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§1 Introduction

Many algorithms for finding orderings for symmetric matrices
operate on the corresponding symmetric graph. These algorithms often
require one or more “starting nodes", and for some algorithms experience
suggests that nodes which are at maximum or nearly maximum distance apart
are good candidates [4, 6, 7, 8, 9, 10]. In a recent paper Gibbs, Poole
and Stockmeyer [8] provide a novel heuristic algorithm for finding such
nodes. Our objective in this paper is to describe some modifications to
their original algorithm and to present an implementation of the modified
scheme. We also include some experiments illustrating the importance of
the modifications.

We now give some formal definitions and‘a precise statement of

the problem. Let G = (X,E) be an undirected graph with the set ¥ of nodes

and the set E of unordered edges. A path of Tength k is an ordered set of
distinct nodes (XO’X]""’Xk) where {Xi—1’xi} € Efor1<i<k, graph
is connected if for each pair of distinct nodes, there is a patp joining
them. Throughout this paper, graphs are assumed to be connecteq unless we
state otherwise.

Consider a connected graph G. The distance d(x,y) between two
nodes x and y in G is defined to be the length of a shortest path con-
necting them. Following Berge [2], we define the eccentricity of a node
X to be the quantity

2(x) = max {d(x,y) | y € X}

The diameter of G is then defined as

8(6) = max (2(x) | x € X,

or equivalently,

8(6) = max {d(x,y) | x,y € X}



A node x ¢ X is said to be a peripheral node if its eccen-

tricity is equal to the diameter of the graph, that is.g(x) = §(G).

Following Gibbs et. al [8], we define a pseudo-peripheral node to be

gne whose eccentricity is close to §(G).
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Figure 1.1 An 8-nodé graph.

Figure 1.1 is an example of a graph with 5 as its diameter.
The nodes Xys Xg and Xy are the only peripheral nodes.

With this terminology, our objective may be restated as an
implementation of an efficient heuristic algorithm to determine pseudo-
peripheral nodes.

It should be emphasized that both the original algorithm of
Gibbs et. al [8] and our modified version are heuristic; neither is
guaranteed to find a peripheral node; or even one that is close to being
peripheral. Nevertheless, the nodes produced usually do have high eccen-
tricity, and are effective as starting nodes for many ordering algorithms.
In any case, except for some fairly trivial situations, there is no result
which says that peripheral nodes are any better as starting nodes than the
nodes found by our algorithm anyway. Finally, in many situations it is
probably too expensive to find peripheral nodes even if it was known to be
desirable.to use them, since the best known algorithm for finding such
nodes has a time complexity bound of 0(|X|2) [11]. 1In some sparse matrix

applications this would dominate all other phases of the computation [7].



§2 Some Related Definitions and Notations

In this section, we introduce some more definitions and
notations that are useful in the description of the algorithm. Let
G = (X,E) be a connected graph and consider a subset Y = X. The

adjacent set of Y is defined to be the set

Adj(Y) = {x e X\Y'| {x,y} ¢ E for some y ¢ Y}.
When Y = {y}, we use the notation Adj(y) instead of Adj{{y}). The
degree of a node y is then the number IAdj(y)l, where |S| is the
cardinality of the set 8.

A graph G' = (X',E') is said to be a subgraph of G = (X,E)
if X < X and E' < E. For a subset Y < X, the section graph of Y in G

is the subgraph G(Y) = (Y,E(Y)), where
Although the graph G is assumed to be connected, its section
subgraphs may be disconnected. When a section graph G(Y) is disconnected,

it eonsists of two or more connected components.

A key sonstruct in the algorithm described in section 3 is the

rooted level structure [1]. Consider a node:x ¢ X. The rooted level

structure at x is the partitioning of the node set:
L(x) = L)y L) seslby () (3
Lo(x) = fx},

Li(x)

where

i-1
Adi( v L (0), 121 2 2(x).
k=0

and

The number %(x), which is precisely the eccentricity of the node x, 1is
sometimes referred to as the length ofa((x). It can be verified readily
that 2(x)

u L (x) = X.
k=0 K



The width of {(x) is defined to be
max {|L;(x) | + 0 <1 <a(x)}.

