A MODEL OF PARALLEL COMPUTATION STRUCTURES

by
M. Yoeli J.A. Brzozowski
Dept. of Comp. Science Dept. of Comp. Science
Technion University of Waterloo
Haifa, Israel Waterloo, Ont., Canada

Research Report CS-76-43
October 1976

This work was done when the first author was visiting
the University of Waterloo. This research was supported

by the National Research Council of Canada under Grant
No. A-1617.

A MODEL OF PARALLEL COMPUTATION STRUCTURES
by

M. Yoeli and J.A. Brzozowski

Abstract

We introduce a new mathematical model for asynchronous digital
systems involving parallel processing. The model is based on the separa-
tion between device structure and control structure. A number of basic
control modules are used as buiiding blocks for control structures. We
use the pulse signalling convention, and show how the control modules
can be implemented. The model retains the ability of Petri nets to
represent concurrent activities, but avoids several disadvantages of
the Petri net approach to the modeling of hardware. We also introduce
a mathematical framework in which the correctness of é computation
structure may be verified. Finally, a number of open problems are

stated.

1. Introduction

Considerable attention is presently being given to the design
of asynchronous digital systems involving parallel processing. The
synthesis, verification, and implementation of such systems is simpli-
fied if the system is conceived as consisting of two parts: a device

structure (or “"data flow structure") and control structure [BR-YO, CLA,

HOW, PA-DE]. It is clearly advantageous to realize the control

structure in modular form.

Petri nets have been proposed [MIS,PA-DE] as a mathematical
mode] of asynchronous control structures involving parallelism. However,
Petri nets have certain disadvantages: (1) The model unrealistically
permits the accumulation of any number of tokens in a single place,
implying unbounded memory. (2) In a Petri net representation, modularity
is not easily recognizabie. For instance, a module like an arbiter appears
as a particular pattern of places and transitions. (3) Conventional Petri
nets do not admit the concept of inhibiting the firing of a transition.
This concept is required to represent, for example, a priority arbiter (see
Section 4). This 1imitation led to the introduction of "inhibiting arcs"

[FL-AG,AGE].

Another approach to modular asynchronous systems was introduced
by Keller [KEL1]. This is based on sequential machine models, and lacks
the advantages of Petri nets, where concurrent activities are more clearly

represented.

In this paper we attempt to avoid the above-mentioned

2.

disadvantages of Petri nets, but retain their basic ability of modeling
parallelism. We first introduce several basic, easily implementable
modules from which complex control structures may be built. We then
propose a mathematical model for asynchronous parallel systems having

control structures composed of these modules.

We assume that all devices operate asynchronously. Each
device is given a GO signal [BR-Y0] (or "ready signal" [PA-DE]) by the
control structure to start its operation. Upon completion of its

task, the device returns a DONE signal ("acknowledge signal").

Various signalling conventions have been discussed in the
Titerature [KEL1, PA-DE]. We treat specifically the "pulse" signalling

convention which is easily impiemented and frequently used.

The model we introduce is suitable for design: the notation
is quite similar to flowcharts of parallel programs; the task of
verification can be precisely formulated (see Section 5); and modular

impiementation is direct and straightforward.

The report represents only a preliminary investigation and
further work is needed. A number of open problems are listed in

Section 6.

2. Introductory‘Examples

We‘begin by describing a simple problem and its implementation.
Let A, B, and C be binary words of length n = 1. We denote by LA the
nonnegative integer whose base-2 representation is A. We write A+B = C
to state that 1C is the sum modulo 2" of LA and 1B. The letters A, B,

etc. will be used to denote both n-bit registers and their contents.

For our purposes an (n-bit) adder is a device interconnected

as shown in Fig. 1.

A
[reaster
> DATA LINK
v > CONTROL
LINK

Fig. 1 Interconnections of an adder

The adder may be in two states, namely OFF and ON. If it is in the

OFF state and a pulse signal is received on its GO input, the adder will
perform the operation C « A+B (i.e. the contents of register C is set
to A+B), and will issue a pulse signal on its DONE output. As long

as the operation is in progress, the adder assumes the ON state. During

-4-

this period, the contents of registers A and B are not to be changed.

