus environment variables (e.g. return
address) and temporaries, in a stack frame. A new frame is allocated every time the

function is invoked.

Identifiers are defined to be automatic with the auto statement.

Syntax:
auto-stmt @ aute auto-defns-list

auto-defns-list : ' auto-defn
auto-defns-list , auto-defn

auto-defn : identifier
identifier [size]

identifier | size |

size : constant

Semantics:
The auto statement is used to define identifiers with a local scope.
Identifiers defined with the form: identifier [size]

have as value the pointer to an area, also allocated from the run-time stack. The area has
(size+1) words.

The form: identifier | size }

sets the identifier’s value to a pointer to an area of (size+1) bytes, which is also allocated
from the stack. These pointers are set at run time upon function entry.

Examples:

auto i;
auto a, bl, ¢, d;
auto j[20 }, k{ 10 };

The last statement sets the value of j to be a pointer to a 21-word area and the value of k
to be a pointer to a l1-byte area.

20

9. Functions

Syntax:
Sfunction : identifier (list-of-args) statement
list-of-args : null
? .
j."ormal-arg-list
Sformal-arg-list : identifier ‘
formal-arg-list | identifier
Semantics:

The function definition has several effects: code is generated for statement; the identifier’s
name refers to the first word of the code; and the formal arguments (if any) are allocated
in the stack frame, as if they are automatic variables.

The form of function definition which uses formal-arg-list allows reference to the
arguments by their variable names. The function can be called with as many actual
arguments as desired. That is, there is no necessity for the caller to pass all arguments
specified in the function definition. The function can determine the number of arguments
actually received, by calling the function .Nargs. For example,

-na = .Nargs();

is used to store in the variable na the number of actual arguments passed to the current
function being executed.

The formal argument "?”, together with the functions .Nargs and .Arg is used in functions
which can potentially receive an arbitrarily large number of actual arguments. Within
such functions, the expression

X = Arg(n);

sets x to the value of the n-th argument.

21

Example:
.Equal (sl, s2)
\ Compare sl to s2.

\ return: 0 if sl !'= s2
\ 1 if sl == s2

\ sl == s2 iff they are of equal length and each
\ corresponding byte is the same,

{
auto i, c;
i =0
while ((c=sl{i}) && ¢ == s2{i}) ++i;

return{ ¢ == s2{i});

!

This example was typeset from the Eh library. It defines the function .Equal, which deter-
mines if two given strings are identical.

22

10. Statements

Syntax:

statement : simple-stmt
| statement-list |
alternative-stmt
iterative-stmt
label : statement

’

statement-list : statement
statement-list statement

simple-stmt : decl-stmt
transfer-stmt
interrupt-control-stmt
twit-statement

Note that the form label : statement

defines the identifier label as a name which refers to the following statement.

10.1. Declarative Statements
Syntax:

decl-stmt : auto-stmt

extrn-stmt

Semantics:
The declarative statements must precede all other statements within a function. The auto
statement is described in Section 8.2.
Extrn Statement
Syntax:

extrn-stmt : extrn exirns-list

extrns-list : identifier
extrns-list , identifier

23

Semantics:

The extrn statement is used to establish accessibility of global identifiers in the body of
functions.

Examples:
extrn a,b,c,d;
extrn var;
10.2. Transfer Statements
Syntax:
transfer-stmt : goto-statement
next-statement
break-statement
return-statement
Goto Statement
Syntax:
goto-statement : goto label
Semantics:
The label must be defined in the function. When a goto statement is executed, control is

transferred to the statement referred to by the label.

Next and Break Statements

Syntax:
next-statement : next
break-statement : break
Semantics:

next and break are used within iterative statements (for, repeat, while).
next causes the next iteration to begin; break causes termination of the iteration.

24

Return Statement
Syntax:

return-statement : return
return (value)

Semantics:

This statement is used to return control of execution to the point where the function was
called. The second form is used to return a value. (See Section 7.6.6.)

10.3. Interrupt control statements

Syntax;

interrupt-control-stmt : enable
disable

Semantics:
These statements are provided to allow control of the target machine's interrupt
mechanism. disable prevents hardware interrupt requests from being honoured. In some
machines it is impossible to disable all interrupts, for instance, “Power Fail” interrupts.
The enable statement restores the interrupt level, or mask to that which the prbgram had
before the previous disable. enable must be in the same function as its matching (previous-
ly executed) disable.
If the program is being executed in a disabled mode, the statements:

enable; disable;
allow interrupts to occur between execution of the enable and disable.
These statements are not required in most programs; they are used in some operating
system functions and real-time application programs. Their indiscriminate use can cause
subtle errors and even hardware traps on some computers.
10.4. Twit Statement

Syntax:

twit-statement : twit (list-of-arguments)

Semantics:

This statement allows highly machine specific code to be inserted directly into a program.
The number and form of arguments of the twit statement, and its semantics, are im-
plementation dependent.