For convenience, we shall denote this quantity by w(x).

(%) Lo(xg)
(x1) (%3) L, (xg)
B & 2t
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Figure 2.1 A rooted level structureé(sz).

In figure 2.1, we have the rooted Tevel structure of the
graph of figure 1.1, rooted at the node x.. Note that 2(x6) = 3

and w(xe) = 3.



§3 Description of the algorithm and its modifications

§3.1 The Original Algorithm

In [8], Gibbs, Poole and Stockmeyer designed an algorithm to
determine pseudo-peripheral nodes. Their algorithm is a finite iterative
process based on the following observation:

ye Ly = alx) < 2(y).

In our terminology, their algorithm can be described as follows:

Step 1 (Initialization): Choose a node r of minimum degree.

Step 2 (Generation of level structure): Construct the rooted level
structure at r: Z(r) ='{L0(r), L](r),...,LQ(r)(r)}.

Step 3 (Sort the last level): Sort the nodes in Lg(r)(r) in increasing
order of degree.

Step 4 (Test for termination): For xe L )(r) in increasing order of

2(r
degree, generate &(x) = {Ly(x), L](x),...,LQ(X)(x)}. If o(x) > 2(r),
set r« x and go to step 3.

Step 5 (EXit): The node r is the pseudo-peripheral node determined.

§3.2 Modification by Short-Circuiting

For a given graph G = (X,E) and a node x € X, the amount of
work required to generate the rooted level structure¥(x) is atleast
0(|E|), since egch edge has to be inspected at least once. If r is the
thus determined pseudo-peripheral node, it follows that the algorithm
requires at least

Ly (D17 OCLE])
units of work. How can then the algorithm be speeded up while producing

reasonably good pseudo-peripheral nodes?



In their actual implementation of their algorithm [3], Gibbs
et. al. improved the efficiency by introducing a “short circuit”
technique, where wide level structures are rejected as soon as they are
detected. This idea is legitimate in viéw of the observation that Tong
level structures are usually narrow. (In any case, in their application
their primary interest was in finding narrow level structures, rather
than ones having a large length.) '

Their modification can be described by changing step 4 as follows:
Step 4' (Test for termination): For x € Lz(r)(r) in increasing order of
degree, generate (x) = {Lg(x)s L1(x),...,L2(X)(x)}. If w(x) < w(r) and
2(x) > 2(r), set r < x and go to step 2.

Note that step 4' can be implemented in such a way so that if
the condition w(x) < w(r) is violated, only part of the rooted level
structure {(x) needs to be generated. This can be done by testing if
|L1(x)| > w(r) as each level L.(x) is generated. This modification has
the effect of reducing the second factor in the expression !Lg(r)(r)l " O(]E]).
§3.3 Modification by Shrinking

In this subsection, we introduce another modification, the ob-
jective of which is to reduce the number of level structures generated.
The modified algorithm is described in detail as follows.
Step 1 (Initialization): Choose an arbitrary node r in X.
Step 2 (Generation of level structure): Construct the rooted level
structure at r: ;((r) = {Lo(r), L](r),...,Lg(r)(r)}.
Step 3 (Shrinking): Find all the connected components in the section
graph G(Lg(r)(r)).
Step 4 (Test for termination): For each connected component C in G(Lﬁ(r)(r)),

find a node x of minimum degree and generate its rooted level structureaffx).



If 2(x) > 2(r), put r < x and go to step 3.
Step 5 (Exit): The node r is the pseudo-peripheral node determined.

Here, instead of considering each and every node in Lz(r)(r),
we only pi¢k representatives from Lz(r)(r). This modification improves
the execution time substantially and our experience is that it does not
affect the outcome much. In the next section, we include some experi-
mental results that illustrate these points.

In addition, note that our step one chooses an arbitrary node,
rather than one of minimum degree. Thus, we avoid computing the degrees
of the nodes, and finding one of minimum degree, We found that this
modification usually reduced total execution time, and made little or no

difference to the resuilts.