If another GO pulse arrives, while the adder is in its ON state, this

GO pulse is ignored. The actual GO command is the 0-1 transition of the

GO pulse arriving while the adder is in its OFF state.

Such adders are easily designed. In general, we assume that
all devices perform similarly, i.e. start on GO signals and produce
DONE signals. If the time taken by an operation is fixed, the DONE

signal may be generated by a timer.

DONE2

GO3 DONE3

START

GOl GO2

(b)

Fig. 2 Computation structure to perform S « A+B+C+D

(a) Device structure

(b) Control structure

Assume now that three adders are available to perform the
computation S « A+B+C+D. The expression A+BfC+D can then be evaluated
as (A+B) + (C+D), where the additions A+B and C+D are performed con-
currently. The corresponding set-up is shown in Fig. 2. We assume
that the numbers to be added are already stored in registers A, B, €

and D.

The JOIN in Fig. 2(b) is an asynchronous network whose state

diagram is shown in Fig. 3(a).

X2
Fig. 3(a) State diagram of JOIN.
X-l x2
CLEAR SET CLEAR SET
LA-]I-CH LATCH
Q Q | 2
AND GATE
(e
MONOSTABLE
MULTIVIBRATOR

z

Fig. 3(b) Implementation of JOIN.

~7-

In this state diagram, Xq and Xy represent pulses on input Tines 1 and
2, respectively, and z represents an output pulse. Furthermore, we
specify that the simultaneous arrival of both X and X, is to have

the same effect as Xq followed by Xps O X, followed by Xq - A

straightforward method of implementing a JOIN is shown in Fig. 3(b).

The control structure of Fig. 2 may be modeled by the
control net shown in Fig. 4. The control net is a mathematically precise
‘concept (see Section 3) that is useful for analysis, synthesis and
verification of control structures. It is quite close to our concept
of control structure, but is more independent of the actual implement-
ation and signalling conventions. In this example, the control net

is used as an aid to the analysis of the computation structure of Fig. 2.

P1
p
Py 3
E < A+B , F <« C+D
Py / Ps
J
Pe
S « E+F
P7

Fig. 4 Control net representing control structuré of Fig. 2.

8-

The circular nodes in Fig. 4 are called places. A place may
be marked by putting a token inside the circle. In distinction from Petri
nets a place may not contain more than one token. The square node
labeled J represent the JOIN of Fig. 2(b). The various stages of the
computation are modeled by corresponding token distributions. For example,
the marking of place Py represent the appearance of a START pulse and
the markings of places pz,‘ps, and Pg represent the ON-states of adders

s Ay, and as respectively.

Precise firing rules for control nets, defining all possible

transitions between token distributions, will be set up later. Presently
we illustrate the application of such firing rules in an informal way.
A typical sequence of token distributions, together with their inter-

pretation, is shown in the following table.

TABLE 1
Py A START pulse arrives
Pos Pg Adders a; and a, receive GO pulses and assume

their ON states.

Pos Pg Adder a, has completed its operation and issued
the DONE pulse. Consequently the JOIN is in
state 3. Adder a, is still ON.

Pg> Ps Adder 3, has completed its operation and issued
the DONE pulse. The JOIN is now ready to
return to state 1.

P6 The JOIN has issued an output pulse; thus, ag
has received a GO pulse and is ON.

P, The computation is completed and an END pulse

appears.

-9-

For our next example assume that the above computation S < A+B+C+D is
to be performed by means of two adders 2, and a, only. We may still evaluate
A+B and C+D concurrently, but we have to use, say, C again to evaluate S.
The corresponding device structure is shown in Fig. 5. The devices marked

I transfer input to output (I denotes the identity operator).

Clearly the device structure must be the first step of the design.
Next we can construct a corresponding control net. This is similar to the use

of flow charts in programming.