10.5. Alternative Statements

Syntax:

alternative-stmt : if-statement
select-statement

If Statement

Syntax:
if-statement : if (value) true-stmt
if (value) true-stmt else false-stmt
true-stmt : statement
Sfalse-stmt : statement
Semantics:

The false-stmt is associated with the first immediately preceeding if-statement which
“does not have a false-stmt.

The value is evaluated. If the result is non-zero, then the true-stmt is executed and the
false-stmt statement, if any, is not executed. If the result is zero, only the false-stmt
statement, if any, is executed.
Examples:

if(x ==0)y =1
y is assigned to the value of 1, if and only if the value of x is zero.

if (!¢) ++null_cnt; else putchar(¢);

If ¢ is zero, the variable null_cnt is incremented. If ¢ is non-zero, the function putchar is
called with ¢ as an actual parameter.

26

Select Statements
Syntax:
select-statement : string-select-statement

word-select-statement

String select statement

Syntax:
string-select-statement : select{ value | { str-case-statement-list |
str-case-statement-list : str-case-statement
str-case-statement-list ~ str-case-statement
str-case-statement : s-label : statement
s-label : str-case-statement
s-label : case string-constant
default
Semantics:

The s-label string constants must be unique within each string select statement. The ex-
ecution of a string sclect statement is logically equivalent to a chain of if-else statements.
That is, first, value is evaluated (only once), then this result, which is a string pointer, is
compared (using string comparisons) with the string constants from the s-labels. When
the comparison yields an equal result, the statement associated with the string constant is
executed. If all comparisons fail, the statement labelled default, if any, is executed.

The select statement shown below on the left is equivalent to the statement on the right,
except for the use of the variable s.

select { expression | !
{ § = expression ;

case "abc” : statement] if(.Equal(s, "abc”)) statement]
case "def” : statement2 else if(.Equal(s, "def”)) statement2
case "wxyz” : statementn else if(.Equal(s, "wxyz”)) statementn

default : statementd else statementd

| !

Word Select Statement
Syntax:
word-select-statement :

word-case-statement-list :

word-case-statement :

w-label :

relational-op :

select(value) | word-case-statement-list |

word-case-statement
word-case-statement-list word-case-statement

w-label : statement
w-label . word-case-statement

case constant

case relational-op constant
case constant :: constant
default

VV AA
i

A w-label defines a range of integers. The table below gives the ranges defined by each

possible w-label.

case const .
case > const :

const
const+1 through maxinteger

case > = const : const through maxinteger

case < COHS!
case <= cte :
case constl ::

mininteger through const-1
mininteger through const
const? : constl through const2.

maxinteger is the largest positive integer and mininteger the largest (in magnitude)

negative integer available in the target

computer.

The word-select-statement has the following semantics; The value is evaluated and con-
sidered to be a signed integer. The statement associated with the range which contains

this integer is executed. If no range ¢
default, if any, is executed.

ontains this integer, the statement labelled by

The ranges defined by w-/abels in a word-select statement must be mutually exclusive.
That is no integer may be in more than one of the specified ranges.

The example below shows on the right a
statement on the left; except for the us

statement which is equivalent to the word select
e of the variable e:

27

select(¢ = getchar()) {
| ¢ = getchar();

case ‘a’ 'z :c +=10 — "a; (2" <= c&&c<="7)c +=10 — ‘a’s

case ‘0" 12 "9 s ¢ —= 0% else if(0 <=c && ¢ <=9)¢ —= 0
case ‘A’ 'Z' ¢ +=10 — ‘A elseif(A’ <=c&& c<='Z")c+= 10 - 'A";
default : ¢ = —1; else c = —|:

| o

In these examples, the variable c is set to a value between -1 and $f, according to the value
returned by the function getchar.
10.6. Iterative Statements
Syntax:
iterative-stmt : repeal-statement
while-statement
Jfor-statement
Repeat Statement
Syntax:
repeat-statement : repeat statement
Semantics:

The statement is repeatedly executed.