§4 Some Experiments

In this section, we present some numerical experiments
comparing the performances of the algorithm and its modifications
as discussed in section 3. The algorithms have been implemented
and tested on a collection of graph problems that arise in prac-
tical applications. To see how the modified schemes compare to
the original algorithm, we consider an example in detail. The
result is typical in all the examples that we tried and it reflects
to some extent the general nature of the algorithms.

Consider an n by 2n regular grid. Associated with it is
a graph with N = (n+1) (2n+1) nodes located at the intersections.
of the grid lines. MNodes are considered to be connected if and only
if they share a common small "square". Figure 4.1 contains an ex-

ample of7a 3 x 6 grid and its associated graph.

Py

Grid Graph

Figure 4.1 An 3 x 6 grid and its associated graph.

To obtain an asymptotic behaviour of the algorithms on
this grid problem, we applied them to graphs with different sub-
division factor n. The numerical results are reported in table 4.1.
Here, the execution time is in seconds on an IBM 360/75 computer.
The programs were run under the University of Waterloo.WATFIV de-
bugging compiler. A Fortran listing of the subroutines used appears

in the Appendix.



Original Algorithm|| By Short Circuitinglf By Shrinking

N Time |Time/(n+2)N|| Time Time/(%+2)N' Time | Time/3N
5 66 0.47 | 1.02(-3) “ 0.34] 1.14(-3) 0.221 1.11(-3)
10 | 23] 2.96 | 1.07(-3) 1.851 1.14(-3) 0.71| 1.02(-3)
15 | 496 8.56 | 1.02(-3) 5.24 | 1.11(-3) 1.47 | 0.98(-3)
20 | 861 | 19.36 | 1.02(-3) ‘ 11.50( 1.11(-3) 2.58 | 0.99(-3)

Table 4.1 Tabulated resuits for the n by 2n regular

grid graph.
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The execution time of the modified scheme by short-
circuiting nearly halves that of the original algorithm. This is
to be expected since most of the rooted level structures in the short-
circuiting scheme are only half-formed.

However, both schemes have a running time proportional to

N3/2

» Where N is the number of nodes in the graph. The modification
by shrinking is dramatically faster, and it has a time complexity
bound of O(N).

The differences in the execution time between the algorithms
would not be meaningful unless they produce comparable results. In
fact, although the pseudo-peripheral nodes determined by the three
schemes are different, they all have the same eccentricity, namely 2n.
Indeed, the method by shrinking compares very favorably with the other
two.

Note that if we had chosen an n by (n+1) grid, the short-
circuit technique would save almost nothing, and the advantage of our
scheme would have been even more dramatic.

Results of the same nature were obtained for other test ex-
amples, which included the set of sparse graphs collected by E.H. Cuthill
and G.C. Everstine, used in [8]. In all the test examples, nodes gener-
ated by the schemes have equal eccentricity and the method by shrinking

require substantially less execution time than the original algorithm.
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§5 Concluding Remarks

The need to find nodes with large eccentricity arises in
many heuristic ordering algorithms for sparse matrices. We have
made a suggestion to modify the heuristic algorithm by Gibbs et. al
for determining such nodes. Experiments have shown that the modified
algorithm requires significantly less time for execution and produces
nodes of comparable eccentricity. In many practical cases of interest,

it reduces the execution time from 0(N3/2) to O(N).
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Appendex

We include here a FORTRAN implementation of our modified
algorithm. It consists of three subroutines whose control relation-

ship is as depicted below.

The subroutine FNROOT is the driver routine that returns a
pseudo-peripheral node in a masked subgraph. It calls ROOTLS and
SHRINK to generate rooted level structures and to shrink last level

node sets respectively.

In the implementation, the graph is stored as a sequence of
adjacency lists. The lists are kept consecutively in a single array
“"ADINCY". An index array "XADJ" is used to mark the beginnings of the
adjacency list. Thus, the nodes adjacent to the i-th node are given
by {ADJINCY(k) | k = XADJ(i), XADJ(i)+1,...,XADJ(i+1)-1}. The rooted

level structure is stored in the same mamner by an array pair (LS, XLS).
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SUBFOULINE FNHCOT DETERNINES A PSEUDO PERIPHERAL NODE
FOR THE "HASKT-ED CCHPONENT CONTAINING THE NODE 'ROQT!.
A ECDIPIED VERSION OF THE SCHEME BY GTBBS, POOLE, AND
STOCRMEYER (STAM J. NOKER. ARAL., 13 (1976), PP 236-250.)
1S USED. ' .