Two control nets corresponding to Fig. 5 are shown in Fig. 6. In both
nets the adder a, is used twice to perform the operation S « A+B. This is

indicated in Fig. 6 by labeling the expression S « A+B accordingly.

A B C
GO1 2, DONE1 GO4 a, DONE4
Q o
S N F

iE3 G0?
1
| !

DONE 3 Fig. 5 Device structure for the DONE2

computation S <« A+B+C+D,
using two adders.

-10-

S « A+B F « C+D

A<S
J
B<«F
J
S « A+B
(2)
Fig. 6(a) Fig. 6(b)

Fig. 6 Two versions of control net corresponding
to Fig. 5.

-11-

In genera], if an adder (or some other operational device) is
to be used twice, an interface device called a call module [KEL1,ST-OR-CL]
is required. The external connections of such a module as well as its
state diagram are shown in Fig. 7, where we assume that a GOi pulse may
appear only if the device is in its initial state (1), and GO1 and GO2
cannot appear simultaneously. The concept of the "two-port" call module,
shown in Fig. 7, is easily extended to "multi-port" call modules, enabling
themultiple use of any operational device. We choose to associate
the call module with the device structure, rather than the control structure.
Alternatively, the concept of control net could be extended to include

call modules.

GOT —— CALL L —3 DONET GO1/G0O
MODULE
602 — ——» DONE2
DONE/DONE1
DONE
60 DONE/DONEZ
OPERATIONAL
DEVICE
(a) (b)
Fig. 7 Call Module (a) External connections

(b) State diagram

-12-

The control structures corresponding to the control nets shown

above are easily derived. We leave this to the reader.

For our third example let * denote some associative operation
on the set of n-bit words and assume that we wish to perform the

computation

R <« A*A*, | *A
e
k appearances of A
where k = 2. The corresponding device structure is shown in Fig. 8

(the control connections are omitted). The device indicated by *

performs the operation D « B*C. The initial value of (the counter)K

[1K > 0]

Fig. 8

-13-
is 1K = k-1. The function DECR is defined as follows:

if 1K > 0 then L(DECR K) = (uK) -1,
else DECR K = K .

t

A control net for the present example is shown in Fig. 9.
The square node labeled U is a UNION. Its implementation js simply
an OR gate. The square node labeled D is a DECIDER. A decider
may be implemented by a decoder, having a level input c and a pulse
input x. Its two outputs are combinational, namely T=c<x and
F=c's+x, where + denotes AND. The control structure is now easily

derived from the control net of Fig. 9.

In our first example we started with a computation structure
(Fig. 2) composed of a device structure and a specific control structure
using pulses for signalling. The corresponding control net (Fig. 4)
is a mathematical abstraction of the control structure. Another Tevel

of abstraction involves the concept of a control schema. The control

schema corresponding to Fig. 4 is shown in Fig. 10, where O1» Ops 04
are symbols representing aribtrary operations. Figure 4 becomes

a particular "interpretation" of Fig. 10. Thus control schemata
correspond to program schemata. Frequently, one can derive many
features of a control structure from its corresponding schema. In

the next section we give a precise definition of control schemata.

-14-

B« A C+A
J
> U
C+«D D « B*C K < DECR K
J
1K >0 Ci)
D

Fig. 9

o Nt
: Q/ ~[>0O—=0O
O1|Ao,, Y

-16-

3. Simple Control Schemata and Nets

In this section we develop a mathematical formulation of the
concepts of control schemata and control nets. We begin with a class
of schemata and nets that we call simple. A1l the examples of Section 2

belong to this class. In Section 4 these concepts are generalized.

A simple control schema (SCS) is a finite, directed, labeled

graph satisfying the following conditions:

1) The nodes are partitioned into places (shown as circles) and "square"
nodes. Square nodes are of three types, namely: a) UNIONS b) CHOICES
and c) gg;ﬂg, The type of a square node is indicated by means of labels
U, C and J, respectively.

2) The indegree of a place is either 0 or 1.

3) Square nodes are connected to places only.