Example:
i=0;
repeat
f
if(s{i} == "*0") break;
++i;

l

In this example, the repeat statement is used to find the length of the string s.

29

While Statement
- Syntax:

while-statement : while (value) statement

Semantics:

The while statement is equivalent to the statement:
repeat} if('value) break; statement }

Example:
i=0;

while(s{ i } 1= "*0") ++i;

For Statement

Syntax:
Sfor-statement : for (expr-init ; expr-test ; expr-incr) statement
expr-init : value
null
expr-test : value
expr-incr : value
null
Semantics:

The for statement is equivalent to:

{
expr-init
while(expr-test)
!
statement
expr-incr,
f
J

Example:

for(i=0; sfi} ; ++i);

30

11. Manifests and Input File Indirection

Manifests
Syntax:

manifest . identifier = manifest-text

manifest-text is a string of characters delimited by the first of new-line or ’\'.
Semantics:

After the manifest is defined, any occurrence of the identifier is replaced by its manifest-
text. Such identifiers can be used anywhere, even within other manifest declarations.

Manifests can be defined only outside function definitions.

A cautionary note:
Because manifests are simple substitutions, the following chain

A=1
B = A+A
C = B*B

will cause any occurrence of the manifest C to be expanded into the sequence
1+1*1+1

The precedence of the operators * and + in this case will cause a different result than was
probably intended. A safe rule of thumb is to use parentheses around expressions in
manifests.

input file indirection

Whenever the ASCII character "%” occurs in the first column of a source file input line,
the characters following it are regarded as a pathname of a file which contains part of the
source program which, in effect, replaces this entire line containing the “%" in column
one.

31

Appendix 1

Differences between Eh and B

Identifiers can be up to 32 characters long in Eh and they are not truncated by the com-
piler. Identifiers longer than 32 characters are illegal in Eh.

Character constants in B can have up to 4 characters between the single quotes, they are
limited to one character in Eh.

Hexadecimal constants are allowed in Eh. They begin with the character '$".

Strings are delimited by *0 in Eh. Some escape sequences, which are available in B, are
not available in Eh: *<, *>, *(and *). The character *n has the value 016 in Eh. The
character *| has the value 012.

B allows only a list of constants to be initialized in external variable definitions. In Eh it is
possible to initialize edge vectors. Also there are some syntactical differences. See Section
8.1 for the syntax of Eh's external definition.

The convention in B to accept alternative forms for some symbols ($(for {, etc) is not
supported in Eh.

The "&" and " |” operators have dual roles in B. They are bitwise operators in normal ex-
pressions, but are logical operators in expressions which are evaluated to be tested, as in if
statements. Eh introduces the "&&” and ”| |” operators which are the logical operators,
and keeps "&"” and ”|” as bitwise operators.

The operators have different precedence relationships. For example, in Eh the bitwise
operators (<<, >>, &, 1, |) have higher precedence than the arithmetic operators. (See
Section 7.7 for the precedence of Eh operators.)

The order of evaluation of expressions is well defined in Eh. See Section 7 for Eh's
operator binding rules.

The assignment operators have been reversed, relative to those in B; for instance, B's =+
is denoted in Eh as +=. This convention eliminates ambiguities in expressions like a=
—1 where the space between the "=" and the "—" is very important in B.

The B language supports strings but does not have operators to fetch and store bytes
within strings. Eh has the byte indexing operator "{".

32

The switch statement in B is not implemented. It has been replaced by the select
statements. The word-select statement is related to the switch statement in B. The major
difference between the two is that the switch is a multi-way branch, and the select only ex-
ecutes the statement labelled by the matching case label. The select statement is logically
equivalent to a chain of if ... else statements. The case labels are also different; a range
can be specified as well as single constants. The ranges and constants cannot overlap in
Eh, as they can in B. ‘

The string select is available only in Eh. (See Section 10.5 for its syntax and semantics).

The commands enable, disable and twit do not exist in B. The first two commands control
interrupts; the last is used to add inline machine instructions.

Eh introduces the formal function parameter "?” to denote an unbounded list of
arguments, making it possible to write functions which receive an arbitrary number of
. guments.

The library and 1/0 functions differ greatly from B's library of functions.

T “orm /*..*/ for comments in B is replaced by \...<nl>
" § ; where <nl> is the end of line delimiter.

In Eh, rﬁanifests are delimited by "' or <nl>, instead of ’; as in B.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