©H¥ GRAPH IS STCRE). AS A SEQURNCF OF ADJACENCY LISTS,
STOBRD CORSECUTIVEIY IN THE ARRAY ADJNCY. TEE POSITION
CP THE ACJACENCY LIST FOR THF I-TH NODE IS GIVEN BY

XADJ (T). THUS, THE NODES ADJACENT TO NODE I ARE GIVEN BY
;DJHCY(K),'K = XADJ(I), XADJ(I)+1, ... KADJI({I+1)-1.

THE ARRAY MASK IS USED TO MASK OFF A STUBGRAPH OF THE
CHE STORED IX¥ THE ARRAY “AIR (ADJNCY, XADJ). 'FNROOT®
IGRCERS NCDFS FOR NHICH MASK(I)=0. )

THE ARRAY PAIR (LS, XIS} IS USED TO STORE LEVEL STRUCTURES.
XCDES IN LEVEL T ARE FOUND IN LS(K) FOR K EQUAL TO
XLS (I}, ILS(I)+1, «.., XLS(T+1}-1.

THE ARRAY LASTLV YIS TE®PORARY STCRAGE USED TO STORE
THR NODES OF TEE LAST LEVEL QF R LFVF], STRUCTURE.

TEE NUMBER KLVY IS THE NOUHBER OF LEVBLS‘IN THE LEVEL
STRUCTURE OF MAXIFUM LENGTH SO FAR FCUND,

CR® EXIT, FOCT CCNTAINS THE PSUFDO-PERIPHERAL NODE
FCUED, AND THE® LEVEL STRUCTURE ROOTEL RT THAT NODE
IS STORED IN THE ARRAY PAIR (LS, X1S). NLVL IS THE
LENGTH OF THAT LEVFL STRUOCTURE.

kR ok o ok ko ok ok oKk ok ok sk KON o B R ok ko ok ok ok ok ok o sROK ok SOk R Rkl Rk ek

SUBFCUTINE FNROCT (FCOT, ADJINCY, XADJ, MASK,
15, XLS, NLVL, LASTLV)

o e o e A ok ok A S - -

100

200

noanon

[e]

300

INTEGER ADJNCY (1), XADJ (1), MASK(1), LS{1), XLS(V),

DETERKINE BCOTEL LEVEL STRUCTURE AT 'ROOT',

CALL ROOTLS (ROOT, ADJNCY, XADJ, WMASK, LS, XLS, ﬁLVL)
IF (NLVL .EQ. 1) RETURN

cd?! T8E LAST LEVEL OF LS TO VECTOR 'LASTLV®.

Jd = XLE(RLVL).
ILSIZE = XILS{NLYL+1) - J

£0 200 I = 1, LISIZE
IASTLV(T) = IS(J)
J=J4+ 1
CONTINOE

1ET GY BE THE SECTION GFAEH PRESCRIBED BY THE NODES
CF THE LAST IEVEL (LASTLV). CALL 'SHFINK' TO SHRINK
FACH CCREECTED CCHPONENT CF G* TO A NODE OF MINIMUM
TEGREE IX EACH CCHEORENT. :

IF ( LISIZE .GTI. 1)
CALL SHRIMNK (ADJNCY, XADJ, MASK, LASTLY, LLSIZE, LS)

FOR RACH NODE IK THE (SHREUNX) LAST LEVEL, GEWERATE ITS
FOOTFD LEVEL STFUCIN2E. CCHPARE TTS LRNGTH

WITH THE BREVICOS LEYEL STRUCTU®E. IP A LONGZR ONE IS
FCUND, USE ITS IAST LEVEL T@ START OVER (GO TO 100).