4) UNIONS and JOINS have indegree > 2 and outdegree i.

5) CHOICES have indegree 1 and outdegree = 2.

6) If there exists an edge from node p to node g, then p is an input
node of q, and q an output node of p. If a place p has outdegree > 1,
then all its output nodes are places. Such a place p is called a fork.
7) If p is a place with outdegree 1, q a place with indegree 1, and

e is an edge from p to g, then e is an operation edge. Let I be a

finite alphabet. Every operation edge is labeled by a letter of I.

An example of an SCS has been given in Fig. 10. The motivation
for having FORK, JOIN, and UNION nodes should be clear from Section 2.
The new node type, CHOICE, represents either (a) a module that

randomly selects one of its outputs, e.g. for use in arbitration

-17-

networks or (b) an abstraction of the DECIDER node. We will return

to DECIDERS Tlater in this section.

One could implement a two-input CHOICE node by exploiting
the critical race in a latch [BR-Y0]. However, this may not be an
acceptable solution if the "glitch phenomenon" is present [CH-MO].

Therefore this problem requires further study.

Let S be an SCS and P the set of its places. A state or
marking of S is any subset Q of P. The marking Q of S is ﬁndicated
by placing tokens in all places belonging to Q. With any SCS
S we associate a transition relation (=) on its set of states. For
m,m' < P, we have m - m' iff m' is obtained from m by the application

of one of the following firing rules: Note: By "marking" a place

p we mean putting a token on p, if it had no token previously, and

doing nothing otherwise.

F1) If e is an operation edge from place p to place g, and p is marked
(i.e. p e m), remove the token from p and mark q. The new marking

is therefore: m' = (m-{p}) v {ql}.

F2) 1If the place p is a fork and it is marked, remove the token from p

and mark all output nodes of p.

F3) If U is a UNION, and at least one input place of U is marked,
remove the tokens from all input places of U and mark the output place

of U.

F4) If C is a CHOICE, and its input place is marked, remove the token

from its input place and mark any one of its output places.

-18-

F5) If J is a JOIN, and all its input places are marked, remove the

tokens from all its input places and mark its output place.

In the firing rules introduced above the presence of a token
in a place represents either the presence of a pulse or the "set"
state of a latch. For example, tokens at the input places of a UNION
represent puises. On the other hand, a token at an input place of
a JOIN represents the set state of a latch. (See Fig. 3(b).) The
reader should verify that the firing rules are consistent with the
implementation of the various modules and operational devices. For
instance F1) corresponds to the following. If an operational device
is in its ON state, it will eventually complete its task. It then

issues a DONE signal and returns to its OFF state.

Before defining control nets we introduce formally an
additional type of square node, namely DECIDER shown as a square
labeled D. The indegree of a DECIDER is two, and its outdegree is
two. Its two input nodes are places, one of them distinguished
as its condition place and the other as its signal place. The
condition place has indegree 0. The two output nodes are places,

one labeled T and the other F.

The firing rule for a DECIDER is:
F6) If D is a DECIDER, and its signal place is marked, remove the
token from the signal place. Mark the output place labeled T, if

the condition place is marked; otherwise mark the output Tabeled F.

In an "uninterpreted" schema, the condition place of a

-19-
DECIDER is omitted; what remains is equivalent to a CHOICE node, as mentioned

before.

A simple control net (SCN) N consists of

1) A finite directed graph whose nodes are places, UNIONS, CHOICES, JOINS and
DECIDERS.

2) Firing rules F1) through F6).

3) A domain M c {0,1}r, where r is a fixed positive integer.
Intuitively, r is the total number of binary register cells appearing

in the device structure.

4) A set G of unary operations on M (i.e. g:M + M, for every g ¢ G),
together with a mapping e — 9 of the operation edges of N into G.
Thus Jo represents the transformation of the domain caused by operation

corresponding to e.

5) A set H of predicates on M together with a mapping p ~ hp
of all condition places of N into H. This implies that a condition
place p is marked iff hp(d) is true, where d ¢ M is the present state

of the domain.

To illustrate these concepts, refer to Fig. 2. The domain
M consists of registers A through F and S, all of Tength w. Thus
r = /n. The mapping associated with ay performs E < A+B and leaves
registers other than E unchanged. See Fig. 9 for an illustration of

predicate mapping.

Note that 4) above admits the identity operator as a valid

operator. We can view this identity operation as a delay.

-20-

4. General Control Schemata and Nets

We now introduce general control schemata and nets which extend

the concepts of simple control schemata and nets introduced earlier. These
generalizations will enable us to properly model more complex systems, e.g.

computation structures which contain priority arbiters.

General control schemata are defined similarly to simple control
schemata, except thét a new type of square node, namely TRANSFORM is
introduced. As will become evident, a JOIN node is a special case of a
TRANSFORM node. A TRANSFORM node will be labeled T. All the input and
output nodes of a TRANSFORM are places. A TRANSFORM has k > 1 input
places, numbered 1 to k, and n > 1 output places. Each output place is
labeled by a ternary k-tuple t ¢ {0, %3 1}k, where at least one component
of t is 1. We say that the binary k-tuple b « {0,1}k matches the ternary
k-tup]é t ¢ {0, %3 1}k iff b can be obtained from t by changing the
%-- entries of t only. The following firing rule applies to a TRANSFORM:
F7) Let b be the binary k-tuple which represents the marking of the
input places. Mark each output place whose ternary label is matched
by b. Let the i-th input place be marked. Remove its token iff there
exists an output place with ternary label t, such that t is matched by b,

and t1=1.

A simple example of a TRANSFORM T is the case k=2, n=1, and
t=11, where t is the ternary output label. Clearly, T will perform in
the same way as a 2-input JOIN. Similarly, the case k > 2, n=1, t=11..]
corresponds to a k-input JOIN. Thus a JOIN is a special case of a

TRANSFORM.

-21-

Another example of a TRANSFORM is shown in Fig. 11.

.

1
1 101
4)

Fig. 11 Example of TRANSFORM

This TRANSFORM performs priority arbitration on the inputs x and y .

The place e is the enabling input. If e is not marked, no output will
occur. If e and X ére both marked, the TRANSFORM will mark Zys independent-
ly of the state of y, and remove the tokens from e and x. The state of y

is not affected. The marking of z, may be interpreted as "x is to be
served". If, however, e and y are marked, but x is not, then z, will

become marked (indicating that "y is to be served") and the tokens of

e and y will be removed.

The method used in Fig. 3(b) to implement the JOIN may be
extended to realize other TRANSFORM nodes. However, such realizations
may involve timing problems. It is still an open question whether all
such problems may be eliminated by the 1nsert16n of suitable delay

elements. This problem is of particular interest in connection with

-22-

the proper design of priority arbiters, such as the module specified

by Fig. 11.

Although a variety of arbitration network designs have been
proposed in the Titerature [MIS,0-K-N-S,PLU,SE-JU], most of these
papers do not give precise specifications of these networks nor do they
provide proofs of their correctness. Furthermore, in most cases the

signalling convention differs from the one used in this paper.

-23-

5. Behavior of Control Nets

In this section we make precise the notions of computation

performed by a computation structure, and of verification of the design.

Furthermore, we define various properties of control nets that give
insight to its behavior. We return to these properties in Section 6.
These concepts are quite similar to those appearing in parallel program

theory [ASH,KEL2].

Let N be a control net, P the set of all its places and C
the set of its condition places. A total state of N is an ordered
pair (t,d), where t c P-C is the token state and d ¢ M is the data
state. Note that the marking c, < C of condftion places is determined

by d as follows:

cg = Tp ¢ Clh (d) holds).

We now introduce the net transition relation - on the set

of total states of N. If t' is obtained from t by applying one of the

firing rules F2) - F7), the data-state is not affected and we have
(t:d) - (t"d) .

Assume now that t' is obtained from t by applying firing rule F1), and

that e is the corresponding operation edge. Then
(t,d) — (t',d'),
where d' = ge(d).