EO 300 I = 1, LISIZE
ROOT = LASTLV(T)

CALL FOOTIS (RGOT, ALJNCY, XADJ, HASK, LS, XLS, NUNLVL)
IF (WDFLYL .EQ. NLVL) 60 1TC 390

NLVI = NOUNLVL
GO 70 100

CONTINUE

FETURY
EXD
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ROOTLS GENRRATES TRE ROOTED LEVEL STRUCTURE AT THE NODE
*ROCT*.

1HE GRAPH TS STOREL AS A SEQUENCE OF ADJACENCY LISTS,
STORED CONSICUTIVELY TN THE ARRAY ADJINCY, THE POSITION
0P 1KE ACJACENCY LIST FOR THY I-TH NODE IS GTVEN ~~
XADJ(I). THUS, THE NODES ALJACENT TO NODE I ARF G.+EN BY
ATJINCY (K), K = XADJ(T), XABJ(I)+%, ... XADJ(I+1)-1.

THE ARRAY MASK IS USED TO MASK OFF A SUBGRAPH OF THE
CNE STORED IN THE ARRAY PAIR (ADJNCY, XADJ). 'ROOTLS®
IGNCHES NCDES FOR WHICH MASK(I)=0.

TRE ARRAY PAIR (LS, XIS) IS USED TO STORE THE LEVEL
STRUCTDRE. NODES IR LEVEL I ARE FOUND IN L5(K),

FOR K = XIS(I}, XLS(I)+1, ..., XLS{I+1)-1.

THE NUMRER NLYL IS THE NUMBER OF LEVELS IN THE LEVEL.
STRUCTURE. '

.*#t#'#*i*****’**!#*******‘*#*3********#****1ﬁ**#********t*****

SOUBROUTINE ROOTIS {ROOT, ADJNCY, XADJ, MASK, LS, XLS, NLVL)

A AAAANNOAANANNOANNNAONNNN

INTEGPR ADJRCY (1), X¥ADJ (1), ®ASK({1), LsS(1), XLS{M),

1 Jstet, JSTOP, d, NBR, LVSIZE, NODE, ROOT,
2 BLVL, I, LNBR, LBEGIN, LVLEND
C-‘-““"-" ------- — - Y o ——— . - - - - - -
c .
c © IRYTIALIZATICN ...
c
EASK(RCOT) = O
I1S(1) = EOOT
FLVL = 0
1LYLEND = 0
IEBR = 1
c
c VLBEGIY' IS THE POINTER TC THE BEGINNING OF PRESENT
c 1EVEL: AND '‘LVLEND' POINTS TO THE END OF THIS LEVEL.
c .
200 IBEGIN = LVLEHD + 1
IVLERD = LNER
¥LVL = WIVL + 9
. LLS(NLVL} = LBEGIR
C . :
c GENERATE THE NEXT LEVEL BY PINDING ALL THE MASKED
¢ EEIGHBORS OF NOLES IN PRESENT LEVEL.
¢ :
‘ O 800 I = LBEGIN, LVLEND
NODE = LS(I)
JSTRT = XADJ (NODE)
JSTOP = XADJ(NODE + 1) - 1
c
1F { 3STOP .LT. JSTRT ) GO TO 400
¢
Do 300 J = JSTRT, JSTOP
NER = ADJECY {J)
c
IF (MASK (EBR) .BQ. 0) GO TO 300
c .
L¥ER = LNER + 1
1S (LNBR) = NER
MASK (KBR) = 0
c
300 CONTTYUR
400 CONTINUE
c
¢ COMPUTE THE CURRENT LEVEL WIDTH.
c IF IT 1S NORZERC, GENERATE NEXT LEVEL.
c .
1VSIZ® = LNER - LVLEWD
1P (LVSIZE .GT. 0 ) GO 1O 290
c
YLS {RLVL+1) = LVLESD + 1
c
c FESET ¥ASK T0 GKE FOR TEE NODES TN THE LEVZL STRUCTURE.
C .
LO 500 T = 1, LY¥BR
BASK{IS(I)) = 1
500 CONTTHDF
C

FETURY
END
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