Let N be a control net, having a single START place Ps

and a single HALT place Py By a computation sequence of N we mean

_24-
a finite sequence o of total states,
g = (to,do),...,qk = (tk’dk)
such that A5 > Q344 (0 <1< k), ty = {p.1> Py €ty and p,, ¢ t, for i < k.

The data state d0 is the initial value for o, and dk is the outcome.

We call a sequence o residue-free (cf[HE-YO]) iff tk = {pH}.

N is residue-free, iff every computation sequence of N is residue-free.

By a deadlock sequence of N we mean a finite sequence o of

total states,
dg = (tO,dO),...,qk = (tk,dk)

such that q. + a4 (0 <1< k), ty = (o Py ¢ t; for 0 <1 <k, and no

total state 9 exists such that q - q. The control net N is deadlock-free,

iff no deadlock sequence of N exists.

Let now q = (t,d) and q' = (t',d') be total states of N, such
that q - q'. If p e t-t', then the place p is unstable in the total state

q. A non-terminatingﬁsequence of N is an infinite sequence o of total

states,

qp = (to,do),...,q.

;= (te.do),. ..

such that q; > q;,4 (i =20), ty = {pgts Py ¢ t; (i = 0), and furthermore
o has the following finite-delay property [KA-MI,KEL2]:

If p is unstable in state q;» (i 2 0), then p is stable in some
state qj, where j > 1. It is reasonable to assume that the finite-delay

property holds in actual computation structures.

The control net N is properly terminating, iff N is deadlock-free

-25-
and no non-terminating sequences of N exist.

Usually only a part M' of the domain M is of interest after
a computation has been completed. Two data states of M that agree on

M' can then be considered equivalent. In general, let E be an equivalence

relation on the domain M of N. The net N is E-determinate (cf. [KEL2])

with respect to dO e M iff the outcomes of all computation sequences with

initial value do are E-equivalent. The net N is E-determinate iff N

is E-determinate with respect to every d0 e M.

The computation y to be performed‘by a control net N may be
viewed as follows. We are given two equivalence relations E] and E2 on

M, and a function
v:(WE) — (WE,)),

where M/E is the set of equivalence classes of M under E. The net N
performs the computation y iff every computation sequence o of N with

initial value dO and outcome dk satisfies the condition

v(E{[dy]) = Eold. 1,
where El[do] denotes the E]-equivalence class of dO‘ By verification
of N we mean a formal proof that N indeed performs the computation y.
The verification of a control net is, of coursé, closely related to the
verification (proof of correctness) of parallel programs. The model
proposed in this paper provides a suitable framework for the verification
of control nets, which ensures the correctness of the corresponding

parallel computation structure.

-26-

6. Open Problems

As we have mentioned before, this work is incomplete. In this

section we list several open probiems.

A) Hardware Implementation of TRANSFORMS

We had suggested that the implementation of Fig. 3(b) for the
JOIN can be extended to the design of TRANSFORMS. However, this straight-
forward extension has a critical race under certain multiple-input changes.
It appears that such races can be eliminated by inserting delays in appropriate

Tines. However, formal methods of verification have yet to be developed.

B) Verification of Control Structures

Any control structure composed of the basic modules described here
can be viewed as a large asynchronous network, with the various DONE and GO
signals as inputs and outputs, respectively. The inputs to this network
are not arbitrary, but are contrained by the outputs. Assuming that the
basic modules are well designed, what conditions must be placed on the control
schema in order to guarantee proper behavior of the overall network? (A

similar problem is discussed in [KEL1].)

C) Proof of Correctness of Computation Structures

We have already formulated in Section 5 the problem of verifying
whether a given computation structure performs the desired computation.
Efficient techniques of proving correctness need to be developed. For some

related problems see [ASH] ane [KEL2].

D) Relationship between Schemata and Nets

Certain properties of a control net can be derived by analyzing

-97-

the corresponding schema. Further insight is needed in this connection.

E) A Hierarchy of Control Structures

Consider the "hierarchy" shown in Fig. 12, where D,U,F,J,T, and
C represent DECIDER, UNION, FORK, JOIN, general TRANSFORM and CHOICE,
respectively. Intuitively, the confrol structures become more "powerful"
as various modules are added, as indicated in Fig. 12. This concept of

“power" needs to be made precise. For related topics see [PE-BR].

D,U

D, U, F, J D, U, C

D, U, F, J, T b, u, F, g, ¢

b, U, F, J, T,C

Fig. 12 Control structure hierarchy.

-28-
References

[AGE] Agerwala, T. "A Complete Model for Representing the
Coordination of Asynchronous Processes". Hopkins
Computer Research Report #32, Computer Science Program,
Johns Hopkins University, Baltimore, Maryland,
July 1974,

[ASH] Ashcroft, E.A., "Proving Assertions about Parallel
Programs". J. Computer and System Sciences, Vol1.10,
1975, pp.110-135.

[BR-YO] Brzozowski, J.A., and M. Yoeli, Digital Networks.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1976.

[CH-MO] Chaney, T.J., and C.E. Molnar, "Anomalous Behavior
of Synchronizer and Arbiter Circuits". IEEE Trans.
Computers, Vol.C-22, 1973, pp.421-422.

[CLA] Clark, W.A., "Macromodular Computer Systems".
1967 Spring Comput. Conf., AFIPS Conf. Proc.,
Vol.30, 1967. Washington, D.C.: Thompson, pp.335-336.

[FL-AG] Flynn, M. and T. Agerwala, "Comments on Capabilities,
Limitations and 'Correctness' of Petri Nets".
Computer Architecture News, Vol.2, Dec. 1973.

[HE-YO] Herzog, 0. and M. Yoeli, "Control Nets for Asynchron-
ous Systems, Part I". Technical Report #74, Dept.
of Computer Science, TECHNION, Haifa, 1976.

[HOW] Howard, B.V., "Parallel Computation Schemata and their
Hardware Implementation". Digital Processes, Vol.1l,
1975, pp.183-206.

[KA-MI] Karp, R.M., and R.E. Miller, "Parallel Program Schemata".
J. Computer and System Sciences, Vol.3, 1969, pp.147-195.

[KEL1] Keller, R.M., "Towards a Theory of Universal Speed-
Independent Modules". IEEE Trans. Computers, Vol.C-23,
1974, pp.21-33.

-29-

[KEL2] Keller, R.M., "Formal Verification of Parallel
Programs". Communications ACM, Vol.19, 1976,
pp.371-384.

[MIS] Misunas, D., "Petri Nets and Speed Independent
Design". Communications ACM, Vol.16, 1973, pp.474-
479.

[0-K-N-S] Ohmori, K., N. Koike, K. Nezu and S. Suzuki, "MICS-

A Multi-Microprocessor System". Information
Processing 1974, Proc. IFIP Congress 1974,
J.L. Rosenfeld, ed., Amsterdam: North-Holland,
pp.98-102.

[PA-DE] Patil, S.S., and J.B. Dennis, "The Description and
Realization of Digital Systems". Revue Francaise
d'Automatique, Informatique et de Recherche
Opérationelle, Feb. 1973, pp.55-69.

[PLU] PTummer, W.W., "Asynchronous Arbiters". IEEE
Trans. Computers, Vol.C-21, 1972, pp.37-42.

[SE-Ju] Sechovsky, H. and S. Jura, "Asynchronous Speed-
Independent Arbiter in a Form of a Hardware Control
Module". 1976 National Computer Conf., AFIPS Conf.
Proc., Montvale, N.J.: AFIPS Press, pp.777-782.

[ST-0R-CL] Stocki, M.J., S.M. Ornstein, and W.A. Clark, "Logical
Design of Macromodules". 1967 Spring Joint Comput.
Conf., AFIPS Conf. Proc., Vol.30, 1967. Washington,
D.C.: Thompson, pp.357-364.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

